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ABSTRACT: Mulitphysics processes have been commonly identified in geotechnical engineer
ing practice. Researchers and field engineers often carry out multiphysics simulations to under
stand complex engineering responses. In field practice, a back analysis is typically required along 
with the simulations to calibrate the most representative model parameters. This would intensify 
the problem as it requires further simulations to assess the parameter sensitivity. Therefore, an 
efficient back analysis for multiphysics processes still remains a challenge in practice due to the 
numerical complexity and the low computational efficiency. With recent advances in AI tech
niques, opportunities have opened up for meta-model development for problems involving multi
physics processes associated with a large number of properties. This study entails a meta-model 
developed based on Artificial Neural Networks (ANN) that intelligently learn the correlations 
between model parameters and the reservoir responses. This efficient meta-model is combined 
with Genetic Algorithm-based back analysis to report the optimal case that provides the closest 
output to the target time histories. The results show that the AI-based metamodel can reproduce 
outputs of heavy computation of the multiphysics processes and thus efficiently perform back- 
analysis.

1 INTRODUCTION

Mulitphysics processes have been commonly identified in unconventional resource extraction 
practice (Guo et al., 2019; Mahdi et al., 2017). However, such complex processes are often diffi
cult to model in the field or in the laboratory due to the coupling of multiphysics (Touran et al., 
2017; Keyes et al., 2013). Therefore, researchers and field engineers in the oil and gas industry 
often carry out numerical simulations to understand the complex engineering responses during 
production. Such simulation practices are conducted via multiphysics numerical simulators 
(Moridis et al., 2011; Klar et al., 2013; White et al., 2020; Zhou et al., 2020).

In the rise of unconventional energy resources, one of the multiphysics complex processes is 
gas production from gas hydrate reservoir. production of gas from hydrate-bearing sediments 
involves change in pressure, temperature and also mechanical behavior, leading to coupled 
thermo-hydro-mechanical (THM). However, modelling of this complex processes is often 
computationally demanding and requires a large number of model parameters to represent mul
tiple facets of the hydrate reservoir behavior (Uchida et al., 2016). Even when measurement of 
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gas and water production history is available, conducting back analysis to calibrate these 
parameters is significantly time-consuming and also confirming that the calibrated parameters 
are the best representatives of the site condition is challenging because of potential existence of 
multiple local optima. Therefore, there is a need for an efficient tool to assess the hydrate reser
voir production potential and the complex sediment responses with minimal time cost and com
putational complexity.

With recent advances in artificial intelligence (AI) techniques (e.g., machine learning and 
data analytics), opportunities have opened up for meta-model development for problems 
involving multiphysics processes associated a large number of properties (Tripoppoom et al., 
2020; Li et al., 2021; Park et al., 2021; Xu et al., 2020). The main goal of the meta model is to 
provide an alternative tool to replace a conventional THM simulator in a more timely and 
computationally effective way. Once this computational tool is provided, the uncertainty in 
data can be assessed through varying the input parameters and investigating the uncertainty 
propagation through the sensitivity study.

This study entails a meta-model developed based on ANN that deep learn the correlations 
between model parameters (i.e., hydrologic and geomechanical parameters of hydrate-bearing 
sediments) and the reservoir response (i.e., gas and water production), and is capable of repro
ducing the production results with much higher computational efficiency than coupled numer
ical simulators based on finite element or finite difference methods. An optimization network 
based on genetic algorithm (GA) is then proposed and combined with the trained ANN to 
conduct the back-analysis of the site measured production data, and thus the optimum model 
parameters can be obtained.

The capabilities of the proposed machine learning approach are demonstrated through the 
application to the 2013 Nankai offshore gas production test. The training and testing data for 
the ANN are produced by a series of coupled THM simulations. The assumed ranges of 
material properties of the simulations are based on the production site conditions and are 
varied across the multi-dimensional sample space. The ANN predictions suggest good agree
ment with the measured production data, while the obtained model parameters from back 
analysis can be regarded as important properties for researchers and field engineers to focus 
on for reservoir characterization.

2 SYNTHETIC DATASET

This study creates synthetic data numerically through varying 19 material properties and 
obtaining the corresponding reservoir responses, namely, the amount of produced gas, pro
duced water and vertical strain (Figure 1). A THM numerical simulator, originally developed 
by (Klar et al., 2013), is adopted to create synthetic data. The simulator is based on a finite 
difference software, FLAC, and solves the multiphysics processes through the implemented 
coupled THM formulation derived for hydrate reservoir simulations by (Uchida et al., 2016).

Figure 1.  Synthetic data created by the THM analyzes.

889



Based on the Eastern Nankai Trough production site geometry, the targeted perforation 
region is between 280.7 m and 318.7 m below the seabed and the seabed is 998 m below the 
sea level. Figure 2 presents a hydrate reservoir considered for the creation of the synthetic 
dataset. It would be ideal if the model could explicitly simulate the heterogeneity of in-situ 
THM properties along the vertical direction, but that would impose a significant computa
tional demand. Therefore, this study simplifies the complexity into a homogenized single 
radial layer. This simplification has a few shortcomings associated with the lack of thermal or 
fluid flow in the vertical direction, but the variations in the THM properties are considered in 
the form of the parameter range, while the most representative homogenized properties will be 
later determined through back analyses.

The depth of the considered layer is assumed to be at 1297.7 m below sea level and 
299.7 m below seafloor, which is the mid-depth of the production region and corresponding to 
the initial pore water pressure of 13 MPa and the initial effective vertical stress to be 3 MPa. 
The initial effective horizontal stress is assumed to be 1.5 MPa, which corresponds to the at- 
rest earth pressure coefficient of K0 = 0.5. The initial porosity is 0.4, the initial temperature is 
285 K and the initial hydrate saturation is 61.3%, which is the average value over the produc
tion zone based on logging data (Konno et al., 2017). Under the initial temperature, the phase 
equilibrium pressure is 9.8 MPa. Depressurization is applied according to the measured 
bottom hole pressure during the 2013 test (Konno et al., 2017).

At the well boundary in the model, a free movement is assumed in the vertical direction 
while no radial displacement is allowed. The bottom boundary is fixed in the vertical direc
tion and free in the radial direction. The top boundary has the constant total stress applied 
to facilitate vertical deformation. The outer model boundary is set at 50 m, where the pore 
pressure, the total radial stress and temperature remain unchanged. The layer is radially dis
cretized into 35 elements with a size of 0.15 m adjacent to the well and increasing at a ratio 
of approximately 1.1.

This study utilizes the Latin hypercube sampling method (McKay et al., 1979) to ensure the 
multi-dimensional sampling domain is evenly explored with a relatively small number of simula
tions, resulting in 1000 simulation cases. Table 1 shows the maximum and minimum values of 
the 18 parameters adopted. The parameters are assumed to follow lognormal distribution, 
except the van Genuchten parameters, b and c, which are assumed to be normally distributed in 
the synthetic dataset. These simulation cases provide a history of reservoir production responses 
(gas production and water production), recorded at every 0.2 days for a 6-day period. There
fore, at every recorded time, there are 18000 data points regarding material properties (1000 
times 18), which are “inputs” for the ANN. Meanwhile, there are also 2000 data points regard
ing reservoir production responses (1000 cases times 2) at each recorded time step, which are 
“outputs” for the ANN.

The established synthetic dataset is normalized, and 80% of the normalized data is selected 
as the training data and the remaining 20% is selected as the testing data. The normalization 
process facilitates the calculation by making all the data dimensionless. Additionally, it limits 

Figure 2.  Hydrate reservoir model considered in this study.
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the range of data to only vary between [-1,1] and consequently controls the algorithm search 
domain, which results in less complexity and higher accuracy of the ANN predictions.

3 AI-BASED BACK ANALYSIS

The ANN is developed to approximate the gas production and water production time histories. 
In this study, a multi-layer perceptron (MLP) is used to implement the ANN. The ANN consists 
of the dataset, two hidden layers of neurons, and the predictions of the reservoir responses. The 
prediction consists of 2 classes, each with 30 neurons, which represent the simulation results of 
gas production and water production at the 30 time intervals (0.2-day intervals for 6 days). Two 
hidden layers are implemented in this study to accomplish accurate predictions. By adopting 
a trial-and-error method to change the number of neurons in each hidden layer, the MLP model 
with ten neurons in the first hidden layer and five neurons in the second hidden layer reveals the 
best performance of the data set analyzed in this study.

The initial MLP model is then generated using the training dataset with the proposed layer 
structure. The training data is introduced into the ANN to train the network by determining 
the biases and weights by minimizing the mean squared error (MSE). Once the minimum 
MSE is obtained, the network training process is completed and can be used to make predic
tions and evaluate the accuracy using the testing dataset.

The established ANN provides a computationally light method to predict the gas and water 
production from the 18 input model parameters. An optimization problem is defined for the 
back analysis, in which the objective function is the difference between the optimal production 
resulted from the ANN and the actual site measured production values. Conventional opti
mization techniques often involve determining the gradient of the objective function. Due to 
the complexity of this optimization problem, it is challenging to calculate the partial deriva
tives of the objective function because the established ANN is not an explicit function of the 
input variable. Therefore, derivative-based methods may not be able to solve this problem. As 
such, GA is used as an alternative solution in this study.

GA is an intelligent optimization method inspired by the theory of evolution by natural 
selection. This algorithm improves the initial population in the form of an iterative process 

Table 1. 18 model parameters selected for this study.

name symbol max min

Hydrologic (8)

initial intrinsic permeability ||K|| 10-4.8m2 10-7.2 m2

effective permeability power N 10.0 2.0
air entry pressure P0 12kPa 8kPa
van Genuchten parameter a 1.00 0.80
van Genuchten parameter b 2.00 -1.00
van Genuchten parameter c 2.00 -1.00
residual water saturation Srw 0.60 0.00
residual gas saturation Srg 0.20 0.00

Mechanical (10)

critical state stress ratio M 1.56 1.40
slope of swelling line k 0.014 0.003
Poisson’s ratio v 0.40 0.20
slope of compression line ƛ 0.25 0.14
initial preconsolidation stress P’cs0 6.0MPa 3.0MPa
hydrate dependent strength α 100MPa 10MPa
hydrate dependent strenght β 1.8 0.8
subloading ratio evolution u exp(5.52) Exp(1.61)
hydrate dependent modulus Eh0 12GPa 8GPa
hydrate degradation factor m 21 1
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according to a quality criterion. In this respect, three operators of mutation, crossover, and 
selection are used to drive the evolution of candidate solutions towards the optimum in each 
generation. Because the algorithm is population-based and does not require the derivatives of 
objective function or constraint, it is widely used with implicit function, such as the ANN util
ized in this paper. In addition, GA has the ability to search a large number of candidate solu
tions to converge to the global optimum. As with any iterative method, GA needs a set of 
termination conditions to determine when to stop and complete the analysis. The termination 
criteria used in this paper are as follows:

1. when the difference of optimum response in each two subsequent steps is less than 0.1%.
2. when the number of generations reaches 100.
3. when the algorithm reaches the time limit (5 minutes) set for the analysis.

When one of the above three conditions is met, the analysis considers the results as the opti
mal solutions.

4 RESULTS

The performance of the ANN was evaluated by comparing its predictions with the results of 
THM simulations, across the whole set of 1000 simulations (Figure 4). The error of the predic
tion results for both the training and the testing data are relatively small, which suggests that 
the proposed ANN can make accurate predictions. Hence, by selecting appropriate input 
model parameters, the established ANN can be used for history matching of the site measured 
production responses.

The back analysis was implemented in the form of an optimization problem and GA was 
utilized to provide a solution. It is worth noting that two objective functions are involved in 
this problem since both gas and water productions are considered in this study. In this study, 

Figure 3.  The schematic diagram of the proposed approach.
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the gas and water production values per unit volume are used as the optimization target of the 
back analysis. Based on the site measured gas and water production rate, the total gas and 
water production values per unit volume for the first six days are computed and shown in 
Figure 5. Using the 18 input model parameters, the gas and water production per unit volume 
can be derived from the established ANN, and the predicted results are plotted in Figure 5 to 
compare with the target values. The comparison suggested a good match. Therefore, the pro
posed back analysis method works well for the history matching purpose.

The computational efficiency of the proposed meta-model is demonstrated by comparing its 
processing time with the THM simulator for three specific reservoir cases (Case 300, 600, and 
900). The numerical experiments for 8-day gas production were carried out on a desktop 
equipped with two GeForce GTX 1080 graphics processing units (GPUs), 64 GB of random 
access memory (RAM), and one Intel Core i7-5820K central processing unit (CPU). For 
6-day gas production prediction, the execution time of the ANN and the FLAC THM simula
tor for three specific reservoir cases are shown in Table 2. It is seen that a typical calculating 

Figure 4.  Comparison of the ANN predictions and the THM simulation results of (a) gas production 
comparison for training data, (b) gas production comparison for testing data, (c) water production com
parison for training data, (d) water production comparison for testing data.

Figure 5.  Comparison of the site measured production data and the predicted data based on the back 
analyzed input parameters: (a) gas production, (b) water production.
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of the FLAC THM simulator for 6-day gas production takes on average more than 1000 
seconds while the ANN only takes less than 0.1 seconds.

5 CONCLUSION

This paper utilizes a combination of an ANN and an optimization model for simulation of 
gas production operations in methane hydrate-bearing reservoir. The combined model enables 
back analyses of site response in order to obtain the corresponding site properties. The site 
measured production data in 2013 Eastern Nankai Trough production test is adopted in this 
study. The ANN successfully learns the relationship between the material properties and reser
voir productions, while the optimization model demonstrated the capability of finding the 
optimum combinations of material properties to characterize the reservoir production.

The main advantage of the proposed approach lies on its computational efficiency for his
tory matching and model parameter calibration, which can be ten thousands of times faster 
than the numerical analysis conducted via the thermo-hydro-mechanical simulator.

It should be noted that the proposed machine learning approach only learns what it is being 
taught. The effectiveness of the back analyses clearly depends on the geometries of the specific 
problem, and the site-specific hydrate and stratigraphy conditions. Nevertheless, the proposed 
framework allows real-time prediction to be made and adjusted according to the observed res
ervoir response as the process evolves with time at the production site.
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