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Background The evidence regarding the relationship between 
postnatal exposure of air pollution and child malnutrition indica-
tors, as well as the corresponding urban-rural disparities, is lim-
ited, especially in low-pollution area of low- and middle-income 
countries (LMICs). Therefore, our aim was to contrast the effect 
estimates of varying ambient particulate matter (PM) on malnu-
trition indicators between urban and rural areas in Tibet, China.

Methods Six malnutrition indicators were evaluated in this study, 
namely, Z-scores of height for age (HFA), Z-scores of weight for 
age (WFA), Z-scores of weight for height (WFH), stunting, under-
weight, and wasting. Exposure to particles with an aerodynamic di-
ameter ≤2.5 micron (μm) (PM

2.5
), particles with an aerodynamic di-

ameter ≤10 μm (PM
10

) and particles with an aerodynamic diameter 
between 2.5 and 10 μm (PM

c
) was estimated using satellite-based 

random forest models. Linear regression and logistic regression 
models were used to assess the associations between PM and the 
above malnutrition indicators. Furthermore, the effect estimates 
of different PM were contrasted between urban and rural areas.

Results A total of 2511 children under five years old were included 
in this study. We found long-term exposure to PM

2.5
, PM

c
, and PM

10
 

was associated with an increased risk of stunting and a decreased 
risk of underweight. Of these air pollutants, PM

c
 had the strongest 

association for Z-scores of HFA and stunting, while PM
2.5

 had the 
strongest association for underweight. The results showed that the 
odds ratio (OR) for stunting were 1.36 (95% confidence interval 
(CI) = 1.06 to 1.75) per interquartile range (IQR) microgrammes per 
cubic metre (μg/m3) increase in PM

2.5
, 1.80 (95% CI = 1.30 to 2.50) 

per IQR μg/m3 increase in PM
c
 and 1.55 (95% CI = 1.17 to 2.05) per 

IQR μg/m3 increase in PM
10

. The concentrations of PM were high-
er in urban areas, and the effects of PM on malnutrition indicators 
among urban children were higher than those of rural children.

Conclusions Our results suggested that PM exposure might be an 
important trigger of child malnutrition. Further prospective re-
searches are needed to provide important scientific literature for 
understanding child malnutrition risk concerning postnatal expo-
sure of air pollutants and formulating synthetically social and en-
vironmental policies for malnutrition prevention.
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Child malnutrition remains a major public health crisis globally [1]. According to World Health Organization 
(WHO) reports, more than 149.2 million children under five years old suffer from malnutrition and the ma-
jority of these come from low- and middle-income countries (LMICs) [2,3]. Though the prevalence of malnu-
trition under five years old has decreased in China in the past decade, it remains high in poor rural counties 
[3,4]. It is well established that early-life malnutrition was associated with lower productivity and earnings 
in adulthood, increased risk of morbidity and mortality, and adverse cognitive health later in life [2,5-7].

Poor water, hygiene conditions and sanitation are recognised as a major cause of child malnutrition [8]. 
However, large high quality studies found the prevalence of malnutrition failed to be improved through wa-
ter, hygiene conditions and sanitation interventions [9-11]. These results highlight a broader view of envi-
ronmental factors that might affect child malnutrition is needed [12]. Ambient air pollution, as an import-
ant and widespread environmental exposure factor (about 98% children under five years old are exposed 
to exceeding air pollution concentrations [13]), may affect child growth by impairing immune development 
and function, inducing clinical and subclinical infection, altering dietary intake and metabolism, leading 
to vitamin D deficiency, etc. [14]. Yet, compared with water, hygiene conditions and sanitation, the poten-
tial effect of air pollution on child malnutrition has received little attention [14]. Thus, increased attention is 
urgently needed to define the effect of air pollution on child malnutrition during the early years of life. An 
improved understanding of these relationships is necessary for the development of new intervention strat-
egies, which would contribute to a comprehensive approach that addresses multiple causal factors for the 
prevention of child malnutrition such as stunting [14].

Most of the previous evidence for a link between air pollution and child growth focused mainly on prena-
tal exposure to air pollution and adverse birth outcomes such as early foetal loss, small for gestational age, 
preterm birth and low birthweight [15-17]. A few studies used postnatal household air pollution as main 
exposure of interest and found postnatal exposure to household air pollution was inversely associated with 
Z-scores of height-for-age (HFA) and stunting [18].

Very few studies have explored the effect of postnatal exposure of ambient air pollution on postnatal growth, 
such as stunting [1]. A study conducted in Bangladesh (annual ambient fine particulate matter particles 
with an aerodynamic diameter ≤2.5 micron (μm) (PM

2.5
)) level >46 microgrammes per cubic metre (μg/

m3)) found significant increases in the relative risk of child stunting, wasting, and underweight with high-
er levels of exposure to PM

2.5
 [19]. Another study included 218 152 children under five from India (average 

concentration of PM
2.5

 = 55 μg/m3) found a 100 μg/m3 increase in ambient PM
2.5

 in early-life was associated 
with a 0.05 (95% confidence interval (CI) = 0.01 to 0.09) standard deviation (SD) reduction in child height 
[20]. A final study conducted in 32 countries in Africa (average concentration of PM

2.5
 = 35.7 μg/m3) found 

early-life ambient PM
2.5

 exposure was associated with Z-scores of HFA (beta (β) = -0.033, 95% CI = -0.059 
to -0.008), and indications of a general trend of a positive association with stunting (odds ratio (OR) = 1.024, 
95% CI = 0.991 to 1.059) [1]. Studies mentioned above provided limited information on the association be-
tween air pollution PM with different particle sizes and malnutrition. Furthermore, all of these studies were 
conducted in relatively high-pollution areas. There is little evidence for a threshold for air pollution below 
which no harmful health effects could be anticipated [21,22]. Previous studies found that harmful health 
effects of air pollution may be more pronounced in low-pollution area [21,23]. Thus, more studies are need-
ed to explore relationships between postnatal exposure of ambient air pollution and postnatal growth in 
low-pollution areas. Finally, previous studies have failed to address the association between ambient air 
pollution and malnutrition in comparable urban and rural areas.

Located on the Tibetan Plateau in southwest China, Tibet is famous for its high altitude and good air quali-
ty, which makes it a good site for studying the health effects of air pollution in low-pollution areas. Besides, 
it has been speculated that the difference in air pollutants component, climate conditions and population 
adaptability in different regions may lead to the difference in health effects of air pollutants [24,25]. Stud-
ies focusing on the effect of air pollution on malnutrition are urgently needed to assess whether this effect 
exists and its size in Tibet.

To fill these gaps, this study aimed to assess the impacts of ambient air PM (PM
2.5

, particulate matter with 
aerodynamic diameters between 2.5 to 10 μm (PM

c
) and particulate matter with aerodynamic diameters 

≤10 μm (PM
10

)) on six malnutrition indicators (including Z-scores of HFA, Z-scores of weight for age (WFA), 
Z-scores of weight for height (WFH), stunting, underweight and wasting) among children under five years 
old in Tibet. In addition, we further contrasted the effect of ambient air PM with different particle sizes. 
Finally, we explored residence as potential effect modifier in the association between ambient air PM and 
malnutrition indicators. We hypothesised that PM was associated with unfavourable malnutrition indica-
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tors among Tibetan children under five years old, and that this effect is more pronounced in urban children 
than in rural children.

METHODS
Study population

A detailed cross-sectional study and children’s information were previously presented [26]. Specifically, a 
three-stage, stratified, cluster sampling was employed to select eligible individuals in Tibet Autonomous 
Region of Southwest China from July to October 2020. In brief, a total of eight counties in Tibet were first 
selected proportional to population size and then five towns or subdistricts from each county were selected 
as the primary sampling units. Four villages or communities were randomly selected for each of the forty 
primary sampling units. Furthermore, a structured questionnaire was used to interview both children aged 
0-71 months and their parents living in selected villages or communities. Finally, a total of 3048 children 
were included in this survey.

The exclusion criteria of this study were as follows: (1) non-Tibetan children; (2) children who had lived at 
the survey site for less than 12 months; (3) children without available information on any outcome, expo-
sure or adjusted covariables; and (4) children aged under 12 months. We excluded children aged under 12 
months to better control the influence of dietary factors and feeding practices on the associations between 
PM and malnutrition indicators. Ultimately, 2511 children were included in this analysis, with an enrolment 
rate of 82.4% (Figure S1 in the Online Supplementary Document).

Data collection

We collected baseline information on children’s demographic characteristics (age, sex, ethnic group, resi-
dence, low birth weight, annual household income, drinking water source), history of illness (asthma his-
tory, anaemia history, history of dental, being ill for the last two weeks), feeding practices (early initiation of 
breastfeeding (within one hour of birth), exclusive breastfeeding under six months, continued breastfeeding 
at one year, introduction of complementary foods between six and eight months of age, dietary diversity, 
meal frequency, consumption of iron-rich or iron-fortified foods), secondary smoking exposure, and mater-
nal demographic characteristics (education level, height, weight, anaemia history during pregnancy) were 
collected by using a structured questionnaire. The detailed definition and measurement of covariates are 
presented as follows: (a) age – queried the child’s birth registration information and measured in months. (b) 
Sex – males and females. (c) Asthma history, anaemia history and history of dental caries – assessed whether 
the child had asthma, anaemia or dental caries prior to the data collection date by guardian self-declaration 
and categorised into “yes”, “no” and “not sure”. (d) Low birth weight – obtained the child’s birth weight by 
asking the guardian, and defined low birth weight as a birth weight of less than 2500 grammes and cate-
gorised into “yes”, “no” and “not sure”. (e) Optimal feeding practice scores – 24 hours dietary recall method 
was used to collect information on dietary practice by asking the guardian to analyse dietary diversity and 
meal frequency. According to the WHO Infant and Young Children Feeding Practice Guidelines [27], the 
minimum dietary diversity was met if a child took four or more of the seven food groups (including (i) grains, 
roots and tubers, (ii) legumes and nuts, (iii) dairy products, (iv) flesh foods, (v) eggs, (vi) vitamin A-rich fruits 
and vegetables, (vii) other fruits and vegetables) on the previous day; the minimum meal frequency was met 
if a child ate meal more than three times on the previous day. Besides, data on breast-feeding and comple-
mentary food feeding were also collected, including (i) whether the child was breastfed within one hour of 
birth, (ii) whether the child was fed exclusively with breast milk until six months of age, (iii) whether the 
child was given complementary foods between six and eight months of age, (iv) whether the child was con-
sistently breastfed until 12 months of age, and (v) whether the child was fed an Fe-rich food or Fe-fortified 
food on the previous day. For the above-mentioned seven items, we assigned each item a score of zero or 
one. Then, we summed the scores for the seven items to obtain an optimal feeding practice score. Optimal 
feeding practice scores were divided into low and high scores based on the median feeding practice scores 
(median = 3). (f) Maternal educational level: obtained by asking the child’s guardian, and assessed by the 
highest educational level completed by the mother of the child and categorised into illiterate, primary school 
and junior high school or above. (g) Maternal height: measured objectively in centimetres and categorised 
into three groups: <160.0 cm, 160.0-169.9 cm and ≥170.0 cm. The maternal height categories were adapted 
from several earlier studies [28-30]. (h) Maternal weight: measured objectively in kilogrammes (kg) and cat-
egorised into three groups: <50.0 kg, 50.0 ∼ 59.9 kg and ≥60.0 kg. The weight categories were adapted from 
previous study [31]. (i) Mother suffering from anaemia during pregnancy: assessed by whether the moth-
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er suffered from anaemia during pregnancy and categories into yes, no and not sure. (j) Wealth status: as-
sessed by self-report yearly family income and categorised into five groups: poorest (<12 000 Chinese Yuan 
(CNY)), poorer (12 000-19 999 CNY), middle (20 000-39 999 CNY), richer (40 000-59 999 CNY) and richest 
(>60 000 CNY). (k) Drinking water source: assessed by the type of water source used by the household and 
dichotomised into improved and unimproved. According to WHO guideline [32], improved water sources 
referred to piped water and protected wells, and unimproved water sources referred to springs, lakes, ponds, 
unprotected wells, rivers and dams. (l) Residence: assessed by the place of residence and dichotomised into 
rural areas and urban areas based on the urban–rural classification code formulated by the National Bureau 
of Statistics of the People’s Republic of China (2020). (m) Secondary smoke: defined as whether child had 
a passive smoking history at least once a week by guardian self-declaration and dichotomised into yes and 
No. (n) Altitude: measured and recorded the altitude and geographical location of survey spots by Global 
Positioning System (GPS). (o) Relative humidity, mean temperature: obtained from National Earth System 
Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) and 
matched according to the latitude and longitude of the child’s residence.

The anthropometric measurements of malnutrition included children height and weight. Height was mea-
sured with children’s shoes off in a recumbent position (for children younger than two years of age) or stand-
ing position (for children older than two years of age) three times. Weight was measured three times using 
a weight measurement device, with children wearing light clothing and bare feet. Height and weight were 
calculated by averaging the above measurements, respectively.

Outcome assessment

The Z-scores were calculated by dividing the difference between the observed value and the mean value of the 
reference population by the SD of the reference population. By calculating Z-scores, stunting (Z-scores<-2 for 
HFA), underweight (weight-for-age (WFA)) and wasting (weight-for-height (WFH)) were determined accord-
ing to the WHO’s 2006 Child Growth Standard [33], respectively. Stunting, underweight, and wasting were 
primary outcome; and Z-scores of HFA, Z-scores of WFA, and Z-scores of WFH were secondary outcome.

Exposure

PM
2.5

 and PM
10

 data were obtained from the ChinaHighAirPollutionts (CHAP) Data set (https://weijing-rs.
github.io/product.html, accessed data: 9 December 2022). Based on monitoring data, satellite remote sens-
ing, temperature, humidity and land use information, and other spatial and temporal predictors, a space-time 
extremely randomised trees (STET) model was employed to estimated PM

2.5
 and PM

10
 concentrations at a 1 

kilometre (km) × 1 km spatial resolution. The model shows a high predictive ability and is robust to noise [34-
36]. The 10-fold cross-validation R2 (root mean square error) for the daily prediction of PM

2.5
 and PM

10
 were 

0.92 (10.76 μg/m3) [34,35] and 0.90 (21.12 μg/m3) [36], respectively. The one-year average concentration of 
individual PM

2.5
 and PM

10
 exposure was calculated according to geocoded residential addresses. The one-year 

average concentration of individual PM
c
 exposure was calculated as the difference between PM

10
 and PM

2.5
.

Statistical analysis

We used multivariable linear regression models to explore the long-term effects of PM exposure on Z-scores 
of HFA, Z-scores of WFA, Z-scores of WFH, and the effect estimates were expressed as β and 95% CI. We 
used multivariable logistic regression models to assess the association between PM exposure and the risk 
of stunting, underweight, and wasting, and the effect estimates were expressed as OR and 95% CI. We es-
timated the unadjusted models (Table S1 and S2 in the Online Supplementary Document) and the main 
models that were adjusted for the confounding variables including age, sex, low birth weight, asthma his-
tory, anaemia history, history of dental caries, being ill for the last two weeks, optimal feeding scores, sec-
ondary smoke exposure, residence, maternal education level, maternal height, maternal weight, mother 
suffering from anaemia during pregnancy, wealth category, drinking water source, relative humidity, mean 
temperature and altitude. All associations were reported per 10 μg/m3 increase of PM and per IQR μg/m3 
increase of PM. An increase of 10 μg/m3 of PM makes comparisons with other studies possible. And an in-
crease of IQR μg/m3 of PM can help us to compare the long-term effect of different particle sizes of PM. Be-
sides, the nonlinear relationship between PM and malnutrition indicators was explored by using restricted 
cubic spline analysis.

To examine whether the associations were consistent among different subpopulations, subgroup analyses 
were performed by children residence (rural areas vs. urban areas), sex (male vs. female), age (<36 vs. ≥36 
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months), wealth status (low income vs. high income), drinking water source (improved vs. unimproved) and 
optimal feeding scores (high scores vs. low scores). Z test was used to test for statistically significant differ-
ence in effect estimates (β or OR) across categories within subgroups; for example, for continuous outcome 
variable in rural area and urban area, we calculated:

Z=
−

+

β βurban rural

urban ruralSE SE2 2

for categorical outcome variable in rural area and urban area, we calculated:

Z=
−

+

OR ORurban rural

urban ruralSE SE2 2

We also performed sensitivity analyses. To test the robustness of our results, three months, six months, nine 
months and 12 months (one year) average ambient PM concentrations were used to fit the adjusted models.

All statistical analyses were performed using R (version 4.2.2), and statistical significance was declared if 
P < 0.05.

RESULTS
Demographic characteristics

Table 1 described the characteristics of 2511 children aged 0-71 months in this study. Among these chil-
dren, 2065 and 446 lived in rural area and urban area, respectively. Compared with rural children, urban 
children were more likely to be older, suffering from asthma, suffering from dental caries, eating Fe-rich 
or Fe-fortified food, and exposed to secondary smoke, with a lower low birth weight rate, higher dietary 
diversity, better wealth status and cleaner drinking water source. The mothers of urban children tended to 
have better education levels, higher height, heavier weight and suffer from anaemia during pregnancy than 
their counterparts. The children in rural areas were more likely to be breastfed within 1 hour after delivery, 
breastfed exclusively until 6 months, given complementary foods between six and eight months of age and 
consistently breastfed until 12 months.

Table 1. Basic characteristics of study participants

Variables Total (n = 2511) Rural area (n = 2065) Urban area (n = 446) P-value
Sex, n (%)

Female 1296 (51.6%) 1069 (51.8%) 227 (50.9%) 0.750

Male 1215 (48.4%) 996 (48.2%) 219 (49.1%)

Age in months, n (%)

<36 964 (38.4%) 947 (45.9%) 17 (3.8%) <0.001

≥36 1547 (61.6%) 1118 (54.1%) 429 (96.2%)

Low birth weight, n (%)

Yes 143 (5.7%) 125 (6.0%) 18 (4.0%) 0.006

No 2110 (84.0%) 1713 (83.0%) 397 (89.0%)

Not sure 258 (10.3%) 227 (11.0%) 31 (7.0%)

Asthma history, n (%)

Yes 37 (1.5%) 30 (1.5%) 7 (1.6%) 0.036

No 2291 (91.2%) 1872 (90.6%) 419 (93.9%)

Not sure 183 (7.3%) 163 (7.9%) 20 (4.5%)

Anaemia history, n (%)

Yes 44 (1.8%) 36 (1.7%) 8 (1.8%) 0.051

No 2282 (90.8%) 1865 (90.4%) 417 (93.5%)

Not sure 185 (7.4%) 164 (7.9%) 21 (4.7%)

Suffering from dental caries, n (%)

Yes 136 (5.4%) 99 (4.8%) 37 (8.3%) 0.010

No 2240 (89.2%) 1850 (89.6%) 390 (87.4%)

Not sure 135 (5.4%) 116 (5.6%) 19 (4.3%)

Being ill for the last two weeks, n (%)

Yes 259 (10.3%) 207 (10.0%) 52 (11.7%) 0.300

No 2252 (89.7%) 1858 (90.0%) 394 (88.3%)
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Table 2 shows the one-year average concentrations of PM
2.5

, PM
c
, PM

10
 at which the children lived and mal-

nutrition indicators. The interquartile range (IQR) of PM
2.5

, PM
c
, PM

10
 were 5.59 μg/m3, 5.41 μg/m3, and 

10.62 μg/m3, respectively. The concentrations of ambient PM in urban areas were higher than those in ru-
ral areas (P

urban-rural
 for PM

2.5
<0.001, P

urban-rural
 for PM

c
 = 0.003, P

urban-rural
 for PM

10
 = 0.032). The Z-scores of HFA 

and WFA among urban children were higher than among rural children (P < 0.001). The prevalence rates of 
stunting in urban areas were lower than in rural areas (P < 0.001).

Variables Total (n = 2511) Rural area (n = 2065) Urban area (n = 446) P-value
Child breastfed within one hour after delivery, n (%)
Yes 184 (7.3%) 182 (8.8%) 2 (0.4%) <0.001
No 736 (29.3%) 721 (34.9%) 15 (3.4%)
Not sure 1591 (63.4%) 1162 (56.3%) 429 (96.2%)
Exclusive breast feeding until six months, n (%)
Yes 969 (38.6%) 825 (40.0%) 144 (32.3%) 0.010
No 1510 (60.1%) 1214 (58.8%) 296 (66.4%)
Not sure 32 (1.3%) 26 (1.2%) 6 (1.3%)
Child given complementary foods between six and eight months of age, n (%)
Yes 677 (27.0%) 576 (27.9%) 101 (22.6%) 0.022
No 1772 (70.6%) 1434 (69.4%) 338 (75.8%)
Not sure 62 (2.4%) 55 (2.7%) 7 (1.6%)
Child consistently breastfed until 12 months, n (%)
Yes 1403 (55.9%) 1240 (60.0%) 163 (36.5%) <0.001
No 1108 (44.1%) 825 (40.0%) 283 (63.5%)
Dietary diversity, n (%)
<4 476 (19.0%) 450 (21.8%) 26 (5.8%) <0.001
≥4 2035 (81.0%) 1615 (78.2%) 420 (94.2%)
Fe-rich or Fe-fortified food, n (%)
Yes 150 (6.0%) 96 (4.6%) 54 (12.1%) <0.001
No 2361 (94.0%) 1969 (95.4%) 392 (87.9%)
Meal frequency, times, n (%)
<3 62 (2.5%) 45 (2.2%) 17 (3.8%) 0.062
≥3 2449 (97.5%) 2020 (97.8%) 429 (96.2%)
Secondary smoke, n (%)
Yes 641 (25.5%) 440 (21.3%) 201 (45.1%) <0.001
No 1870 (74.5%) 1625 (78.7%) 245 (54.9%)
Maternal education level, n (%)
Illiteracy 1272 (50.7%) 1243 (60.2%) 29 (6.5%) <0.001
Primary school 429 (17.0%) 403 (19.5%) 26 (5.8%)
Junior high school and above 810 (32.3%) 419 (20.3%) 391 (87.7%)
Maternal height in cm, n (%)
<160.0 703 (28.0%) 625 (30.3%) 78 (17.5%) <0.001
160.0 ~ 169.9 1676 (66.7%) 1339 (64.8%) 337 (75.5%)
≥170.0 132 (5.3%) 101 (4.9%) 31 (7.0%)
Maternal weight, kg, n (%)
<50.0 493 (19.6%) 417 (20.2%) 76 (17.0%) <0.001
50.0 ~ 59.9 1318 (52.5%) 1138 (55.1%) 180 (40.4%)
≥60.0 700 (27.9%) 510 (24.7%) 190 (42.6%)
Mother suffering from anaemia during pregnancy, n (%)
Yes 229 (9.1%) 180 (8.7%) 49 (11.0%) <0.001
No 1919 (76.4%) 1559 (75.5%) 360 (80.7%)
Not sure 363 (14.5%) 326 (15.8%) 37 (8.3%)
Wealth status
Poorest 463 (18.4%) 422 (20.4%) 41 (9.2%) <0.001
Poorer 1030 (41.0%) 956 (46.3%) 74 (16.6%)
Middle 572 (22.8%) 511 (24.7%) 61 (13.7%)
Richer 180 (7.2%) 115 (5.6%) 65 (14.6%)
Richest 266 (10.6%) 61 (3.0%) 205 (46.0%)
Drinking water source
Improved 1867 (74.4%) 1459 (70.7%) 408 (91.5%) <0.001
Unimproved 644 (25.6%) 606 (29.3%) 38 (8.5%)

cm – centimetre, kg – kilogramme

Table 1. continued
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Associations between ambient air pollutant exposure and malnutrition indicators

Table 3 showed effect estimates and 95% CI for the association between the malnutrition indicators and a 
10 μg/m3 increase in average one-year PM

2.5
, PM

c
, and PM

10
 exposure according to the adjusted models. In 

brief, significant changes statistically in Z-scores of HFA, stunting, and underweight were observed per 10 
increments in the PM

2.5
, PM

c
, and PM

10
 concentrations. For example, each 10 μg/m3 increase in PM

2.5
 was 

associated with decreased Z-scores of HFA (β = -0.23, 95% CI = -0.42 to -0.05), OR for stunting of 1.74 (95% 
CI = 1.11 to 2.72), and OR for underweight of 0.32 (95% CI = 0.22 to 0.46).

Table 2. Descriptive one-year average concentrations of particulate matter (PM) and malnutrition indicators of chil-
dren by residence

Variables Total Urban area Rural area P-value
Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)

PM
2.5

 (μg/m3) 12.67 (11.17-16.76) 13.00 (11.20-16.90) 12.30 (10.40-16.60) <0.001

PM
c
 (μg/m3) 15.81 (13.52-18.93) 15.90 (12.70-19.00) 15.40 (15.40-18.90) 0.003

PM
10

 (μg/m3) 27.48 (24.88-35.50) 28.50 (24.50-36.00) 25.80 (25.80-35.50) 0.032

Z-scores of HFA -0.33 (-1.42,0.15) 0.15 (-0.36, 0.70) -0.54 (-1.58, 0.12) <0.001

Z-scores of WFA -0.82 (-2.16,0.13) -0.38 (-2.16, 0.75) -0.91 (-2.14, 0.02) <0.001

Z-scores of WFH 0.01 (-0.79,0.82) -0.01 (-0.66, 0.74) 0.01 (-0.81, 0.83) 0.601

N (%) N (%) N (%) P-value

Stunting* <0.001

Yes 376 (15.0) 14 (3.1) 362 (17.5)

No 2135 (85.0) 432 (96.9) 1703 (82.5)

Underweight† 1.000

Yes 668 (26.6) 118 (26.5) 550 (26.6)

No 1843 (73.4) 328 (73.5) 1515 (73.4)

Wasting‡ 0.660

Yes 155 (6.2) 25 (5.6) 130 (6.3)

No 2356 (93.8) 421 (94.4) 1935 (93.7)

PM
2.5

 – particulate matter with an aerodynamic diameter of 2.5 micron (μm), PM
c
 – particulate matter with an aerodynamic diame-

ter of 2.5 to 10 μm, PM
10

 – particulate matter with an aerodynamic diameter of 10 μm, HFA – height for age, WFA – weight for age, 
WFH – weight for height
*Stunting: Z-scores of HFA<-2.
†Underweight: Z-scores of WFA<-2.
‡Wasting: Z-scores of WFH<-2.

Table 3. Associations of risk of malnutrition indicators with per 10 microgrammes per cubic metre (μg/m3) increase 
of ambient air pollution

Main analysis*
PM2.5 PMc PM10

β (95% CI) β (95% CI) β (95% CI)

Z-scores of HFA -0.23 (-0.42,-0.05)† -0.33(-0.58,-0.08)‡ -0.15(-0.26,-0.04)‡

Z-scores of WFA 0.18 (-0.02,0.38) 0.14 (-0.12,0.41) 0.09 (-0.03,0.21)

Z-scores of WFH -0.09 (-0.33,0.15) -0.05 (-0.37,0.27) -0.04 (-0.19,0.10)

OR (95% CI) OR (95% CI) OR (95% CI)

Stunting§ 1.74 (1.11-2.72)† 2.96 (1.61-5.44)‖ 1.51 (1.16-1.97)‡

Underweight¶ 0.32 (0.22-0.46)‖ 0.45 (0.28-0.71)‡ 0.57 (0.47-0.71)‖
Wasting** 1.18 (0.65-2.16) 1.37 (0.59-3.16) 1.13(0.79-1.62)

PM
2.5

 – particulate matter with an aerodynamic diameter of 2.5 micron (μm); PM
c
 – particulate matter with an aerodynamic diameter 

of 2.5 to 10 μm, PM
10

 – particulate matter with an aerodynamic diameter of 10 μm, β – beta, CI – confidence interval, HFA – height 
for age, WFA – weight for age, WFH – weight for height, OR – odds ratio
*Main analysis: adjusted for age, sex, low birth weight, asthma history, anaemia history, history of dental caries, being ill for the last 
two weeks, optimal feeding scores, secondary smoke, residence, maternal education level, maternal height, maternal weight, moth-
er suffering from anaemia during pregnancy, wealth category, drinking water source, relative humidity, mean temperature, altitude.
†P-value is between 0.01 and 0.05.
‡P-value is between 0.001 and 0.01.
§Stunting: Z-scores of HFA<-2.
‖P < 0.001.
¶Underweight: Z-scores of WFA<-2.
**Wasting: Z-scores of WFA<-2.
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Table 4 showed the effect estimates and 95% CI for the association between the malnutrition indicators 
and per IQR μg/m3 increase in average one-year PM

2.5
, PM

c
, and PM

10
 exposure according to the adjusted 

models. In general, PM
c
 and PM

2.5
 the maximum and minimum effect on Z-scores of HFA and stunting, re-

spectively. For underweight, PM
2.5

 and PM
c
 showed the largest and smallest effect, respectively. For exam-

ple, the results showed that the OR for stunting was 1.36 (95% CI = 1.06 to 1.75) per IQR μg/m3 increase 
in PM

2.5
, 1.80 (95% CI = 1.30 to 2.50) per IQR μg/m3 increase in PM

2.5
, and 1.55 (95% CI = 1.17 to 2.05) per 

IQR μg/m3 increase in PM
10

.

Table 4. Associations of risk of malnutrition indicators with per interquartile range (IQR) microgrammes per cubic 
metre (μg/m3) increase of ambient air pollution

Main analysis*
PM2.5 PMc PM10

β (95% CI) β (95% CI) β (95% CI)

Z-scores of HFA -0.13 (-0.23,-0.03)† -0.18 (-0.31,-0.04)‡ -0.16 (-0.27,-0.04)‡

Z-scores of WFA 0.10 (-0.01,0.21) 0.08 (-0.07,0.22) 0.10 (-0.03,0.22)

Z-scores of WFH -0.05 (-0.19,0.08) -0.03 (-0.20,0.14) -0.05 (-0.20,0.10)

OR (95% CI) OR (95% CI) OR (95% CI)

Stunting§ 1.36 (1.06-1.75)† 1.80 (1.30-2.50)‖ 1.55 (1.17-2.05)‡

Underweight¶ 0.53 (0.43-0.64)‖ 0.65 (0.50-0.83)‡ 0.56 (0.45-0.69)‖
Wasting** 1.10 (0.79-1.54) 1.19 (0.75-1.87) 1.14 (0.77-1.67)

PM
2.5

 – particulate matter with an aerodynamic diameter of 2.5 μm, PM
c
 – particulate matter with an aerodynamic diameter of 2.5 

to 10 μm, PM
10

 – particulate matter with an aerodynamic diameter of 10 μm, β – beta, CI – confidence interval, HFA – height for 
age, WFA – weight for age, WFH – weight for height, OR – odds ratio
*Main analysis: adjusted for age, sex, low birth weight, asthma history, anaemia history, history of dental caries, being ill for the last 
two weeks, optimal feeding scores, secondary smoke, residence, maternal education level, maternal height, maternal weight, moth-
er suffering from anaemia during pregnancy, wealth category, drinking water source, relative humidity, mean temperature, altitude.
†P-value is between 0.01 and 0.05.
‡P-value is between 0.001 and 0.01.
§Stunting: Z-scores of HFA<-2.
‖P < 0.001.
¶Underweight: Z-scores of WFA<-2.
**Wasting: Z-scores of WFA<-2.

The relationships between long-term PM exposure and malnutrition indicators were nonlinear in the ad-
justed model (Figure S2-S7 in the Online Supplementary Document).

Stratified analyses

Figure 1 and Figure 2 depicted the results of the stratified residence analyses for exposure to PM
2.5

, PM
c
, 

and PM
10

, respectively. In general, a greater effect of ambient PM was observed in urban areas. For Z-scores 
of HFA, Z-scores of WFA, Z-scores of WFH, stunting and underweight, the associations were stronger in 
urban areas than those in rural areas. For example, the association between stunting and per 10 μg/m3 in-
crease in PM

2.5
 was significantly higher among urban children than rural children. As for wasting, the dif-

ferences in effect estimations between the rural areas and urban areas were not significant.

Table S3-S8 in the Online Supplementary Document showed the results of the stratification analysis ex-
cept for residence. In general, a greater effect of PM

2.5
 on Z-scores of HFA, Z-scores of WFA and Z-scores of 

WFH was observed in children who had low household income, unimproved drinking water sources, and 
low optimal feeding scores. For effect PM

2.5
 on stunting, there was no statistical difference between sub-

groups. The effect PM
2.5

 on underweight among children who were younger was greater. Similar effects also 
occurred in PM

c
 and PM

10
.

Sensitivity analyses

Table S9-S12 in the Online Supplementary Document showed comparable effect estimates for malnu-
trition indicators when average ambient PM concentrations from different months before the survey were 
used as the exposure variable. For instance, increases of 10 μg/m3 in PM

2.5
 over nine months average con-

centration were associated with increases in the OR for stunting of 1.87 (95% CI = 1.11 to 3.16), the OR for 
underweight of 0.26 (95% CI = 0.17 to 0.39), the OR for wasting of 1.20 (95% CI = 0.59 to 2.42). The results 
from different exposure time indicated the robustness of the results.



Ambient particulate matter and child malnutrition

PA
PE

R
S

www.jogh.org • doi: 10.7189/jogh.13.04112 9 2023  •  Vol. 13  •  04112

DISCUSSION
Long-term exposure to ambient PM

2.5
, PM

c
, and PM

10
 was associated with an increased risk of stunting, a 

decreased level of Z-scores of HFA, as well as a decreased risk of underweight in Tibet, with a greater effect 
observed in urban areas. To our knowledge, this is the first study to explore the urban-rural differences in 
the association between postnatal exposure to PM and six malnutrition indicators among children under 
five years old in China.

Our findings indicated long-term exposure to PM
2.5

, PM
c
, and PM

10
 were all positively associated with an 

increased risk of stunting. Few studies have addressed links between ambient air pollution and malnutrition 
indicators [14]. Only one study conducted in India found that exposure to 100 μg/m3 of PM

2.5
 in the month 

of birth was inversely associated with child HFA Z-score [20], which is in line with our results. Several bio-
logical mechanisms have been identified which could be responsible for the association between ambient air 
pollution and stunting. First, exposure to PM in early-life can adversely affect the development of immune 
function in children, contributing to recurrent illness [37]. For example, PM might impair linear growth 
through repeated episodes of febrile respiratory illness, which is associated with an increased risk of child 
stunting [38]. Besides, indirect route is possible, in which families divert income from food and nutrition 
to infection-related health costs, resulting in inadequate diets and impaired linear growth in children [39]. 
Second, children’s lungs are not fully formed until approximately six years of age. Repeated exposure to PM 
in young children might affect the structure and function of lung, triggering chronic immune activation, 
local and systemic inflammation, and growth hormone resistance [1]. A study has found chronic systemic 
inflammatory in children exposed to high concentrations of ambient PM [40]. Proinflammatory cytokines 
can directly affect growth through local regulation of chondrocytes [41]; in addition, proinflammatory cy-
tokines can also combine with endocrine and nutritional factors to affect longitudinal bone growth by in-
hibiting insulin-like growth factor one [41]. Finally, air pollution might lead to vitamin D deficiency through 

Figure 1. Associations of risk of continuous malnutrition indica-
tors with per 10 microgrammes per cubic metre (μg/m3) increase 
of ambient air pollution stratified by residence. The adjusted 
models were adjusted for age, sex, low birth weight, asthma his-
tory, anaemia history, history of dental caries, being ill for the 
last two weeks, optimal feeding scores, secondary smoke, ma-
ternal education level, maternal height, maternal weight, moth-
er suffering from anaemia during pregnancy, wealth category, 
drinking water source, relative humidity, mean temperature, alti-
tude. *P value for difference <0.05. HFA – height for age, WFA – 
weight for age, WFH – weight for height

Figure 2. Associations of risk of categorical malnutrition indi-
cators with per 10 microgrammes per cubic metre (μg/m3) in-
crease of ambient air pollution stratified by residence. Stunting, 
Z-scores of HFA<-2; underweight: Z-scores of WFA<-2; wasting: 
Z-scores of WFA<-2; the adjusted models were adjusted for age, 
sex, low birth weight, asthma history, anaemia history, history 
of dental caries, being ill for the last two weeks, optimal feed-
ing scores, secondary smoke, maternal education level, maternal 
height, maternal weight, mother suffering from anaemia during 
pregnancy, wealth category, drinking water source, relative hu-
midity, mean temperature, altitude. *P value for difference <0.05.
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multiple pathways, affecting immune function and bone metabolism [42]. Inadequate vitamin D concentra-
tions are associated not only with an increased risk of respiratory infection in children, but also with bone 
metabolism and growth limitations [43,44].

The effects of ambient air pollution on stunting of urban children were found to be greater than those of 
rural children, which may be related to higher concentrations of ambient air pollution in urban areas than 
in rural areas. Our results indicated that the concentrations of ambient PM in urban areas of Tibet were 
higher than those in rural areas, which was consistent with some previous studies [45,46]. In addition, the 
PM concentrations and compositions between urban areas and rural areas were different [47]. This leads to 
different components of PM between urban and rural areas, as well as different toxicities of specific com-
ponents in the missed composition, which in turn leads to different toxicities and health effects of PM [48].

The relationship between ambient PM and underweight has not yet been epidemiologically assessed among 
children under five years of age. A previous epidemiological study conducted in Nepal found that exposure 
to household air pollution was significantly associated with the risk of underweight among children aged 
0-59 months [49]. We observed that long-term exposure to ambient PM

2.5
, PM

c
, and PM

10
 was negatively 

associated with an increased risk of underweight in Tibet. This inconsistency might be partly due to dif-
ferences in PM concentration and composition across different study regions, and partly due to population 
variation [46]. Accumulating studies have shown that ambient PM is an important risk factor for obesity. 
Ambient PM may lead to insufficient physical activity and epigenetic modulation, promoting oxidative stress 
or inflammatory responses and subsequently increasing the risk of obesity [50,51]. Long-term exposure to 
ambient PM was associated with increased body weight, thereby protecting against underweight.

We found PM
2.5

 had the largest protective effect on underweight among the three PM fractions. Smaller 
particles could reach the depths of the respiratory tract, and had a higher surface volume ratio, and car-
ried more toxins, thereby promoting more severe oxidative stress and inflammation [52]. Compared with 
PM

10
, PM

2.5
 contains a more complex mixture of fine particles and is more prone to obesity, which may 

explain the greater effect of PM
2.5

 on underweight. At the same time, we found that long-term exposure 
to PM

c
 had the greatest effect on the risk of stunting. The reason may be related to the different chemi-

cal composition, toxicity, and health effects of particulate pollutants with different particle sizes. In the 
future, research on the impact of different pollutants on children’s growth and nutritional status needs 
to be further strengthened.

The stratification analysis showed that a greater effect of PM
2.5

 on Z-scores of HFA, Z-scores of WFA and 
Z-scores of WFH was observed in children who had low household income, unimproved drinking wa-
ter sources, and low optimal feeding scores. The higher risk of low household income may be due to low 
household income inadequate diets for children and impaired linear growth [14]. As for unimproved 
drinking water source, it might be an important factor leading to diarrhoea and malnutrition [53]. Chil-
dren with low optimal feeding scores may have difficulty in meeting their nutritional intake for growth 
and development.

There are several strengths in this study. First, to our knowledge, this is the first study to estimate the ef-
fect of postnatal exposure to air pollutants on six malnutrition indicators among children under five years 
old in mainland China. Second, we contrasted the effect of ambient PM with different particle sizes, which 
improved our understanding of the adverse effects of air pollutants on child malnutrition indicators. Third, 
we incorporated a rich set of covariates (feeding practice, secondary smoking exposure, water source, etc.) 
that have an important influence on the outcome to control for confounding issues in the analysis.

Some limitations of our study should be mentioned. First, our study only considered ambient air pollutants 
exposure, but not indoor air pollutants exposure, which is equivalent to treating all individuals as having 
the same indoor pollution level. Previous studies have found that indoor pollution has an impact on chil-
dren’s growth [18]. For those who were actually exposed to high indoor pollution (considered average in-
door pollution) in this study, the results may overestimate the effect of outdoor air pollution on growth, i.e. 
the lower Z-scores of HFA in this sample may be attributable to indoor air pollution in addition to outdoor 
air pollution, or the combined effect of outdoor and indoor pollution. Second, recall bias may appear due to 
partial information (diet, disease history, etc.) were self-reported by respondents. Third, causal interpreta-
tions between air pollution exposures and malnutrition indicators should be made with caution considering 
the inherent limitation of cross-sectional design. Fourth, we averaged PM concentration across periods as 
individual exposure concentration, and did not fully account for seasonal differences in PM concentration 
and composition, which might have been the cause of risk of bias. Fifth, due to limited data availability, it 
was impossible to adjust all the potential confounding factors, such as occupation of guardian.
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