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Abstract
Background: In view of the fact that radiomics features have been reported as predictors of
immunotherapy to various cancers, this study aimed to develop a prediction model to deter-
mine the response to anti-programmed death-1 (anti-PD-1) therapy in esophageal squamous
cell carcinoma (ESCC) patients from contrast-enhanced CT (CECT) radiomics features.
Methods: Radiomic analysis of images was performed retrospectively for image samples
before and after anti-PD-1 treatment, and efficacy analysis was performed for the results
of two different time node evaluations. A total of 68 image samples were included in this
study. Quantitative radiomic features were extracted from the images, and the least
absolute shrinkage and selection operator method was applied to select radiomic fea-
tures. After obtaining selected features, three classification models were used to establish
a radiomics model to predict the ESCC status and efficacy of therapy. A cross-validation
strategy utilizing three folds was employed to train and test the model. Performance
evaluation of the model was done using the area under the curve (AUC) of receiver
operating characteristic, sensitivity, specificity, and precision metric.
Results: Wavelet and area of gray level change (log-sigma) were the most significant
radiomic features for predicting therapy efficacy. Fifteen radiomic features from the
whole tumor and peritumoral regions were selected and comprised of the fusion
radiomics score. A radiomics classification was developed with AUC of 0.82 and 0.884
in the before and after-therapy cohorts, respectively.
Conclusions: The combined model incorporating radiomic features and clinical CECT
predictors helps to predict the response to anti-PD-1therapy in patients with ESCC.
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INTRODUCTION

Esophageal carcinoma (EC) is a major cause of cancer-
related death globally,1 with ESCC being the predomi-
nant subtype in China.2 Early detection of ESCC is chal-
lenging, leading to advanced diagnoses that restrict
surgical options. Hence, alternative treatments like che-
motherapy3 and immunotherapy4 are pivotal for manag-
ing this disease.

In recent years, programmed death 1/programmed death
ligand 1 (PD-1/PD-L1) inhibitor therapy5,6 has shown
promise in treating ESCC,7–9 but it is costly and may result
in severe immune-related side effects. Hence, identifying
patients who are likely to benefit from immunotherapy
before treatment is critical.10 However, the use of immuno-
histochemistry biomarkers11,12 as predictive biomarkers are
limited due to intratumoral heterogeneity and evolution
over time.13,14

Alternately, some research focuses on using blood bio-
markers to predict the response of ESCC patients to anti-
PD-1 therapy.15–17 While these biomarkers have been iden-
tified as prognostic indicators for ESCC risk stratification
and therapy decision-making, they overlook critical infor-
mation on tumors.18

Radiomics is a potentially valuable approach to extract-
ing valuable data from computational medical images, pro-
viding a noninvasive option for assessing tumors and their
immune microenvironment19,20 as an alternative to biopsy.
CT imaging is commonly utilized for cancer evaluation, par-
ticularly CECT for detecting primary tumors and lymph
nodes in esophageal cancer patients.21

Our previous study22 investigated using peripheral blood
parameters to assess ESCC patient response to anti-PD-1
therapy combined with other treatments. While feasible, uti-
lizing radiomic features from CECT images provides a more
precise evaluation method, as they accurately depict tumor
size and grayscale changes over time. Therefore, efficient
acquisition, modeling, and analysis of these images of
tumors are necessary.

Machine learning (ML) is a promising tool for
extracting valuable information from clinical data,
offering a solution for addressing the challenges in
the prediction of PD-1/PD-L1 response and efficacy
evaluation.23 Similar to this idea of biomarker discovery
in terms of radiomic features with the ML method, there
have been some studies on different diseases.10,24–26

However, few studies have evaluated the role of CECT-
based radiomic features in ESCC patients treated with
anti-PD-1.

To fill this gap, we conducted a pilot retrospective study
of 40 ESCC patients treated with PD-1 inhibitors. In this
study, our objective was to develop a reliable and practical
radiomic index that can predict and evaluate the response to
anti-PD-1 combination therapy in ESCC patients at differ-
ent treatment stages.

METHODS

Patients and assessment

This study conducted a pilot retrospective analysis of 40 patients
with ESCC who were treated with anti-PD-1 inhibitor therapy
in our hospital between December 2018 and September 2020.
This study was approved by the Institutional Review Board of
our hospital. All patients provided written-informed consent for
the collection and publication. The objective of the study was to
investigate changes in tumor characteristics observed on com-
puted tomography (CT) images before and after treatment. To
ensure appropriate case selection, patients who underwent sur-
gical resection before treatment evaluation were excluded from
the analysis. According to RECIST (solid tumor response
assessment criteria) version 1.1, radiological examinations were
first performed to evaluate the effect of immunotherapy at 8–
12 weeks. The last available data for further updates on patient
responses was before April 2022, which is set as the second time
record of the response. There are therefore two-time node
records of the response to the treatment.

CECT image acquisition

All CT scans were performed using 64-slice multidetector CT
scanners (Gold Discovery CT750 HD; GE Healthcare). The
following scanning parameters were employed: 120 kVp;
automatic in the range 50–360 mA; 64 � 0.625 mm detector
collimation; 512 � 512 matrix size; the helical pitch of
0.984; and 1.25 mm slice thickness. Contrast-enhanced CT
(CECT) images were obtained 75 s after the intravenous
administration at a dose of 1.2 mL/kg and an injection rate of
2–2.5 mL/s. Before treatment initiation, patients underwent
CECT scanning of the chest, abdomen, and neck for radiolog-
ical assessment. Images with a resolution of about 1 mm3

were selected to ensure optimal image quality.
In the image preprocessing stage, we use the python

library SimpleITK to process slices of the volumetric image
and to output the corresponding volume. All images were
adjusted according to the window location and window
width set at 40 and 350. In a few cases, in order to facilitate
a better display of the tumor area, small adjustments were
made to the values of the window width and location.

Tumor segmentation and radiomic feature
extraction

Following image acquisition, we performed tumor segmen-
tation and radiomic feature extraction. Initially, two physi-
cians, each possessing 3–5 years of experience, manually
delineated the tumor on the CECT images using the 3D
Slicer software (https://www.slicer.org). To account for the
heterogeneity of the tumor, the delineated 3D tumor ROI
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encompassed the entire lesion, including the internal
necrotic area. In case of disagreement, a higher-level physi-
cian was consulted to confirm the delineation, thereby
reducing interindividual variation. Using the aforemen-
tioned approach (explained in detail in Figure 1), we filtered
the data and obtained annotations for a total of 68 image
samples. For visualization, we also show the segmentation
results corresponding to the four samples in Figure 2.

After obtaining the segmented tumor annotations, the
radiomic features were computed. We used the open-source
software PyRadiomics27 to extract radiographic features. A
total of 1218 candidate radiomic features were extracted
from each CECT sample. These included 22 classes of
gray-level co-occurrence matrices (GLCM), 16 classes
of gray-level run-length matrices (GLRLM), 14 classes of
gray-level dependency matrices (GLDM), 16 classes of gray-

F I G U R E 1 Flow diagram of the
participants included in this study. The
letter n represents the number of
patients, and the letter m represents the
number of contrast-enhanced computed
tomography (CECT) images.

F I G U R E 2 Annotated tumor maps of four patients included in the study. The top row illustrates images obtained after the treatment of two patients,
while the bottom row exhibits images obtained before the treatment of the other two patients. The delineated green annotation represents the specific region
of the tumor. The second and fourth columns present magnified views of the areas outlined by the red frames in the first and third columns, respectively.
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level size zone matrices (GLSZM), 18 classes of first order
statistics features and one class of shape-based feature.

Grouping two dynamic time nodes of image
acquisition and two treatment effect
classification

After filtering the dataset, the remaining 68 samples were
divided into two groups based on the time nodes, as they
had images before and after the anti-PD-1 treatment.
Among the samples, 38 image samples were collected before

the treatment, and the remaining 30 samples were collected
after the treatment. The two images before and after the
anti-PD-1 treatment time nodes were then used to create a
dynamic image node as illustrated in Figure 3.

In addition to the aforementioned grouping of dynamic
image nodes, we also included dynamic efficacy evaluation
groupings based on the first 8–12 weeks of efficacy evalua-
tion results and the latest follow-up diagnosis and treatment
results. This dynamic change in efficacy can be utilized as an
important criterion for screening the features.

Clinical response was defined as either partial remission
(PR) or stable disease (SD), while nonclinical response was

F I G U R E 3 Illustration of two
time node records of treatment
efficacy and two time node records
of image acquisition. Character R
represents the clinical response and
N represents the nonclinical
response. Group A and group B
represent the different groups.

F I G U R E 4 Radiomics prediction workflow for the response to anti-PD-1 therapy in ESCC.
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defined as progressive disease (PD). The groups were ini-
tially divided based on images before and after treatment. In
group A, samples were labeled as negative (label 0) if the
results of the two treatment efficacy queries were consistent,
whereas samples that displayed a change were labeled as
positive (label 1). In group B, the invariant samples from
group A were further subdivided. For instance, samples
with the same treatment response (e.g., from clinical
response to clinical response) were labeled as negative
(label 0), while samples with changed treatment response
were labeled as positive (label 1). The above-described pro-
cess was carried out to ensure consistency and accuracy in
sample categorization.

Modeling and statistical analysis

As the number of features obtained was more than 1200, we
needed to select a subset of features for subsequent classifi-
cation tasks. This was done through three sequential steps.
First, Levene’s test method was applied to evaluate the
equality of variances for variables in different groups, and
the student’s t-test method was used to select the features
with significant differences (p-value less than 0.05). Second,
the least absolute shrinkage and selection operator (LASSO)
method was employed to identify the most useful features
using the training set. Finally, machine learning classifica-
tion models, such as logistic regression (LR), support vector
machine (SVM), or random forest (RF), were used to clas-
sify. Performance evaluation of the radiomics model was
done using the area under the curve (AUC) of receiver oper-
ating characteristic, sensitivity, specificity, and precision
metric. This enables convenient analysis of the effectiveness
of anti-PD-1 treatment in the different groups mentioned
above. The prediction and analysis workflow is presented in
Figure 4.

In the classification process, the small sample size led to
an imbalanced proportion of negative and positive data,
which increased the possibility of false negative prediction
results. To address this issue, two steps were taken. First, the
data were normalized, and random upsampling was applied
to balance the proportion of positive and negative samples.
The upsampling processes was executed in Imblearn tool-
box28 using Python programming language. For reproduc-
ibility, the random seed was set to 1234. Second, a three-fold
cross-validation method was used to train and validate the
model while maintaining the negative–positive ratio.
The purpose of this approach was to ensure that the model
was robust and accurate, despite the imbalanced nature of
the data.

Due to the limited number of sample subjects, it was not
possible to construct a classification model for both two
group B. To address this limitation, feature reduction and
selection methods were utilized to identify salient features
present in both group A and group B. This approach
enabled the identification of potential information on
changes in the sample data. The feature distribution was

analyzed using box plots to facilitate viewing and statistical
analysis, which was performed using the R software. The
objective of this approach was to optimize the analysis of
the data and to mitigate the limitations associated with the
small sample size.

RESULTS

The baseline characteristics of participants in the group
before or after the treatment are presented in Table 1. A
total of 68 sampled images from 40 participants were
enrolled and allocated to these two groups. There were no

TAB L E 1 The baseline characteristics of the groups before or after
treatment.

Variable

Group before
treatment
(m = 38)

Group after
treatment
(m = 30) p-value

Age (years) 62 ± 8 62 ± 7 0.956a

Gender 0.869b

Male 31 (81.58%) 24 (80.00%)

Female 7 (18.42%) 6 (20.00%)

Smoking 0.878b

Yes 26 (68.42%) 20 (66.67%)

No 12 (31.58%) 10 (33.33%)

Alcohol drinking 0.813b

Yes 23 (60.53%) 19 (63.33%)

No 15 (39.47%) 11 (36.67%)

Family history of cancer 0.924b

Yes 11 (28.95%) 9 (30.00%)

No 27 (71.05%) 21 (70.00%)

Response of patients
(first record)

0.572b

PR/SD 31 (81.58%) 26 (86.67%)

PD 7 (18.42%) 4 (13.33%)

Response of patients
(second record)

0.602b

PR/SD 27 (71.05%) 23 (76.67%)

PD 11 (28.95%) 7 (23.33%)

Tumor location 0.839b

Up 14 (36.84%) 13 (43.33%)

Medium 15 (39.48%) 10 (33.33%)

Low 9 (23.68%) 7 (23.34%)

Maximum 3D diameter
(cm)

7.58 ± 3.4 5.71 ± 2.27 0.012a,*

Mesh volume (cm3) 30.22 ± 31.3 13.95
± 13.65

0.005a,**

Note: Unless otherwise indicated, data in parentheses are percentages; m, number of
samples participants.
Abbreviations: PD, progressive disease; PR, partial remission; SD, stable disease.
ap-value was calculated with student’s t-test.
bp-value was calculated with Pearson’s chi-squared test without applying Yates’
correction.
*p < 0.05; **p < 0.01.
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statistically significant differences in age, gender, smoking,
alcohol drinking, family history of cancer, and tumor loca-
tion among patients before and after treatment (p > 0:05).
The study utilized the group setting as outlined in Table 2
according to the clinical response of treatment. The LASSO
and t-test methods were applied to group and filter 1218
features extracted by PyRadiomics. This approach resulted
in the identification of 15 significant features that were
selected for subsequent analysis. These features were used to
classify changes in treatment efficacy, specifically whether
there was a change from response to nonresponse or from
nonclinical response to clinical response. The selected fea-
tures were considered to be of high importance and enabled
a focused and targeted analysis of the data. This approach
was designed to optimize the analysis process and increase
the accuracy of the classification model. Logistic regression,
SVM, and RF methods were separately used to establish the
radiomics model. The model established by the RF method
yielded the best performance in most metrics in three-fold
cross validation, and the results are shown in Table 3.

The mean AUC values achieved in the first two rows of
the table were 0.82 and 0.884, respectively. These results
suggest that it is possible to use CECT images obtained
before and after the treatment for the prospective assess-
ment of changes in treatment efficacy, specifically whether
there is a change from response to non-response or vice
versa. However, the other two classifiers had much higher
AUC in the group after treatment than in the group before
treatment, indicating that the results were influenced by

category imbalance and model overfitting. Despite these
limitations, the study demonstrated the potential of using
machine learning techniques to analyze medical imaging
data and make clinically relevant predictions.

T A B L E 2 Group information of this study.

Group name Label
Group
name Label

Group A Before
(After) treatment

Label 0: No changes in response (clinical response to
clinical response, nonclinical response to nonclinical
response)

Group B–I Label 0: Clinical response to clinical response

Label 1: Nonclinical response to nonclinical response

Label 1: Changes in response (nonclinical response to
clinical response, clinical response to nonclinical
response)

Group B–II Label 0: Nonclinical response to clinical response

Label 1: Clinical response to nonclinical response

Note: Group A: The group information of the response of patients before or after treatment, the response of patients that did not change between 6 weeks and subsequent follow-
up observations are marked with label 0, and those that had changed are marked with label 1. Groups B–I: Samples are from label 0 in group A. Groups B–II: Samples are from
label 1 in group A.

T A B L E 3 The classification results (mean and standard deviation) of predicting changes in treatment efficacy are based on the screening characteristics
of group A before and after treatment.

Before/after
treatment AUC (95% CI) Accuracy Sensitivity Specificity Precision

SVM Before 0.672 ± 0.153 [0.197–0.913] 0.665 ± 0.159 0.478 ± 0.282 0.867 ± 0.188 0.852 ± 0.209

After 0.847 ± 0.119 [0.819–1.0] 0.843 ± 0.120 0.889 ± 0.157 0.806 ± 0.141 0.826 ± 0.123

RF Before 0.820 ± 0.061 [0.671–1.0] 0.822 ± 0.064 0.926 ± 0.104 0.715 ± 0.046 0.761 ± 0.054

After 0.884 ± 0.080 [0.687–1.0] 0.881 ± 0.082 0.889 ± 0.157 0.88 ± 0.006 0.878 ± 0.014

LR Before 0.770 ± 0.149 [0.5–0.922] 0.768 ± 0.150 0.819 ± 0.107 0.722 ± 0.207 0.758 ± 0.186

After 0.861 ± 0.019 [0.833–1.0] 0.86 ± 0.026 0.917 ± 0.117 0.806 ± 0.141 0.848 ± 0.113

Abbreviations: CI, confidence interval; LR, logistic regression; RF, random forest; SVM, support vector machine.

TAB L E 4 Features extracted from images obtained before/after
treatment.

Before/after
treatment Feature names

Before Wavelet-
LHH_gldm_DependenceNonUniformityNormalized

Wavelet-LHH_glcm_ClusterProminence
Log-sigma-5-0-mm-

3D_glrlm_LongRunLowGrayLevelEmphasis
Wavelet-LHH_gldm_DependenceVariance
Wavelet-LHH_gldm_DependenceEntropy

After Log-sigma-4-0-mm-3D_firstorder_Maximum
Wavelet-HHL_firstorder_Median
Wavelet-LLL_glcm_Idmn
Wavelet-LHL_glcm_Correlation
Wavelet-HHL_gldm_DependenceNonUniformity

Normalized
Wavelet-HHH_glcm_Idmn
Wavelet-HHH_glcm_Idn
Wavelet-HHH_glrlm_LongRunLowGrayLevelEmphasis
Wavelet-

HHH_glszm_SmallAreaLowGrayLevelEmphasis
Wavelet-HHH_glrlm_ShortRunLowGrayLevelEmphasis

Note: They are repeated in both group A and group B. LHH, HHL, LLL, LHL, HHH
are frequency channels; L and H are low- and high-pass filters, respectively.
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The 15 features identified in this study were found to
have statistically significant differences between the categori-
cal variables in both groups A and B. These features can
provide valuable information on changes in treatment effi-
cacy, and box plots of their feature distributions were cre-
ated under different groups. Table 4 summarizes these
features, with five significant features extracted from CECT
images acquired before treatment and 10 features with sig-
nificant differences from images after treatment.

To investigate the relationship between changes in treat-
ment efficacy and radiomic features before and after treat-
ment, as well as during the first and second time treatment
efficacy queries, we analyzed the distribution of radiomic
features in different groups according to the grouping strat-
egy outlined in Table 2. The results which are presented in

Figure 5 and Figure 6 provide insight into the changes in
these features over time and how they relate to changes
in treatment efficacy.

In Figure 5, we have presented the radiomic values of
three distinct groups, which exhibit a consistent trend in
both group A and groups B–I when labeled as either 0 or
1. Notably, lower values of these radiomic features may serve
as indicators for better response to anti-PD-1 treatment.
The p-value, representing the statistical significance of the t-
test conducted on the target grouping, is less than 0.05 in all
cases, thus indicating a significant difference.

To assess changes in treatment efficacy and image fea-
tures obtained before and after treatment, we conducted a
comparative analysis of box plots for two groups: from clini-
cal response to clinical response and from clinical response

F I G U R E 5 Box plots of wavelet radiomic features value three distinct groups within the after-treatment cohort. The left columns in subfigure (a)–
(c) represent the values obtained from group A. The remaining right columns of each subfigure (a)–(c) display the values obtained from group B-I.

F I G U R E 6 Comparison box plots of significant image features before and after treatment, focusing on efficacy changes across five groups. Subfigures
(a)–(e) illustrate two groupings, one on the left for changes from clinical response to clinical response and the other on the right for changes from clinical
response to nonclinical response. The labels used in this analysis were labeled 0 to denote features from images obtained before treatment images and labeled
1 to denote features from images obtained after treatment.

3272 YANG ET AL.
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to nonclinical response. Figure 6 depicts these box plots,
with label 0 indicating features in images obtained before
treatment and label 1 representing features obtained after
treatment. Our findings revealed that, across all subfigures
in Figure 6, the difference between the box plots on the right
was consistently greater than group on the left. This suggests
that a larger difference in feature value range before and
after treatment is more likely to correspond with a change
in treatment efficacy from clinical to nonclinical response.
Moreover, these changes in the tumor are wavelet feature
information, particularly in features that experienced signifi-
cant range variation. These observations suggest a decrease
in treatment efficacy and indicate the emergence of progres-
sive disease.

DISCUSSION AND CONCLUSION

This pilot study constructed a prediction model for the effi-
cacy of anti-PD-1 treatment in patients with ESCC, utilizing
15 quantitative CECT radiomic features to evaluate treat-
ment efficacy. These 15 radiomic features, including wavelet
transformed features, first-order statistics features, and gray-
level emphasis features, were identified and utilized to con-
struct a radiomic signature model. Notably, these features
offer a comprehensive approach for mining tumor heteroge-
neity information from images over time, thereby serving as
a valuable tool for characterizing the spatial and temporal
variations of tumor features. The classification results indi-
cate that our proposed method exhibits good performance,
with an AUC greater than 0.82, as evidenced by cross-
validation on different datasets. These findings suggest that
the developed radiomics model holds significant potential as
a predictive tool for anti-PD-1 therapy response in ESCC
patients, thus providing valuable insights for improving per-
sonalized cancer treatment.

Despite previous studies that have attempted to use
biomarkers for predicting the efficacy of anti-PD-1 ther-
apy, there has been a lack of research that directly utilizes
tumor image information to provide more direct and
observable feedback.15–17 CECT-based information mining
has demonstrated its utility in anti-PD-1/PD-L1 therapeu-
tic efficacy in other diseases.25,26 In this context, a CECT-
based examination is a valuable tool as it offers a macro-
scopic and direct way to evaluate tumor characteristics in
patients with esophageal cancer. Consequently, CECT
examination can be utilized to identify tumor changes, per-
form preoperative evaluation, and predict treatment prog-
nosis, thereby serving as a promising approach for
improving patient outcomes.

The present study had some limitations that should be
acknowledged. First, due to the limited availability of patient
samples possessing both treatment record information
and image information, the number of patients included in
the study was relatively low. Future research involving a
larger patient cohort would provide more robust evidence
and increase the significance of the study. Second, the

retrospective nature of the study meant that only CECT
images were utilized. Future studies can expand the scope of
imaging modalities to include other techniques such as MR
images, which may enhance the clinical applicability of the
findings. Lastly, the tumor segmentation method employed
in the study was manual, which may have introduced poten-
tial biases. Future studies could explore the use of an auto-
matic and repeatable segmentation method to improve the
integration and full automation of the radiomic analysis.

The proposed radiomics model in this study, based on
CECT imaging, demonstrates strong performance in pre-
dicting the efficacy of anti-PD-1 therapy in patients with
ESCC. This model may have valuable implications for cli-
nicians in screening ESCC patients who are likely to bene-
fit from anti-PD-1 immunotherapy, thereby facilitating
the provision of personalized treatment options. These
findings may hold significant implications for the devel-
opment of more effective and targeted cancer treatment
strategies.
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