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Exploring How Street-Level Images Help Enhance
Remote-Sensing-Based Local Climate Zone Mapping

Cai Liao , Rui Cao , Member, IEEE, Qi-Li Gao , Jinzhou Cao , and Nianxue Luo

Abstract—The local climate zone (LCZ) classification scheme is
effective for climatic studies, and thus, timely and accurate LCZ
mapping becomes critical for scientific climate research. Remote
sensing images can efficiently capture the information of large-scale
landscapes overhead, while street-level images can supplement the
ground-level information, thus helping improve the LCZ mapping.
Previous study has proven the usefulness of street-level images in
enhancing LCZ mapping results; however, how they help to im-
prove the results still remains unexplored. To unveil the underlying
mechanism and fill the gap, in this study, the feature importance
analysis is performed on classification experiments using different
data sources to reveal the contributions of different components,
while feature correlation analysis is adopted to find the relationship
between street view images and key LCZ indicators. The results
show that fusing street view images can help improve the classi-
fication performance considerably, especially for compact urban
types such as compact highrise and compact midrise. In addition,
the results further show that the building and sky information
embedded in the street view images contribute the most. The feature
correlation analysis further demonstrates their strong correlations
with key LCZ indicators, which define the LCZ scheme. The find-
ings of the study can help us better understand how street-level
images can contribute to LCZ mapping and facilitate future urban
climate studies.

Index Terms—Climate change, data fusion, interpretability, local
climate zone (LCZ), remote sensing, street-level images.

I. INTRODUCTION

THE urban heat island (UHI) phenomenon occurs when
urban areas experience significantly higher temperatures
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Fig. 1. LCZ classification scheme, which includes ten built classes (1–10)
and seven land cover classes (A–G) [2]. (The figure is adapted from previous
work [4]).

compared to their rural surroundings [1]. This phenomenon is
closely linked to the processes of climate change and urbaniza-
tion. As urban populations continue to grow, with over half of the
global population residing in urban regions, the impacts of UHI
are becoming a pressing concern that demands close attention.

The local climate zone (LCZ) classification system [2] pro-
vides a research framework for the study of UHI, which provides
a way to categorize urban areas based on their key characteris-
tics, including urban structure, land cover, and human activity.
Specifically, the LCZ classification system consists of 17 types,
including ten built types and seven land cover types, as illustrated
in Fig. 1. This information can then be used to study the thermal
behavior of an urban area and its impact on the local climate.
Furthermore, LCZ facilitates the exchange of urban temperature
observations, making it an indispensable tool for climate re-
search in general. In addition, it is found to be useful for climate
modeling, weather forecasting, urban planning, building energy,
carbon emission, and many other related fields [3]. Therefore, it
is important for timely and accurate LCZ mapping.

Currently, there are several ways to map LCZ; according
to the major data source used, these methods can be broadly
categorized into three classes, i.e., in situ measurement-based
method [5], GIS-based method [6], [7], and remote-sensing-
based [8], [9] method. Remote-sensing-based methods have
become popular due to the easy accessibility to large-scale
remote sensing data. However, they lack ground-level details,
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especially in high-density urban areas, which is vital for LCZ
mapping [10]. Street view images (SVIs), as an emerging data
source, have shown the ability to capture 3-D building structure
and ground-level details [11], [12] and, therefore, can serve as
a valuable source of information for LCZ mapping. However,
despite its potential, research on how SVIs can aid in LCZ
mapping results remains limited [4], [13], [14].

To address this gap, we conduct extensive experiments to
investigate how SVIs can help with LCZ mapping from different
perspectives. Our study found that SVIs contain useful informa-
tion, especially for building details, which are critical for LCZ
recognition and mapping. The findings of this study provide
valuable insights into how street-level images can contribute to
LCZ mapping and offer useful guidance for future urban climate
studies.

The rest of this article is organized as follows. Section II
reviews the related works of LCZ mapping and SVI applica-
tions. Section III describes the study area and data. Section IV
introduces the methods used. Section V presents the experiments
and results analysis. Section VI discusses some important issues.
Finally, Section VII concludes this article.

II. RELATED WORK

A. LCZ Mapping

Mapping LCZs has been the subject of numerous efforts,
which can generally be categorized into three methods: in situ
measurement [5], GIS-based [7], [15], and remote-sensing-
based [8], [9]. In situ measurement requires professionals to
deploy instruments in the field and collect data related to LCZ
types [5]. Because this method involves complex processing and
demands the involvement of personnel, it is time consuming
and impractical at large scale. GIS-based methods, on the other
hand, rely on complete and high-quality GIS data such as digital
surface models (DSMs), road network data, and 3-D building
data, which can be used to calculate LCZ-related indicators [2].
These indicators can further be leveraged to classify the land
into different LCZ types according to the related classification
rule sets [7], [15]. Although these methods are convenient, they
tend to be difficult to implement widely because collecting
complete GIS data is challenging in many cities, particularly
in less developed ones.

Remote-sensing-based methods are gaining increasing attrac-
tion as remote sensing technology advances and open access data
become more available. Researchers have conducted various
studies using remote sensing data, and among these studies, the
World Urban Database and Access Portal Tools (WUDAPT)
[8] method has become a prevalent choice. The WUDAPT
method acquires free Landsat remote sensing data and volunteer-
contributed digitized LCZ labels to build random forest models
and then performs classification prediction using the trained
models [8]. Although popular, the WUDAPT method is in-
herently a pixel-level classification approach, which overlooks
the contextual information that is critical for LCZ mapping. To
address the issue, grid-based methods are proposed, which first
divide the study areas into spatial grids with size of several hun-
dreds and then classify the grids with enclosed image patches,

which include more surrounding contextual information [9],
[16]. Compared with GIS-based methods, remote-sensing-based
methods employ more easily available satellite images, making
it easier to update and manage LCZ maps.

B. SVI Applications

SVIs are collected with horizontal view points that are similar
to human beings and can capture abundant ground-level infor-
mation, which usually cannot be captured from the top-down
view by satellite imagery or aerial imagery. Therefore, they
are considered as a valuable source to complement remote
sensing imagery (RSI). In addition, with the growing acces-
sibility of SVIs and the image understanding and computer
vision techniques, SVIs are widely used for a wide variety of
applications [11], such as urban land use classification [17],
[18], building instance classification [19], building height es-
timation [12], house price prediction [20], crop type identifi-
cation [21], mobility pattern prediction [22], and health-related
research [23]. Previous research has also shown that street view
images are useful for LCZ classification in image level [13],
[14], and they are also demonstrated to be complementary to
RSI in LCZ mapping [4].

C. Summary

Owing to the capture view limitations, remote sensing images
cannot capture LCZ-related ground-level details, which, how-
ever, can be provided by street-level images. Previous works
have demonstrated the value of SVIs for LCZ classification in
sensing the urban environment [4], [13], [14] and have empir-
ically proven the usefulness of integrating SVIs with RSI to
augment the mapping performance [4]. However, how the SVIs
help to achieve this improvement still remains unexplored. To
bridge the gap, in this study, we present several approaches to
understanding the situation from different perspectives.

III. STUDY AREA AND DATA

A. Study Area

Hong Kong is one of the most densely populated cities in
the world, with over 7.5 million population residing only less
than one-quarter of the total 1104-km2 land area. It has 18
districts with a wide variety of landforms, as shown in Fig. 2.
The urban morphology of Hong Kong is sophisticated, which
poses challenges for automatic LCZ classification and mapping
in Hong Kong.

B. Data for LCZ Mapping

1) Remote Sensing Imagery: For the RSI, the Sentinel-2
imagery is adopted in this study, which is obtained from Google
Earth Engine, filtered by cloud cover percentage less than 3%.
After that, ten bands are selected from the Sentinel-2 imagery
following previous practice [9]. The selected bands are B2, B3,
B4, B5, B6, B7, B8, B8A, B11, and B12. For red, green, blue,
and near infrared bands, the spatial resolution is 10 m, while
others are 20 m, which are resampled to 10 m for further use.
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Fig. 2. Study area of Hong Kong.

2) Street View Images: The SVIs are requested from Google
Street View Static API.1 The sample points of SVIs are generated
along the road networks with a distance equal to 10 m, and the
hexagon-constraint method with an inradius of 50 m is used
to decrease the sample points while keeping them distributed
evenly [4]. Then, with these sample points, we request the
corresponding SVIs via the Google Street View API while
passing the latitude and longitude of these points as parameters.
To best exploit the panoramic view of SVIs, for each sample
point, we request four images with field of view equal to 90◦

and headings of 0◦, 90◦, 180◦, and 270◦. The image size is taken
as 640 × 640 pixels.

3) Auxiliary GIS Data: To perform the LCZ mapping, the
Hong Kong administrative boundary is essential for defining
the study area, and the mapping result is also based on the
divided grids of the boundary data. We downloaded the official
administrative boundary GIS data from the government geodata
portal. In addition, since Google SVIs are mainly captured along
road networks, we downloaded the OSM road networks of Hong
Kong via the Python package OSMnx [24].

4) LCZ Label Data: In this study, LCZ label data for Hong
Kong provided by the WUDAPT project [8] are used, spreading
over all 18 districts in Hong Kong covering 17 LCZ categories.
The data are provided in vector GIS format, where each vector
element is represented as a polygonal area with an LCZ category
attribute identifying the area as belonging to a certain LCZ type.
To construct the classification dataset, the LCZ polygons are first
rasterized and then provided as the label for the mapping units.
In this study, the number of mapping units with valid LCZ labels
is 2555.

C. Data for Interpretation

Although it is difficult to understand how SVIs help augment
the LCZ mapping performance directly, it is helpful to relate
SVIs to the key indicators of urban morphology and land cover

1[Online]. Available: https://developers.google.com/maps/documentation/
streetview/request-streetview

parameters, which are closely associated with the LCZ classifi-
cation system and can serve as proxy for interpretation.

From previous studies, among all the LCZ-related indicators,
surface structure and cover parameters have been commonly
used for LCZ classification [25], including sky view factor
(SVF), aspect ratio, building surface fraction (BSF), impervious
surface fraction (ISF), pervious surface fraction (PSF), height
of roughness elements, and terrain roughness class [2]. In this
study, the four key commonly used indicators, i.e., SVF, BSF,
ISF, and PSF, are adopted. To calculate the SVF, DSM data
covering the whole Hong Kong region are collected from Esri
China (Hong Kong). There are 2084 DSM tiles with spatial
resolution of 0.5 m. The DSM tiles are first merged into a single
tiff file and then resampled to 2 m to alleviate the computational
burden. For BSF calculation, building data are collected from the
Hong Kong GeoData store website. The collected building data
are provided by the Hong Kong Lands Department in the form
of polygons, and the geometry area of each building footprint is
used to calculate the BSF value. The PSF can be derived from
calculating the normalized difference vegetation index (NDVI)
value using the Sentinel-2 imagery [15].

D. Study Units

In the study, there are two kinds of study units, i.e., uniform
spatial grids and hexagonal grids. The former grids are used
for remote sensing image crop and serve as the basic mapping
units for LCZ mapping, while the latter is the sampling district
for SVIs and also serve as the study unit for key LCZ indicator
computation. The spatial relationships of the spatial grids and
hexagons are illustrated in Fig. 3.

IV. METHODOLOGY

The proposed workflow is shown in Fig. 4. There are two
major steps, i.e., 1) LCZ mapping fusing RSI and SVI data
and 2) result analysis and interpretation. When interpreting the
contributions of SVI for LCZ classification, two approaches
are used in this study: Feature importance analysis and feature
correlation analysis.

A. LCZ Mapping Fusing RSI and SVI

1) Generating Mapping Units: For LCZ mapping, the study
area is first divided into 320 × 320 m2 spatial grids. Then,
using these uniform grids as basic mapping units, we extract
the features for classifying the LCZ type of each mapping unit
from corresponding Sentinel-2 imagery and SVIs. Specifically,
each mapping unit is accompanied by a Sentinel-2 imagery patch
cropped by its extent, as well as variable SVIs located within that
mapping unit.

2) Extracting Features From RSI and SVI: For the RSI,
each mapping unit includes a Sentinel-2 image patch with
32 × 32 pixel size. The statistics including mean, variance,
maximum, minimum, skewness, and kurtosis of the pixel values
of the ten bands are computed and stored as a 60-dimensional
feature vector.

https://developers.google.com/maps/documentation/streetview/request-streetview
https://developers.google.com/maps/documentation/streetview/request-streetview


LIAO et al.: EXPLORING HOW STREET-LEVEL IMAGES HELP ENHANCE REMOTE-SENSING-BASED LOCAL CLIMATE ZONE MAPPING 7665

Fig. 3. Illustration of study units.

Fig. 4. Overview of the proposed workflow, including (1) LCZ mapping fusing RSI and SVIs and (2) result analysis and interpretation.

As for the SVIs, after the sampling process mentioned in
Section III-B2, a spatial grid of 320 × 320 m2 can contain
variable SVI points. For each SVI point, the four SVIs are first
fed into the pretrained DeepLab-v3+ neural network model [26]
to classify the pixels as one of the 19 classes in the Cityscapes

dataset [27], which is collected to understand the urban environ-
ment along roads. The 19 classes are road, sidewalk, building,
wall, fence, pole, traffic light, traffic sign, vegetation, terrain,
sky, person, rider, car, truck, bus, train, motorcycle, and bicycle.
Then, the pixel counts of the 19 classes are summed up as a
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Algorithm 1: Fuse RSI and SVI Features for Mapping Units
Representation.

Input:RSI feature set Fr = {F i
r}Ni=1

Input:SVI feature set Fs = {F i
s}Mi=1

Input:mapping unit set U = {ui}Ni=1

Output:Representation set for mapping units
Fu = {F i

u}Ni=1

1: for ui ∈ U do
2: ni = GetNumOfSVI(ui)
3: if ni > 0 then
4: F i

u = concat(F i
r , aggregate({F j

s }ni
j=1))

5: else
6: F i

u = concat(F i
r ,

∑M
j=1 F j

s

M )
7: end if
8: end for

19-dimensional feature vector, and the four 19-dimensional
feature vectors from four SVIs of the same SVI point are concate-
nated in the rowwise direction to finally obtain a 76-dimensional
feature vector for each SVI point.

3) Classifying Mapping Units for LCZ Mapping: After the
feature extraction process, the features of RSI and SVI are
obtained. To fuse them together, Algorithm 1 is adopted. As
for the RSI features, since each mapping unit only has a single
RSI feature vector accompanied, no more operations are needed.
For SVI features, limited by the spatial coverage of the street
view points, some mapping units may contain no SVIs. To deal
with this circumstance, the mean of all valid SVI features will
be assigned to these mapping units. When there are multiple
street view points located within a single mapping unit, the SVI
features extracted from these SVI points are aggregated into one
feature vector by using aggregation functions, such as mean and
max pooling. After the process mentioned above, the RSI feature
and the aggregated SVI feature can be concatenated to obtain
the final fused feature vector to represent each mapping unit.

To perform the classification experiments, the rasterized WU-
DAPT polygons are adopted as labels for the mapping units. The
XGBoost model is chosen by reason of its high classification
performance and interpretability. For the classification experi-
ments, the cross-validation method with five folds is employed to
attain more stable results. During each fold, the XGBoost model
is fit on the partitioned training dataset, and the classification
performance is evaluated on the test dataset. For the purpose of
finding if fusing SVI actually helps improve the performance of
classifying the LCZ, the classification experiment is performed
on RSI, SVI, and fusing RSI and SVI together. For experiments
using feature combinations of the three kinds mentioned above,
the XGBoost model with the best performance is picked out as
the classifier. Finally, for all the mapping units, the LCZ mapping
results are obtained by predicting the LCZ type of each mapping
unit with the classifier.

B. Feature Importance Analysis

In this study, SHapley Additive exPlanations (SHAP) analy-
sis [28] is employed to examine the significance of the RSI and

SVI features in predicting the LCZ types. SHAP analysis [28]
is a method used to elucidate the predictions made by machine
learning models. It assesses the influence of each feature on a
particular prediction, enabling us to comprehend the factors that
contribute positively or negatively to the output of the model.
By aggregating the individual contributions of features across
multiple predictions, it allows us to assess the overall importance
of each feature in the performance of the model. Therefore, the
SHAP analysis can help us identify RSI and SVI features that
are consistently influential to LCZ predictions.

Specifically, since we adopted a fivefold cross-validation
method to obtain more stable performance evaluation results,
the contribution of each feature to the prediction is measured by
calculating the mean absolute SHAP values on the full dataset.
As part of this process, the XGBoost model was fitted on four
folds of the full dataset for each fold. The mean absolute SHAP
values were then calculated on these four folds of the full dataset.
This calculation was repeated for all five folds of the cross
validation. Therefore, the SHAP values were computed on each
sample of the whole dataset four times, resulting in a total of
20 sets of SHAP values (5 folds × 4 sets of SHAP values).
By aggregating the SHAP values, we can calculate the mean
absolute SHAP values to measure the contributions of different
features.

C. Feature Correlation Analysis

To conduct feature correlation analysis, we begin by comput-
ing the key LCZ indicators, which consist of SVF, BSF, ISF, and
PSF. These indicators are calculated based on hexagons with a
50-m inradius. Each hexagon corresponds to an SVI point (as
depicted in Fig. 5). The specific calculation methods for LCZ
indicators are summarized in Table I. Once the indicators are
computed, we proceed to measure the correlations between the
SVI features and the obtained key LCZ indicators using Pearson
correlation coefficients.

1) Calculating SVF: In analyzing the correlation between
SVIs and key LCZ indicators, the SVF is considered as an
important indicator with potential significant correlation [14].
Two approaches are used in this study to compute SVF values:
one based on DSM data and the other based on SVIs. The
DSM-based approach yields a raster SVF map, which is useful
for large-scale calculations, while the SVI-based approach pro-
vides SVF values at specific location points, requiring additional
processing to derive an SVF map. In the feature correlation
analysis (see Section V-C), the DSM-based approach is used
to generate an SVF map for the entire Hong Kong region. In
the case studies (see Section V-D), the SVI-based approach is
used to calculate a single SVF value from a single street view
panorama.

For the DSM-based approach, the SVF calculation function
provided by SAGA-GIS software [29] is employed. This func-
tion operates on raster data and requires specifying the number
of directions and search radius for computing the SVF value
for each cell. The algorithm consists of several steps. Initially,
it determines the number of cells to be considered based on
the defined search radius. Subsequently, it calculates the height
difference between the current cell and its surrounding cells.
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Fig. 5. Illustration of key LCZ indicators: SVF, BSF, and PSF.

TABLE I
DEFINITION OF KEY LCZ INDICATORS

Using this information, it determines the slope direction and
slope angle of the current cell. Finally, it computes the SVF value
using the derived slope direction and slope angle. Specifically,
we input the 2-m DSM data into the aforementioned tool to
derive a 2-m SVF map. Then, since each SVI is related to a
hexagon area (as shown in Fig. 5), the zonal statistics method
is applied to the SVF map to achieve a one-to-one relationship
between SVI features and SVF values. The final SVF value of
each hexagon is computed as the area-weighted average of the
obtained 2-m SVF map

SVFdsm =

∑n
i=1 Si · SVFi∑n

i=1 Si
(1)

where n denotes the number of nonbuilding SVF grids (2-m
resolution) that intersect with the hexagon, and Si and SVFi

represent the area and the SVF value of the ith SVF grid,
respectively.

The SVI-based approach aims to determine the proportion
of sky pixels in the street-view panoramic images [30]. This is

achieved by obtaining multiple SVIs of the same location, cap-
turing a full 360◦ panoramic view, and stitching them together to
generate panoramas. These panoramas are then processed using
DeepLab-v3+ [26] pretrained on Cityscapes [27], which was
described in Section IV-A. Through semantic segmentation, the
pixels in the panorama are classified into one of the 19 Cityscapes
classes. The upper half of the panorama is preserved, and the sky
pixels are used to calculate the SVF value. To accomplish this,
the upper half of the panorama is transformed from a cylindrical
projection to an azimuthal projection, resulting in a fisheye
image [31]. Then, the SVF can be computed based on the fisheye
image using the following formula [32]:

SVFsvi =
π

2n

n∑
i=0

(
sin

π (2i− 1)

2n

)(
pi
ti

)
(2)

where n represents the number of concentric annular rings of
equal width which the fisheye image is divided into, while pi
and ti are the number of the sky pixels and the total number of
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pixels of the ring i. In our experiments (see Section V-D), n is
set to 100 to obtain more precise results.

2) Calculating Surface Fraction Indicators: Surface frac-
tions of different land cover types are also important LCZ
indicators, such as BSF, PSF, and ISF.

Within each hexagon, the BSF value is computed by dividing
the hexagon area by the building footprints area

BSF =

∑n
i=1 BSi

Shex
(3)

where n denotes the number of buildings that intersect with the
hexagon area, BSi denotes the footprint area of the ith building,
and Shex represents the area of the hexagon.

To compute PSF, bands of B4 (NIR) and B8 (RED) of the
Sentinel-2 imagery are used to first obtain the NDVI value
(NDVI = NIR−RED

NIR+RED ); then, the Sentinel-2 imagery pixels with
NDVI greater than 0.2 are filtered to compute the PSF values [6]
within each hexagon

PSF =

∑n
i=1 PSi

Shex
(4)

wheren denotes the number of filtered grids of the pervious map
that intersect with the hexagon area, PSi denotes the area of the
ith grid, and Shex represents the area of the hexagon.

Finally, the ISF is obtained by subtracting BSF and PSF

ISF = 1− BSF − PSF. (5)

3) Pearson Correlation Analysis: To interpret the correlation
between the SVI features and the key LCZ indicators, the
Pearson correlation coefficient is computed as a representation
of the correlation strength. The Pearson correlation coefficient
between two variables X and Y with n observations can be
expressed using the following equation:

rX,Y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6)

where rX,Y is the Pearson correlation coefficient, xi and yi
are the ith values of the two variables, and x̄ and ȳ are their
respective means. The coefficient ranges from −1 to 1, where
−1 and 1 represent a perfect negative and positive relationship,
respectively, and 0 suggests no relationship. In addition, the p-
value is calculated to determine if this correlation is statistically
significant or simply due to chance. If the p-value is below
a certain threshold (typically 0.05), it indicates a statistically
significant correlation; conversely, if the p-value exceeds the
threshold, the correlation is considered statistically insignificant.

Using the aforementioned calculation methods for the key
LCZ indicators, for each SVI point, four LCZ indicators (SVF,
BSF, ISF, and PSF) can be calculated. The Pearson correlation
coefficient, along with the corresponding p-value, can be com-
puted separately for each SVI feature and each LCZ indicator
using all the available SVI samples.

TABLE II
OVERALL CLASSIFICATION RESULTS

V. RESULTS AND ANALYSIS

A. Classification and Mapping Results

1) Overall Quantitative Results: To evaluate the classifica-
tion results, the overall accuracy (OA), accuracy among the
urban LCZ types (OAurb), accuracy among the natural LCZ
types (OAnat), average accuracy (AA), weighted accuracy (WA),
and Kappa coefficient are computed. The overall classification
results of using different input data sources are presented in
Table II.

From the table, we can see that the SVI classification has
achieved a relatively good performance with OA over 50%,
which shows that the street-level images alone already include
some useful information associated with LCZ types. In contrast,
RSI can achieve an accuracy of more than 70%. The fusion of
RSI and SVI can further improve the classification performance
in terms of all the evaluation metrics, particularly for classwise
metric AA with nearly a 4% increase, which indicates that the
addition of SVIs can help improve the classification of some
difficult-to-recognize categories.

It is interesting to note that OA values lie in the middle of
OAurb and OAnat (the accuracy of urban and natural LCZ types),
and the classification results of natural types are significantly
higher than that of urban types. This implies that urban built-up
landscapes are more complex and difficult to recognize than the
natural ones. However, SVI significantly improves OAurb over
using RSI alone, which meets our expectation since street-level
images include information on urban structures that are related
to the LCZ scheme.

2) Class-Aware Quantitative Results: To further analyze the
classification performance of different LCZ categories, the con-
fusion matrices of different input data are shown in Fig. 6.
From Fig. 6(a), we can find that the SVI is better at classifying
natural LCZ types than built types, while from the perspective of
categories, it has strong ability to classify class A (dense trees),
class C (bush and scrub), and class G (water) and also performs
well in classifying classes 1 (compact highrise), 2 (compact
midrise), 3 (compact lowrise), 4 (open highrise), and class E
(bare rock or paved); the remaining categories are generally
challenging to correctly classify. From Fig. 6(b), we can see
that the classification shows a similar result to the SVI, as RSI is
also better at classifying natural types, which both indicate that
the complex urban morphology contained in built types raises
the difficulty of distinguishing them. On the other hand, the
overall classification accuracy of RSI is superior to the SVI
in the majority of categories, with the exception of class 4,
where the SVI performs significantly better than RSI. Despite
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Fig. 6. Normalized confusion matrices of classification results using different input data. (a) Using SVI only. (b) Using RSI only. (c) Fusing SVI and RSI data.

Fig. 7. LCZ mapping results using different input data. (a) Using SVI only. (b) Using RSI only. (c) Fusing SVI and RSI data.

this, the fusion of the SVI does help to improve the class-aware
classification accuracy, as shown in Fig. 6(b) and (c), where
the fused classification results in classes 3 (compact lowrise),
5 (open midrise), 6 (open lowrise), 7 (lightweight lowrise),
and 10 (heavy industry) significantly outperformed the RSI.
The fact that categories with low classification accuracy are
dramatically enhanced after fusion more than categories with
high classification accuracy is an intriguing finding that suggests
the benefits of the fusion approaches.

3) Qualitative Mapping Results: For LCZ mapping, the clas-
sifier with the best performance of the five folds is picked out.
The mapping results are shown in Fig. 7. As can be seen,
RSI can generate a sensible LCZ map that is consistent with
previous studies [15]. SVI data only cover limited areas along
road networks, and the mapping results are generally reasonable.
When fusing SVI with RSI, the mapping results can be further
enhanced.

B. Feature Importance Analysis

SHAP analysis provides us with a reliable way to compare the
importance of different features that contribute to the classifica-
tion models. For the classification experiments using different
input data, the mean absolute values of the SHAP values for
features are presented in Figs. 8 and 9.

As can be seen from Fig. 8, the top 20 most important features
are presented (y-axis of each subfigure) in the descending order.

For each feature, its contributions to different target LCZ cate-
gories are denoted by different colors, which correspond to the
colors used in LCZ mapping results (as shown in Fig. 7). For the
SVI [see Fig. 8(a)], we can see that the features of the sky play
the most important role in the classification task, accompanied
by vegetation, road, and building, composing the top five most
important features. For RSI [see Fig. 8(b)], the bands of B11
(SWIR 1), B2 (Blue), B4 (Red), and B8 (NIR) are the top five
most important features for classifying the samples to certain
LCZ types.

For fusing RSI and SVI [see Fig. 8(c)], we can find that among
the top 20 most important features, only the feature of building
from the SVI is reserved, the others are all supported by RSI.
When focusing on the features of building-h180, building-h0,
and building-h90 in Fig. 8(c), we can find that LCZ type 1
(compact highrise) and type 2 (compact midrise) account for
the largest percentage, which means that in the classification
task of fusing RSI and SVI, the features of building contribute
mostly to classifying the urban types of compact highrise and
compact midrise. Compared with the other features, we can also
find that the contributions to LCZ type 1 and LCZ type 2 are
almost all from the features of the building.

Fig. 9 offers a different perspective to analyze the feature
importance. Specifically, for each LCZ type (indicated in the
y-axis), the top 20 most important features that contribute to
the classification are presented, which are denoted by different
colors. From Fig. 9(a), for compact built types (classes 1–3), we
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Fig. 8. SHAP summary plot for XGBoost models trained on different input data, with the top 20 most important features listed. (a) SVI. (b) RSI. (c) RSI+SVI.

can find that the features of the building play an important role
in the classification task, while for the open built types (classes
4–6), we can find that nature-related features such as vegetation
and sky contribute the most. From Fig. 9(b), for the compact
built types, bands of B4 and B8 play a significant role in both
class 1 (compact highrise) and class 2 (compact midrise), while
class 3 (compact lowrise) actually benefits most from B5, which
has a direct relationship with vegetation. This is consistent with
the idea that as the height of the built types decreases, the effects
of vegetation may gradually work. When focusing on the feature
importance composition of LCZ type 1 and type 2 in Fig. 9(b)
and (c), we can find that in Fig. 9(b), the features of B8 (NIR)
and B4 (Red) occupy the largest part, while this important role
of B8 and B4 is replaced by the features of building in Fig. 9(c),
which implies that the building part of SVI features makes a
vital contributions to the LCZ classification.

C. Feature Correlation Analysis

For correlation analysis, the Pearson coefficients between
the SVI semantic features and four key LCZ indicators (SVF,
BSF, PSF, and ISF) are calculated and presented in Fig. 10. For
SVF, we can see that features of sky, terrain, and vegetation are
the most positively correlated, while building features are the
most negatively correlated. This is consistent with the definition
of SVF, which is described as, “The fraction of the overlying
hemisphere occupied by sky” [33]. Since buildings block the
sky most from the view on the ground, the correlation between
SVF and the building feature appears strongly negative.

For BSF, vegetation, sky, and terrain are the only semantic
categories negatively correlated, while building dominates the
positive correlation. Since BSF is computed as the ratio of the
building footprint area and the total area of the hexagon, it is
unsurprising to find that the feature of the building has the most
strong positive correlation with the BSF over the other positively
correlated features. On the contrary, for PSF, vegetation and
terrain types are positively correlated. Specifically, vegetation

shows a very strong positive correlation, and terrain shows a
relatively weak positive correlation, while all others are nega-
tively correlated, with building, road, and sidewalk being the
most negatively correlated semantic categories.

For ISF, only vegetation and terrain are negatively correlated,
and the former shows a strong negative correlation, while the
correlation of the latter is relatively weak. The features of sky,
building, and road have positive competitive correlations with
the ISF. While it is easy to understand that building and road
lead the positively correlated categories since they contribute
directly to most impervious surfaces, it is interesting to notice
that sky also presents a strong positive correlation with ISF. One
possible interpretation is that a more visible sky means fewer
trees (included in the vegetation category), and fewer trees mean
a more impervious surface.

The semantic features extracted from SVIs show strong cor-
relations with the urban morphology/land cover parameters,
which serve as defining criteria of the LCZ classification system.
This suggests that the SVIs have the potential to contribute
and enhance LCZ mapping, as they already contain essential
information relevant to the LCZ definition.

D. Case Studies

In order to further investigate how SVIs contribute to im-
proving LCZ classification, specific case studies are selected,
and the classification results using RSI and fusing RSI and SVI
are compared. In addition, the content of SVIs is also analyzed
with details to help better understand what within SVI helps.
Specifically, we select typical samples based on the observations
from the confusion matrices shown in Fig. 6. We find that the
prediction performance of class 5 (open midrise) and class 10
(heavy industry) has been improved the most by fusing RSI and
SVI. Class 7 (lightweight lowrise) is not considered because the
sample of class 7 is relatively rare in Hong Kong. Based on this
finding, two case studies are conducted, and the location, corre-
sponding RSI, and SVIs are presented in Fig. 11. Specifically,
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Fig. 9. Transposed SHAP summary plot for analyzing the feature importance
of each LCZ type. (a) SVI. (b) RSI. (c) RSI+SVI.

both the street-view panoramas and the corresponding computed
SVF values are leveraged to probe into details.

The first study unit A lies in the Southern District of Hong
Kong. The true type of this sample is class 5 (open midrise),
while when predicted with the XGBoost model trained on the
RSI dataset, the predicted type is class 3 (compact lowrise). As
shown in Fig. 11, there are nine SVI points lying in the study
area in case A. From these SVIs, we can see that vegetation and
sky occupy the largest areas, and all the scenes in the SVIs look
open and not compact. The second study unit B lies in the Kwai
Tsing District, with the ground truth of class 10 (heavy industry).
When predicted with the model trained on the RSI dataset, the
incorrect predicted type is class 2 (compact midrise). In the study
area, seven SVIs are presented within the spatial extent. From
the third and sixth SVI, we can find that some cylindrical tanks,
which are mostly used in heavy industry factories, are shown in
the left part. These clues may be the key to help classify sample
B as class 10 (heavy industry).

The SVF values of the two sample regions can be computed
based on (2). For sample A, the final mean SVF value of the nine
panoramas is 0.518, while for sample B, the mean SVF value
is 0.737. From the definitions of the LCZ types, the SVF value
ranges of different LCZ types can be found, which are 0.3–0.6
(class 2, compact midrise), 0.2–0.6 (class 3, compact lowrise),
0.5–0.8 (class 5, open midrise), and 0.6–0.9 (class 10, heavy
industry) [2]. We can see that there is some overlap between
different classes, which suggests that SVF values alone are not
always sufficient enough to distinguish all the LCZ classes. In
our case A, the SVF value of 0.518 obtained from the panoramas
cannot sufficiently distinguish class 5 from class 3. One potential
interpretation is that the vegetation of class 5 has a similar effect
of blocking the sky as the buildings of class 2. Thus, the range
of SVF values of class 3 and class 5 has a certain amount of
overlap. For sample B, the SVF value of 0.737 is high enough
and clearly suggests that it should be classified as class 10.

VI. DISCUSSION

A. Availability and Quality of Street-Level Images

1) Data Availability: To use street-level images for practical
LCZ mapping, data availability is critical. There are several
different sources of street-level images. The most commonly
used street-level images are acquired from online street view
services. In addition to Google Street View, there are also other
similar SVI-based services provided by Baidu,2 Tencent,3 etc.,
which have relatively limited coverage than Google and only
cover cities in China. Besides map service providers, there is
a crowdsourcing street-level image platform named Mapillary4

on which users can upload and share geo-tagged street-level
images. Street-level images can also be accessed through social
media platforms, such as Twitter, Flickr, etc. Furthermore, street-
level images can also be captured by users themselves according
to customized needs. Diverse sources of SVIs facilitate their
practical use in LCZ mapping.

2) Data Quality: Despite the various sources of street-level
images, there are some inherent issues with data quality. The
most prominent limitation of SVIs is the limited spatial and
temporal coverage and resolution. SVI points are distributed
along roads, which are normally sparsely distributed. Besides,
most SVIs are captured in urban areas. In addition to spatial
coverage, the update of SVIs is difficult to control, which is
determined by the street view service providers or sharing users.
The street scenes may change as time goes by, and the update
frequency is highly uncertain across different regions. All these
limitations on spatial and temporal coverage have significantly
limited the quality of SVIs for LCZ mapping. Studies on how to
leverage limited SVIs to enhance the LCZ mapping results are
worthy of further efforts.

Besides, the position accuracy of SVIs is also questionable.
Unlike remote sensing images that usually have very accurate
location information, the positions of street-level images are

2[Online]. Available: https://map.baidu.com/
3[Online]. Available: https://map.qq.com/
4[Online]. Available: https://www.mapillary.com/

https://map.baidu.com/
https://map.qq.com/
https://www.mapillary.com/
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Fig. 10. Feature correlation analysis between SVI semantic categories and key LCZ indicators. (a) SVF. (b) BSF. (c) PSF. (d) ISF (***: p < 0.001, **: p < 0.01,
and *: p < 0.05).

usually coarse and sometimes even incorrect due to the posi-
tioning device and/or the online distribution mechanism. This
issue is also not unusually seen for crowdsourcing platforms
and social media platforms, where the geotags are usually ques-
tionable. Therefore, it is important to know the existing location
quality issues of the SVIs in order to circumvent inappropriate
operations and analysis.

B. Limitations and Future Directions

Although the study explored how street-level images can help
with LCZ mapping and revealed some interesting findings, there
are several limitations that deserve further research in the future.

First, to make it easier to interpret the contributing factors,
only spectral features and statistics of semantic segmentation
features are extracted from RSI and SVI, respectively. The
extracted features are relatively straightforward and simplified
and are far away from exhaustive, which facilitates the under-
standing and interpretation but may also limit the accuracy of
the classification models. How to better balance the tradeoff is
worth further study.

Second, it is worth noting that not all the semantic segmen-
tation classes in the Cityscapes dataset are directly related to

the components of the LCZ scheme. This may explain why
only a few of the extracted semantic features from the SVI
have shown significant contributions in improving LCZ mapping
performance. Furthermore, this also affects the feature correla-
tion analysis since the semantic features are employed as proxy
and are not directly related to LCZ indicators (except for SVF,
which can be calculated directly from the semantic segmentation
results). To address this issue, future studies should explicitly
consider LCZ-related information when determining the cate-
gories into which pixels should be classified. This would help
to improve both LCZ mapping performance and the accuracy of
feature correlation analysis.

In addition, in this study, Hong Kong is selected as the study
area. However, it will be interesting to include more urban areas
of different types to examine the influence of street-level images
on them, which may give us more findings.

VII. CONCLUSION

Timely and accurate LCZ maps play a crucial role in urban
climate studies, particularly in understanding phenomenon like
UHIs. Remote-sensing-based LCZ mapping is becoming popu-
lar, and street-level images can serve as a complementary data
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Fig. 11. Overview of the case studies. (a) and (c) RSI image patches with annotations indicating the locations of SVI points. (b) Study area overview. (d) and
(e) Corresponding SVIs. (f) and (h) Semantic segmentation results of fisheye images transformed from the SVIs (blue: Sky, green: Vegetation and trees, and gray:
Buildings). (g) and (i) SVF calculation results using annular rings.

source to further enhance the results by providing ground-level
details. In this study, our primary objective was to explore the po-
tential of street-level images in improving remote-sensing-based
LCZ mapping. For this purpose, we selected Hong Kong as our
study area and conducted extensive experiments that combined
remote sensing images with street-level images for LCZ classi-
fication and mapping. The findings of our study demonstrated
that the incorporation of street-level images can enhance the
accuracy of the classification results. To delve deeper into the
underlying mechanisms behind this improvement, we conducted
feature importance analysis and feature correlation analysis.
The analysis of feature importance revealed the substantial
contribution of building features to the improvement of LCZ
classification results, especially for compact urban types such as
compact highrise and compact midrise. These findings indicate
that the building information captured in SVIs has a positive
effect on the mapping process. In addition, the correlation anal-
ysis highlighted strong associations between SVI features and

key LCZ indicators, further reinforcing the relevance of SVIs in
LCZ classification.

In the future, several directions can be pursued to advance the
field. First, it is essential to investigate how to strike a balance
between the tradeoff of SVI feature complexity and the inter-
pretation of SVI contributions, ensuring the optimal utilization
of these images. Second, exploring ways to incorporate LCZ-
related information when determining the semantic categories of
SVIs can lead to improved LCZ mapping performance. Finally,
expanding the study to include additional study areas would
offer a more comprehensive understanding of the impact of
street-level images on LCZ mapping.
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