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Abstract
With consideration for the extensive resources consumption and environmental degradation being on the rise today, imple-
menting green development strategy to pursue both socioeconomic growth and the coordinated of environment sustainability,
has become an increasingly important issue in modern enterprise supply chain operations management. Hence, the appropri-
ate green supplier selection (GSS), viewed as a core issue in green supply chain management (GSCM), requires continuous
research in this field to obtain a complete perception on GSS practices. It can be regarded as a multi-attribute group decision-
making (MAGDM) problem that involves many conflict and unmeasurable evaluation criteria. In view of the superiority of
multi-granularity extended probabilistic linguistic term sets (MGEPLTSs) in modeling such issues on potential ambiguity,
complexity and uncertainty in actual GSS practices, we propose a novel integratedMAGDMmethodology for GSS problems,
by integrating the BWM (best–worst method) with the VIKOR (VIšekriterijumsko KOmpromisno Rangiranje) technique
under the MGEPLTSs environment. First, by introducing the multi-granularity and probabilistic linguistic term sets, the
MGEPLTSs are proposed to represent and quantify the decision information of GSCM practitioners. Then, the BWM is
introduced to the MGEPLTSs environment to compute the weights of decision-making panels and evaluation attributes in
GSS problems, by building the fuzzy mathematical programming model, respectively. Finally, we extend a multi-granularity
extended probabilistic linguistic VIKOR method to calculate the compromise measure of alternatives considering the group
utility maximization and the individual regret minimization, thereby achieving the full ranking of alternatives. A GSS case
is conducted to illustrate the feasibility of the proposed approach, and the sensitivity analysis and comparative analysis with
other similar approaches are presented to demonstrate its effectiveness and advantages.

Keywords Multi-granularity extended probabilistic linguistic term sets ·Best–worstmethod ·VIKORmethod ·Multi-attribute
group decision making · Green supplier selection

Introduction

The essence of green development commonly means a
sustainable development pattern, namely using concrete rec-
ommendations and measurement tools to meet human needs
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to achieve socioeconomic growth, while preserving the envi-
ronment and conserves energy to provide the continuous
ecosystems services [39]. The green development strategy
proposes a flexible policy framework that can be tailored
to different country circumstances and stages of develop-
ment. In view of the resource depletion and environmental
degradation being on the rise today, carrying out the green
development strategy to trade-off the economic benefit and
the environment friendliness becomes an increasingly impor-
tant issue in modern enterprise supply chain operations
management. Consequently, the conception of green supply
chain management (GSCM) proposed in 1996 has gradu-
ally become a hot topic and popular research direction [5,
16]. GSCM has emerged as a new modern management
mode that comprehensively considers environmental impact
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and resource efficiency [20]. In GSCM operations manage-
ment, the green supplier focuses strictly on thewhole process
from product design to final recycling, such as green product
design, green procurement, green supply, green production,
green marketing, green packaging, and resource recycling
[42, 50].

As an essential part of the green supply chain, sup-
plier selection plays an important role in the survival and
sustainable development of enterprises. Therefore, a grow-
ing number of leading companies begin to transform their
production and operations mode and are now proactively
implementing “green” initiative [37, 40, 50]. For instance,
the IEKA company, as a largest furniture manufacturer,
stressed the “greenness” of train operations on its new train
transportation network. What is more, the HP and IBM are
regarding “green” as an important worth in enterprise value
system for maintaining good public images. Specifically,
they adopted new energy saving technology in green product
design and also attempted to enhance supply chain manage-
ment capability to deal with environmental concerns such
as CO2 emission and solid waste produced. Among multi-
ple green-related practices, enterprises have been guided to
the green innovation, because it is an indispensable compo-
nent in achieving the dual goals of environmental degradation
and economic development [42]. In GSCM operations, the
green supplier selection (GSS) is the core component and can
directly determine the environment protection performance
of manufacturers.

There are large number of studies on the supplier selection
concerned with the environmental issues through the emerg-
ing conception GSCM. In GSCM practices, the supply chain
managers are always required to take all suppliers with many
conflicting evaluation criteria, including resource consump-
tion, green production, green marketing, green packaging,
product life cycle cost, and so on, and then consider the
trade-off to select the optimal supplier. Hence, GSS is com-
monly regarded as a multi-attribute group decision-making
(MAGDM) problem [12, 18, 28, 32]. The MAGDM meth-
ods help the individual or group of decision-makers to take
appropriate and transparent decisions in complex situations.
It helps to determine the ranking of alternatives and choosing
the superior one using an appropriate method based on some
criteria. It has been applied in a wide range of applications
such as social sciences, engineering, health care, economics
and management [1, 46, 51]. For GSS problems in practice,
the most of detailed evaluation information is unknown and
full of diversity and uncertainty. Accordingly, the classical
type-1 fuzzy sets are commonly insufficient to simulate the
real situations due to the increasing diversity, uncertainty
and complexity of the GSS problems [32]. In such cases, it
is more appropriate and direct for supply chain managers to
use linguistic information to represent decision information
due to the complex environment.

Many scholars have proved the usefulness of linguistic
information and proposed different types of linguistic expres-
sion [10, 22, 33, 49, 58, 61], such as linguistic term sets
(LTSs), probabilistic linguistic term sets (PLTSs), double
hierarchy hesitant fuzzy linguistic term set and probabilistic
double hierarchy linguistic term set. Because the GSS is usu-
ally made by many supply chain managers together and they
cannot use a single linguistic term to describe decision infor-
mation. In such situation, the PLTSs are suitable to reflect
group opinions. The PLTSs not only allow supply chainman-
agers to describe preferences, but also reflect the important
degrees of linguistic terms [30]. In addition, in the actual
evaluation process, because some supply chain managers
give hesitant fuzzy linguistic elements, the sum of proba-
bility distribution in probability linguistic elements may be
greater than 1. Therefore, we extend the PLTSs and rename it
extended probability linguistic term sets (EPLTSs), and use
the EPLTSs to describe the decision information of supply
chain managers. However, there is a limitation that supply
chain managers cannot use their linguistic labels to express
preferences. Due to the different knowledge and experience,
supply chain managers usually express their preference by
multi-granularity linguistic labels in group decision-making
[23]. Hence, we attempt to combine the multi-granularity
and EPLTSs and propose a new multi-granularity extended
probability linguistic term sets (MGEPLTSs) to characterize
the decision information in GSS problems.

Under the multi-granularity extended probabilistic lin-
guistic environment, the supply chainmanagers need to select
some different MAGDMmethods, such as VIKOR (VIšekri-
terijumsko KOmpromisno Rangiranje), TODIM (TOmada
de Decisão Interativa Multicritério), TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution), prospect
theory, and so on, to achieve the full ranking of all green
suppliers in GSCM operations. Yazdani et al. [56] developed
an integrated quality function deployment based MAGDM
model for selecting a suitable green supplier. Govindan et al.
[15] proposed a novel PROMETHEE-based hybrid method
to construct a group compromise ranking for GSS prob-
lems in food supply chain. Verdecho et al. [48] introduced a
multi-attributemethodology to choose supplier based on sus-
tainability strategy and applied the proposedmethod to assess
the sustainability of agri-food supplier selection. Asadabadi
et al. [2] developed a novel stratified BWM-TOPSIS crite-
ria decision framework to evaluate supplier performance of
organizations considering the environmental sustainability.
Wu and Liao [54] introduced a multi-attribute decision-
making method with geometric linguistic scale for green
supplier selection in agricultural product.

With consideration for the complexity and diversity of
objective features and the disturbance from internal or exter-
nal ambiguity and uncertainty, it is commonly impossible
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for supply chain managers to obtain information by spe-
cific exact values, and for such cases via fuzzy information
to express preferences is obviously more realistic. Conse-
quently, many studies applied the fuzzy set-based MAGDM
approach to address GSS problems in GSCM practices. For
example, Rostamzadeh et al. [36] introduced an extended
fuzzy VIKOR approach to examine GSS problems, and they
presented the preferences of supply chain managers using
triangular fuzzy numbers. Qin et al. [32] proposed a novel
extendedTODIMapproach forGSS under the interval type-2
fuzzy environment. By introducing the fuzzyANP, themulti-
objective mathematical programming and the DEMATEL,
Bakeshlou et al. [4] constructed a novel integrated MAGDM
method for selecting an appropriate green supplier. Wu et al.
[53] proposed an integrated approach based on the inter-
val type-2 fuzzy best–worst and extended VIKOR methods
and applied to green supplier selection. Compared with the
existing type-1 fuzzy sets, the interval type-2 fuzzy model is
capable of handling the parameter uncertainties of member-
ship functions because of its low computational complexity
and high efficiency [41, 59, 62]. Hence, many excellent stud-
ies have been presented for the stabilization of interval type-2
fuzzy systems, such asTao et al. [43] andZhang et al. [59, 62].
Liou et al. [25] proposed a combined fuzzy BWM (best—
worst method) and fuzzy TOPSIS methods to assess and
select green suppliers. Masoomi et al. [28] integrated two
MAGDMmethods, namely theCOPRASandWASPAS,with
the fuzzy BWM for selecting a strategic green supplier.

Since the convenience and flexibility of fuzzy sets in rep-
resenting uncertainty, many studies related to GSS problems
transitioned from exact numbers to a fuzzy environment.
According to the preceding reviews of relevant studies, nowa-
days the VIKOR method has gradually attracted more and
more attentions from scholars and has already been applied
to deal with GSS problems in various situations because
of its superiorities in solving GSS problems [3, 9, 36, 53].
The VIKOR method has some characteristics and capabili-
ties compared to other MAGDM approaches. For example,
comparedwith the TOPSIS and TODIMmethod, theVIKOR
not only can consider the group utility maximization and the
individual regret minimization, but also can fully reflect the
subjective preferences of decision-makers [6, 8, 29, 53]. For
discrete decision problems under the conflicting and non-
commensurable (for different units) criteria, it can provide
the optimal solution which is the closest to the actual situ-
ation. What is more, it focuses on the selection and priority
of a series of alternatives and can determine the just results
for the issues under conflicting criteria, thereby helping the
decision-makers to obtain a consensus decision. On the other
hand, comparedwith the prospect theory, theVIKORmethod
does not need a standard expectation level. To further handle
the imprecision and uncertainty inherent in the measurement
of the GSS practitioners’ processes, it is necessary to use

the MGEPLTSs to address the vagueness in GSCM prac-
tices. However, although the VIKOR method has already
been developed from various perspectives, there are almost
no relevant studies on extending the VIKOR method to
MGEPLTSs environment. Because of the advantages of the
VIKOR method and MGEPLTSs discussed above, in this
paper we attempt to introduce the VIKOR method to MGE-
PLTSs environment to obtain the optimal green supplier in
GSCM practices.

In addition, since supply chain managers distinguish the
optimal supplier from diverse indexes, and the index weights
are important in the MAGDM, so how to determine the
index weights has also gained more and more attentions.
At present, the methods to deal with weights include AHP
(analytic hierarchy process) method, ANP (analytic network
process)method,BWM, etc. [27, 45, 58, 61]. Since theBWM
simplifies the tedious process of AHP and the errors caused
by experts’ confusion due to excessive data are reduced, it
has already been developed from various perspectives using
fuzzy theories and applied to many MAGDM problems [21,
31, 44]. The BWM is a classic method to determine the
subjective weight of indexes proposed by Dutch scholar
Rezaei in 2015 [35]. Yazdi et al. [57] used an extension of
best–worst method based on democratic-autocratic decision-
making style to make the reliable risk analysis. Lahri et al.
[19] used a combined BWM and fuzzy TOPSIS approaches
to assess green image weights of suppliers. The BWM is also
useful in other fields, for instance evaluating the performance
for smart bike-sharing programs [47], measuring the envi-
ronmental performance [26], assessing the scientific output
quality [38], etc. Therefore, we attempt to combine theBWM
with MGEPLTSs to address index weights in MAGDM pro-
cess for solving GSS problems.

In outline, the main objective of this study is to propose
a novel integrated MAGDM approach under the multi-
granularity extended probabilistic linguistic environment,
by integrating the MGEPLTSs with the BWM and VIKOR
method. The proposed approach can solve GSS problems
considering the imprecision and uncertainty inherent in the
measurement of the GSS practitioners’ processes. Compared
to previous studies, the main contributions of our study can
be concluded as follows:

• In the inspiration of PLTSs, we extend a new MGEPLTSs
to quantify the decision information of GSS problems
given by the GSCM practitioners to address the issues on
potential ambiguity and uncertainty in actual GSCM prac-
tices, which can comprehensively and effectively reflect
the real opinions of the GSCM practitioners and maintain
the integrity of the original evaluation information as well.

• There is no investigation on GSCM practices using the
classic VIKOR method in multi-granularity extended
probabilistic linguistic environment.Hence, this paper first
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introduces the VIKOR method to MGEPLTSs environ-
ment, to propose a novel integrated best–worst andVIKOR
methods with MGEPLTSs environment, and use this tech-
nique to assess green practices, such as obtaining the
optimal green supplier in GSCM practices.

• The proposed approach provides an integration of various
criteria on the basis of previous literature review, sowe can
have a clear and deep understanding on the critical success
factors affecting GSCMpractices. Meanwhile, in practice,
organizations or departments can comprehend and benefit
from the relevant, dependable and proven criteria accord-
ing to the practices of case enterprises. These criteria can
be applied as the benchmarking and improvement tools
that in this case can reconcile the proven aspects on the
environmental practices.

The rest of this paper is organized as follows. Section
"Preliminaries" introduces the PLTSs and transformation
functions for multi-granularity linguistic terms. Section "A
new multi-granularity extended probabilistic linguistic term
sets" proposes a multi-granularity extended probabilistic
linguistic term sets. Section "Proposed methodology" intro-
duces a novel integrated approach based on best–worst and
VIKOR methods under multi-granularity extended proba-
bilistic linguistic environment to solveGSSproblems.AGSS
case on GSCM practices is used to illustrate the feasibility
of the proposed approach in Section "An illustrative exam-
ple", and the sensitivity analysis and comparative analysis of
results by our proposed approach is presented in this section.
Finally, Section "Conclusions and future directions" presents
the conclusions of this paper.

Preliminaries

In this section,we review somedefinitions related to the prob-
abilistic linguistic term sets and multi-granularity linguistic
terms.

Probabilistic linguistic term sets

PLTSs are the linguistic term sets composed of the linguis-
tic term and the probability corresponding to the linguistic
term and are used to express the evaluation information [30].
Nowadays, the relevant studies on the PLTSs have gradually
attracted more and more attention from many scholars, and
the PLTSs have been used in various situations. The relevant
definitions of PLTSs are shown as follows [13, 60].

Definition 1. Let S � {s0, . . . , sτ } be a linguistic term set,
a probabilistic linguistic term set can be defined as follows:

L(p) �
⎧
⎨

⎩
L (k)

(
p(k)

)∣
∣
∣L (k) ∈ S, p(k) ≥ 0, k � 1, 2, . . . ,

× #L(p),
#L(p)∑

k�1

p(k) ≤ 1

⎫
⎬

⎭
, (1)

where sτ represents a possible value for a linguistic variable.
L (k)(p(k)) is L (k) associated with the probability p(k), and
#L(p) is the number of linguistic terms.

Definition 2. Given a PLTS L (k)(p(k)) with
∑#L(p)

k�1 p(k) < 1, it needs to be normalized as follows:

L(p) �
{
L (k)

(
p(k)

)∣
∣
∣k � 1, 2, . . . , #L(p)

}
(2)

where p(k) � p(k)/
∑#L(p)

k�1 p(k).

Definition 3. If #L1(p) > #L2(p), then we will add
#L1(p)− #L2(p) linguistic terms to L2(p) so that the num-
ber of linguistic terms in #L1(p) and #L2(p) is the same.
The added linguistic terms are the smallest ones in L2(p),
and the probabilities of all the linguistic terms are zero.

Multi-granularity linguistic terms

Since decision-makers have differences in cognition and
evaluation conditions, to fully consider these differences,
different granularity linguistic labels should be given for
decision-makers to choose in the process of group decision-
making. Then, preference information of different granu-
larities needs to be transformed into the same granularity
before aggregating preference information. Commonly, the
most frequently used linguistic label is considered the basis
set [11, 23, 52].

Definition 4. Let S(ψ)
α andS(ϕ)

β be two linguistic terms with

different granularities ψ and ϕ. If S(ψ)
α should be transferred

into the linguistic term with the same granularity as S(ϕ)
β ,

then the transformation functions are defined as:

F : S(ψ)
α → S(ϕ)

β ,

α′ � F(α) � α
ϕ − 1

ψ − 1
.

(3)

A newmulti-granularity extended
probabilistic linguistic term sets

During the practical evaluation process, the sum of proba-
bility distributions among probabilistic linguistic elements
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may be greater than 1, because some decision-makers
give hesitant fuzzy linguistic elements [14, 55]. For exam-
ple, three decision-makers described the green product
cost of the green supplies using S5 � {s0 = very low,
s1 = low, s2 = fair, s3 = high, s4 = very high}. Therefore, if
three decision-makers think that the response timeliness was
fair, between fair and high, and high, respectively, then the
probability distribution of linguistic terms is

{
s52(0.67), s

5
3

(0.67)
}
. This paradoxical situation is very common in daily

life, so a standardized method should be adopted to deal with
this kind of situation. Meanwhile, in group decision-making,
decision-makers with different educational backgrounds and
expression habits often choose linguistic sets with different
granularities when giving evaluation information of green
supplies. Therefore, this section proposes a newMGEPLTSs
to represent the evaluation information. The relevant defini-
tions of the MGEPLTSs are expressed as follows.

Definition 5. Let S � {s0, . . . , sτ } be a linguistic term set,
an extended probabilistic linguistic term set can be defined
as:

L̃(p) �
{
L̃ (k)

(
p(k)

)∣
∣
∣L̃ (k) ∈ S, p(k) ≥ 0,

× k � 1, 2, . . . , #L̃(p)
}
, (4)

where L̃ (k)(p(k)) is L̃ (k) associated with the probability p(k),
and #L̃(p) is the number of linguistic terms.

When the linguistic term sets of different granularities
appear, we unify the MGEPLTSs into linguistic term sets
with the same granularity referring to Definition 4, as shown
in Definition 6.

Definition 6. Let L̃(ψ)
α and L̃(ϕ)

β be two extended probabilis-

tic linguistic terms with different granularities. If L̃(ψ)
α is

transferred into the linguistic term with the same granularity
as L̃(ϕ)

β , the transformation functions are defined as:

F : L̃(ψ)
α → L̃(ϕ)

β ,

α′ � F(α) � α
ϕ − 1

ψ − 1
.

(5)

Definition 7. Given an extended probabilistic linguistic term

set L̃ (k)(p(k)) with
∑#L̃(p)

k�1 p(k) �� 1, then it needs to be nor-
malized as:

L̃(p) �
{
L̃ (k)

(
p(k)

)∣
∣
∣L̃ (k) ∈ S, p(k) ≥ 0,

× k � 1, 2, . . . , #L̃(p)
}
, (6)

where p(k) � p(k)/
∑#L̃(p)

k�1 p(k).

Definition 8. If #L̃1(p) > #L̃2(p), then we will add
#L̃1(p)− #L̃2(p) linguistic terms to L̃2(p), so that the num-
bers of linguistic terms L̃1(p) and L̃2(p) are identical. The
added linguistic terms are the smallest ones in L̃2(p), and the
probabilities of all the linguistic terms are zero.

Definition 9. Let L̃(p) �
{
L̃ (k)(p(k))

∣
∣
∣L̃ (k) ∈ S, p(k) ≥ 0,

k � 1, 2, . . . , #L̃(p)
}
be an extended probabilistic linguis-

tic term, then the score of L̃(p) is as follows:

E
(
L̃(p)

)
� Sα , (7)

whereα � ∑#L̃(p)
k�1 r (k) p(k)

/∑#L̃(p)
k�1 p(k), and r (k) is the sub-

script of linguistic term L̃(p).

(1) If E
(
L̃1(p)

)
> E

(
L̃2(p)

)
, then L̃1(p) 	 L̃2(p).

(2) If E
(
L̃1(p)

)
� E

(
L̃2(p)

)
, then L̃1(p) ∼ L̃2(p).

(3) If E
(
L̃1(p)

)
< E

(
L̃2(p)

)
, then L̃1(p) ≺ L̃2(p).

Definition 10. Let L̃(p) �
{
L̃ (k)(p(k))

∣
∣
∣L̃ (k) ∈ S, p(k) ≥ 0,

k � 1, 2, . . . , #L̃(p)
}
be an extended probabilistic linguis-

tic term, then the deviation degree function of L̃(p) is as
follows:

σ
(
L̃(p)

)
�
⎛

⎝
#L̃(p)∑

k�1

(
p(k)

(
r (k) − α

))2

⎞

⎠

1/2/ #L̃(p)∑

k�1

p(k).

(8)

For two extended probability linguistic term sets L̃1(p)

and L̃2(p) with E
(
L̃1(p)

)
� E

(
L̃2(p)

)
:

(1) If σ
(
L̃1(p)

)
> σ

(
L̃2(p)

)
, then L̃(p1) ≺ L̃(p2).

(2) If σ
(
L̃(p1)

)
� σ

(
L̃(p2)

)
, then L̃(p1) ∼ L̃(p2).

(3) If σ
(
L̃(p1)

)
< σ

(
L̃(p2)

)
, then L̃(p1) 	 L̃(p2).

Definition 11. Let L̃1(p) �
{
L̃ (k)
1 (p(k)1 )

∣
∣
∣k � 1, 2, · · · ,

#L̃1(p)
}
and L̃2(p) �

{
L̃ (k)
2 (p(k)2 )

∣
∣
∣k � 1, 2, . . . , #L̃2(p)

}

be two ordered extended probabilistic linguistic terms, where

the linguistic terms L̃ (k)(p(k))
(
k � 1, 2, . . . , #L̃2(p)

)
are

arranged according to the values of r (k) p(k)
(
k � 1, 2, . . . ,

#L̃2(p)
)
in descending order, and #L̃1(p) � #L̃2(p), then

the deviation degree between L̃1(p) and L̃2(p) is as follows:
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d
(
L̃1(p), L̃2(p)

)
�

√
√
√
√
√

#L̃1(p)∑

k�1

(
p
(k)

1 r
(k)

1 −p
(k)

2 r
(k)

2

)2
/

#L̃1(p).

(9)

Definition 12. Let D � {D1 , D2, . . . , DG} be a set of
decision-making panels with decision weights (λ1, λ2, . . . ,

λG)T and
∑G

g�1 λg � 1, L̃g(p) �
{
L̃ g(k) (pg(k))

∣
∣
∣L̃ g(k) ∈ S,

g � 1, 2, . . . , G
}
be the extended probabilistic linguistic

term by gth decision-making panel, then the overall probabil-
ity linguistic set of the decision-making panels is as follows:

L̃ t (p) �
⎧
⎨

⎩
L̃ t(k) (pt(k) )

∣
∣
∣L̃g(k) ∈ S, pt(k)

�
G∑

g�1

λgvt(k) , k � 1, 2, . . . , #L̃(p)

⎫
⎬

⎭
, (10)

where vt(k) represents the probability weight of the linguistic
term L̃ g(k) in L̃g(p), as follows:

vt(k) �
{
pt(k) , L̃ t(k) ∈ L̃ g(k)

0, L̃ t(k) /∈ L̃ g(k)
. (11)

Proposedmethodology

Aiming at the MAGDM problems in which attributes are
complexity, the selection of alternatives is diversity, and
decision-makers are risk averse, this section attempts to con-
duct a new MAGDM approach based on multi-granularity
extended probabilistic linguistic best–worst and VIKOR
methods, which integrates multi-granularity, extended prob-
abilistic linguistic term sets, BWM and VIKORmethod. The
proposedmethodology is described as follows. First, the rela-
tive parameters are expressed as follows. A � {A1 , A2, . . . ,
Am} be a set of alternatives (namely green supplies in GSCM
practices). C � {C1 , C2, . . . , Cn} be a set of attributes as
evaluation indexes of alternatives,which can be divided in the
benefit attribute and the cost attribute. And ω j is the weight
of attribute C j , satisfying ω j ∈ [0, 1] and

∑n
j ω j � 1.

D � {D1 , D2, . . . , DG} be a set of decision-making pan-
els participating in alternative evaluation, in which each
decision-making panel has several decision-makers, and the

corresponding weight λg of the decision-making panel Dg

satisfies
∑G

g λg � 1.
The attribute weights are unknown and decision-makers

are diversity. Therefore, there are three phases in the pro-
cess of MAGDM, including determining the weights of
the decision-making panels and attributes by the multi-
granularity extended probabilistic linguistic BWM, describ-
ing alternative evaluation using MGEPLTSs, and ranking
the alternatives using the multi-granularity extended prob-
abilistic linguistic VIKOR approach. Figure 1 presents the
framework of MAGDM depicted, and intuitively describes
the details of how to use themulti-granularity extended prob-
abilistic linguistic best–worst and extendedVIKORmethods.

Determining the weights bymulti-granularity
extended probabilistic linguistic best–worst method

In most cases, both expert weights and attribute weights are
partially or completely unknown, which requires appropri-
ate methods to further determine the weights. We extend the
traditional BWM to the MGEPLTSs to compute the weights
[34]. The details of the multi-granularity extended proba-
bilistic linguistic BWM are as follows:

(1) Determining the weights of decision-making panels

Step 1. Managing directors determine the best decision-
making panel B and the worst decision-making panel W.

Step 2.Managing directors choose their preferred linguis-
tic term set from multi- granularity and then use the form
of extended probabilistic linguistic term L̃(p)Bg to eval-
uate its preference degree of the best attribute relative to
other attributes. The obtained best-to-others vector is denoted

as A
B

�
(
L̃(p)B1, L̃(p)B2, . . . L̃(p)BG

)T
. Next, manag-

ing directors evaluate its preference degree of each attribute
over the worst attribute using the extended probabilistic lin-
guistic term L̃(p)gW . The obtained others-to-worst vector is

denoted as AW �
(
L̃(p)1W , L̃(p)2W , . . . L̃(p)gW

)T
. Then,

the extended probabilistic linguistic terms are normalized
using Eq. (6). The optional multi-granularity linguistic term
sets are as follows:

S3 � {s0 � equally important, s1 � obviously important, s2 � extremely important}

S5 �
{
s0 � evequally important, s1 � slightly important, s2 � obviously important,
s3 � strongly important, s4 � extremely important

}

S7 �
{
s0 � evequally important, s1 � slightly important, s2 � modernately important, s3 � important,
s4 � strongly important, s5 � very strongly important, s6 � extremely important

}
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Fig. 1 The proposed
MAGDM-based framework for
green suppliers election

Evaluate green suppliers 

Decision-

making panel 1

Decision-

making panel 2

Decision-

making panel g

Determine weights by multi-granularity extended probabilistic 

linguistic best-worst method

Multi-attribute  group 

decision making

Reconcile conflict

Do the decision-making panels agree?

No

Optimal green supplier

Yes

Description of multi-granularity extended probabilistic 

linguistic term sets based alternative evaluation

Derive the ranking by multi-granularity extended probabilistic 

linguistic VIKOR approach

Step 3. Compute the optimal weights (λ∗
1, λ∗

2 . . . , λ∗
g) of

decision-making panels, which are computed such that the

maximum absolute differences
∣
∣
∣
ωB
ωg

−U
(
E
(
L̃(p)Bg

))∣
∣
∣ and

∣
∣
∣

ωg
ωW

−U
(
E
(
L̃(p)gW

))∣
∣
∣ for all n are minimized, which can

be built the fuzzy mathematical programming model:

min δ

s.t .

∣
∣
∣
∣
λB

λg
−U

(
E
(
L̃(p)Bg

))∣∣
∣
∣ ≤ δ, for all g

∣
∣
∣
∣
λg

λW
−U

(
E
(
L̃(p)gW

))∣∣
∣
∣ ≤ δ, for all g

g � 1, 2, . . .G,

(12)

where U
(
E
(
L̃(p)Bg

))
� �

#L̃(p)·E
(
L̃(p)Bg

)/
τ
and U

(
E

(
L̃(p)gW

))
� �

#L̃(p)·E
(
L̃(p)gW

)/
τ
represent the utility val-

ues of cognitive linguistic evaluations L̃(p)Bg and L̃(p)gW ,
� � #L̃(p)

√
Best/Worst represents the objective importance

ratio of two adjacent linguistic terms, and Best / Worst is
the maximum difference in the evaluation information of
decision-making panel [24].

By solving the model, we obtain the (λ∗
1, λ∗

2 . . . , λ∗
G) and

δ. δ can measure of the consistency level of decision-making
and its value close to zero shows a high consistency level.

(2) Determining the weights of attribute

Step 1. Decision-making panel Dg determines the best
attribute B and the worst attributeW.

Step 2. Decision-making panel Dg chooses its preferred
linguistic term set from multi- granularity and then uses
the form of extended probabilistic linguistic term L̃(p)Bj
to evaluate its preference degree of the best attribute rela-
tive to other attributes. The obtained best-to-others vector is

denoted as Ag
B

�
(
L̃(p)B1, L̃(p)B2, . . . L̃(p)Bn

)T
. Next,

decision-making panel Dg evaluates its preference degree
of each attribute over the worst attribute using the extended
probabilistic linguistic term L̃(p) jW . The obtained others-

to-worst vector is denoted as Ag
W �

(
L̃(p)1W , L̃(p)2W ,

. . . L̃(p)nW
)T

. The optionalmulti-granularity linguistic term

sets are the same as Step 2 in Section “Determining the
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weights by multi-granularity extended probabilistic linguis-
tic best–worst method”. Then, the multi-granularity linguis-
tic terms are transformed into the same granularity using
Eq. (5), and the extended probabilistic linguistic terms are
normalized using Eq. (6).

Step 3. Compute the optimal attribute weights (ω∗
1,

ω∗
2 . . . , ω∗

n), which are computed such that the maximum

absolute differences
∣
∣
∣
ωB
ω j

−U
(
E
(
L̃(p)Bj

))∣
∣
∣ and

∣
∣
∣

ω j
ωW

−U
(
E
(
L̃(p) jW

))∣
∣
∣ for all n are minimized, which can be built

the fuzzy mathematical programming model:

min
G∑

g

λgεg

s.t .

∣
∣
∣
∣
ωB

ω j
−U

(
E
(
L̃(p)Bj

))∣∣
∣
∣ ≤ ε j , for all j , for all g

∣
∣
∣
∣
ω j

ωW
−U

(
E
(
L̃(p) jW

))∣∣
∣
∣ ≤ ε j , for all j , for all g

n∑

j

ω j � 1

j � 1, 2, . . . n

G∑

g

λg � 1

g � 1, 2, . . .G (13)

where λg represents the weight of Dg , U
(
E

(
L̃(p)Bj

))
� �

#L̃(p)·E
(
L̃(p)Bj

)/
τ
and U

(
E
(
L̃(p) jW

))
�

�
#L̃(p)·E

(
L̃(p) jW

)/
τ

represent the utility values of cog-
nitive linguistic evaluations L̃(p)Bj and L̃(p) jW ,
� � #L̃(p)

√
Best/Worst represents the objective impor-

tance ratio of two adjacent linguistic terms, and Best / Worst
is the maximum difference in the evaluation information of
decision-making panel [24].

By solving the model, we obtain the
(
ω∗
1, ω∗

2 . . . , ω∗
n

)
and

(ε1, ε2 . . . , εG).
∑G

g λgεg can measure of the consistency
level of decision-making and its value close to zero shows a
high consistency level.

Description of multi-granularity extended
probabilistic linguistic term sets based alternative
evaluation

In the inspiration of PLTSs, we extend new MGEPLTSs to
quantify preferences given by decision-makers to carry out
alternative evaluation, which can comprehensively reflect the
real opinions of decision-makers, and maintain the integrity

of the original evaluation information as well. Each decision-
making panel uses the MGEPLTSs to conduct the evaluation
of alternatives. The optional multi-granularity linguistic term
sets are the same as Step 2 in Section “Determining the
weights by multi-granularity extended probabilistic linguis-
tic best–worst method”.

Step 1. Decision-making panel Dg chooses a preferred
linguistic term set from multi-granularity and evaluates the
alternative Ai regarding attribute C j through MGEPLTSs;
here, it is written as L̃

Dg
i j (p).

S
3 � {s0 � low, s1 � fair, s2 � high}

S
5 � {s0 � very low, s1 � low, s2 � fair,

s3 � high, s4 � very high}
S
7 � {s0 � very low, s1 � low, s2 � moderately low,

s3 � fair, s4 � moderately high,

s5 � high, s6 � very high}.

Step 2. We transform multi-granularity linguistic terms
into the same granularity using Eq. (5) and normalize
extended probabilistic linguistic terms using Eq. (6).

Step 3. According to Eqs. (10) and (11), for alternative
Ai , its evaluation can be determined as follows:

E Ai �
G∑

g�1

λg · L̃ Dg
i j (p), (i � 1, 2, · · ·m,

j � 1, 2, · · · n, g � 1, 2, · · ·G). (14)

Thereby, we obtain the overall probabilistic linguistic
decision-making matrix of decision-making panels shown
in Table 1.

Deriving the ranking bymulti-granularity extended
probabilistic linguistic VIKORmethod

Because the decision-makers need to respond to various situ-
ations, we proposed multi-granularity extended probabilistic
linguistic VIKOR method to obtain the ranking of alterna-
tives. The details of the proposed approach are as follows.
Through the alternatives evaluation in Section "Description
of multi-granularity extended probabilistic linguistic term
sets based alternative evaluation", the overall probabilistic
linguistic decision-making matrix of decision-making pan-
els is constructed and shown in Table 1.

Definition 13. Let R �
[
L̃i j (p)

]

m×n
be a probabilistic

linguistic decision-making matrix of alternatives, then the
vector of attribute values of the alternative Ai can be defined

as L̃i (p) �
{
L̃i1(p), L̃i2(p), . . . , L̃in(p)

}
.
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Table 1 The overall probabilistic
linguistic decision-making
matrix of decision-making panels

E C1 · · · Cj · · · Cn

A1

∑G
g�1 λg · L̃ Dg

11 (p) · · · ∑G
g�1 λg · L̃ Dg

1 j (p) · · · ∑G
g�1 λg · L̃ Dg

1n (p)

...
...

...
...

...
...

Ai

∑G
g�1 λg · L̃ Dg

i1 (p) · · · ∑G
g�1 λg · L̃ Dg

i j (p) · · · ∑G
g�1 λg · L̃ Dg

in (p)

...
...

...
...

...
...

Am
∑G

g�1 λg · L̃ Dg
m1(p) · · · ∑G

g�1 λg · L̃ Dg
mj (p) · · · ∑G

g�1 λg · L̃ Dg
mn(p)

Definition 14. Let R �
[
L̃i j (p)

]

m×n
be a probabilistic

linguistic decision-making matrix of alternatives, then the
positive ideal solution L̃+(p) and the negative ideal solution
L̃−(p) of alternative can be defined as:

L̃+(p) �
{
L̃+
1(p), L̃+

2(p), . . . , L̃+
n(p)

}

�
{(

m a x L̃(p) | j ∈ I
)
,
(
m i n L̃(p)

∣
∣ j ∈ I ∗ )}

( j � 1, 2, . . . , n)

L̃−(p) �
{
L̃−
1 (p), L̃−

2 (p), . . . , L̃−
n (p)

}

�
{(

m i n L̃(p) | j ∈ I
)
,
(
m a x L̃(p)

∣
∣ j ∈ I ∗ )}

( j � 1, 2, . . . , n), (15)

where I is the benefit attribute, and I* is the cost attribute.

Definition 15. The group utility measure of alternative Ai

can be denoted as follows:

Si�
∑n

j�1
ω j

d
(
L̃+
j (p), L̃i j (p)

)

d
(
L̃+
j (p), L̃

−
j (p)

)

�
n∑

j�1

ω j

√
√
√
√∑#L̃i j (p)

k = 1

((
p
(k)

j r
(k)

j

)+ − p
(k)

i j r
(k)

i j

)2
/

#L̃i j (p)

√
√
√
√∑#L̃i j (p)

k = 1

((
p
(k)

j r
(k)

j

)+ −
(
p
(k)

j r
(k)

j

)−)2
/

#L̃i j (p)

.

(16)

Definition 16. The individual regret measure of alternative
Ai can be denoted as follows:

Ri�max
j

⎛

⎝ω j

d
(
L̃+
j (p), L̃i j (p)

)

d
(
L̃+
j (p), L̃

−
j (p)

)

⎞

⎠

� max
j

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω j

√
∑#L̃i j (p)

k = 1

((
p
(k)

j r
(k)

j

)+ − p
(k)

i j r
(k)

i j

)2/

#L̃i j (p)

√
√
√
√∑#L̃i j (p)

k = 1

((
p
(k)

j r
(k)

j

)+ −
(
p
(k)

j r
(k)

j

)−)2
/

#L̃i j (p)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(17)

Definition 17. The compromise measure of alternative Ai

can be denoted as follows:

Qi � α
Si − S−

S+ − S− + (1 − α)
Ri − R−

R+ − R− , (18)

where S+ � maxi (Si ), S− � mini (Si ), R+ � maxi (Ri ),
R− � mini (Ri ), and α ∈ (0, 1) represents a control param-
eter. Qi can be used to balance the group utility measure and
individual regret measure by changing the value of α.

Rank the alternatives based on Qi values. The smaller the
Qi value, the better the alternative Ai . At the same time, Qi

values satisfy the following two conditions:

(1) Acceptable advantage: Q(2)
i − Q(1)

i ≥ 1
/

(m − 1),

where Q(2)
i is with the second-smallest Q value, Q(1)

i
is with the smallest Q value, and m is the number of
alternatives.

(2) Acceptable stability: the alternative of Q(1)
i should also

be the best ranked by Si and Ri , which indicates that
this compromise solution is stable. If one of these two
conditions is not satisfied, compromise solutions could
be obtained:

If condition (1) is not satisfied, A(m)
i is determined by the

relationship Q(m)
i −Q(1)

i ≤ 1
/

(m − 1) for the maximumm,
and all alternatives are compromise solutions. If Condition
(2) is not satisfied, then alternatives A(1)

i and A(2)
i are both

compromise solutions.
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Table 2 The major attributes of
green supplier selection Attributes Description References

Green product cost C1 A measure of the cost paid by
suppliers. It includes the design,
manufacture, packaging,
stockpiling, transportation, repair,
recycle, and so on

[7, 12, 15, 32, 53]

Green technology capability C2 It aims to promote sustainable
economic development and
includes green energy, green
manufacturing, green
management, etc

[7, 15, 25, 28, 32, 53, 54]

Product quality management C3 We measure supplier control
service and product quality.
Including advanced management
ideas, perfect product quality and
good post sale service

[7, 15, 32, 53, 54]

Environmental pollution of
production C4

It represents the supplier’s pollution
per time unit and includes harmful
materials, random discharge of
sewage, disorderly emissions, and
so on

[7, 9, 15, 17, 19, 25, 32, 53]

Corporate social responsibility
C5

Including labor relations, human
rights and interests of employees,
comply with local regulations and
policies

[7, 9, 12, 15, 19, 37, 40]

An illustrative example

In this section, an illustrative case study is conducted to
present the application of the novel integrated best–worst
andVIKORmethods under multi-granularity extended prob-
abilistic linguistic environment for green supplier selection
problems.

Problem description

With the continuous development of agriculture and indus-
try, the world’s natural environment is worsening. The green
economy provides a new mode for simultaneous economic
development and environmental protection. GSS is one of
the most important activities in the modern manufacturing
industry to reflect the development potential and competi-
tiveness of an enterprise in the long run. Consider a home
furnishing enterprise seeking a green supplier to purchase
product assemblies. During the selection process, five major
attributesC � {C1 , C2, C3, C4, C5} are considered through
green economic aspects, literature reviewanddiscussionwith
experts who have vast knowledge and experience in green
supply chain and environmental management systems, as
shown in Table 2.

• Green product cost and product quality management The
cost, quality, and service have been widely considered as

effective factors in the traditional supplier selection prob-
lems. During the selection process of the performance
evaluation indicators of GSS, Wu et al. [53] considered
seven major perspectives according to green economic
aspects: green product innovation, environmental regime,
use of green technology, product quality management,
total green product cost, resource consumption, and envi-
ronmental pollution of production,and identified quality,
delivery, price/cost, manufacturing capability, service,
management, and technology. What is more, Govindan
et al. [15] considered fivemajor perspectives: cost, quality,
technology, environmental impacts and technology capa-
bility. Therefore, we determined the green product costC1

and product quality management C3.
• Green technology capability The development of infras-
tructure, green energy, green manufacturing and green
management will improve the green supply chain of the
industry and promote sustainable economic development.
Ecer [12] indicate that the most important factors that
are effective in selecting green suppliers are cleaner pro-
duction, energy/material saving, green package, reman-
ufacturing, and environmental management system. In
the selection process of the performance evaluation indi-
cators of GSS, Qin et al. [32] considered ten criteria,
among which green product innovation, use of envi-
ronmentally friendly technology, resource consumption,
environment management, and quality management are
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Table 3 The best-to-others
vector and others-to-worst vector
with respect to decision-making
panels

The best
decision-
making
panel

The worst
decision-
making
panel

AB/ AW D1 D2 D3

D3 D1 AB

{
s52 (0.4), s

5
3 (0.8)

} {
s51 (0.4), s

5
2 (0.6)

} {
s50 (1.0)

}

AW

{
s50 (1.0)

} {
s51 (0.8), s

5
2 (0.2)

} {
s52 (0.6), s

5
3 (0.6)

}

Table 4 The best-to-others vector
and others-to-best vector with
respect to evaluation attributes

A j
B/ A

j
W C1 C2 C3 C4 C5

A1
B

{
s53 (0.2), s

5
4 (0.8)

} {
s50 (1.0)

} {
s53 (0.6), s

5
4 (0.6)

} {
s51 (0.8)

} {
s52 (0.6), s

5
3 (0.4)

}

A1
W

{
s50 (1.0)

} {
s53 (0.2), s54 (0.8)

} {
s51 (0.6), s

5
2 (0.4)

} {
s52 (0.4), s53 (0.8)

} {
s51 (0.6), s

5
2 (0.4)

}

A2
B

{
s73 (0.8)

} {
s71 (0.4), s

7
2 (0.6)

} {
s71 (0.6), s

7
2 (0.6)

} {
s70 (1.0)

} {
s72 (0.2), s

7
3 (0.8)

}

A2
W

{
s70 (1.0)

} {
s72 (0.4), s

7
3 (0.6)

} {
s72 (0.8), s

7
3 (0.2)

} {
s73 (0.8)

} {
s71 (0.4), s

7
2 (0.8)

}

A3
B

{
s53 (0.6), s

5
4 (0.4)

} {
s50 (1.0)

} {
s52 (0.8), s

5
3 (0.4)

} {
s51 (0.8), s

5
2 (0.2)

} {
s54 (0.8)

}

A3
W

{
s51 (0.6), s

5
2 (0.4)

} {
s54 (0.8)

} {
s52 (1.0)

} {
s52 (0.6), s

5
3 (0.6)

} {
s50 (1.0)

}

more important. Hence, we determined the green technol-
ogy capability C2.

• Environmental pollution of production and corporate
social responsibility In the recent purchasing decisions
under GSCM, incorporation of objective environmental
criteria in the evaluation systems ensures better environ-
mental performance in the collaborative supply chains.
Lahri et al. [19] proposed a two-stage multi-objective pos-
sibilistic integer linear programming sustainable supply
chain network design model, minimizing the economic,
environmental goals and maximizing the social sustain-
ability goals. Samda et al. [37, 40] indicated that theGSCM
and the firms’ environmental, operational and economic
performances were found to be positively and significantly
associated. Demir et al. [9] pointed out that depleting
natural resources and limited amount of landfill areas
have forced many governments to impose stricter mea-
sures on environmental performance. In order to comply
with those measures and to have a better environmental
image, companies are investing heavily in environmen-
tal, social and economic responsibility issues. Moreover,
they continuously track the environmental performance of
their suppliers. Thus, it is the responsibility of the indus-
try to develop and implement a management system for
measuring safety by analysis and prevention of physical,
chemical, and organic hazards throughout the whole oper-
ation of the industry. Consequently, we determined the
environmental pollution of production C4 and corporate
social responsibility C5.

According to the procurement needs of enterprises and
the requirements of green suppliers, trade representative in

China needs to conduct a detailed investigation on suppli-
ers in North China, South China and Central China. After
preliminary screening, the enterprise will assess four poten-
tial suppliers A � {A1 , A2, A3, A4}. It is necessary to
select the green supplier that best meets the company’s needs
as a long-term partner. The trade representative will con-
vene procurement specialists fromNorth China, South China
and Central China to form three decision-making panels,
namely the decision-making panel from North China D1,
the decision-making panel from South China D2 and the
decision-making panel fromCentral ChinaD3, each ofwhich
is composed of 5 procurement specialists. They evaluate four
green suppliers according to the fivemajor attributes of green
supplier selection.

Implementation and results

(1) Determining the weights of decision-making panels

Through the understanding of the three decision-making

teams, the trade representatives can learn that the author-
ity of each decision-making team is different. Therefore,
the weights of decision-making panels are calculated by the
proposed multi-granularity extended probabilistic linguistic
best–worst method.

The trade representatives choose their preferred linguistic
term set frommulti-granularity and use the form of extended
probabilistic linguistic term to obtain best-to-others vector
and others-to-worst vector concerning decision-making pan-
els, as displayed in Table 3. The trade representatives choose
the linguistic term set with granularity 5, S5.
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Then, the extended probabilistic linguistic terms are
normalized using Eq. (6). According to Eq. (12), the opti-
mization model for weights of decision-making panels is
established as follows:

min δ

s.t .

∣
∣
∣
∣
λ3

λ1
− 4

E
(
L̃(p)31

)/
4
∣
∣
∣
∣ ≤ δ,

∣
∣
∣
∣
λ3

λ2
− 4

E
(
L̃(p)32

)/
4
∣
∣
∣
∣ ≤ δ

∣
∣
∣
∣
λ2

λ1
− 4

E
(
L̃(p)21

)/
4
∣
∣
∣
∣ ≤ δ,

∣
∣
∣
∣
λ3

λ1
− 4

E
(
L̃(p)31

)/
4
∣
∣
∣
∣ ≤ δ.

By solving above model, δ � 0.0826 can be obtained.
The optimal weight vector of decision-making panels is

(
λ∗
1,

λ∗
2, λ∗

3

)T � (0.1662, 0.3506, 0.4832)T .
(2) The determination of attribute weights

The attribute weights are calculated by the proposed multi-
granularity extended probabilistic linguistic BWM. The best
indexes determined by the three decision-making panels are
C2,C4 andC2, respectively, and theworst indexes areC1,C1

and C5, respectively. Three decision-making panels choose
their preferred linguistic term set frommulti-granularity, and
then use the form of extended probabilistic linguistic term to
obtain best-to-others vector and others-to-worst vector con-
cerning evaluation attributes, as displayed in Table 4. Among
them,D1 andD3 choose the linguistic term set with granular-
ity 5, S5; D2 chooses the linguistic term set with granularity
7, S7.

Then, the multi-granularity linguistic terms are trans-
formed into the same granularity using Eq. (5) and the
extended probabilistic linguistic terms are normalized using
Eq. (6). Based onEq. (13), the optimizationmodel of attribute
weights is established as follows:

min 0.1662ε1 + 0.3506ε2 + 0.4832ε3

s.t .

∣
∣
∣
∣
ω2

ω1
− 4

E
(
L̃(p)21

)/
4
∣
∣
∣
∣ ≤ ε1,

∣
∣
∣
∣
ω2

ω3
− 4

E
(
L̃(p)23

)/
4
∣
∣
∣
∣ ≤ ε1,

∣
∣
∣
∣
ω2

ω4
− 4

E
(
L̃(p)24

)/
4
∣
∣
∣
∣ ≤ ε1,

∣
∣
∣
∣
ω2

ω5
− 4

E
(
L̃(p)25

)/
4
∣
∣
∣
∣ ≤ ε1

∣
∣
∣
∣
ω3

ω1
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∣
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∣
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ω1 + ω2 + ω3 + ω4 + ω5 � 1

By solving above model, ε1 � 0.1802, ε2 � 0.1061,
ε3 � 0.1263 can be obtained. The optimal weight vector
of attributes is

(
ω∗
1, ω∗

2, ω∗
3, ω∗

4, ω∗
5

)T � (0.1581, 0.3063,
0.1893, 0.2401, 0.1062)T .

(3) Alternative evaluation

The three decision-making panels choose their preferred
linguistic term set from multi-granularity and evaluate alter-
native through the MGEPLTSs. The evaluation results are
shown in Table 5. Among them, D1 and D3 choose the
linguistic term set with granularity 5, S5; D2 chooses the
linguistic term set with granularity 7, S7.

The normalized multi-granularity extended probabilistic
linguistic evaluation of alternatives is obtained using Eqs.
(5) and (6). In addition, the overall probabilistic linguistic
decision-making matrix of decision-making panels can be
obtained using Eq. (14) shown in Table 6.

(4) The deriving of ranking

The ranking is calculated by the proposed multi-granularity
extended probabilistic linguistic VIKOR approach.

Step 1. Based on alternative evaluation, we can obtain the
probabilistic linguistic decision-making matrix of decision-
making panels, as shown in Table 6.

Step 2. According to Eq. (15), we calculate the positive
ideal solution L̃+(p) and the negative ideal solution L̃−(p)
of alternative as follows:

L̃+(p) �
{
L̃+
1(p), L̃+

2(p), L̃
+
3(p), L̃

+
4(p), L̃

+
5(p)

}

�
{{

s50(0.42), s
5
1(0.23), s

5
2(0.35)

}
,

{
s53(0.28), s

5
10/3(0.35), s

5
4(0.37)

}
,

{
s52(0.26), s

5
3(0.38), s

5
10/3(0.38), s

5
4(0.06)

}
,

{
s51(0.60), s

5
4/3(0.30), s

5
2(0.10)

}
,
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Table 5 The multi-granularity
extended probabilistic linguistic
evaluation of alternatives

Am Dj C1 C2 C3 C4 C5

A1 D1
{
s50 (0.4), s

5
1 (0.6)

} {
s53 (0.6), s

5
4 (0.6)

} {
s53 (0.4), s

5
4 (0.6)

} {
s51 (0.8), s

5
2 (0.2)

} {
s51 (0.8)

}

D2
{
s70 (0.8), s

7
2 (0.2)

} {
s75 (0.2), s

7
6 (0.8)

} {
s75 (0.8)

} {
s72 (1.0)

} {
s72 (0.4), s

7
3 (0.4)

}

D3
{
s51 (0.6), s

5
3 (0.6)

} {
s53 (0.4), s

5
4 (0.6)

} {
s52 (0.6), s

5
3 (0.2)

} {
s51 (0.8), s

5
2 (0.2)

} {
s52 (0.8)

}

A2 D1
{
s52 (0.8)

} {
s50 (1.0)

} {
s52 (0.8), s

5
3 (0.2)

} {
s54 (1.0)

} {
s53 (0.2), s

5
4 (0.8)

}

D2
{
s73 (0.4), s74 (0.4)

} {
s71 (0.8), s72 (0.2)

} {
s73 (0.8)

} {
s74 (0.4), s75 (0.6)

} {
s75 (0.4), s

7
6 (0.6)

}

D3
{
s52 (0.8), s

5
3 (0.2)

} {
s50 (0.4), s

5
1 (0.6)

} {
s50 (0.4), s

5
1 (0.6)

} {
s54 (1.0)

} {
s53 (0.2), s

5
4 (0.8)

}

A3 D1
{
s52 (0.2), s

5
3 (0.8)

} {
s53 (1.0)

} {
s53 (0.8), s

5
4 (0.2)

} {
s52 (0.6), s

5
3 (0.2)

} {
s51 (0.8)

}

D2
{
s72 (1.0)

} {
s75 (1.0)

} {
s75 (0.8)

} {
s71 (0.2), s73 (0.8)

} {
s72 (0.2), s

7
3 (0.8)

}

D3
{
s52 (0.2), s

5
3 (0.8)

} {
s53 (0.8), s

5
4 (0.2)

} {
s52 (1.0)

} {
s52 (0.2), s

5
3 (0.8)

} {
s52 (0.8)

}

A4 D1
{
s50 (0.2), s

5
1 (0.8)

} {
s52 (0.8)

} {
s52 (0.8), s

5
3 (0.2)

} {
s52 (0.2), s

5
3 (0.8)

} {
s53 (1.0)

}

D2
{
s73 (1.0)

} {
s73 (0.4), s74 (0.6)

} {
s73 (1.0)

} {
s72 (0.2), s73 (0.8)

} {
s73 (0.2), s

7
5 (0.8)

}

D3
{
s50 (0.8), s

5
1 (0.2)

} {
s52 (0.4), s

5
3 (0.6)

} {
s51 (0.8), s

5
2 (0.2)

} {
s52 (0.4), s

5
3 (0.6)

} {
s53 (0.8)

}

{
s53(0.12), s

5
10/3(0.12), s

5
4(0.76)

}}

L̃−(p) �
{
L̃−
1 (p), L̃−

2 (p), L̃
−
3 (p), L̃

−
4 (p), L̃

−
5 (p)

}

�
{{

s54/3(0.35), s
5
2(0.13) , s

5
3(0.52)

}
,

{
s50(0.56), s

5
2/3(0.24), s

5
1(0.14), s

5
4/3(0.06)

}
,

{
s51(0.22), s

5
2(0.72), s

5
3(0.06)

}
,

{
s58/3(0.12), s

5
10/3(0.21), s54(0.67)

}
,

{
s51(0.35), s

5
4/3(0.15), s

5
2(0.50)

}}
.

Step 3. Calculate the group utility measure Si and the
individual regret measure Ri using Eqs. (16) and (17). The
results are shown as follows:S1 � 0.3143, S2 � 0.6572,
S3 � 0.6236, S4 � 0.7262; R1 � 0.1726, R2 � 0.2163,
R3 � 1752, R4 � 0.1898.

Step 4. Calculate the compromise measure Qi using
Eq. (18), which α � 0.5. The results are shown as
follows:Q1 � 0.0034, Q2 � 0.9312, Q3 � 0.3566,
Q4 � 0.6671.

Step 5. Rank the alternatives based on Qi values. We find
that Q1 value is the smaller the of the alternative A1. At the
same time, Qi values satisfy the following two conditions,
namely Q3 − Q1 � 0.3532 ≤ 1

/
(4 − 1) and the alternative

A1 also be the best ranked by Si and Ri . Thus, the optimal
green supplier is A1.

Sensitivity analysis

In this section, sensitivity analyses regardingdifferent param-
eters and different standard granularities are conducted to
examine their impacts on the decision-making results.

(1) The effect of α on the ranking

According to Eq. (17), we find that the control parameter α

will affect the ranking result of alternatives. In practice, the
parameter α is based on the decision-makers’ preferences.
Here, we use a value of α from 0 to 1 in increment of 0.1 to
analyze the sensitivity. The compromise measure of alterna-
tiveAi under different values ofα is shown inFig. 2.As can be
seen from Fig. 2, the ranking of alternatives is changed with
the values of α. However, the best green supplier is always
A1; therefore, our proposed method is robust. Additionally,
the ranking of A2 improves as α increases, while the ranking
of A4 degrades as α increases, which reveals that the deci-
sion mechanisms affect the ranking result. In general, Fig. 2
illustrates the stability of our method in a simple and direct
manner.

(2) The effect of standard granularity on the ranking

The probabilistic linguistic decision-making matrix of alter-
natives largely depends on the determination of the standard
granularity. To explore the influence of different standard
granularities on the results, the sensitivity analysis was car-
ried out with granularity 7 as the standard granularity, and
the compromise measure of different alternatives under dif-
ferent granularities is shown in Fig. 3. As can be seen from
Fig. 3, whether the standard granularity is 5 or 7, Qi of A1 is
always the minimum value and Qi of A2 is always the maxi-
mum value. Accordingly, if any multi-granularity is selected
as the standard granularity, the decision information before
and after conversion is equivalent and has slight effect on the
comprehensive dominance and ranking result, which further
shows the stability of the proposed approach.
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Comparative analysis and discussion

In this section, to verify the rationality and feasibility of
the multi-granularity extended probabilistic linguistic best—
worst and VIKOR methods, we provide some comparative
analysis with the existing MAGDM methods [32, 45]. The
corresponding calculations and analysis are all based on the
same scenario mentioned above. Tavana et al. [45] proposed
an interval type-2 fuzzy best–worst method and combined
compromise solution to evaluate eco-friendly packaging
alternatives. They rank alternatives in descending order by
calculating the final index value expressing the overall impor-
tance ξi of alternatives to determine the best one. Qin et al.
[32] proposed the extendedTODIMmethod in interval type-2
fuzzy environment for GSS. They rank alternatives by calcu-
lating the global prospect values πi of alternatives to deter-
mine the best one. Table 7 shows the ranking results obtained
by the three approaches, and it canbe clearly seen that ranking
order obtained by the methods in Qin et al. [32] and Tavana
et al. [45] is slightly different from the ranking obtained by
the proposed approach, but the best alternative is the same.

Compared with these methods, the features of the pro-
posed model can be summarized in the following aspects.
On the one hand, compared to Tavana et al.’s [45] research,
our study can provide sets of compromise results, which
the decision-makers can easily respond to various situa-
tions. However, the interval type-2 fuzzy best–worst method
and combined compromise solution obtain a complete rank-
ing order, and our ranking results are flexible. In addition,
Tavana et al.’s [45] method gives decision-makers the same
weight, while in real cases, decision-makers should be allo-
cated with different weights according to their expertise. Our
proposed multi-granularity extended probabilistic linguis-
tic best–worst method enables the trade representatives to
evaluate the expertise of decision-making panel by linguis-
tic judgments, and we construct an optimization model to
obtain the weights of decision-making panel. Furthermore,
this optimization model is easy to understand and feasible,
whichmakes theweight allocation to decision-makingpanels
more scientific and reasonable. On the other hand, com-
pared with Qin et al.’s [32] method, this study introduces
the MGEPLTSs to the best–worst and VIKOR methods. The
introduction of MGEPLTSs provides a flexible approach for
decision-makers to give the evaluation information of alter-
natives, which can increase the reasonability of the final
ranking results. Thus, they accord well with practice and can
effectively handle uncertainty. However, in Qin et al.’s [32]
method, the interval type-2 fuzzy sets are in the form of sym-
metrical triangular fuzzy numbers. This practice is improper
to some extent. In addition, the TODIM method itself is vul-
nerable to two paradoxes affecting the weight of the model.
For example, if one criteria weight approaches zero, the para-
dox appears. Also, the TODIM method is based on pairwise
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Fig. 2 The compromise measure under different values of α

Fig. 3 The compromise measure of different alternatives under 5 and 7
granularities

comparisons and thus may suffer the rank-reversal phe-
nomenon when some alternatives are added or deleted. Thus,
much room for improvement remains. Therefore, through the
comparative analysis, the proposed method can be applied in
the process of the GSS in a more comprehensive perspective.

As shown in Figs. 2 and 3, by modifying the relevant
parameters for sensitivity analysis, it can be seen that the
changes of the parameters have slight effect on the final rank-
ing results, which illustrates the robustness of this proposed
approach. Furthermore, through the comparative analysis, it

can reflect the reliability of the proposed approach. Accord-
ing to the above analysis, we can conclude that the proposed
approach has the following advantages:

• The proposed approach uses the MGEPLTSs as the quan-
titative tool for decision-makers to make evaluation infor-
mation. MGEPLTSs can well address the complexity and
uncertainty problems, so it provides a flexible approach for
decision-makers to give the evaluation information, which
is not considered in Qin et al.’s [32] approach. Meanwhile,
the three multi-granularity linguistic term sets are pro-
vided, which is helpful for the final qualified evaluation
results to be closer to the real assessments of decision-
makers.

• A new combined the multi-granularity extended proba-
bilistic linguistic terms with BWM method is conducted.
Specifically, the best–worst method and MGEPLTSs are
fused, and then, the fuzzy mathematical programming
model is constructed to solve the weights of decision-
making panels and evaluation attributes, which make the
model more suitable to deal with real cases. At the same
time, the multi-granularity extended probabilistic linguis-
tic best–worst method can consider the decision-making
process and deal with the GSS problems more effectively,
which is not considered in Qin et al. [32] and Tavana et al.
[45].

The multi-granularity extended probabilistic linguistic
VIKOR method is applied to rank alternatives, providing
sets of compromise results and the decision-makers can
easily respond to various situations, which is not considered
in Tavana et al.’s [45] approach. Furthermore, sensitivity
analysis regarding different parameters and different stan-
dard granularities is conducted to verify the final ranking
results, which increase robustness of results and make the
ranking results more accurate than previous interval type-2
fuzzy set-based TODIM method in Qin et al. [32], and
interval type-2 fuzzy information-based MULTIMOORA
method in Tavana et al. [45].

Additional discussion

We also experimented with other sets of values to investi-
gate the sensitivities of these parameters on the computation
results, with respect to the overall probabilistic linguis-
tic decision-making matrix of decision-making panels. To
achieve this intention, we have conducted the sensitivity
analysis using different parameters and different standard
granularities to examine their effects on the decision-making
results based on two sets of experimental values. However,
the detailed results are not presented here due to the space
limitations but can be provided on request. It is similar to the
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Table 7 The ranking results obtained by the three approaches

Methods Literature Ranking indices Ranking results

Interval type-2 fuzzy best–worst method and
combined compromise solution

Tavana et al. [45] ξi � (1.9812, 1.5501, 1.4267, 1.8225) A1 	 A4 	 A2 	 A3

Extended TODIM method in interval type-2
fuzzy environment

Qin et al. [32] πi � (1.0000, 0.4521, 0.7869, 0.0000) A1 	 A3 	 A2 	 A4

Integrated BWM-VIKOR approach with
MGEPLTSs

Our work πi � (0.0034, 0.9312, 0.3566, 0.6671) A1 	 A3 	 A4 	 A2

above experiments and sensitivity analysis in Section "Sen-
sitivity analysis", the research results based on other sets
of values using different parameters are also robust, namely
the ranking of alternatives changes with the values of differ-
ent parameter α, but the best alternative is always the same.
Meanwhile, if any multi-granularity is selected as the stan-
dard granularity, the decision information before and after
conversion is equivalent and has slight effect on the compre-
hensive dominance and ranking result.

Conclusions and future directions

With consideration for the resource depletion and environ-
mental degradation being on the rise today, there are an
increasing number ofmanufacturing plants which arewilling
to cooperate with green suppliers under the fierce mar-
keting competition. Hence, selecting the appropriate green
supplier is one of the utmost issues for GSCM practition-
ers to trade off the economic benefit and the environment
friendliness. To achieve this intention, the methodology
development, extension and application on the GSS prob-
lems are of essential significance. Although many fuzzy
multi-attribute decision-making approaches have already
been introduced and applied to handle GSS problems, those
models cannot consider the bounded rationality behaviors
of GSCM practitioners and cannot address group deci-
sion making problems in fuzzy environment and obtain
compromise solutions as well. In this paper, we focus on
the integrated MAGDM approach under MGEPLTSs envi-
ronment for GSS practices by integrating the MGEPLTSs
with the BWM and the classical linguistic decision VIKOR
method.

To address the issues on potential ambiguity and uncer-
tainty in actual GSCM practices, we extend a new MGE-
PLTSs to quantify the decision information of GSS problems
in the inspiration of PLTSs, in which all the evaluation
information and index weights information given by GSCM
practitioners are represented by the MGEPLTSs. It can
comprehensively and effectively reflect the real opinions
of GSCM practitioners and maintain the integrity of orig-
inal evaluation information as well. Besides, according to

the results of sensitivity analysis and comparative anal-
ysis with other similar approaches, the MGEPLTS-based
VIKOR method increases robustness of results and makes
the ranking of alternatives more accurate than previous inter-
val type-2 fuzzy set-based TODIM method in Qin et al.
[32], and interval type-2 fuzzy information-based MULTI-
MOORA method in Tavana et al. [45]. Then, the BWM,
as an effective multi-attribute decision-making method that
constructs a comparison system in a structured manner and
reduces inconsistency, is introduced to the MGEPLTSs envi-
ronment to solve the weights of decision-making panels
and evaluation attributes in GSS problems. This method
requires fewer pairwise comparison than does fuzzy AHP
and can obtain more reasonable weights than do BWM
and fuzzy BWM. Finally, in combination with the well-
known method called VIKOR, we extend a novel integrated
MAGDM approach for GSS practices. Perhaps most impor-
tantly, the practical advantage of the developed method is
that it defines a new research paradigm on the linguis-
tic decision-making using MGEPLTSs rather than previous
interval type-2 fuzzy sets. Meanwhile, it can provide an inte-
gration of various criteria on the basis of previous literature
review, so we can have a clear and deep understanding on the
critical success factors affecting GSCM practices, thereby
promoting the flexibility and convenience of green supplier
decision-making process. These criteria can be applied as
the benchmarking and improvement tools that in this case
can reconcile the proven aspects on the environmental prac-
tices.

An illustrative application on GSS is conducted, and the
research results of sensitivity analysis and comparison anal-
ysis with other methods further validate the feasibility and
reliability of our work in practice. The findings indicate the
proposed approach can effectively address the complexity
and uncertainty issues in GSS problems, which is useful
for GSCM practitioners to select the optimal green sup-
plier to implement GSCM practice and provides a new idea
for the linguistic decision-making approach. In the future
research, it will be worth studying to express the evaluation
information of decision-makers in other ways, such as the
generalized EPLTSs. Furthermore, it is also worth integrat-
ing the AHP, DEMATEL, PROMETHEE and so on with the
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VIKOR method to compute the index weights. Finally, the
proposed approach in this paper is applicable inmany similar
fields, such as the low carbon supplier selection, E-commerce
service, strategic supplier selection, and hotel location selec-
tion.
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