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ABSTRACT Overloading and load imbalance have a significant impact on the health of distribution
transformers. The load of a distribution transformer can be considered in a hierarchical way: individual
single-phase customers connected directly to the transformer (the bottom level), the load at each phase (the
middle level), and the total load among three phases (the top level). Load at each hierarchical level can
be predicted individually, known as ‘‘base forecast’’, through a state-of-the-art forecasting method, but this
practice often leads to incoherency and bias, i.e., forecasts at a lower hierarchical level are not aggregated
correctly to the forecast at a higher-hierarchical-level. In this paper, a novel load aggregation technique based
on minimum trace (MinT)-based optimal reconciliation is proposed to improve the accuracy of prediction
models. Base forecasts at each hierarchical level are firstly determined using independent autoregressive inte-
grated moving average (ARIMA) models; MinT is then used to optimally reconcile base forecasts to ensure
higher accuracy. The proposed method is validated by case studies. Advanced metering infrastructure (AMI)
data recorded by Saskatoon Light and Power in Saskatoon; Canada is used as historical data in this study.

INDEX TERMS Distribution transformer, health monitoring, hierarchical load forecast aggregation, mini-
mum trace optimal reconciliation.

NOMENCLATURE
P̂T Base forecast.
P̃T Reconciled forecast.

ACRONYMS
ADMM Alternating Direction Method of Multipliers.
AMI Advanced Metering Infrastructure.
ARIMA Auto-Regressive Integrated Moving Average.
BU Bottom-Up.
CLC Closed-Loop Clustering.
DERs Distributed Energy Resources.
DGA Dissolved Gas Analysis.
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DP Degree of Polymerization.
EVs Electric Vehicles.
FA Furanic Content Analysis.
GLS Generalized Least Squares.
GTOP Game-Theoretic Optimal Projection.
HI Health Index.
HLF Hierarchical Load Forecasting.
HST Hot Spot Temperature.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MinT Minimum Trace.
MinTSa Minimum Trace Sample.
MinTSh Minimum Trace Shrinkage.
MSE Mean Squared Error.
OLS Ordinary Least Squares.
OQA Oil quality analysis.
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RF Random Forest.
RMA Reduced Model Approach.
RMSE Root Mean Square Error.
TD Top Down.
VAR Vector Autoregression.
WLS Weighted Least Squares.
WLS-SS WLS Structural Scaling.
WLS-VS WLS Variance Scaling.
WNN Wavelet Neural Network.

INDICES
bt n-vector representing bottom-level observations.
b̂T (h) Bottom-level base forecast.
BT (h) The mean of the bottom-level base forecast.
d Differencing order
êT (h) Base forecast errors ath-step-ahead.
ẽt (h) Reconciled forecast errors at h-step-ahead
ε̂h(h) Bottom-level base forecast error.
G Reconciliation matrix in the order of m× n.
kh Proportionality constant.
In An identity matrixrepresenting the lowest

hierarchy level.
n Bottom-level number of observations.
m Total number of observations.
p Order of autoregressive (AR) coefficients.
Pi Power consumption true data.
P̂i Power consumption predicted data.
Pt m-vector that has all power consumption

observations at the time t.
P̂T (h) Base forecasts vector at h-step-ahead.
P̃T (h) Reconciled forecasts vector at h-step-ahead.
Pt+h True values at t + h.
S Summing matrix.
T Duration of historical data
q Order of moving average (MA) coefficients
Vh Error (ε̂h(h)) variance-covariance matrix.
Wh Base forecast variance-covariance matrix.
Ŵ1 Base forecast errors at h = 1
U Unit Matrix
∂ Disaggregating proportion.
ξT Historical data for time T .
�i Autoregressive (AR) coefficients.
9 j Moving average (MA) coefficients.

I. INTRODUCTION
In distribution systems, distribution transformers must be
highly reliable to ensure continuous power supply to con-
sumers [1] as transformer failuresmay result in huge financial
losses to utilities and consumers [2]. Although transform-
ers normally have a long lifespan (exceeding 50 years), the
health of a distribution transformer may deteriorate due to oil
leakage, overloading, unbalanced loading, and harmonics [3],
and their failure rate increases due to demand increase and
certain load types, for example, electric vehicle charging can
dramatically lower a transformer’s lifespan by 200% to 300%

[1], [4]. Transformer load forecasts are crucial for health
monitoring and failure prevention caused by overloading and
phase imbalance.

A distribution transformer’s load can be considered in
a hierarchical way: the amount of electricity consumed by
each customer is aggregated to determine the load of each
phase (Phase A, B or C); and the load at each phase is
then aggregated to determine the total load among three
phases of the transformer. Additional levels may be added
similarly for a substation transformer. Load forecast at the
top level determines the total load among three phases,
which can assist in the evaluation of a transformer’s health
and potential failures due to overloading and winding over-
heating. Load forecast at the middle level determines the
load at each phase, which assists in evaluating the phase
imbalance of a transformer, and corrective actions may be
required by distribution system operators. Load forecast at
the bottom level determines the consumption of individual
customers.

Hierarchical Load Forecasting (HLF) has been applied in
the context of power generation to improve prediction accu-
racy through forecast reconciliation. Several HLF methods
were proposed, including the game-theoretic optimal projec-
tion (GTOP)-based reconciliation [5], the least squares-based
optimal reconciliation [6], and a vector autoregression frame-
work (VAR)-based probabilistic forecasting [7]. These meth-
ods were tested on wind and solar power generation data with
varying degrees of success. For example, a HLFmethod using
the Alternating Direction Method of Multipliers (ADMM)
for wind power is proposed in [8] to reconcile base fore-
casts and ensure disaggregated forecasts are aggregated cor-
rectly, resulting in improved prediction accuracy. A review
of cutting-edge techniques and their pertinence to day-ahead
wind power generation prediction is conducted in [5]. In
[9], hourly generation data in Brazil is utilized to prove the
accuracy of the aggregated generation prediction at the top
hierarchy level using top-down (TD), bottom-up (BU), and
optimal reconciliation methods. Optimal reconciliation as a
post-forecast technique produces an unbiased and coherent
reconciled forecast [10].

Among very limited HLF research in the literature, most
existing HLF methods focus on the top hierarchy level. In
[11], a closed-loop clustering (CLC) method for HLF is
employed for substation load using smart meters and pho-
tovoltaic (PV) power generation data, showing a better per-
formance than traditional BU and TD approaches, but it only
focuses on the top hierarchy level. A multiplicative autore-
gressive integrated moving average (m-ARIMA) method
in [12], the ensemble methods in [13], and a multi-scale
expert aggregation method based on random forest (RF) for
BU in [14] also only focus on the top-level hierarchy and
ignore forecasts at the lower hierarchy, which are impor-
tant for transformer health monitoring as well. A generic
short-term load forecast is proposed in [15] using load pattern
similarity-based child node classification, and wavelet neural
networks (WNNs), and it can be used for distribution substa-
tions, feeders, and transformers. To improve HLF, a reduced
model approach (RMA) is employed for electricity demand
forecasting [16], along with smart-meter data with high reso-
lution and dimension.
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Very few research is reported on HLF in transform-
ers. Although independent models have been used for base
forecasts at different levels of a transformer’s load, if not
aggregated properly, this practice can lead to poor forecast
accuracy. The literature review on HLF is presented in Fig. 1.

To overcome the limitations of HLF methods, a novel
hierarchical load forecast aggregation method is proposed
in this paper through the minimum trace sample (MinTSa)
and minimum trace shrinkage (MinTSh)-based reconcilia-
tion algorithm, where power consumption forecasts at all
levels of distribution and substation transformers can be rec-
onciled and aggregated accurately. In this study, the base
forecast at each hierarchical level is firstly conducted using
an ARIMA model (in fact, any existing forecasting method
can be employed for base forecasts); the base forecast is then
optimally reconciled usingMinT to ensure coherent forecasts
with high accuracy. The proposed method incorporates infor-
mation about the correlation structure of time-series data,
resulting in a minimum reconciled forecast error and great
computational efficiency in a large time-series dataset. The
proposedmethod is validated through several case studies and
shows superior performance compared to four benchmark
methods.

The main contributions of this paper include.
• A novel transformer load forecast aggregation technique
is proposed by a MinTSa and MinTSh-based post-
forecast algorithm to optimally reconcile base forecasts
obtained independently at each hierarchy level and to
increase the accuracy of reconciled forecasts.

• The proposedmethod is independent of the base forecast
method at each hierarchy level, hierarchical structure
and forecast horizon.

The paper is organized as follows: in Section II, the
loading impact on a transformer’s health and the purpose
of transformer load forecast aggregation are introduced; in
Section III, the theory of HLF reconciliation is provided; in
Section IV, the proposed method is explained; in Section V,
simulation results of several case studies are presented; and
the conclusion is drawn in Section VI.

II. LOADING IMPACT ON TRANSFORMER HEALTH AND
THE PURPOSE OF LOAD FORECAST AGGREGATION
Loading history is one important pointer for the transformer
health index (HI) along with dissolved gas analysis (DGA),
oil quality analysis (OQA), furanic content analysis (FA),
and degree of polymerization (DP) [17], [18]. Overloading
and unbalanced loads are major contributors to distribution
transformer failures and degradation [2], [19].
The load increase leads to the hotspot temperature (HST)

increase, reducing the insulation life of a transformer. A trans-
former’s loading and environmental conditions have consid-
erable impacts on its aging process. Loading in particular is
directly related to the current in the winding, overloading
raises temperature in the winding and oil and shortens its
service life [17], [20].

Unbalanced loads are responsible for unbalanced winding
losses, which in turn impact the top-oil temperature and HST
per phase [21]. In recent years, the introduction of electric
vehicles (EVs), and increasing distributed energy resources
(DERs) in distribution systems have exacerbated the

FIGURE 1. Hierarchical load forecasting.

unpredictability of load behaviours in distribution trans-
formers [22]. Therefore, the load forecast of a distribution
transformer is essential for its health monitoring. Loading
behaviours of domestic consumers directly influence the
reliability risk of distribution transformers [23], and thus, load
forecast for individual customers is also critical.

Load forecasting is crucial in establishing the health state
of a transformer, which allows utilities to proactively address
potential problems. It may be used to determine future load-
ings of a transformer, an important aspect to calculate its
health index, HI, which can be modelled as a multivariant
regression model as follows:

HI=β0 + β1L + β2T + β3IR+ β4t + β5t2 + · · · + βk tk

(1)

where L is the loading factor, T is the temperature factor, IR
is the insulation resistance factor, t is the time elapsed since
the start of the measurement, and β0, β1, β2, β3, . . . , βk are
regression coefficients estimated from the data.

Additional benefits of load forecasting for distribution
transformers include:

• Help identifying anomalies: Accurate load forecasting
may assist in the transformer anomaly detections, such
as unanticipated changes in loading patterns or abrupt
spikes in load demands. These anomalies may signal
a possible transformer malfunction, such as winding
failures or insulation deterioration, and may be utilized
as a trigger for additional examination and maintenance.

• Support optimal maintenance scheduling: Based on the
expected loading patterns of a transformer, accurate load
forecasting may be used to plan maintenance operations
at optimal times, which can limit the maintenance effect
on electrical systems and reduce risks of unplanned
outages or equipment failures.
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• Improve reliability and resilience: Accurate load fore-
casting and transformer health monitoring may con-
tribute to improved reliability and resilience of power
systems by allowing early diagnosis of faults and proac-
tive repair efforts. This may lower the likelihood of
equipment failure, reduce downtime, and enhance the
overall system performance.

III. THEORY OF HIERARCHICAL LOAD FORECAST
RECONCILIATION
A. NOTATION
Let Pt be m-dimensional vector representing observations of
all power consumption at time t , and bt be n-dimensional
vector representing observations at the bottom hierarchical
level, i.e., the advanced metering infrastructure (AMI) data.
The general matrix representation of Pt is [10]

Pt= Sbt (2)

where S is the order m×n ‘‘summing matrix’’ that is used
to aggregate the power consumption at the bottom-level hier-
archy to the higher level. m represents the overall quantity
of observations and n indicates the quantity of observations
at the bottom level only. S contains hierarchical information,
which can be obtained from the utility’s geographical infor-
mation system (GIS). Fig. 2 shows a hierarchical time series
structure of the transformer loading.

Each higher hierarchy (parent) is the sum of the lower hier-
archy (children). Let Pt represent the total transformer power
at time t; PA,t , PB,t and PC,t be transformer per phase power,
and PA1,t , PA2,t ,. . .PC3,t are power consumption (AMI data)
of customers. In Fig. 2, n = 8 and m = 12.

FIGURE 2. A hierarchical tree structure.

The hierarchical structure can be represented in a matrix
form below, where In is an identity matrix representing the
bottom level with a dimension, n = 8.

Pt =



Pt
PA,t
PB,t
PC,t
PA1,t
PA2,t
PA3,t
PB1,t
PB2,t
PC1,t
PC2,t
PC3,t


; bt =



PA1,t
PA2,t
PA3,t
PB1,t
PB2,t
PC1,t
PC2,t
PC3,t


and

S =



1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Let’s define P̂T (h) as a vector in the same order as Pt ,

which represents the h-step-ahead base forecast of each time
series derived from historical data extended for time T . It
should be noted that any base machine learning or statistical
forecasting methods can be used to get the base forecast.
Linear reconciliation methods can be represented by [10].

P̃T (h) = SGP̂T (h) (3)

where G is the carefully selected reconciliation matrix of
order n×m, and P̃T (h) is a collection of reconciled forecasts
that are now constructively coherent. Forecast reconciliation
techniques are based on the idea that a set of base forecasts
can be mapped linearly to a set of reconciled forecasts. The
objective of the G matrix is to convert the base forecasts to
bottom-level disaggregated forecasts that are subsequently
summed up by the S matrix.

The two commonly used methods for HLF forecasting are
BU and TD. For BU, we set G = [0n×(m−n)|In], where 0i×j
is i×j null matrix with i = n, j = m − n, and In is the
identity matrix with n×n dimensions. The base forecast at
the bottom-level hierarchy yielded from P̂T (h) are aggregated
using S to get BU reconciled forecasts. Similarly, we can
set G= [∂|0n×(m−1)], where ∂= [∂1, ∂2 . . . ∂n] is a proportion
vector that disaggregates the base forecast at the top level to
the bottom level, and then S is used to obtain TD reconciled
forecasts [10]. As an example, the Gmatrices for BU and TD
are illustrated in a matrix form for n= 4 andm= 6 as follows:

GBU =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 GTD =


∂̂1 0 0 0 0 0
∂̂2 0 0 0 0 0
∂̂3 0 0 0 0 0
∂̂4 0 0 0 0 0


B. THE THEORY OF MINIMUM TRACE OPTIMAL
RECONCILIATION
Let,

êT (h)=PT+h−P̂T (h) (4)

where êT (h)is the base forecast error for h-step-ahead, P̃T (h)
is the base forecast for h-step-ahead, and PT+h is the current
true value.

A reconciled forecast with the minimum error variance is
obtained such that SGS = S is satisfied [10]. For every G
matrix that satisfies SGS = S, the covariance matrix of the
reconciled h-step-ahead forecast errors can be obtained by

VhVar =

[(
PT+h − P̃h

)]
= SGWhGT ST (5)
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Wh = Var
[(
PT+h − P̂h

)]
(6)

where P̃t (h) is determined by (3), and Wh represents base
forecast errors variance-covariance matrix for h-step-ahead.
Assuming that forecast errors are normally distributed,
Eqs. (5) and (6) can be utilized to build forecast intervals for
all forecasting methods that generate unbiased and coherent
forecasts, assuming that original forecasts are unbiased. The
quality of the reconciled forecast depends on the effectiveness
of the estimator forWh.

Residuals of the reconciled forecast are located at the
diagonal of theVhmatrix and the summation of values located
at the diagonal of a matrix is known as a ‘‘trace’’. Therefore,
the final target is to obtain the G matrix that will result in a
minimum trace Vh in (5) that satisfies SGS = S.
Theorem 1: Let Wh in (6) be the positive definite matrix.

The optimal reconciliation matrix G that has the minimum
trace of (5) and satisfies SGS = S, is given by (7).

G =

(
STW−1

h S
)−1

STW−1
h (7)

Therefore, the reconciled forecast using the MinT method
is given by

P̃T (h) = S
(
STW−1

h S
)−1

STW−1
h P̂T (h) (8)

Using MinT optimal reconciliation, the accuracy of recon-
ciled forecasts is equal to or greater than the accuracy of base
forecasts.

Let ε̂h(h) be the error of the bottom-level base forecasts. Its
variance-covariance matrix isWh as in (6). Assuming that the
error is additive, êh(h) = S ε̂h(h). This results inWh = SVhST

to be singular. Eq. (5) can be further expressed by [10].

Var
[(
PT+h − P̃h

)]
= SGSVh(SGS)T= SVhST (9)

Eq. (9) highlights that Vh is independent of the reconcilia-
tion matrixG. Considering the assumption of error-additivity,
G that satisfies SGS = S is the solution of MinT with the
minimum variance.

Eq. (7) provides the solution for the ordinary least square
(OLS) as follows:

GOLS = (ST S)
−1
ST , (10)

The state-of-the-art methods to compute the covariance
matrix Wh are discussed below. These estimators are used as
a benchmark to validate the proposed method.

C. THE BENCHMARK COVARIANCE MATRIX ESTIMATORS
In this section, state-of-the-art methods used to estimate Wh
are discussed.

1) ORDINARY LEAST SQUARES (OLS)
SetWh = khI , ∀h, where kh> 0,Wh is the variance matrix of
every base forecast error at the bottom level of the hierarchy,
I is the n×n identity matrix. Referring (3) and (10), the
reconciled forecast using OLS is estimated by (11).

P̃OLST (h) = S(ST S)
−1
ST P̂T (h) (11)

This method is only suitable in some situations, such
as base forecast errors remain stochastic and equivari-
ant. It has the most straightforward assumption, known as
‘‘homoscedasticity’’, and is applicable only if the identical
method is applied to obtain base forecasts for each power
consumption observation in all hierarchies of the transformer
loading. The OLS estimator does not require assumptions
when estimating the covariance matrix.

2) WEIGHTED LEAST SQUARES – VARIANCE SCALING

Set Wh = khdiag
(
Ŵ1

)
, ∀h, where kh > 0, and

Ŵ1 =
1
T

∑T

t=1
êT (1) ê

′

T (1)′ (12)

Ŵ1 is a sample covariance estimator of the base fore-
cast error at h = 1. As expressed in (4) [10], êT is a
n-dimensional vector of residuals of the base forecast model,
and êT (1) =P̂T+1−P̂T (1). The weighted least squares (WLS)
estimator utilizing variance scaling (VS) adjusts the base
forecasts based on the variance of errors. The expression to
compute P̃T (h) in (8) can be modified as follows to represent
WLS-VS estimator:

P̃WLS−VS
T (h) = S

(
ST Ŵ−1

1,DS
)−1

ST Ŵ−1
1,DP̂T (h) (13)

WLS-VS can handle heteroscedasticity, when there is a dif-
ferent variance of base forecast errors at different hierarchical
time series levels caused by using different methods to obtain
base forecasts. This is an important feature of transformer
load forecast aggregation as it is not always possible to use the
same forecasting method to get the best base forecasts due to
the variety of loads, such as residential, industrial, EVs, and
DERs. For this reason, theWLS-VS estimator provides better
accuracy compared to OLS.

3) WEIGHTED LEAST SQUARES – STRUCTURAL SCALING
Set Wh = kh3, ∀h; kh> 0, 3 = diag(S1), and 1 is a
n-dimensional unit vector. The expression to compute P̃T (h)
in (8) can be adapted as follows to represent the WLS-SS
estimator:

P̃WLS−SS
T (h) = S

(
ST3−1S

)−1
ST3−1P̂T (h) (14)

It is assumed that every bottom-level hierarchy base fore-
cast error has a variance of kh and that the errors are not
attributed to each other. As a result, each element of3 encom-
passes the quantity of forecast error variations attributable to
the higher hierarchy level [24]. This estimator, known as the
WLS estimator that uses structural scaling (SS), depends on
the hierarchical structure. In contrast to OLS, this method is
more realistic as it only requires that the variance of fore-
cast errors is equal at the bottom level of the hierarchy. In
addition, it is independent of historical data and can handle
heteroscedasticity in hierarchical load forecast aggregation.
It is mostly helpful when the base forecast is unavailable, for
instance, at a very early stage of smart meters deployment
by utilities, no sufficient historical samples are available.
Table 1 shows the comparison among state-of-the-art bench-
mark covariance matrix estimators.
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TABLE 1. Comparison of benchmark covariance matrix Wh estimators.

IV. THE PROPOSED METHOD
In the proposed method, MinTSa for smaller distribution net-
works and MinTSh for large distribution networks are used
by considering information on the hierarchical structure and
covariance of errors at the base forecast; and ARIMA [25] is
chosen to simulate base forecasts due to its simplicity (Note:
base forecasts can be done through any existing forecasting
method, and it is not the focus of this study; the optimal
reconciliation for base forecasts is the main focus).

A. THE PROPOSED COVARIANCE MATRIX ESTIMATORS
1) MIN-T SAMPLE (MINTSA)
The covariance matrix estimated by the MinT estimator is
a n × n without zero elements. For MinTSa, we set Wh =

khŴ1, ∀h, where kh > 0, and Ŵ1 is a sample covariance
estimator of the base forecast error at h = 1. Given that only a
sample of Ŵh at h = 1 is utilized, MinTSa is relatively simple
compared to MinTSh. It works best when m < T , i.e., the
total quantity of observations is lower than the quantity of
historical data used. Practically, the number of customers
served by a particular distribution transformer is not greater
than 50 in most cases. For T to be greater than 50, historical
data must at least cover 12.5 hours in a 15-minute resolution.
Similarly, 250 hours (10.42 days) of data is required for a
substation transformer with 1,000 customers.

The expression to compute P̃T (h) in (8) can be further
expanded as in (15) to reflect the MinTSa estimator.

P̃MinTSa
T (h) = S

(
ST Ŵ−1

1 S
)−1

ST Ŵ−1
1 P̂T (h) , (15)

2) MIN-T SHRINKAGE (MINTSH)
SetWh = khŴ ∗

1,D, ∀h, where kh> 0, and Ŵ ∗

1,D is the diagonal
of the shrinkage estimator.

Ŵ∗
1,D = λDŴ1,D+(1−λD)Ŵ1 (16)

where Ŵ1,D is a diagonal of the matrix Ŵ1, and λD is the
shrinkage parameter. The off-diagonal components of Ŵ1
are substantially reduced toward zero, but the diagonal val-
ues (variances) remain unchanged. Assuming variances are
constant, λD can be computed by

λD=

∑
i̸=j Var(r̂ij)∑
i̸=j (r̂

2
ij)

(17)

where r̂ij is the (i, j)th component of the correlation matrix
when h = 1 (one step ahead) shrinks it to become an identity
matrix. In the case ofMinTSa, λD= 0, leading toWh = khŴ1.
The MinTSh estimator is used when a large bottom-level

series is present. For a higher hierarchy level at a substation
transformer, MinTSh has a better performance than MinTSa.

The expression to compute P̃T (h) in (8) can be further
extended as follows to represent the MinTSh estimator:

P̃MinTSh
T (h) = S

(
ST Ŵ∗

1,D
−1S

)
−1ST Ŵ1,D

∗−1P̂T (h) (18)

The main innovation of the proposed method compared to
existing hierarchical load forecast methods is the new and
efficient approach to compute the covariance matrix Wh and
to consider the covariance of the base forecast errors of two
time series data in the hierarchy.

B. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)
ARIMA is a linear forecasting approach that works well with
static time series data. In the first step, a static time series is
built through differencing d times and performing different
nonlinear operations like logging [26]. The resulting data is
characterized as a linear transformation of previous p datasets
and q errors as indicated in (19).

Pt = �1Pt−1 + �2Pt−2 + . . . + �pPt−p+91εt−1

+ 92εt−2+ . . .9qεq−1 (19)

wherePt is the true value at a given time t , εt is an error, which
is Gaussian distributed (0,σ 2) characterized white noise, �i
is autoregressive (AR) coefficients for (i= 1, 2, . . . ,p), and
9 j are moving average (MA) coefficients for (j= 1, 2, . . . ,q).
The integers p and q represent orders of AR and MA,
respectively. The important parameters to model ARIMA are
p, q and d .

C. ALGORITHM OF THE PROPOSED METHOD
The proposed optimal reconciliation method is MinT, which
has two variations: MinTSa and MinTSh. The base forecast
and real values are used to calculate errors, then the hierar-
chical tree information is used along with the reconciliation
algorithm to obtain the reconciled forecast, and a lower error
is ensured by comparing them to the base forecast. The
ultimate task of the reconciliation algorithm is to reduce the
error of the reconciled forecast, in turn improving its perfor-
mance. The base forecast errors of transformer loading in the
hierarchy are correlated, resulting in the elements outside the
diagonal of the covariancematrixWh to have non-zero values.
The proposed method can better handle this situation than
the benchmark covariance matrix estimators. The proposed
method is shown in Fig. 3 and Table 2.

D. FORECAST EVALUATION METRICS
Error metrics to evaluate the proposed method include the
mean absolute error (MAE), mean absolute percentage error
(MAPE), mean squared error (MSE), and root-mean-square
error (RMSE). MAE measures the average absolute differ-
ences, MAPE measures the average percentage differences,
and MSE calculates the average squared differences between
predicted and actual values. RMSE is the square root of
MSE, providing a more interpretable measure. Lower val-
ues of these metrics indicate better model performance, and
thus, they offer a quantitative comparison and evaluation
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FIGURE 3. Graphical representation of the proposed method.

TABLE 2. Algorithm 1.

of different models’ accuracy. They can be mathematically
expressed by (20) - (23).

MAE =
1
n

∑n

i=1

∣∣∣Pi − P̂i
∣∣∣ , (20)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣Pi − P̂i
Pi

∣∣∣∣∣ , (21)

MSE =
1
n

∑n

i=1

(
Pi − P̂i

)2
, (22)

RMSE =

√√√√∑n

i=1

(
Pi − P̂i

)2
n

, (23)

where Pi is the true value, P̂i is the forecasted value, n refers
to the number of samples, and i is the index.

V. CASE STUDIES
To validate the proposed method, five case studies are con-
ducted using three test grids.

A. TEST GRIDS
Test systems A, B and C are used to validate the proposed
method.

FIGURE 4. Test system A.

Test system A is composed of one 50 kVA-15/
0.21 kV-Delta/Wye distribution transformer, 10 domestic
customers and 3 industrial customers. The grid parameters
are obtained from [27]. The details of Test System A are
illustrated in Fig. 4.

FIGURE 5. Test system B.

Test system B is the IEEE European network [28], [29] and
is modified to represent a North American grid. It operates
as an unbalanced grid, delivering single-phase connections
to 55 domestic and industrial customers, with 21, 19 and
15 connected to phases A, B and C, respectively. Fig. 5
shows a detailed geographical single-phase diagram of Test
System B.

Fig. 6 shows Test system C, a more complicated distribu-
tion grid composed of one 2 MVA 132/14.4 kV substation
transformer, twenty 14.4/0.21 kV distribution transformers,
and 1,000 customers (18% are industrial customers and
the rest are domestic customers). Power ratings of distri-
bution transformers range from 25 to 200 kVA, and the
number of customers connected to each transformer ranges
from 13 to 62. Test system C has one more hierarchy than
Test systems A and B.
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FIGURE 6. Test system C.

B. AMI DATASET DESCRIPTION
The electricity power consumption data is provided by Saska-
toon Light and Power, a distribution utility in Saskatoon,
SK, Canada. The data has a resolution of 15 minutes for
over 65,000 customers in the industrial, commercial, and
residential sectors. A dataset for 1,000 customers is selected
for this paper, which was recorded from 0:15 AMonMarch 1,
2017, to 11:45 PM on March 1, 2018. With a time resolution
of 15 minutes, there are 35,136 steps in the dataset and a
one-time horizon h = 15 minutes. In the proposed method,
to get base forecasts using ARIMA, 80% of the data is
used for training the model, and 20% is used for testing the
performance of the model.

C. NUMERICAL RESULTS OF CASE STUDIES
To validate the proposed method (MinTSh and MinTSa),
five case studies are conducted, in which six prediction
horizons are considered, ranging from 15 minutes to eight
hours (h= 1, 2, 4, 8, 16, 32). Four state-of-the-art benchmark
methods (BU, OLS, WLS-SS, and WLS-VS) are chosen to
compare with the proposed method.

In Cases 1-4, optimal reconciliation is performed at all
three hierarchical levels of the transformer loading: 1) the
total load – top level (Level 0), 2) the three-phase load – mid-
dle level (Level 1), and 3) customer consumption – bottom
level (Level 2). In Case 5, one higher hierarchy level is added
to incorporate a load for a substation transformer.

1) CASE 1 – SMALL NETWORK SIMULATION USING ONE
MONTH DATA
In Case 1, one-month historical data is used for base forecasts,
optimal reconciliation is then conducted using the proposed
method with such limited data using Test System A. In this
case, the accuracy improvement of the reconciled forecast
vs. base forecasts evaluated by MAE is shown in Table 3
for all hierarchical levels and six forecast horizons. MinTSa
outperforms other methods, followed by MinTSh. At the
forecast horizon h = 2 and hierarchy level 1, there is a
7.41% improved accuracy. The proposed method (MinTSa
and MinTSh) performs well for load forecasts at the mid-
dle level, but MinTSa performs better than MinTSh for a
lower number of customer load forecasts at the bottom level.
Among the four benchmark methods, BU performs the worst
with negative values, indicating lower accuracy than base
forecasts. BU provides 0% improved accuracy at the bottom
level, so it is only suitable for a higher-level load forecast.

Table 4 shows improved accuracy evaluated by MAPE.
MinTSa performs better than others in Levels 0 and 1 for all

six horizons, but MinTSh performs better at Level 2. Bold
numbers in the table show the best accuracy improvement.
Although benchmark methods (except BU) have acceptable
results, they are less accurate than the proposed method.

In Table 5, MinTSa has the highest improved accuracy of
9.82% for the forecast horizon h = 2at level 1 evaluated by
MSE. As the forecast horizon increases, the performance of
MinT tends to decrease at all levels. However, the proposed
method is still suitable for short/medium horizon prediction
in distribution systems.

TABLE 3. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by MAE (Case 1).

Table 6 shows the accuracy improvement of the proposed
reconciled forecast vs. base forecasts evaluated by RMSE.
MinTSa shows the best performance, followed by MinTSh.
MinTSa has the highest improved accuracy among all linear
reconciliation methods, including OLS and WLS, with the
most accurate and coherent forecasts at all hierarchy levels.

The accuracy improvement of the overall hierarchical tree
structure for Case 1 is shown in Fig. 7. The proposed recon-
ciliation models based on trace minimization yield accurate
and consistent predictions at all hierarchical levels.

Fig. 8 shows a comparison between the true, predicted, and
reconciled values for the first 100 samples. The reconciled
lines (black and blue solid lines) are closest to the true line
(dashed light blue line) with the lowest errors. MinTSa and
MinTSh show consistent performance across all prediction
horizons.

2) CASE 2 – SMALL NETWORK RANDOM-ORIGIN
SIMULATION USING ONE MONTH DATA
In Case 2, one-month historical data is used for base forecasts
in Test System A. The simulation for the forecast horizon,
h = 1, is conducted for one particular time snap; and again
for 30 random time snaps, and their average is taken. The
objective of Case 2 is to show that the proposed method for
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FIGURE 7. The accuracy improvement in % of the overall hierarchical tree structure for Case 1: (a) MAE, (b) MAPE,
(c) MSE and (d) RMSE.

FIGURE 8. Comparison of true, predicted and reconciled forecasts – Case 1: (a) h=1, (b) h=2, (c) h=4, (d) h=8, (e) h=16,
(f) h=32.

load forecast performs well at any time of the year. The two
sets of simulations are compared in Table 7. ‘‘h= 1(30)’’
means the average of 30 simulations, and ‘‘h = 1’’ means

the result of one simulation. In fact, ‘‘h= 1(30)’’ shows even
better accuracy than ‘‘h = 1’’ for most hierarchy levels and
accuracy metrics for both MinTSa and MinTSh.
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FIGURE 9. Comparison of true, predicted and reconciled forecast – Case 2: h = 1(30): (a) Phase A, (b) Phase B, (c) Phase C,
(d) Total Power.

TABLE 4. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by MAPE (Case 1).

A comparison of the true, predicted, and reconciled fore-
casts for phases A, B, C and the total power of three phases
for h= 1(30) is presented in Fig. 9. The superiority of the
proposed method is confirmed as the MinTSa and MinTSh
reconciled lines are closest towards the true line, showing the
tendency of the proposed reconciliation method to minimize
the error.

FIGURE 10. The Accuracy Improvement of the Overall Hierarchical Tree
Structure for Case 3 using RMSE.

3) CASE 3 – SMALL NETWORK SIMULATION USING ONE
YEAR DATA
In Case 3, one-year historical data is used for base forecasts
in Test system A, and the proposed method is then applied for
optimal reconciliation to determine if it can handle high data
variance in one year due to seasonal changes, which causes
dramatic changes of electricity consumption behaviours of
customers using Test system A. In Case 3, RMSE is used
for evaluation. In Table 8, the average accuracy improvement
of MinTSa is the highest at all levels followed by MinTSh,
indicating the robustness of the proposed method subjected to
large variances in the dataset. The accuracy improvement of
the overall hierarchical tree structure of the proposed method
vs. benchmark methods for Case 3 is shown in Fig. 10,
and the proposed method shows superior performance over
benchmark methods. MinTSa (the green line) is always on
the top, mostly followed by MinTSh (the blue dark line).

The comparison of the true, predicted, and reconciled fore-
casts using the proposed method and four benchmark meth-
ods for the first 100 samples in Case 3 is shown in Fig. 11.
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FIGURE 11. Comparison of true, predicted and reconciled forecasts – Case 3: (a) h = 1, (b) h = 2, (c) h = 4,
(d) h = 16, (e) h = 32.

TABLE 5. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by MSE (Case 1).

Reconciliation algorithms push the predicted line, which is
the result of ARIMA, toward the true line to minimize the
error. The error is a vertical distance between the true and

TABLE 6. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by RMSE (Case 1).

reconciled lines. The proposed method has the lowest errors
for all prediction horizons as reconciled lines of MinTSh and
MinTSa are closest to the true line.
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TABLE 7. Single and random-origin accuracy improvement (%)
comparison of MinTSa and MinTSh for h = 1 (Case 2).

TABLE 8. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by RMSE (Case 3).

4) CASE 4 – UNBALANCED MEDIUM NETWORK
SIMULATION
Test system B is used in Case 4 to simulate load forecast
aggregation using the proposed method for an unbalanced
medium size network with 55 customers. The simulation
is done for two forecast horizons, h = 1, and 32, and
one-month historical data is used to generate base fore-
casts. Table 9 shows the accuracy improvement of recon-
ciled forecasts compared to base forecasts according to error
indices, MAE, MAPE, MSE, and RMSE, for all levels of
the hierarchy. MinTSa outperforms other methods, followed
by MinTSh. The proposed methods (MinTSa and MinTSh)
have the highest improved forecast accuracy at the middle
level. The bold numbers in Table 9 indicate the best accuracy
improvement.

Although the benchmark methods (except BU) show some
improvements, they are less accurate than the proposed
method. The highest accuracy improvements scored by the
proposed methods are 8.51%, 7.27%, 13.47%, and 6.88% for
MAE, MAPE, MSE, and RMSE, respectively. Among the
benchmark methods, BU performs the worst with negative
values, indicating lower accuracy than base forecasts. BU
provides 0% improved accuracy at the bottom level, so it
is only suitable for higher-level load forecast aggregation.
MinTSa and MinTSh show consistent performance across
both horizons.

Fig. 12 shows the comparison of the true, predicted, and
reconciled forecasts for the first 100 samples of Case 4
(h = 1 and 32 forecast horizons for phases A, B, C, and
for the total power among three phases). MinTSa (blue solid
line) and MinTSh (black solid line) are the closest to the
true line (dashed blue line) compared to the lines of the
benchmark methods. The superiority of the proposed method
is confirmed as the MinTSa reconciled line is the closest to
the true line, showing the tendency of the proposed recon-
ciliation method to minimize the error (a vertical distance
between the true and reconciled line). Case 4 demonstrates
that the proposed method performs well in a medium-sized
distribution grid.

TABLE 9. Accuracy improvement (%) of the proposed method vs
benchmark methods (Case 4).

5) CASE 5 – LARGE NETWORK SIMULATION
Case 5 aims to validate the proposed method in a
real-world distribution grid using Test System C with
a substation transformer and distribution transformers
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FIGURE 12. Comparison of true, predicted and reconciled forecasts – Case 4: (a) Phase A @ h=1, (b) Phase B @ h=1,
(c) Phase C @ h=1, (d) Total Power @ h=1, (e) Phase A @ h=32, (f) Phase B @ h=32, (g) Phase C @ h=32, (h) Total Power @
h=32.

(a four-hierarchical-level system). The simulation is con-
ducted for two forecast horizons,h = 1 and 32, and
one-month historical data is used to generate base forecasts.
The average accuracy improvements using the proposed
method for the two forecast horizons at each hierarchical level
are evaluated by RMSE andMAPE as shown in Tables 10 and
11, respectively.

In Case 5, MinTSh has the highest MAPE average accu-
racy improvement of 9.65% at the top level (Level 0) for
h = 1. MinTSh shows a similar or better performance than
MinTSa mainly because MinTSh has a better strategy to deal
with data variance when the number of the bottom level’s
observations (bt ) is high. MinTSa and MinTSh have the
highest accuracy improvement compared to the benchmark
methods.

OLS and WLS-SS do not require parameters to estimate
the covariance matrix, Wh, and only use the information
contained in the hierarchy structure; whileWLS-VS,MinTSa

TABLE 10. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by RMSE (Case 5).

and MinTSh depend on errors in the historical data. Only
MinTSa and MinTSh consider the covariance of the base
forecast errors of two time series data in the hierarchy [6];
while OLS,WLS-VS, andWLS-SS are based on the assump-
tion that the base forecast errors between two time series
are stochastic. This is the main reason that the proposed
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TABLE 11. Accuracy improvement (%) of the proposed method vs
benchmark methods evaluated by MAPE (Case 5).

MinT-based hierarchical load forecasting performs better
than the benchmark methods.

VI. CONCLUSION
In this paper, a novel transformer load forecast aggregation
method through the minimum trace optimal reconciliation
and AMI data is proposed, along with an independent state-
of-the-art base load forecast at each hierarchical level. The
proposed method aims to exploit the information contained
in the hierarchical structure and improve the accuracy of
traditional load forecasting practices for distribution and sub-
station transformers. It is proven through several case studies
that the proposed method significantly improves the load
forecast accuracy and has superior performance compared to
the four chosen benchmark methods (BU, OLS, WLS-VS,
and WLS-SS) in simple and complex distribution networks.
Although the primary purpose of this work is for transformer
health monitoring, the proposed method is also applicable for
distribution grid rebalancing and renewable power generation
aggregation.

The recommended future work includes:
• Incorporating the Grid Topology Information: Integra-
tion of the grid topology information into the hierarchi-
cal load forecasting process can be done by considering
spatial relationships among different grid components,
such as transformers, substations and feeders, to enhance
the forecasting accuracy.

• Integrating Demand-Side Management: Integration of
demand-side management strategies into the hierarchi-
cal load forecasting model allows for load shedding,
demand response, and peak shaving to be incorporated
as part of the forecasting process.

• Uncertainties Propagation in Hierarchical Forecasts:
Techniques can be developed to propagate uncertainties
across different levels of the hierarchy. The uncertainty
at a higher level may affect forecasts at lower levels,
and accounting for these uncertainties can improve the
overall reliability of load forecasting.

• Dynamic Hierarchical Structure: Dynamic adjustment
of the hierarchical structure based on changing load
characteristics or grid conditions involves automatically
restructuring the hierarchy to adapt to load variations
and system changes.
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