
© 2023 CMA Impact Inc. or its licensors

 J Psychiatry Neurosci 2023;48(5) E369

Research Paper

Changes to hypothalamic volume and associated 
subunits during gender-affirming hormone therapy

Melisande E. Konadu, MD; Murray B. Reed, MSc; Ulrike Kaufmann, MD; 
Patricia A.  Handschuh, MD; Benjamin Spurny-Dworak, PhD; Manfred Klöbl, MSc; 

Clemens Schmidt, MD;  Godber M. Godbersen, MD, PhD; Elisa Briem; René Seiger, PhD; 
Pia Baldinger-Melich, MD, PhD; Georg S. Kranz, PhD; Rupert Lanzenberger, MD; 

Marie Spies, MD, PhD

Introduction

As the neuroendocrine control centre of the human body, 
the hypothalamus is both functionally and anatomically 
complex.1 Various nuclei facilitate a range of processes1,2 
from body temperature regulation3 and energy homeostasis4 
to sexual5 and aggressive behaviour.6 Sex hormones influ-
ence brain development throughout life, from the prenatal to 
the adult brain, by exerting “organizational” and “activa-
tional” effects, respectively.7 The hypothalamus, which ex-
hibits high concentrations of estrogen and androgen recep-
tors8 and is a central regulator of feedback loops controlling 
sex hormone homeostasis,2 may be particularly susceptible 
to the effects of sex hormones. In fact, the third interstitial 
nucleus of the anterior hypothalamus (INAH-3) displays the 
largest sex-related volumetric difference in the human 

brain,9 and volumetric sex differences have been observed in 
various hypothalamic substructures.10–13 Changes to hypo-
thal amic volume have been shown under oral contraception14 
and analyzed across the menstrual cycle.14,15 Tight interplay 
between the hypothalamus and sex hormones makes the 
hypo thalamus a target for studies on disorders, such as 
 depression, in which sex hormones mediate risk.16–18

Gender-affirming hormone therapy (GHT)19 allows for in-
vestigation of the effects of highly dosed sex hormones on the 
human brain. The impact of GHT on brain volumes, including 
that of the hypothalamus, has been assessed previously using 
magnetic resonance imaging (MRI) in individuals with gender 
dysphoria (GD). Testosterone therapy in transgender men 
(TM) led to an increase in total brain volume,20 total grey mat-
ter volume21,22 and cortical thickness,21–23 but a decrease in sub-
cortical volumes.24 In contrast, anti-androgen and estrogen 
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Background: Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothal-
amus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT 
effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region’s 
 anatomical and functional heterogeneity. Methods: Individuals with gender dysphoria and cisgender controls underwent 2 MRI measure-
ments, with a median interval of 145 days (interquartile range [IQR] 128.25–169.75 d, mean 164.94 d) between the first and second MRI. 
Transgender women (TW) and transgender men (TM) underwent the first MRI before GHT and the second MRI after approximately 
4.5 months of GHT, which comprised estrogen and anti-androgen therapy in TW or testosterone therapy in TM. Hypothalamic volumes 
were segmented using FreeSurfer, and effects of GHT were tested using repeated-measures analysis of covariance. Results: The final 
sample included 106 participants: 38 TM, 15 TW, 32 cisgender women (CW) and 21 cisgender men (CM). Our analyses revealed 
group × time interaction effects for total, left and right hypothalamus volume, and for several subunits (left and right inferior tubular, left 
superior tubular, right anterior inferior, right anterior superior, all pcorr < 0.01). In TW, volumes decreased between the first and second 
MRI in these regions (all pcorr ≤ 0.01), and the change from the first to second MRI in TW differed significantly from that in CM and CW in 
several subunits (pcorr < 0.05). Limitations: We did not address the influence of transition-related psychological and behavioural 
changes. Conclusion: Our results suggest a subunit-specific effect of GHT on hypothalamus volumes in TW. This finding is in accord-
ance with previous reports of positive and negative effects of androgens and estrogens, respectively, on cerebral volumes.
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therapy in transgender women (TW) was associated with a de-
cline in total brain volume,20 total grey matter volume21,22 and 
volume of various subcortical regions.20,22,25 Regarding the 
hypo thalamus specifically, a volumetric reduction in TW was 
shown under GHT. However, existing studies have had small 
sample sizes, assessed only total hypothalamic volume, and 
lacked information on the effects of GHT on hypothalamic 
substructures. Thus, existing studies do not reflect the ana-
tomic and functional heterogeneity of the region.1

Here we examined hypothalamus volume, including vol-
ume of its subunits, before and after approximately 
4.5 months of GHT in individuals with GD. We expected 
changes in accordance with previous volumetric studies, 
more specifically volumetric increases and decreases after 
testosterone and anti-androgen and estrogen treatment, re-
spectively. Based on the region’s heterogeneity,1 we expected 
subunit-specific effects.

Methods

Sample

Data analyzed here were gleaned from 2 clinical trials by our 
group, the results of which have been published previ-
ously.24–31 We considered data from 125 right-handed indi-
viduals who underwent 2 MRI measurements in a longitud-
inal design. Nineteen data sets were excluded because of 
poor MRI data segmentation quality (1 individual) or miss-
ing blood hormone levels (18 individuals).

Transgender individuals were recruited from the trans-
gender outpatient unit at the Department of Obstetrics and 
 Gynecology, Unit for Gender Identity Disorder, Medical Uni-
versity of Vienna. They fulfilled Diagnostic and Statistical 
Manual of Mental Disorders (DSM)-IV criteria for gender iden-
tity disorder or DSM-5 criteria for GD. Cisgender individuals 
were recruited via online media and flyers on designated 
message boards throughout Vienna. Participants with pres-
ence or history of a physical, neurologic, or psychiatric disor-
der (cisgender individuals) or a DSM-IV or DSM-5 Axis-I co-
morbidity (individuals with GD, excluding affective and 
anxiety disorders), abnormal blood values or abnormalities 
in clinical examinations were excluded from the study. Addi-
tionally, pregnancy, breastfeeding, substance misuse (except 
tobacco consumption), steroid hormone therapy within 
6 months before the start of the study (with the exception of 
progestin-only oral contraception for cessation of menstrua-
tion in a subset of TM participants) and any MRI contraindi-
cations were set as exclusion criteria.

Study design

Both clinical trials were conducted as longitudinal single- 
centre studies. Two MRI measurements were performed in all 
participants, with a median interval of 145 days (interquartile 
range [IQR] 128.25–169.75 d, mean 164.94 d) between the first 
and second MRI. The median intervals by gender were as fol-
lows: median 134.5 (IQR 126–152.25, mean 150.29) days in TM, 
median 149 (IQR 126–178.5, mean 155.3) days in TW, median 

147 (IQR 139.75–170.5, mean 163.81) days in cisgender women 
(CW) and median 146 (IQR 132–247, mean 200.05) days in cis-
gender men (CM). Gender-affirming hormone therapy was 
initiated in transgender individuals immediately after the first 
MRI and was performed according to standard protocols of 
the Department of Obstetrics and Gynecology, Unit of Gender 
Identity Disorder of the Medical University of Vienna.

Both clinical trials were approved by the Ethics Committee of 
the Medical University of Vienna (1104/2015; 644/2010) and 
registered at ClinicalTrials.gov (NCT02715232; NCT01292785). 
Each participant gave written informed consent, was insured 
and received financial compensation for their participation. All 
study procedures were in accordance with the declaration of 
Helsinki and latest revisions as well as the Good Scientific Prac
tice guidelines of the Medical University of Vienna.

Gender affirming hormone therapy

Transgender men received either 1000 mg testosterone un-
decanoate every 8–12 weeks (intramuscular) or 50 mg testos-
terone cream or gel daily (transdermal). Additionally, in some 
cases 75 µg desogestrel daily (oral) or 10–15 mg lynestrenol 
daily (oral) was administered for cessation of menstruation, 
and in some cases this treatment was initiated before the first 
MRI. Transgender women received 25–50 mg cyproterone 
 acetate daily (oral) and either 100 µg estradiol via a transder-
mal therapeutic system twice a week, 4 mg estradiol daily 
(oral) or 0.75–3 mg estradiol daily (transdermal). If extensive 
hair loss occurred, 2.5 mg finasteride (oral) every other day 
was prescribed. Some participants additionally received 100–
200 mg progesterone daily (oral). Both TM and TW may also 
have received 100 μg triptorelin acetate daily or 4.12 mg trip-
torelin acetate monthly (subcutaneous or intramuscular) or 
11.25 mg leuprorelin acetate every 3 months (subcutaneous).

Blood hormone sampling

Blood draw for hormone sampling was performed at each 
MRI measurement in all participants. Plasma levels of 
dehydro epiandrosterone sulfate (DHEAS), 17β-estradiol, 
 follicle-stimulating hormone (FSH), luteinizing hormone 
(LH), progesterone, sex hormone–binding globulin (SHBG) 
and testosterone were analyzed by the Department of Lab-
ora tory Medicine, Medical University of Vienna.

MRI data acquisition

The MRI measurements were obtained using either Siemens 
MAGNETOM Prisma or Siemens TIM Trio scanners with 
64-channel or 32-channel head coils, respectively. T1-
weighted magnetization prepared rapid gradient echo 
(MPRAGE) sequences (Siemens MAGNETOM Prisma: echo 
time 2.91 ms, repetition time 2000 ms, inversion time 900  ms, 
α = 9°, 192 slices, matrix 240 × 256, voxel size 1 × 1 × 1 mm3; 
Siemens TIM Trio: echo time 4.21 ms, repetition time 2300 ms, 
inversion time 900 ms, α = 9°, 160 slices, matrix 240 × 256, 
voxel size 1.1 × 1 × 1 mm3; total acquisition time 7 min, 46 s) 
were used.
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MRI data processing

A visual quality check of MRI data was performed. Partici-
pants were processed with the standard FreeSurfer software 
suite pipeline, version 7.2 (http://surfer.nmr.mgh.harvard.
edu/),32,33 followed by the longitudinal stream.34 Subse-
quently, the hypothalamus and its subunits were segmented 
using the respective segmentation tool distributed with Free-
Surfer.35 With this tool, hypothalamic subnuclei are assigned 
to 5 hypothalamic subunits per side, classified according to 
Makris and colleagues36 and Bocchetta and colleagues.37 See 
Appendix 1, Figure S1, available at www.jpn.ca/lookup/
doi/10.1503/jpn.230017/tab-related-content, for visual rep-
resentation of segmentation. Automated segmentation was 
checked visually by a trained neuroscientist. LongCombat 
was used to correct for means and variances of the residuals 
across different scanners in this longitudinal setting.38 Using 
this method, the variables of interest and covariates were har-
monized for different scanners, while group and time inter-
actions were set to be maintained.

Statistical analysis

Statistical analysis was performed using SPSS version 25 for 
Windows (SPSS Inc.). We tested for group differences in age 
and scan interval using 2-sample t tests. Repeated-measures 
analysis of covariance (ANCOVA) was used to probe for 
changes to hypothalamic volumes under GHT. Group (CW, 
TM, CM, TW) was used as a between-subjects factor, 
whereas time (first MRI, second MRI) was included as the 
within-subjects factor. The group × time interaction was 
exam ined in a stepwise approach. We performed a separate 
analysis of the total hypothalamic volume; if significant, each 
side was analyzed, and if significant again, each subunit on 

the respective side was tested. To correct for varying hor-
mone therapy regimens within transgender groups we in-
cluded DHEAS, SHBG, FSH, LH, progesterone, estradiol and 
testosterone levels as covariates to adjust for interindividual 
differences. To reduce the dimensionality of these values, we 
applied a principal component analysis (PCA), and the first 
2 components explaining more than 98% of the total variance 
were integrated into our statistical model as covariates. The 
total intracranial volume was also included as a covariate.9 
The Bonferroni method was used to correct for multiple com-
parisons in a level-wise approach. In addition, analyses were 
repeated including scan intervals as covariates based on a 
statistically significant difference between TM and CM.

Results

Our study sample included 106 participants: 32 CW (mean 
age ± standard deviation [SD] 24.81 ± 6.04 yr), 38 TM (26.11 
± 6.72 yr), 21 CM (26.48 ± 6.59 yr) and 15 TW (25.73 ± 
3.75 yr). Demographic data and hormone levels are shown 
in Table 1.  Groups did not differ significantly in age. The 
TM group differed significantly from the CM group in scan 
interval (p = 0.02, uncorrected).

Repeated-measures ANCOVA revealed a group × time 
inter action effect for total hypothalamus volume (F = 6.28, 
pcorr < 0.01). Significant group × time interaction effects were 
also found for the left (F = 6.40, pcorr < 0.01) and right (F = 6.08, 
pcorr < 0.01) hypothalamus individually. In the single subunits, 
significant interaction effects were found in the left inferior 
tubular subunit (F = 7.27, pcorr < 0.01), right inferior tubular 
subunit (F = 7.29, pcorr < 0.01), left superior tubular subunit 
(F = 6.69, pcorr < 0.01), right anterior superior subunit (F = 7.03, 
pcorr < 0.01) and right anterior inferior subunit (F = 7.39, 
pcorr < 0.01). In TW, change over time from the first MRI to the 

Table 1: Age and hormone values*

Value, mean 
± SD

CW 
n = 32

TM 
n = 38

CM 
n = 21

TW 
n = 15

MRI1 MRI2 MRI1 MRI2 MRI1 MRI2 MRI1 MRI2

DHEAS,  
μg/mL

2.85 ± 0.84 2.99 ± 0.98 2.88 ± 1.64 3.17 ± 1.55 3.62 ± 1.52 3.58 ± 1.16 3.33 ± 1.06 3.56 ± 1.2

Estradiol,  
pg/mL

107.42 ± 
86.15

109.13 ± 
77.59

119.41 ± 
76.95

70.45 ± 
54.84

44.40 ± 
70.38

29.05 ± 
14.57

35.65 ± 
15.91

232.91 ± 
261.63

FSH, mIU/mL 4.98 ± 2.34 4.83 ± 2.66 4.30 ± 2.27 5.26 ± 3.1 3.9 ± 1.65 4.12 ± 1.46 4.17 ± 2.13 1.35 ± 2.4

LH, mIU/mL 13.31 ± 18.4 9.18 ± 7.58 8.58 ± 5.8 8.02 ± 8.25 6.56 ± 2.5 6.56 ± 2.42 6.02 ± 2.37 1.42 ± 2.16

Progesterone, 
ng/mL

2.80 ± 4.04 4.01 ± 4.87 5.73 ± 6.78 1.39 ± 2.55 1.65 ± 4.69 0.68 ± 0.65 0.49 ± 0.29 0.80 ± 0.73

SHBG, nmol/L 68.89 ± 
36.85

68.51 ± 
36.07

66.75 ± 
37.15

43.89 ± 
30.09

48.62 ± 29.7 39.57 ± 
15.25

44.31 ± 
17.82

61.01 ± 
34.72

Testosterone, 
ng/mL

0.38 ± 0.15 0.54 ± 0.88 0.38 ± 0.17 3.87 ± 2.44 4.99 ± 2.59 5.14 ± 1.78 4.2 ± 2.67 1.43 ± 2.40

Age, yr† 24.81 ± 6.04 26.11 ± 6.72 26.48 ± 6.59 25.73 ± 3.75

CM = cisgender men; CW = cisgender women; DHEAS = dehydroepiandrosterone sulfate; FSH = follicle-stimulating hormone; GHT = gender-affirming 
hormone therapy; LH = luteinizing hormone; SHBG = sex hormone-binding globulin; TM = transgender men; TW = transgender women.
*Data are given from baseline (MRI1) and after approximately 4.5 months (MRI2) of GHT (in TW and TM). Age is given from MRI1.
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Figure 1: Decreased volumes of the hypothalamus and associated subunits in transgender women (TW) after gender-affirming hormone ther-
apy (GHT). Post hoc comparisons between baseline MRI (MRI 1) and after approximately 4.5 months (MRI 2) of GHT in TW and transgender 
men (TM; no therapy in cisgender men [CM] and cisgender women [CW]) show significant volumetric reduction, in cubic millimetres, in the 
whole hypothalamus; in the left and right hypothalamus separately; and in the left and right inferior tubular subunit, right anterior inferior sub-
unit, right anterior superior subunit, left superior tubular subunit in TW. *pcorr ≤ 0.01.
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second MRI differed significantly from that in CM and CW in 
total, left and right hypothalamus volume as well as in the sub-
units mentioned previously (all pcorr < 0.05), with the exception of 
the left superior tubular subunit and right anterior inferior sub-
unit, which showed a trend toward significance in the compari-
son of TW and CW (pcorr = 0.05). Post hoc comparisons showed a 
significant volume decrease for TW in each of the regions men-
tioned above (all pcorr ≤ 0.01; Figure 1 and Table 2). In CW, quan-
titatively smaller hypothalamus volumes were observed at the 
second MRI compared with the first MRI; however, these differ-
ences did not reach significance. Also, in TM and CM, no signifi-
cant differences between the 2 MRIs were detected.

Repeating the analysis including scan intervals as covari-
ates did not affect significance (Appendix 1).

Discussion

We assessed changes to hypothalamus and hypothalamic sub-
unit volumes after approximately 4.5 months of GHT in indi-
viduals with GD (TM, TW) and untreated cisgender controls 
(CM, CW). We detected significant volume reductions in the 
total hypothalamus, in both the left and right hypothalamus 
separately and in 5 of 10 hypothalamic subunits (inferior tubu-
lar subunit bilaterally, left superior tubular subunit, right an-
terior superior subunit and right anterior inferior subunit) in 
TW receiving estrogen and anti-androgen therapy. No 
changes were detected after GHT in TM. These findings are in 
accordance with previous studies showing cortical and subcor-
tical volume reduction in TW receiving GHT.20,22,25 A previous 
study of 6 TW and 8 TM20 specifically reported volume reduc-
tion in the hypothalamus, which we have now confirmed in a 
substantially larger sample. In addition, the  subunit-specific 
nature of the effects we detected are in accordance with the 
 region’s anatomic and functional heterogeneity.1

Our study suggests an effect of GHT on volumes of and 
within the hypothalamus. The hypothalamus has been impli-
cated in various psychiatric disorders, such as depression,17,18 

for which sex hormones mediate risk.16 Elucidating how sex 
hormones affect the hypothalamus may foster understanding 
of how they modulate this risk on a neurobiological level.

Our results in TW may be facilitated by increasing estro-
gen or decreasing androgen levels. Negative effects of estro-
gen on brain volumes, including the hypothalamus, have 
been reported extensively in animals10,39,40 and humans. In 
humans, they are implicated via sex differences showing 
smaller hypothalamus volumes in women,9 associations 
with the menstrual cycle with negative effects in the peri-
ovulatory phase,15 and smaller volumes with administration 
of exogen ous estrogens (e.g., via oral contraception).14 In 
 vitro evidence suggests that estradiol exerts neurotoxic 
 effects.39 On the other hand, some androgens may have 
 anabolic and/or anticatabolic effects.19,22,41 In fact, we previ-
ously showed a  decrease in mean diffusivity in TM who re-
ceived GHT with testosterone, a change interpreted as indi-
cating increased  microstructural plasticity in this region.27 
For example, while gonadectomized male mice under 
 estrogen and progesterone treatment showed significant vol-
ume reductions in hypo thalamic nuclei, mice receiving 
 estrogen and progesterone treatment without gonadectomy 
did not.42 Thus, the presence of androgens antagonized the 
catabolic effects of estrogen.42 However, effects may vary 
among androgens as well. It was suggested that 
5α-dihydrotestosterone (DHT) may have an anticatabolic 
 effect while testosterone, like estrogen, may have neurotoxic 
properties in the hypothalamus.39 Thus, though our design 
could not discriminate between the effect of increasing estro-
gen or decreasing androgens, preclinical evidence speaks to 
the latter, specifically of falling DHT  levels. Testosterone is 
aromatized to DHT, including within the hypothalamus.39 In 
our study, the lack of an effect in TM, who received exo-
genous testosterone treatment, speaks to balance between 
the antagonistic effects of DHT and testosterone.

We performed volumetric analyses using MRI, thus, dis-
cussion of potential histochemical correlates is theoretical. 
However, preclinical studies provide potentially relevant 
 interpretations. In vitro, estrogen increases hypothalamic 
glial activity, an index of neurotoxicity.39 In humans in vivo, 
falling estrogen levels after discontinuation of oral contracep-
tion have been shown to increase diffusion and exert meta-
bolic effects, as measured with MRI and magnetic resonance 
spectroscopy.43 Increased diffusivity may reflect microstruc-
tural reorganization such as changes to neuron–glial inter-
action.44 The observed decrease in choline, which is present in 
cell membranes,45 has been postulated to reflect altered cell 
turnover.43 Thus, on a histochemical level, our findings may 
be associated with cellular remodelling.

We primarily detected volume decreases in anterior and 
tubular regions of the hypothalamus. These subunits harbour 
hypothalamic nuclei involved in stress, arousal, sexual be-
haviour, aggression and sleep.2 Gender-affirming hormone 
therapy has been associated with changes in the biochemical 
and/or behavioural correlates of stress,46 sex47 and potentially 
aggression.48–50 Whether the volume reductions we observed 
are functionally linked to these clinical and behavioural cor-
relates remains to be elucidated in future studies.

Table 2: Hypothalamic and associated subunit volumes in 
TW at baseline and after approximately 4.5 months of GHT

Brain region

Volume, mean ± SE, mm3*

MRI 1 MRI 2

Whole hypothalamus 1513.79 ± 67.84 1012.64 ± 53.26

Left hypothalamus 762.05 ± 34.33 508.70 ± 28.05

Right hypothalamus 751.74 ± 34.46 503.94 ± 26.23

Left inferior tubular subunit 261.24 ± 12.64 171.45 ± 10.36

Right inferior tubular subunit 249.04 ± 11.21 165.29 ± 8.08

Left superior tubular subunit 210.19 ± 10.37 139.93 ± 9.07

Right anterior superior 
subunit

43.65 ± 2.98 29.28 ± 2.58

Right anterior inferior 
subunit

31.61 ± 2.34 20.30 ± 2.01

GHT = gender-affirming hormone therapy; SE = standard error; TW = 
transgender women.
*Corrected for covariates using longCombat.38



Konadu et al.

E374 J Psychiatry Neurosci 2023;48(5)

The reported effects were observed during GHT and thus 
suggest, but do not prove, a hormone-specific effect. This 
particularly holds true because we included hormone values 
as covariates in our model in order to address interindividual 
differences in GHT. On the other hand, our observations in 
TW may be associated with other hormonal, neurobiological 
or behavioural factors that change over the course of GHT, 
for which we could not statistically correct in our study. The 
hypothalamus is involved in various cognitive and emotional 
processes,1,5,6 which may also change during transition.

Limitations

The following limitations should be considered when inter-
preting our results. The hypothalamus is an anatomically 
small structure and exhibits low image contrast in MRI. 
However, we used an automated tool within FreeSurfer that 
performs segmentation of the whole hypothalamus as well as 
its subunits in T1-weighted brain MRIs accurately and ro-
bustly.35 Moreover, the hypothalamus is located adjacent to 
the third ventricle.1 Previous studies have shown increased 
ventricle volumes in TW after 4 months of estrogen and anti-
androgen therapy.20,22,25 We sought to account for this effect 
by including total intracranial volume into our analysis. 
Further more, the data analyzed here were acquired on 2 dif-
ferent 3 T MRI devices. Though we addressed this issue by 
correcting for between-scanner differences using longCombat,38 
we cannot definitively exclude influential factors. As dis-
cussed, though our results suggest hormone effects, we can-
not exclude other confounding factors that occur over the 
course of transition. Effects resulting from differences in GHT 
regimens were addressed by including hormone levels as co-
variates in our statistical model.

Conclusion

We detected volumetric reduction within the hypothalamus, 
driven by 5 specific subunits, in TW under GHT. The subunit 
specificity of these results is in accordance with the anatomic 
and functional heterogeneity1,35 of the hypothalamus. These 
findings suggest a negative effect of estradiol and/or a positive 
or anticatabolic effect of testosterone and confirm the findings 
of previous, substantially smaller studies in TW.20 Considering 
the region’s involvement in psychiatric pathology, examining 
how sex hormones influence the hypothalamus may promote 
understanding of how they affect this risk on a neurobiological 
level. Further studies are needed to elucidate underlying histo-
chemical mechanisms and their functional relevance.
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