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Abstract— Damage to maglev rail joints, which connect adja-
cent rail segments, threatens the safety and comfort of railway
systems. Machine learning methods have been used in combina-
tion with online monitoring data to assess the health conditions
of maglev rail joints. However, most of the existing methods
rely on the data collected in controlled scenarios, such as those
involving constant train operation speeds. Given the diversity
of operational conditions, a model learned from one known
case (source domain) cannot be directly applied to the case of
interest (target domain). Therefore, this article proposes a domain
adaptation (DA) approach to diagnose the health conditions of
maglev rail joints in complex operational conditions. The DA
is unsupervised because the source and target domains are
characterized by labeled and unlabeled samples, respectively.
DA is implemented by integrating the sample moments with
different orders into the transfer loss of a neural network.
By minimizing the transfer loss, the domain shift caused by
the difference in the operational conditions can be reduced, and
the knowledge of features learned from the neural network is
transferred from the source domain to the target domain. The
proposed approach is validated over a dataset of time—frequency
spectrograms (TFSs) derived from the experimental acceleration
data of maglev rail joints in two operation modes: stable passing
and braking. The proposed approach can successfully identify the
conditions of the maglev rail joints, i.e., bolt-looseness-caused
rail step, misalignment-caused lateral dislocation, and normal
condition, even when the operation mode of the maglev train
changes.

Index Terms— Maglev rail joints, structural damage detection,
transfer learning (TL), unsupervised domain adaptation (DA).

I. INTRODUCTION

AGLEYV is a kind of noncontact transportation system
with the advantage of less noise and friction. In such
systems, suspension and guidance are realized through the
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electromagnetic force provided by U-shaped magnets and
F-type rails [1]. The fluctuation between electromagnet and
F-type rails should be confined within 2-3 mm to ensure the
stability of maglev trains, and such a small fluctuation invokes
a high requirement for the condition of F-type rail. However,
the F-type rail is prone to deformation due to temperature
changes, foundation settlements, and force actions. Temper-
ature changes play the most influential role among those
causes. The growing temperature difference of the maglev
guideway will lead to a great temperature gradient and cause
a significant increase in deformation. Hence, a seam, known
as the rail joint, is considered in the design to allow for
the deformation. Maglev rail joints are typically used to
connect F-type rails to satisfy the control requirement of
the suspension gap between the electromagnet and rail and
enable slight movement between two adjacent F-type rails
due to temperature-induced expansion and contraction [2], [3].
Notably, maglev rail joints are prone to structural damage
because of environmental changes, train excitation, and instal-
lation errors [4]. This structural damage typically manifests
as bolt-looseness-caused rail step and misalignment-caused
dislocation, which may lead to rail irregularity and decreased
electromagnetic force, respectively [2], [5]. According to the
experimental results on several current maglev lines, the rail
step and lateral dislocation often occur at maglev rail joints in
practice. Such damage scenarios may lead to rough suspension
gap fluctuations, suspension control failure, and even a sudden
clash between the electromagnet and the rail. Large impacts on
the rail are generated by repeated suspension gap fluctuations
[6], causing maglev rail joints to become the weakest part
of the maglev rail and reducing the ride comfort of maglev
trains [7]. Moreover, the large impacts and dynamic suspension
forces acting on the maglev rail joints aggravate structural
deterioration [6], [8]; thus, bolts get loose, rail ends become
battered, and cracks develop in the F-type rail.

To avoid such scenarios, the condition of maglev rail joints
is typically visually inspected. Such manual observations may
be unreliable, intrusive, and unsafe [8]. Therefore, to maintain
the safe operation of maglev systems, intelligent techniques
for rail joint monitoring must be developed. The successful
practices of intelligent rail joint monitoring have been wit-
nessed. For example, the axle box acceleration data measured
from the rail vehicle are used to monitor the conditions of rail
joints [8], [9]. In [8] and [9], the wavelet transform algorithm
is employed to extract the characteristics of rail joint damage
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for rail joint monitoring. Chang et al. [10] measured the
dynamic response of rail to identify the misalignment-caused
damage at rail joints. The abovementioned studies have pro-
posed effective methods to thoroughly investigate the damage
mechanisms and recognize rail joint damage. However, the
damage detection methods in [8], [9], and [10] are realized
through the track inspection wagon, which still relies on labor
to collect massive data. Besides, these methods require manual
feature extraction from data for damage detection. Thus, there
is still room for developing convenient and cost-effective rail
joint damage detection and classification methods.

Deep learning (DL) algorithms can be applied for the
damage detection of rail joints as they can automatically
extract discriminative features from a massive amount of data.
Among DL algorithms, convolutional neural networks (CNNs)
are an effective feature extractor. Surface defect detection
based on CNNs is a popular topic. Different surface defects
can be classified through camera images [11], [12]. However,
the damage to a rail joint is not always visible. Vibration-
based CNNs become an alternative by extracting features from
numerous raw vibration signals [13]. In the field of structural
health monitoring, CNN and vibration signals have been used
to inspect structural damage [14], [15], [16], [17], [18]. For
example, a CNN model trained with time-series data of bridge
acceleration responses from a set of shake table tests was
used to identify and quantify four types of concrete bridge
damage [16]. In addition to directly using the data in the
time domain, the implicit information in the frequency domain
can be used for structural damage detection. Duan et al. [17]
trained a CNN model by using the Fourier amplitude spectra
of acceleration responses to detect the damage of a tied-arch
bridge. Using a CNN model built with the time—frequency
spectrogram (TEFS) of acceleration responses, Wang et al.
[18] detected multiple damages to maglev rail joints. Notably,
in these studies, the training and testing data are independent
and identically distributed (i.i.d). In other words, the existing
approaches ignore discrepancies in the distribution and have
been validated for only a given data distribution. In the real
world, the training data are often acquired from specific cases,
whereas the testing data might be collected considering various
operational and environmental conditions. Consequently, the
ii.d hypothesis fails, creating the domain shift between the
training and testing data [19]. This problem can be overcome
by collecting new labeled data and building an updated model.
However, these processes are time-consuming and impractical
for most industrial scenarios [20].

Recently, transfer learning (TL) has emerged as a promising
approach to solving the domain shift issue. TL can help
enhance the model performance by allowing the model to learn
the knowledge from previous tasks and apply this knowledge
to new and similar tasks. As a type of TL, domain adaptation
(DA) realizes knowledge transfer by reweighting the samples
in model training or identifying a shared space to match the
inconsistent data distribution [21]. In recent years, DA has
been widely applied for structural damage detection, such
as the damage of multistory buildings, with the source and
target domains corresponding to numerical and experimental
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data, respectively [20], [22]. In addition, many researchers
have used DA for damage detection considering changes in
the operational state of structural components, such as in
the fault diagnosis of rolling bearings [23] and power plant
thermal systems [24]. In railway engineering, DA has been
used for the damage detection of rail vehicles. Yu et al. [25]
used conditional adversarial DA to predict the faults of a
gearbox and shaft at different running speeds. Qin et al. [26]
developed a stepwise adaptive CNN to classify the faults of
a high-speed train bogie with a continuously varying vehicle
speed. Chen et al. [27] established a semisupervised adversar-
ial DA to assess the condition of high-speed train wheels under
different surrounding environments.

In practice, there are also different working conditions in
maglev lines. Variations in the maglev train speeds and running
status (e.g., stable passing, suspension, and braking) affect the
structural response of maglev rail joints. Consequently, a large
domain shift [29] exists in the vibration signals collected from
one maglev rail joint under different operation modes. The per-
formance of a model trained by data from one operation mode
may deteriorate when it is applied to another mode due to the
change in the external excitation in different modes. Thus,
the above evidence motivates us to use DA for maglev rail
joint damage detection. However, regarding rail joint damage
detection, only a few novel studies used DL algorithms [18],
[28], and even none of the studies used TL algorithms, e.g.,
DA algorithms. This may be because the common research
objects using DA for damage detection are structural compo-
nents such as bearings and gears. The cross-domain features
of bearing and gear damage usually appear continuously at
certain frequencies, while the cross-domain features of rail
joint damage are hard to capture since they appear shortly
and usually at nonfixed and high frequencies. In this study,
an unsupervised discrepancy-based DA network (UDDAN) is
proposed to detect the maglev rail joint damage condition
considering the actual operation modes. The data, i.e., vibra-
tion signals from maglev rail joints, are often collected with
a high frequency, which makes the data numerous. Mean-
while, the data for damaged cases are much fewer than for
normal cases. In addition, the labeling is time-consuming and
requires appropriate observations, especially for the damaged
data. Unlike supervised algorithms, unsupervised algorithms
eliminate the need for labeling. Therefore, the UDDAN is
proposed to classify the maglev rail joint condition even if
the labels are unavailable.

The UDDAN implements the following steps. First, the
acceleration responses of two types of damaged maglev rail
joints and an undamaged maglev rail joint are collected from
a monitoring system installed on the maglev test line in
Shanghai, China. The acceleration responses are processed to
samples reflecting the time—frequency features of maglev rail
joints in two operation modes (stable passing and braking).
Subsequently, a series of samples are input to the UDDAN
model, which derives domain-invariant time—frequency fea-
tures of maglev rail joints in two operation modes. The
adaptation layer is placed at the top of the model to ensure
that the data distribution of one mode (source domain) is
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like that of the other mode (target domain) to minimize
the domain discrepancy caused by the operation mode. The
classification layer allows the model to detect the condition
of maglev rail joints in both modes after sufficient alignment
of the data distribution. Compared to those existing DA
algorithms developed and verified through benchmark datasets
covering a wide range of categories, e.g., Office-31 and Office-
Home, UDDAN is trained from the dataset of TFSs. This
dataset is much smaller in variety and has less cross-category
difference than benchmark datasets. Therefore, the exist-
ing algorithms may fail to extract discriminative features
between TFSs. In contrast, UDDAN enables feature extrac-
tion in a different way to those existing algorithms. Hence,
UDDAN is tailored for the maglev rail damage detection
problem.

The key contributions of this research can be summarized
as follows.

1) To the best of the authors’ knowledge, this study rep-
resents the first attempt at DA-based maglev rail joint
damage detection and highlights the key role of DA
in improving the classification performance. Maglev
rail joint damage detection is affected by different
operational conditions. DA is suitable for solving this
problem as it has been successfully used to solve the
similar problem of other structural components such as
bearings and gears. The structural characteristics are
more complicated in maglev rail joints, which makes
it necessary to extract discriminative features between
damaged and normal conditions and build a DA model
for maglev rail joint damage detection. Hence, as a type
of novel deep TL architecture, UDDAN is proposed in
this study to automatically detect different categories of
maglev rail joints and mitigate the domain shift issue
caused by operation mode changes.

2) In addition, this study considers the domain proximity
and data distribution assumptions in the transfer loss
to seek the best design for transfer loss as the model
performance is highly sensitive to the collected data.
The discrepancy-based DA is usually achieved through
the minimization of transfer loss by measuring the
discrepancy between the sample moments in the source
and target domains. Meanwhile, the change in data
distribution can degrade the model performance. Hence,
sample moments of the first, second, and third orders
and the effects of marginal and joint distributions on
the discrepancy alignment in the proposed UDDAN are
discussed to establish a more suitable model for maglev
rail joint damage detection.

The rest of this article is organized as follows.
Section II presents an overview of DA and describes the
discrepancy-based DA framework and different types of data
distribution. Section III introduces the UDDAN architecture.
Section IV describes the experiment conducted on maglev rail
joints to obtain the dataset. Section V describes the different
methods with different discrepancies and data distributions for
the UDDAN and discusses the results. Section VI presents the
conclusion.
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Fig. 1. Mechanism of DA for addressing domain shift.

II. PRELIMINARIES
A. Domain Adaptation

In machine learning methods, the domain (D) is a set of
feature spaces X with marginal distributions P (X). Samples
in the feature space satisfy X = {x|,x,...,x,} € X.
Each domain has one task (7)) aimed at learning the con-
ditional distribution P(Y|X) (also known as the predictive
function). ) is a label space in which the samples satisfy
Y = {yi,y2,..., ¥} € V. Two domains are considered in
machine learning: the source domain (D° = {X*, P(X"))
with task (7°) and the target domain (D' = {X’, P(X"))
with task (7"). Conventional machine learning methods learn
the same task (7° = 7') over identical domains (D* =
D) using labeled data x;, y;. Therefore, the performance of
conventional machine learning methods deteriorates when task
variation (7° # 7") and/or domain shift (D* # D) occurs.
This problem can be solved by applying DA and using the
knowledge in D* and D' [30].

DA assumes that the task in the source domain is the same
as that in the target domain (7° = 7"), but the two domains
are different (D* # D'). DA can be divided into two types
depending on the domain divergence [21]: homogeneous DA
has an identical feature space (X* = X') but different data
distributions (P(X*) # P(X')), and heterogeneous DA has
nonequivalent feature spaces (X* # X'). In addition, DA can
be categorized as supervised, semisupervised, or unsupervised
DA based on whether the data in task 7' are fully labeled,
partially labeled, or unlabeled, respectively. Fig. 1 shows how
DA addresses domain shift. The feature space consists of
the data marked as points with various shapes according to
different categories. If the model is trained using the data in
the source domain, misclassification may occur in the target
domain. To resolve the problem, DA aims to map the features
from the source and target domains to a shared feature space
and build a model with a low generalization error in the target
domain.

B. Discrepancy Alignment of Data Distribution

To accomplish DA, the domain-invariant feature represen-
tations must be learned to improve the task performance.
Discrepancy-based DA can learn feature representations by
minimizing the discrepancy between data distributions in the
source and target domains. Generally, in a neural network
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considering DA, the discrepancy between data distributions
is equivalent to transfer loss [31]. The discrepancy can be
measured through the maximal mean discrepancy (MMD) [32]
or correlation alignment (CORAL) [33].

To determine the discrepancy of data distributions in the
source and target domains, the MMD maps the data in the
two domains into a reproducing kernel Hilbert space (RKHS).
According to the Reisz representation theorem and unit ball
property of RKHS, the unbiased empirical estimate of the
MMD is

MMD(D*, D') = ||—Z¢

Zzp M

where x; and x] represent the ith samples in the source and
target domains, respectively; N* and N’ are the number of
samples in the source and target domains, respectively; ¢ is
the kernel function for mapping data into the Hilbert space;
and ||.||% is the second Frobenius norm, which represents the
Euclidean distance between two distributions.

Unlike the MMD, which aligns the discrepancy only with
sample means, CORAL can exploit rich statistical information
and align the discrepancy with the sample mean and covari-
ance values. The covariance can be used to measure the joint
variability of samples. Assume that there exist N samples
in observation X = (X, X, ..., XN)T, and each sample is
represented as a K -dimensional vector Xy = {x|, x2, ...,xk}-
The sample covariance between the jth and kth variables is

1 N

CoVjp = —
TN

i=1

(i, = ¥7) (xix — Xe) 2)
where X; and X; are the sample means of the jth and kth
variables, respectively.

Note that cov; ; is equal to the sample variance when j = k.
COV is the sample covariance matrix sized K x K

COVy,1 COVy2 COVy Kk
COVy 1 COV2 2 COVy

COV = _ ) ) . 3)
COVk,1 COVkg 2 - -+ COVK K

Hence, the transfer loss of CORAL is defined by two
covariance matrices derived from samples in the source and
target domains [33]

1
CORAL(D*, ') = - [ICOV* —COV'II;:  (4)

where COV* and COV' are the covariance matrices of samples
in the source and target domains, respectively.

The sample mean and covariance values are two types of
sample moments for identifying the data distribution.

Specifically, the sample mean and covariance values reflect
the first- and second-order sample moments, respectively.
Notably, the distribution of real-world data may be too
complicated to be completely described using the first- or
second-order sample moments [34]. In such cases, high-order
statistics (HOS), i.e., the third-order or higher order sample
moments that contain more discriminative information, can be
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Fig. 2. Discrepancy results associated with MDA, CDA, and JDA.

used to estimate the data distribution [35]. Chen et al. [36]
presented a universal representation of HOS as

< ® 1 < ®
L,,nﬁz ()™ = 57 2.06) "M%
i=1 i=1
&)

where 0(x;) = {6(x;1),0(x;2),...,0(x; 1)} represents one
L-dimensional feature from the ith sample, the superscript @ p
denotes the pth power tensor product, and (1/N) Z,N: | ul@p is
the pth order moment calculated by N samples.

The MMD and CORAL can be considered as special cases
of the HOS formulation with p = 1 and p = 2, respectively.
By setting p = 3 in the HOS formula, Cheng et al. [37]
proposed the tricovariance (TriCOV) measure to align the
discrepancy between third-order sample moments. Notably,
with increasing power in the sample moment, the computing
complexity increases exponentially, leading to inaccuracies in
the estimated data distribution unless the sample scale is large
[38]. Therefore, in this study, only cases with p < 3 are
considered due to the limited computing resources and small
scale of the samples.

HOS(D*, D') =

C. Data Distribution in DA

In most DA methods, discrepancy alignment is based on the
marginal distribution between the source and target domains,
and the conditional distribution is assumed to be constant.
However, discrepancies may occur in the conditional distri-
bution and in the joint distribution, which is a combination of
the marginal and conditional distributions. As shown in Fig. 2,
the shape of the feature space influences the performance
of discrepancy alignment. Different results are expected to
be obtained depending on the type of distribution used in
DA. However, the type of data distribution is difficult to
determine due to the inaccessibility to characterize the feature
space. An appropriate data distribution must be assumed
to narrow the discrepancy between the source and target
domains. In this study, three types of data distribution for
discrepancy alignment are considered: marginal distribution
alignment (MDA), conditional distribution alignment (CDA),
and joint distribution alignment (JDA).
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Fig. 3. Architecture of UDDAN.

MDA is aimed at narrowing the discrepancy in the data
distributions in two domains (P(X*) and P(X")). The opti-
mization objective of MDA is

mind (P (X*), P(X")) (6)

where d(-) is an arbitrary domain discrepancy.

CDA is aimed at decreasing the discrepancy between the
distributions of same-category data in two domains (P (Y*|X*)
and P(Y'|X")). The goal of CDA can be formulated as follows
[39]:

mind (P(x°|Y"), P(X'1Y"))

where P(X*|Y®) and P(X'|Y") are the sufficient statistics
of distributions P(Y*|X*) and P(Y'|X"), respectively [39].
As the target label Y’ is unknown, a pseudo label [39],
obtained by testing the target data in a classifier trained using
labeled source data, substitutes the target label. Based on
the CDA concept, MMD can be modified to measure the
discrepancy between the category-conditional distributions

(7

c N¥©
CMMD(D*, D) Z Nm Z¢ (i1 =¢)

NI©

N,@ Z¢ Ayi=c) ®

F

where each category ¢ € {1,...,C}; N°© and N’ are the
number of samples with the same label category c in the source
and target domains, respectively; y; is the ground-truth label
of the ith sample in the source domain; and y! is the pseudo
label of the ith sample in the target domain.

JDA integrates the advantages of MDA and CDA by simul-
taneously minimizing the domain discrepancy in both marginal
and conditional distributions [39]. To apply the discrepancy as
the transfer loss in a neural network, a deep transfer network
aligning the discrepancy between joint distributions has been

developed based on the MMD criterion [40]

JMMD(D*, D') = §MMD(D*, D') + £CMMD(D’, D')
)

where £ and &, are adjustable terms for the marginal and con-
ditional distributions. This concept has been used to develop
several deep transfer networks with JDA [41], [42].

III. UNSUPERVISED DISCREPANCY-BASED DA NETWORK
A. Architecture of UDDAN

This article proposes the UDDAN model for maglev rail
joint condition detection. As shown in Fig. 3, the UDDAN
consists of several backbone layers for extracting the dis-
criminative features of every maglev rail joint condition,
an adaptation layer for learning the cross-domain invariant
features, and a classification layer for evaluating the maglev
rail joint conditions.

The architecture of the backbone layers is based on
ResNet18 [43], consisting of five convolution layers labeled
Convl to Conv5. Convl contains one convolution calculation.
The other convolution layers contain two residual blocks with
two convolution calculations. The skip connection is set in the
residual block to avoid the decrease in accuracy as the network
deepens. Batch normalization and rectified linear unit are
added in each convolution calculation to promote convergence
in model training. In the Convl layer, max-pooling layer, and
first convolution calculations of Conv3, Conv4, and Conv5,
the stride is set as 2 to decrease the width and height of
the feature maps by half. Thus, at the end of the convolution
layers, the width and height are 1/32 of the original dimension.
A 7 x 7 filter is used in the Convl layer and 3 x 3 filters are
used in the max-pooling layer and other convolution layers.
The number of filters increases gradually with the deepening
of the feature map. Therefore, 64, 128, 256, and 512 filters
are applied in the Conv2, Conv3, Conv4, and Conv5 layers,
respectively. Consequently, a 512-D feature map is condensed
into a 64-D vector in global average pooling, which is named



3532319

the bottleneck feature as it is located at the bottleneck position
in the model [44].

After the backbone layer calculations, the bottleneck fea-
tures are exported to the classification and adaptation layers.
As a fully connected (FC) layer, the classification layer
nonlinearly maps the bottleneck feature to the prediction on
probability for each condition of a maglev rail joint. The
length of the FC layer is equal to the number of considered
maglev rail joint conditions. In the classification layer, the
damage classification loss (Lp) is calculated to compare the
prediction with the ground truth. The adaptation layer stores
the bottleneck features from various domains to calculate the
discrepancies between domains that are measured by sample
moments of various orders under different data distribution
assumptions. In the adaptation layer, the discrepancy value is
equal to the transfer loss (L7).

B. Model Training

The model is trained based on alternating forward prop-
agation of feature generation and backpropagation of loss
calculation for updating the model parameters. In this study,
the loss used in model training is Ltorar, Which is a combi-
nation of the damage classification loss (Lp) and transfer loss

(L7) [45]

LroraL = Lp +ALT. (10)
The damage classification loss aims to match the labels

between the prediction and the ground truth

NS

1

ED:F

2 (f (). 7) (1n
T(f (). y) = —[yffogf(xis) + (1= y)log(1 = f(x}))]-
(12)

For the ith sample in the source domain, y; and f(x]) denote
the probability of each category obtained from the ground truth
and prediction, respectively. f(-) is the predictive function
learned from the backbone layers. J (-, -) is the cross-entropy
loss function that is used to match the difference between the
true and predicted labels.

The transfer loss aims to realize DA from the source to
the target domain. To consider different data distributions,
a universal paradigm of the transfer loss is defined as

L1 =&dy (D', D)+ &de (D, D) (13)
where dy(-,-) and dc(-,-) are the discrepancies between
two marginal data distributions and conditional distributions,
respectively, and &, and &, are the adjustable terms for the
considered data distributions. If only §& = 0 or if only & = 0,
the case corresponds to MDA and CDA, respectively. The case
pertains to JDA if & # 0 and &, # 0.

In this study, the loss backpropagation is based on the
stochastic gradient descent optimizer, which prevents the
training procedure from falling into the saddle points in a
minibatch. Backpropagation is aimed at optimizing the three
model parameters (6, 6, and 6,) obtained from the backbone
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Algorithm 1 Training Procedure of UDDAN

Input: labeled data from source domain {x?, yis}f\’; \» unlabeled
N UDDAN model architecture,

i=1°

data from target domain {x’}
and model hyperparameters
Output: the predicted label for data from the target domain

1) Train the data from the source and target domains to
obtain the bottleneck features, source label predictions
{f(x] )}f\: 1» and model parameters 6y, 0., 0,.

2) Predict the pseudo-labels { )3?}?]:’1 from samples in {x} }fvztl
if using JDA

3) for each epoch:

4) for each minibatch:

5) Calculate the loss functions L£p by (10), L7 by (12) and
Lrorar by (13)

6) Update the model parameters by solving (14)-(16)

7) Update the pseudo-labels if using JDA

8) until the current epoch reaches the maximum value

9) Evaluate the model performance over data from the
target domain

layers, classification layer, and adaptation layer, respectively

L
Oy < O — - 1OTAL (14)
90,
ALp
0, < 6, 15
<~ n 26, (15)
LT
0, <06, — 16
<« n 20, (16)

where 7 is the learning rate. Fig. 4 shows the training proce-
dure. First, the model parameters, source label predictions, and
bottleneck features are obtained. If JDA is applied, pseudo-
target labels are required. Both the damage classification loss
and the transfer loss are optimized to update the model param-
eters and pseudo-labels. After sufficiently optimizing the loss,
a satisfactory model is obtained for directly testing the data
from the target domain. Algorithm 1 summarizes the training
steps.

To accelerate training, the learning rate of the model is
typically set to a high value. However, the use of a high
learning rate in the complete training process may lead to
loss oscillation. Hence, in this study, the model learning rate
is initialized with a high value and then gradually decreases
as the number of training epochs increases. The learning rate
n; at the ith epoch is

0.0011')"S
(17)

m=%0+

where ¢ is the number of epochs and ¢ is the learning rate
decay.
The tradeoff term A; in (18) at the ith epoch is

2
)"i = —_— - — 1
w(l +exp(—%) )

where w is the weight term. The magnitude of £, is stable but
that of £ changes sharply because different sample moments
are used as discrepancies. To ensure the reliability of model

(18)
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Fig. 5. Maglev guideway structure.

training, the weight term is set such that the magnitudes of
Lp and L7 are balanced. The remaining term guides the
focus of model training in different stages, that is, emphasizes
classification over the early epochs and adaptation over the
later epochs [31].

To accelerate convergence and reduce the loss oscillations
in model learning, the momentum term w is used [47]. The
momentum is iterated as follows:

19)
(20)

v:i=puv —nVv
0:=0+v.

IV. EXPERIMENTAL STUDY AND DATA COLLECTION
A. Condition Monitoring System

As shown in Fig. 5, the maglev guideway consists of a
steel sleeper, an F-type rail, and a viaduct, and the maglev
rail joints are located between adjacent F-type rails. Fig. 6
shows the JI-type maglev rail joint, which is the most used
type of maglev rail joint. This maglev rail joint has three
main geometrical parameters: height of the rail step along the
z-axis, length of the lateral dislocation along the x-axis, and

Fig. 6.  Geometrical properties of a JI-type maglev rail joint.

width of the longitudinal gap along the y-axis. According to
observations on commercial and testing maglev lines, JI-type
maglev rail joints can be damaged because of bolt looseness
and installation errors, which can lead to deviations in the
height of the rail step or the length of the lateral dislocation,
respectively. Consequently, the condition of JI-type maglev rail
joints must be accurately monitored.

To verify the effectiveness of the proposed UDDAN for
maglev rail joint condition detection, an experimental study
is performed using the data collected from the condition
monitoring system installed on the Shanghai Lin-Gang maglev
test line. This line includes a straight segment, a curve seg-
ment, a slope segment, and a turnout, and the total length is
1.7 km. This study focuses on the damage detection of maglev
rail joints on the straight segment. The straight segment
is a multispan simply supported guideway that consists of
a viaduct and several F-type rails, and the JI-type maglev
rail joint is used to connect two F-type rails, as shown
in Fig. 7.

A customized online monitoring system (see Fig. 8)
is used to monitor the condition of maglev rail joints.
This system consists of a set of piezoelectric (PZT)
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Fig. 8.

accelerometers with anti-electromagnetic interference (EMI)
capability, multiple-channel data acquisition unit (16)-channel
DEWESOFT-SIRIUS) for data collection, portable computer
for data storage, and high-performance server for data pro-
cessing. Ten PZT accelerometers are applied to monitor five
maglev rail joints labeled J1-J5, covering a monitoring range
of approximately 80 m. For each maglev rail joint, two
accelerometers are mounted on the cantilevered side of the
adjacent ends of two F-type rail sections to measure the
vertical accelerations. All the maglev rail joints are consid-
ered to operate in the same weather condition. To avoid the
EMI generated by the maglev system, the deployed sensors,
signal cables, and data acquisition unit are insulated. Data are
sampled at a frequency of 5000 Hz to ensure sufficient signal
acquisition resolution to capture the high-frequency compo-
nents resulting from the damage. The DEWESOFT-SIRIUS
instrument can be triggered automatically to acquire and store
data during the maglev train passage. A high-performance
server with eight cores, 16 threads, and 64-GB memory is used
to facilitate the multiple damage detection at various maglev
rail joints. The maglev trains run at speeds of 20-60 and
10-20 km/h in the stable passing and braking modes on the
test line, respectively.

B. Dataset

Within the experimental period from December 2020 to
March 2021, two types of damage are observed, as shown in
Fig. 9(a) and (b): a lateral dislocation of approximately 2 mm
caused by the installation misalignment at J2, and a large rail
step caused by the bolt looseness at J1 and J4. Joints J3 and
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Fig. 9. Maglev rail joints with (a) rail step damage, (b) lateral dislocation
damage, and (c) in normal (damage-free) condition.

J5 operate in damage-free conditions, as shown in Fig. 9(c).
In other words, the data recorded from this experimental period
cover three states of maglev rail joints. The maglev train with
a length of 16 m runs on the rail line with two operation
modes. To adequately record the rail response for each trial
run, the data acquisition unit collects the recording every 10 s,
and each recording is treated as one sample to be used in the
training or testing of the UDDAN.

The extracted samples are preprocessed through sig-
nal analysis in both the time and frequency domains by
using the time series and power spectral density (PSD),
respectively. Figs. 10 and 11 show the results of time- and
frequency-domain analyses for three maglev rail joint con-
ditions in the two operation modes, respectively. Fig. 10
shows that, in both modes, the peak acceleration in the rail
step is at least double that in the lateral dislocation and
even 20 times that in the normal condition (no more than
10 m/s?). Fig. 11 shows that the damaged maglev rail joints
have higher PSD values in the two modes than the normal
maglev rail joint. Overall, the vibration magnitude in the
case of damage is larger than that in the normal condition.
Moreover, the vibration is more severe in the case of rail
step damage than in lateral dislocation. However, the maglev
rail joint conditions cannot always be evaluated using the
vibration magnitude from only the time- or frequency-domain
analysis. Specifically, although the joint conditions may be
clearly detected in the stable passing mode, it might be
difficult to detect damage in the braking mode, due to the
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Fig. 10. Time series for (a) stable passing and (b) braking mode.
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Fig. 11. PSDs for (a) stable passing and (b) braking mode.

small difference in the PSD values between the normal and
damage conditions, as shown in Fig. 11(b). In addition, the
varying running speeds and train weights may affect the
peak accelerations and vibration frequencies at a maglev rail
joint. Hence, the instantaneous features of a maglev rail joint
must be simultaneously extracted in the time and frequency
domains. As the TFSs consist of feature information in both
time and frequency domains, TFSs are derived in this study
to effectively extract the time—frequency features from the
collected data [46]. Wang et al. [18] highlighted that the
discriminative features among the three conditions of maglev
rail joints can be explicitly derived using the TFSs. Fig. 12
shows the TFSs obtained from the data associated with the
maglev rail joints in the three conditions and two modes.
The discriminative features in the three conditions shift when
the train moves from the stable passing mode to the braking
mode. Moreover, the discriminative features in the braking
mode are not as explicit as those in the stable passing mode.
For example, TFSs for the normal condition [see Fig. 12(d)]
and lateral dislocation [see Fig. 12(e)] are similar, and the
classifier may not be able to easily extract and distinguish
the discriminative features between these conditions. In other
words, a classifier trained over the stable passing (breaking)
mode may fail when applying to data from the braking (stable
passing) mode.

Assuming that each domain represents an operation mode,
the UDDAN can be used to extract the seemingly similar dis-
criminative features between the two modes. The considered
problem is a typical homogeneous DA problem, given that:
1) the source and target tasks are the same, i.e., to identify the
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TABLE I

NUMBERS OF TFS SAMPLES FOR TASK A (S| — Bj)

Domain Normal Lateral Rail

condition dislocation step

Source domain 5,5, 3756 3888
(stable passing)
Target domain

(braking) 1206 1392 1212

TABLE II
NUMBERS OF TFS SAMPLES FOR TASK B (B — S})

Domain Normal Lateral Rail

° condition dislocation step
Source domain

(braking) 1206 1392 1212

Target domain 55, 3756 3888
(stable passing)

three conditions of maglev rail joints; 2) the feature space in
the source and target domains is the same, i.e., both domain
contain the TFSs extracted by maglev rail joints; and 3) the
data, or samples, are distributed inconsistently in the source
and target domains, i.e., the TFSs are collected from different
operation modes.

Tables I-III present the scale of samples (TFSs) input to the
UDDAN. The two datasets consisting of the data collected
from the stable passing mode are labeled S; and S,. One
dataset consisting of the data collected from the braking mode
is labeled B;. Three tasks are designed: task A, S; — Bjy; task
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(f) with rail step damage.

TABLE III
NUMBERS OF TFS SAMPLES FOR TASK C (S — Bj)
Domain Normal Lateral Rail
condition dislocation step
Source domain ) 1 1332 1242
(stable passing)
Target domain
(braking) 1206 1392 1212

B, B; — Si; and task C, S, — Bj, where S — B denotes the
transfer from stable passing to braking mode and B — S
denotes the transfer from braking to stable passing mode.
The designed tasks cover two potential scenarios typically
encountered in real applications.

Scenario 1: The feasibility of using the different operation
modes as the source domain is discussed because labeled
maglev rail joint data may be available for only a certain
operation mode. Among the two considered operation modes,
one is set as the source domain and the other is set as the
target domain. Therefore, this scenario involves tasks A (stable
passing to braking) and B (braking to stable passing).

Scenario 2: The feasibility of setting different numbers of
samples between the source and target domains is discussed
because the data scale of the maglev rail joint may differ across
different operation modes. To vary the number of samples,
a portion of data is randomly extracted from dataset S; to
form dataset S, while dataset B; remains unchanged. This
scenario involves the comparison of tasks A and C, which
have a large and small number of samples, respectively.

C. Procedure of Maglev Rail Joint Detection

To demonstrate the process of the proposed UDDAN for
maglev rail joint detection, a flowchart depicting the procedure

LRI L L et
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®

TFSs for (a)—(c) stable passing and (d)—(f) braking mode. (a) and (d) In normal condition, (b) and (e) with lateral dislocation damage, and (c) and

of maglev rail joint detection is represented in Fig. 13. First,
the condition monitoring system (described in Section IV-A)
is installed to record the acceleration data at the location of
maglev rail joints when the maglev train operates under the
stable passing mode and braking mode. Then, the collected
data are transmitted to the portable computer and divided into
different segments according to the given operation mode. The
flowchart takes an example when the stable passing mode
is the source domain and the braking mode is the target
domain. Using the raw acceleration data, the TFSs from
both the source and target domain are generated (as shown
in Section IV-B). The dataset of TFSs is used to establish
a UDDAN model. The model performance is evaluated by
inputting target data to compare the prediction labels and true
labels. Finally, the well-trained model is saved and employed
for the classification of three categories of maglev rail
joints.

V. RESULTS AND DISCUSSION

A. Comparison Methods

To illustrate the superiority of using discrepancy-based DA
and evaluate the combination of different data distribution
assumptions and domain discrepancies on the model perfor-
mance of maglev rail joint damage detection, the following
seven methods are used for comparison. In the domain-
adaptation-free (DAF) method, no information across domains
is provided, and thus, the model is trained only from the
source domain and then tested directly over the data from
the target domain. In contrast, the other six methods adopt
DA and obtain the cross-domain information by calculating
the domain discrepancies as the transfer loss. The two data
distribution assumptions are MDA and JDA. The source and
target domains are aligned by three types of discrepancies
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Fig. 13. Flowchart for the procedure of maglev rail joint detection.

TABLE IV
UDDAN HYPERPARAMETERS

Value
§1=1,¢,=0(MDA)

Hyperparameter

Adjustable term of transfer

loss (&3, $2) $1=1,$; =1(DA)
Weight term of transfer loss | 012 El(\l/[(g/[R])A)i),
w) 10* (THCOV)
Initial learning rate (17,) 0.001
Learning rate decay (&) 0.75
Momentum (u) 0.9
Input size of TFS sample 224 X224
Mini-batch size per iteration 8
Iterations per epoch 100
Epoch (¢) 50

(MMD, CORAL, and TriCOV), with each discrepancy evalu-
ated considering MDA and JDA.

1) DAF: The DAF framework that neglects the transfer loss
in the UDDAN.

2) M-MMD: MDA based on the discrepancy of sample
means.

3) M-CORAL: MDA based on the discrepancy of sample
covariances.

4) M-TriCOV: MDA based on the discrepancy of sample
third-order moments.

5) J-MMD: JDA based on the discrepancy of sample
means.

6) J-CORAL: JDA based on the discrepancy of sample
covariances.

7) J-TriCOV: JDA based on the discrepancy of sample
third-order moments.

To fairly compare these methods, the UDDAN hyperparam-
eters are set, as listed in Table IV. To augment the dataset,
TFS samples are randomly cropped as the model input with an

image resolution of 224 x 224 that fits the default width/height
ratio configuration of the ResNet backbone. The training
procedure involves 50 epochs, corresponding to 5000 itera-
tions. The mini-batch size is 8, which indicates that the total
training loss among eight samples in both the source and target
domains is calculated per iteration. The model is developed
on a server with a two-processor Intel Xeon Gold 5217 CPU
and an Nvidia Tesla P40 GPU. The programming language
is Python 3.7, and the programming environment is based on
PyTorch 1.8.1 and the Windows Server 2016 Platform.

B. Quantitative Evaluation of Model Performance:
Classification Accuracy, Domain Proximity,
and Transfer Loss

As the most important criterion in evaluating the model
performance, the classification accuracy associated with the
classification layer is determined as the percentage of the
number of correctly predicted samples over the total samples
in the target domain

Nt
Acc = % > sign(f(xf) = ¥)) 1)
i=1

where sign(-) is the indicator function, which is equal to 1 and
0 if the condition is true and false, respectively; and f(x})
and y! are the predicted and true labels for the ith sample in
the target domain, respectively. The classification results are
obtained using the model corresponding to the epoch with the
smallest training loss.

To verify the performance of DA method, the domain dis-
crepancy in the adaptation layer is quantified. Ben-David et al.
[48] proposed the proxy-A-distance (PAD) to measure the
similarity between the feature representations of samples from
the source and target domains in DA problems. The samples
obtained from the bottleneck features are used to calculate
the PAD, as these features are typically used for discrepancy
alignment in the adaptation layer. The PAD is calculated as

PAD = 2(1 — 2¢) (22)
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TABLE V
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS

Task DAF M-MMD J-MMD M-CORAL  J-CORAL  M-TriCOV J-TriCOV
A 86.75 86.56 94.41 94.38 94.46 91.84 92.34
B 83.97 83.97 94.80 94.91 94.59 88.99 89.74
C 83.44 83.52 89.76 88.85 89.24 88.22 88.03

100

sl [ Task A | |
[ Task B
il [ Task C| |

Classification Accuracies (%)

DA

F M-MMD  J-MMD  M-CORAL J-CORAL M-TriCOV J-TriCOV
Methods

Fig. 14. Classification accuracy (%) of different methods.

where € is the generalization error of the classifier tested on the
merged samples from the source and target domains. A smaller
PAD corresponds to a larger generalization error, which is
attributable to less distinguished samples from the source and
target domains. Hence, a smaller PAD indicates more similar
feature representations between the source and target domains,
that is, higher domain proximity. The PAD is calculated using
a binary classifier that is based on a linear support vector
machine.

Table V and Fig. 14 present the classification accuracies for
the three conditions of the maglev rail joint. The classification
accuracies of the seven methods for the three tasks are all
higher than 83%, which shows that the proposed model can
effectively classify the different conditions of maglev rail
joints. Moreover, the accuracies of the six methods based on
DA are higher than those of the DAF model, which shows that
the incorporation of DA enhances the model performance.

Notably, the accuracies of M-MMD in the three tasks
are similar to those of DAF, which indicates that MMD in
MDA does not significantly enhance the model performance.
However, the accuracies of J-MMD are considerably higher
than those of the DAF. These results show that the conditional
distribution must be considered when using MMD as the
discrepancy.

The accuracies of M-CORAL and J-CORAL are the highest
among the six methods (higher than 94% for tasks A and
B and approximately 90% for task C), which indicates that
the consideration of CORAL in MDA and JDA can increase
the classification accuracy. The accuracies of M-TriCOV and
J-TriCOV for the three tasks are smaller than those of
M-CORAL and J-CORAL. In other words, the use of TriCOV
may decrease the accuracy. These results demonstrate that
sample moments with the second order may be optimal for
setting the discrepancy.

Further increase in the order can degrade the model perfor-
mance, potentially because the alignment of high-order sample

I Task A
[ Task B
[Task C

Proxy-A-Distance

DAF M-MMD  J-MMD M-CORAL J-CORAL M-TriCOV J-TriCOV
Methods

Fig. 15. PAD between bottleneck features from different methods.

moments involves a complicated calculation, which may lead
to overfitting in model training and decrease the classification
accuracies. Moreover, the accuracies are nearly identical for
M-CORAL and J-CORAL, and for M-TriCOV and J-TriCOV.
This similarity indicates that the consideration of conditional
distribution does not affect the classification accuracy when a
high-order sample moment is used.

The classification accuracies of DAF, M-MMD, M-TriCOV,
and J-TriCOV in task A are higher than those in task B,
while the classification accuracies of J-MMD, M-CORAL, and
J-CORAL in task A are close to those in task B. In other
words, the domain shift affects the classification accuracies,
but this influence can be eliminated using appropriate DA
methods. The accuracies of all seven methods for task C
are lower than those in task A, which indicates that the
model performance deteriorates when the scale of the samples
decreases.

The PADs of the seven methods for the three tasks are
presented in Table VI and Fig. 15. The PADs associated
with the DA methods are smaller than that from the DAF
for all three tasks, except the PAD of M-MMD for task C.
This finding demonstrates that discrepancy alignment mini-
mizes the difference between the source and target domains.
In addition, the PAD decreases with the increase in the order
of sample moments (MMD > CORAL > TriCOV), espe-
cially with a significant decrease observed from the first-order
sample moment (MMD) to the second-order sample moment
(CORAL). In other words, the consideration of higher order
sample moments enables the closer alignment of the source
and target domains. Therefore, for each task, the smallest
PAD is obtained by the methods using the third-order sample
moment (TriCOV) as the domain discrepancy.

For a given order of sample moments, the PADs for the
three tasks are similar in MDA and JDA when using CORAL
and TriCOV as the domain discrepancy. However, the PADs
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TABLE VI
PAD BETWEEN BOTTLENECK FEATURES FROM DIFFERENT METHODS

Task DAF M-MMD J-MMD M-CORAL  J-CORAL  M-TriCOV J-TriCOV
A 1.696 1.450 1.449 1.167 1.204 1.175 1.119
B 1.671 1.648 1.406 1.276 1.257 1.262 1.239
C 1.664 1.676 1.349 1.180 1.201 1.046 1.005
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Fig. 16. Classification accuracy of DAF and two DA methods for (a) task A, (b) task B, and (c) task C with the change in the number of training epochs.
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Fig. 17. Transfer loss with the training epochs for tasks A, B, and C.

for tasks B and C are smaller in JDA than MDA when
using MMD as the domain discrepancy. In other words, the
distribution assumption affects only the extent of domain
proximity when using a low-order sample moment. Hence,
the use of high-order sample moments can compensate for
the lack of alignment between the source and target domains
caused by the distribution assumption.

Overall, J-MMD, M-CORAL, and J-CORAL exhibit the
highest classification accuracies, and methods considering
CORAL and TriCOV can decrease the domain proximity.
If MMD is used as the discrepancy, the joint distribution
must be assumed to avoid the decreased domain proximity.
If TriCOV is used as the discrepancy, the classification accu-
racies are not satisfactory. Therefore, CORAL is preferred to
be used as the discrepancy in further analysis.

The convergence during model training is evaluated consid-
ering the numerical variations in the classification accuracy
and transfer loss with training epochs. Fig. 16 shows the
change in classification accuracy of the DAF and two recom-
mended DA methods (M-CORAL and J-CORAL), and Fig. 17
shows the change in transfer loss.

The classification accuracy (see Fig. 16) and transfer loss
(see Fig. 17) converge after training for 50 epochs. In other
words, the convergence of model training can be obtained

(a) (b)

Fig. 18. Feature clustering from raw TFSs with samples extracted in (a) stable
passing mode of dataset S; and (b) braking mode of dataset Bj.

within 50 epochs. In the first five epochs, the classification
accuracy in all three tasks increases to approximately 80% for
the three methods, and the transfer loss for all DA methods
also increases. In other words, the model training focuses on
classification instead of adaptation in the first five epochs.
With training continuing to be performed, the classifica-
tion accuracy does not increase significantly for task A and
fluctuates for tasks B and C when the DAF is used. In compar-
ison, the classification accuracy significantly and continuously
increases when the DA methods are used. In addition, the
transfer loss no longer increases after the first five epochs.
In other words, the application of DA gradually enhances the
model performance as the number of training epochs increases.

C. Visualization of Model Performance: Sample Clustering
Based on Bottleneck Features

To intuitively observe the model performance, the TFS
samples are clustered using the features contained in the
samples. However, these features are too high-dimensional to
be observed directly. Using a nonlinear dimensionality reduc-
tion technique, t-distributed stochastic neighbor embedding
(t-SNE) [49], the high-dimensional features can be visualized
in a low-dimensional space. Figs. 18-21 show the results
of t-SNE-based feature visualization of TFS samples. The
features are mapped into a 2-D scatter diagram. Each point
in the scatter diagram represents a sample and its category is
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Fig. 19.
(d) M-TriCOV. (e) I-MMD. (f) J-CORAL. (g) J-TriCOV.
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Sample clustering based on bottleneck features for task A, with the samples from the braking mode. (a) DAF. (b) M-MMD. (c) M-CORAL.

Fig. 20. Sample clustering based on bottleneck features for task B, with the samples from the stable passing mode. (a) DAF. (b) M-MMD. (c) M-CORAL.

(d) M-TriCOV. (e) J-MMD. (f) J-CORAL. (g) J-TriCOV.

©

Fig. 21.
(d) M-TriCOV. (e) J-MMD. (f) J-CORAL. (g) J-TriCOV.

indicated by a color: green, red, and blue points correspond
to samples in the normal, lateral dislocation, and rail step
conditions, respectively. Fig. 18 shows the clustering results
of samples of raw TFS inputs to the model. Figs. 19-21 show
the sample clustering results based on bottleneck features. The
bottleneck features are extracted from the target domain as
the model performance is evaluated through the data from the
target domain.

As shown in Fig. 18, the data distributions of the two
domains have relatively clear boundaries between the three

() (2

Sample clustering based on bottleneck features for task C, with the samples from the braking mode. (a) DAF. (b) M-MMD. (c) M-CORAL.

categories, and their feature space is similar but is not strictly
the same. It implies the necessity of considering not only
the marginal distribution but also the joint distribution. The
features are distributed in a disorderly manner and cannot be
clustered in either the stable passing mode [see Fig. 18(a)] or
the braking mode [see Fig. 18(b)]. In contrast, as shown in
Figs. 19-21, the distribution of features is relatively orderly,
and the samples can be effectively classified. In other words,
the discriminative features in different categories can be
learned through the training of backbone layers.
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A better classification of samples means that the intracate-
gory samples are more concentrated and separated. As shown
in Figs. 19-21, the rail step samples are clustered tighter
and are more distinguishable than the normal condition and
lateral dislocation samples across the three tasks. In other
words, the time—frequency features of the rail step TFSs are
more likely to be recognized by the trained model to perform
feature extraction. In addition, it is difficult to cluster a portion
of samples for the normal and lateral dislocation conditions,
which indicates a high similarity of the time—frequency fea-
tures in the normal and lateral dislocation conditions and leads
to decreased classification accuracies.

In task A, the clustering result of the DAF [see Fig. 19(a)] is
inferior to those of nearly all DA methods [see Fig. 19(b)—(g)].
The finding highlights that the adaptation layer facilitates the
sample classification, but the consideration of joint distribution
hardly influences the clustering results. The only exception is
M-MMD [see Fig. 19(b)], whose clustering result is basically
the same as that of the DAF.

Overall, the trends in clustering results for task A can
extend to tasks B and C. The DA methods, especially those
based on CORAL facilitate sample clustering and enhance the
model performance in tasks B and C. Therefore, the models
with CORAL methods, i.e., M-CORAL and J-CORAL, are
recommended. This finding is consistent with the results of
the classification accuracy and domain proximity, which is
reasonable because the bottleneck features are directly used for

the model classification and discrepancy alignment between
the source and target domains.

D. Evidence of Discrepancy Alignment: Data Distribution
Comparison Between Source and Target Domain

To demonstrate the distribution shift between the source and
target domains when using DA methods, the data distributions
of the bottleneck features from the source and target domains
are drawn. Because the bottleneck feature in the proposed
model is a vector with 64 elements, it is difficult to draw
the data distribution of all elements. Therefore, three elements
(1)—(3) are randomly selected as representative examples. The
bottleneck features are extracted through the models trained
with DAF and with two recommended DA methods, i5.e.,
M-CORAL and J-CORAL.

Histograms, as approximate representations of the data
distribution, are derived for the bottleneck features in tasks
A-C, as shown in Figs. 22-24, respectively. The x-axis shows
the value of the element, and the y-axis shows the probability
density. The element values are normalized for probability
estimation. The x-axis ranges from O to 1 after normalization,
and the histogram contains ten equal bins. Therefore, the width
of each bin is 0.1. The area of each bin in the histogram reflects
the probability of occurrence for elements in a specific interval,
with the width of the interval being equivalent to the bin width.

The data distribution of the source and target domains
exhibits several similarities. Except for the DAF in task B
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exhibit positively skewed distributions. The data distributions
obtained from the DAF and two DA methods are different.
In general, a larger area of intersection sets in the histogram
indicates higher data distribution consistency and lower dis-
crepancy between the source and target domains. As shown
in Fig. 22, the elements obtained from the DAF have the
smallest area of intersection sets for the three methods in
task A. In comparison, the histograms for the two DA methods
are overlapped. Similar phenomena are observed in the results
for tasks B (see Fig. 23) and C (see Fig. 24). These results
demonstrate that DA methods can promote the discrepancy
alignment of data distributions between the source and target
domains.

For task A, the data distributions between the source and
target domains are similar when M-CORAL [see Fig. 22(b)]
and J-CORAL [see Fig. 22(c)] are used. In other words, the
discrepancy between the source and target domains is similar
in the cases of marginal and joint distribution assumptions.
This finding also extends to tasks B (see Fig. 23) and C
(see Fig. 24). Hence, the discrepancy alignment of the data
distribution may not be related to the assumption of data
distribution.

The necessity of selecting an appropriate sample moment
can be surveyed through DAF [see Figs. 22-24(a)], which
explicates the unaligned data distribution. For DAF, the distri-
bution of the histogram is flat, and the value of elements covers
a broad scope, which means that the effect of covariance
cannot be ignored in the distribution alignment. Compared to
MMD which only cares about the means of data, CORAL
cares about both means and covariances of data, and thus,
CORAL performs better than MMD. The data distributions
after using CORAL show that CORAL has almost aligned
the data very well, which means that the alignment with a
high-order moment, e.g., TriCOV, may not bring a remarkable
improvement. Overall, this verifies that CORAL is the best
choice for this study.

E. Comparative Study With Other Deep DA Neural Networks

Currently, several neural networks have been developed and
functioned well in solving the domain shift issue. To verify
the accuracy of the proposed UDDAN, a comprehensive

Classification Accuracies (%)

DAN M-MMD

DANN DAAN
Methods

DeepCoral  M-CORAL

Fig. 25. Classification accuracies of UDDAN and other DL methods.

discussion between the UDDAN and other state-of-the-art
deep neural networks is conducted. Five kinds of deep neu-
ral networks are adopted for discussion, including the deep
adaptation network (DAN) [50], DeepCoral [33], the domain
adversarial neural network (DANN) [29], the dynamic adver-
sarial adaptation network (DAAN) [51], and the UDDAN.
Among them, DAN, DeepCoral, and the UDDAN are
discrepancy-based DA networks, while DANN and DAAN
are adversarial-based DA networks. Two transfer losses of
M-MMD and M-CORAL are considered in the UDDAN, but
only MDA-based discrepancies are used for comparison as
DAN and DeepCoral are developed only under the assumption
of marginal data distribution. DAN and M-MMD use MMD
as a discrepancy, and DeepCoral and M-CORAL use CORAL
as a discrepancy. Only M-MMD and M-CORAL adopt the
tradeoff term in the transfer loss. The classification accuracies
of the five methods together with the UDDAN methods con-
sidering the two transfer losses of M-MMD and M-CORAL
are shown in Fig. 25. As can be seen, M-CORAL, which
is the recommended method in this study, has the highest
classification accuracy for all three tasks. It is also found that
the classification accuracy of M-MMD is higher than that of
DAN and the classification accuracy of M-CORAL is higher
than that of DeepCoral. The results indicate that the tradeoff
term designed in the UDDAN contributes to the accuracy
improvement. Though adversarial-based DA networks (DANN
and DAAN) are superior to the first-order discrepancy-based
DA networks (DAN and M-MMD), they are inferior to the
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second-order discrepancy-based DA networks (DeepCoral and
M-CORAL). It means that the discrepancy-based DA networks
are better than adversarial-based DA networks in this study.
In summary, UDDAN is more suitable than other state-of-the-
art deep neural networks for the damage detection of maglev
rail joints.

ResNetl8 serves as the most lightweight network in a
series of ResNet backbones. However, in terms of the problem
considered in this article, its effectiveness is required to be fur-
ther verified between different ResNet backbones. As shown
in Fig. 26, a comparison is conducted between ResNetl§,
ResNet50, and ResNet152. A unified method of J-CORAL
under the UDDAN architecture is used in training. The results
show that ResNet18 spends the lowest computing time in all
three networks. This is because the training time spent for
ResNetl8 is the least as there are the least parameters to
be learned. Therefore, the model adopting ResNet18 network
is easier to be converged and can be used for real-time
classification. As for classification accuracy, ResNetl8 is the
highest after learning 50 epochs in all tasks, especially in tasks
A and C. Overall, the computing efficiency and classification
accuracy of the model using ResNet18 are better than the other
two networks. Thus, we adopt ResNet18 as the backbone of
the network in this study.

VI. CONCLUSION

This article proposes a discrepancy-based DA network to
overcome the domain shift issue in the structural assessment
of maglev rail joint conditions across various operation modes
of maglev trains. An unsupervised algorithm is used to ensure
the transferability of the network in real applications. Using the
data from the source and target domains, the network trains
the domain-invariant time—frequency discriminative features
from the backbone layers and domain-variant time—frequency
discriminative features from the adaptation layer. The trained
model can detect the condition of maglev rail joints across
different operation modes.

The applicability of the UDDAN is validated over a dataset
acquired from an in situ maglev monitoring system. The results
demonstrate the potential of using discrepancy-based DA in
maglev rail joint damage detection. The DA is associated with
the higher average classification accuracies, smaller domain
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distances, better clustering of samples, and more consis-
tent data distributions of bottleneck features than the DAF.
Among the six DA methods, the second-order sample moment
(CORAL) is found to represent the best discrepancy for the
distribution alignment, regardless of whether the marginal or
joint distribution is used. In addition, the model performance
is verified in three tasks. The findings highlight that the
proposed discrepancy-based DA network is robust against the
operational conditions in the cross-domain maglev rail joint
condition assessment.

The future study includes two aspects. First, there are three
types (named J-I, J-II, and J-III) of maglev rail joints in
a maglev line, and each type of maglev rail joints can be
regarded as a domain. In this study, only the J-I type maglev
rail joint is selected as research object. The model learned
from the J-I type maglev rail joint may fail to predict the
J-II and J-MI type maglev rail joints due to the domain shift.
To extend the feasibility of the established model, the model
can be verified by using data from the J-II and J-III type
maglev rail joint. Second, more domain shift scenarios in
maglev transport operations will be considered. For example,
the vehicle loadings are not always constant. Different weights
of the vehicle may cause different acceleration responses of
maglev rail joints. As a result, the TFS demonstrates different
discriminative features, and the effectiveness of the established
model with the influence of vehicle loading needs to be further
studied.
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