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Abstract
The DC‐side stability of the grid‐tied converter under different control modes is fully
investigated using electrical torque analysis. The small‐signal model of a single converter
connected to an ideal DC bus under various control modes is formulated. Accordingly,
the damping and synchronising coefficient contributed by the DC network and con-
trollers of grid‐tied converter are separately accessed using the electrical torque analysis
method and the stabilising conditions of the grid‐tied converter operating under different
control modes are further derived. The system stability mainly corresponds with DC
network dynamics under constant active power control mode. On the contrary, the grid‐
tied converter under constant DC‐link voltage control mode has no stability problem.
Generally, elevating the DC‐link capacitance or decreasing the droop gain can greatly
improve the stability margin reserve of the VSC‐HVDC links. In addition, the control
gains of the classical PQ controller are proven to have limited impacts on DC‐side system
stability. Finally, the results of numerical simulation prove the validity of the proposed
stability analysis method and the stable boundary for the grid‐tied converter with
different control modes.
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1 | INTRODUCTION

With the large‐scale construction and operation of renewable
energy power stations, the long‐distance bulk power trans-
mission via converter‐based HVDC systems gradually become
popular in modern power grids [1]. The widespread application
of voltage source converters (VSCs) brings convenience to the
operation of HVDC systems [2] but simultaneously generates
new challenges to the stability analysis. Many researchers focus
on analysing the impacts of grid‐tied converters on AC‐side
stability. For example, it is indicated that the system stability
can be influenced by the interaction between phase locked
loops' (PLLs') control dynamics, network dynamics and con-
verter operating conditions [3], and inappropriately selected
parameters of DC‐link voltage control may lead to the
different frequency oscillations of AC‐side systems [4].

However, only a few articles provide analytical stabilising
conditions for VSC‐HVDC systems.

1.1 | Related works

When investigating the stability problem of modern power
system, modal analysis is one of the classical and useful
methods, which examines the system stability by calculating all
the eigenvalues of the system state matrix: The studied system
is always under a stable operation if and only if the real part of
all calculated eigenvalues is negative. Based on modal analysis,
some useful guidance can be given to the system operators by
examining the overall system stability based on several critical
system operating points [5]. In addition, some other methods
derived from modal analysis, such as the gain array (RGA), are
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applied in analysing the power system stability [6]. The dy-
namic model of the MMC‐HVDC system is proposed in Ref.
[7]. Based on modal analysis, the system dominant oscillatory
modes can be identified, and their propensity to instability is
quantified. Moreover, severe oscillations might be introduced
to the HVDC system when DC‐link voltage control parame-
ters are selected improperly [8, 9]. Furthermore, the control
effects of DC current flow controllers (CFCs) are analysed
using Nyquist stability analysis and Bode diagram [10, 11], and
the results indicate that the CFC integration has more impact
on the DC‐side dynamics of the multi‐terminal DC (MTDC)
links rather than on the AC‐side dynamics of the MTDC
system. In addition, the contribution of the DC network and
DC‐link control dynamics to the overall system stability is
accessed in Ref. [12] based on net‐damping criterion. However,
modal analysis not only needs to acquire the detailed param-
eters of the whole system, but also relies on the complex
computations, which fails to explain the instability mechanism
of the overall system and map the stability boundary from the
physical interpretation.

In order to overcome the shortcomings of the above
analysis method, impedance‐based analysis (IMA) is proposed
and gradually become the mainstream stability analysis method
[13]. To apply IMA in studying the modern power system
stability, the research object should be divided into two series‐
connected sub‐systems. The overall system will remain stable if
the ratio between the impedances of the sub‐systems satisfies
the Nyquist stability criterion. The impedance expressions for
the gird‐connected converter are well derived in Refs. [14–16].
Resonance stability in HVDC systems is fully investigated in
Refs. [14, 17], and it is indicated that power transmission dis-
tance, installed capacity of renewable energy and converter
controller dynamics have a profound impact on DC‐side res-
onances. In Ref. [18], it reveals that the stability problem might
be introduced to HVDC systems with the alternation of power
flow direction. In addition, a geometrical approach is proposed
based on the conventional IMA method to well evaluate the
small‐signal synchronisation stability of grid‐forming converter
in Ref. [19]. Although the system stability can be judged only
with the information of impedance using the IMA method, the
proper separation of two sub‐systems limits its application in
complex multi‐terminal HVDC systems. Furthermore, it still
fails to provide analytical and concise stabilising conditions via
this method.

Recently, some other novel methods are proposed for
system stability assessment. Based on the graph theory, the
stability of converter‐tied DC system considering system
structure and parameter uncertainties can be well studied,
however, due to the ignorance of the interactions of the sub-
systems, the proposed stability criterion may be rather con-
servative [20]. Furthermore, [21] proposes a stage‐by‐stage
stability analysis method to identify which converters are
mainly responsible for the overall instability, though it requires
the whole system to be separated into multiple stages and fails
to provide analytical stabilising conditions. The Routh Judge-
ment applied in small‐signal stability in Refs. [22, 23] assess the
DC‐side stability using dominant frequency analysis. Both of

them find the critical variables, which have a significant impact
on the stable operation of VSC‐HVDC links. But only low‐
order power system stability can be well studied through
these methods, and it is unable to provide an analytical crite-
rion for the complex high‐order system.

1.2 | Main contributions

Most existing methods are based on modal analysis or Nyquist
mapping to analyse the system stability. It is difficult to obtain
concise stabilising conditions using these methods, which rely
on complicated mathematical modelling, complex numerical
calculations and drawing quantities of the Nyquist curve.
Hence, the electrical torque analysis method [24] is utilised to
derive the analytical stabilising conditions for VSC‐HVDC
links, which provide simple and efficient small‐signal stability
assessment for high‐order power systems without complex
mathematical modelling, complicated numerical calculations
and Nyquist plots. In this study, the dynamics of the grid‐tied
converter are firstly investigated, and the small‐signal model of
a single converter connected to an ideal DC bus via DC cables
is formulated. Based on electrical torque analysis, the damping
and synchronising coefficients contributed by DC network
dynamics and VSC controllers' dynamics can be well evaluated
separately. Hence, the DC‐side stability of the VSC‐HVDC
system under different control modes can be well investi-
gated as per the derived damping coefficient. The system sta-
bility is mainly related to the DC network dynamics under
constant active power control mode, while the studied system
has no stability problem under constant DC‐link voltage
control mode. In addition, the concise and analytical tuning
rules of the power‐voltage droop controller and the reactive
power compensator are further proposed to improve the sys-
tem stability margin, which may provide useful guidance for
the control design and equipment selection.

2 | MODELLING OF GRID‐TIED
CONVERTER

As illustrated by Figure 1, the VSC‐HVDC system to be
investigated in this study consists of a two‐level VSC con-
nected to an ideal DC bus via DC cables. The DC cables adopt
the classical RL model, which is sufficiently accurate for the
small‐signal stability analysis since the DC‐side electrical
oscillation frequencies do not exceed the feasible frequency
band of the RL line model [11, 25]. Uac is the voltage of the
converter‐tied AC system. Ur

dc denotes the ideal DC bus
voltage, and Us

dc represents the DC voltage at the terminal of
grid‐tied converter. Idc is the current flowing through the DC
cables, and the transmitted active power in the overall system is
noted as Pt.

Furthermore, it is interesting to mention that, due to its
less switch frequency, less power losses and higher reliability,
more engineers prefer to choose the modular multilevel con-
verters (MMCs). However, except that the electrical parameters
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of two types of converters are different, the topology of two‐
level VSC is almost the same as the standard average value
models of MMC [22, 23, 26]. Therefore, in order not to lose
the generality, the two‐level VSC is selected as the research
object for the appropriate analytical model formulation and
small‐signal stability analysis.

2.1 | Network dynamics of grid‐tied
converter

The topology of the grid‐tied converter is illustrated by
Figure 2. Iac represents the current flowing through the AC
transmission line. Uc denotes the AC voltage at the terminal of
grid‐tied converter. Rac and Lac are the equivalent resistance
and inductance of the converter‐tied AC system,respectively.
In addition, the grid‐tied converter usually operates under the
unit power factor control mode to take full advantage of its
active power transfer capability. It is indicated that the q‐axis
current is regulated to zero, and only d‐axis equations are
taken into consideration. Therefore, the network dynamic
equation in the conventional dq coordinate system can be
written as follows.

Ud
ac − Ud

c ¼ Lac
dIdac
dt
þ RacIdac − ωacLacIqac ð1Þ

where the superscript d and q separately denote the d‐axis and
q‐axis component of one certain variable. ωac is the angular
speed of the converter‐tied AC system.

In order to establish the relationship between the
converter‐tied AC system and converter‐tied DC system, the
power balance equations must be considered. Since the grid‐
tied converter utilises the unit power factor control in this
study, the direction of the grid voltage phasor is consistent with

the direction of the selected d‐axis. In other words, the reactive
power balance can be neglected. Furthermore, the active power
loss generated by the electrical equipment during the operation
of the VSC‐HVDC system is very small. Hence, the following
equation can be held below.

Pt ¼ Pac ¼ 1:5Ud
acI

d
ac ≈ Pdc ¼Us

dcð − IdÞ ð2Þ

where Pac and Pdc separately represent the transmitted active
power in the converter‐tied AC system and converter‐tied DC
system. Id denotes the DC current contributed by controllers,
which will be derived in the next section.

2.2 | Control dynamics of grid‐tied converter

Since the DC‐side stability of the grid‐tied converter is the
focus of this paper, the renewable energy generations are
regarded as an ideal AC voltage source, and the phase locked
loop (PLL) dynamics are neglected so that the influence of the
interaction between network dynamics and controller dynamics
on DC‐side stability can be thoroughly discussed in the
following deduction [11, 21].

For the conventional PV systems or wind power gen-
eration systems, PQ controllers are widely used, and the
whole control system operates in the dq frame [26], which is
shown in Figure 3. The current flowing through the
converter‐tied AC system can be well limited to its threshold
value by the adopting inner current control strategy. Since
the grid‐tied converter operates under the unit power factor
control mode, only d‐axis dynamics of the controllers are
considered. Hence, the inner current control can be depicted
as follows.

8
><

>:

dxc=dt ¼ KC
I

�
Idrefac − Idac

�

Ud
ac − Ud

c ¼ KC
P

�
Idrefac − Idac

�
þ xc − ωacLacIqac

ð3Þ

where xc is the state variable associated with the integrator. KC
P

and KC
I are the proportional and integral gain of the inner

current control, respectively. Idrefac is the threshold value of the
d‐axis component of the current flowing through the
converter‐tied AC system.

In addition, the outer power control usually utilises the
transmitted active power to generate and regulate the current
reference so that the inner current control loop can track the
value, which yields

8
><

>:

dxp=dt ¼ KV
I

�
Pref
t − Pt

�

Idrefac ¼ KV
P

�
Pref
t − Pt

�
þ xp

ð4Þ

where KV
P and KV

I are the proportional and integral gain of the
outer power control. Pref

t is the selected active power reference
of the grid‐tied converter.

F I GURE 1 Scheme of a single converter connected to an ideal DC
bus.

F I GURE 2 Topology of the grid‐tied converter.
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Furthermore, as for the classical master‐slave control, if
the only master converter suddenly stops operating, the
remaining converters are incapable of maintaining the DC‐
link voltage, and the multi‐terminal direct current (MTDC)
grid will collapse. With the rapid development and wide
application of MTDC systems, the power‐voltage droop‐
based control strategy is highly recommended due to its
advantage that each of the converters can make its own
contribution to the overall system stability. Hence, based on
the control scheme shown in Figure 4, the control model can
be easily obtained.

Pref
t ¼ KV

�
Us

dc − Usref
dc

�
þ Pn ð5Þ

where Pn is the transmitted active power reference of the
overall system. Usref

dc denotes the DC‐link voltage reference of
the grid‐tied converter. KV is the droop gain of the power‐
voltage droop‐based controller.

2.3 | Small‐signal model of grid‐tied
converter

Combining Equations (1) and (3), (6) can be held around the
equilibrium of the studied system.

ΔIdacðsÞ
ΔIdrefac ðsÞ

¼
sKC

P þ KC
I

s
�
sLac þ KC

P
�
þ
�
sRac þ KC

I
� ð6Þ

where Δ represents a small deviation around the equivalent
operating points. s denotes the complex frequency of the VSC‐
HVDC system.

Generally, in the actual engineering applications, the inner
current control dynamics can be reduced to a simple first‐order
oscillator by selecting appropriate PI coefficients as follows
[22]. Hence, the control model can be further simplified.

Ldc

KC
P
¼
Rdc

KC
I
¼ τc ⇒

ΔIdacðsÞ
ΔIdrefac ðsÞ

¼
1

ð1þ τcsÞ
ð7Þ

where τc is the time constant of the grid‐tied converter.
Linearising Equations (4) and (5) around the equilibrium of

the studied system and substituting it to Equations (7), the AC
current deviation influenced by various controllers can be
obtained, which yields as follows

ΔIdacðsÞ ¼
sKV

P þ KV
I

sð1þ τcsÞ
�
KVΔUs

dcðsÞ − ΔPtðsÞ
�

ð8Þ

Combining Equations (2) and (8), the intermediate vari-
ables ΔPt and ΔIdac can be eliminated, and the DC current
deviation contributed by control effects can be derived.

ΔIdðsÞ ¼
�
gdc − kuKVBðsÞ

�
ΔUs

dcðsÞ ð9Þ

where gdc is defined as the equivalent input conductance of the
grid‐tied converter and ku is the voltage scaling factor of the
studied VSC‐HVDC system, which yields as follows.

8
>>>>>><

>>>>>>:

gdc ¼
Idð0Þ
Us

dcð0Þ
¼

Ptð0Þ
�
Us

dcð0Þ

�2; ku ¼
3Ud

acð0Þ

2Us
dcð0Þ

AðsÞ ¼
1

1þ τcs

�

KV
P þ

KV
I
s

�

;BðsÞ ¼
AðsÞ

1þ 1:5Ud
acð0ÞAðsÞ

ð10Þ

Equations (9) and (10) constitute the general small‐signal
model of the VSC‐based converter, which provides a foun-
dation for the following deduction and stability analysis.

3 | DC‐SIDE STABILITY ANALYSIS OF A
SINGLE CONVERTER CONNECTED TO
AN IDEAL DC BUS

In the generic two‐terminal or multi‐terminal VSC‐HVDC
systems, the grid‐tied converters may operate under different
control modes to satisfy the local requirements of the power
system. To fully investigate the DC‐side stability of grid‐tied
converter under different control modes, the small‐signal
model of a single converter connected to an ideal DC bus is
formulated, and the stabilising conditions of the overall system
are also deduced based on the electrical torque method in this
section.

F I GURE 3 Generic control logic of conventional PQ controller.
F I GURE 4 Generic control logic of power‐voltage droop‐based
controller.
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3.1 | Small‐signal model of a single
converter connected to an ideal DC bus

With reference to the scheme shown in Figure 1, the equiv-
alent circuit of a single converter connected to an ideal DC
bus can be illustrated by Figure 5. Rdc and Ldc separately
represent the equivalent resistance and inductance of DC ca-
bles. Cdc denotes the DC‐link capacitance installed at the
terminal of the grid‐tied converter. Ic is the DC current
flowing through the DC‐link capacitance. Ig represents the
constant DC current source affected by renewable energy
generations. Hence, the dynamics of the converter‐tied DC
system can be described by the following differential algebraic
equations.

8
>><

>>:

Us
dc − Ur

dc ¼ RdcIdc þ Ldc
dIdc
dt

Ic ¼ Cdc
dUs

dc
dt

; Ig ¼ Id þ Ic þ Idc

ð11Þ

Generally, appropriate input/output state variables can be
used to obtain suitable transfer functions or state–state ex-
pressions for stability analysis. As for the synchronous gener-
ators (SGs) dominated power system, the power angle and
angular speed are always selected as the state variables [23]. By
contrast, the DC‐link voltage and the DC current flowing
through the DC‐link capacitance are often chosen as the state
variables for a clear physical interpretation in the converter‐
interfaced generations (CIGs) dominated power systems [22].
While, in this study, the equivalent inductance voltage noted as
UL and the DC current Idc are more suitable for the electrical
torque method to verify its effectiveness in the DC‐side sta-
bility analysis of CIGs dominated power systems. Therefore,
the inductance dynamics should be considered, which yields as
follows.

Ldc
dIdc
dt
¼UL ð12Þ

Combining Equations (11) and (12) and linearising them at
the equilibrium, the state–space expression can be obtained.

8
>>><

>>>:

Ldc
dΔIdc
dt
¼ ΔUL

Cdc
dΔUL

dt
¼
�
ΔIg − ΔId

�
−
RdcCdc

Ldc
ΔUL − ΔIdc

ð13Þ

In addition, based on the above small‐signal model, the
following transfer function can be derived, which yields

ΔIdcðsÞ
ΔIgðsÞ − ΔIdðsÞ

¼
1

LdcCdcs2 þ RdcCdcsþ 1
ð14Þ

The second‐order denominator of the above transfer
function corresponds to the system dominant oscillation
mode. Hence, after ignoring the converter control effects, the
oscillation frequency of the studied power system can be
approximated as follows.

ωdc ≈
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LdcCdc
p ð15Þ

Equations (9), (13) and (15) constitute the small‐signal
model of a single converter connected to an ideal DC bus.
Based on the derived model, the stabilising conditions can be
obtained using the electrical torque analysis method.

3.2 | Stable equilibrium points computation

As for the general power system, the system dynamics can be
depicted by the following equation, which yields [27],

_x¼ f ðxÞ; x ∈ R ⇒ f ðxeÞ ¼ 0 ð16Þ

where, f is the system equations. x represents a vector of sys-
tem operating states, and xe is the equilibrium states of the
power system.

Generally, the stable equilibrium points (SEPs) can be
computed by utilising algebraic solvers when an initial point
sufficient close to the SEP is provided, and one common
solver used for SEP computation is the Newton–Raphson
(NR) method, which yields,

xiþ1 ¼ xi − Df ðxÞ−1f ðxÞ ð17Þ

Once the approximated iterative error is less than the
predetermined iterative error, the NR method is terminated,
and the SEPs can be obtained.

With the rapid development of power electronics‐based
power systems, various power electronic equipment is
installed in the modern power system, which brings new
challenges to equilibrium point computation. In Ref. [28], the
steady‐state model of VSC is established, and the efficient
power flow algorithm for AC/MTDC links is proposed. In
addition, the feasibility and applicability of Newton–Raphson
method in power flow analysis and equilibrium computationF I GURE 5 Equivalent circuit of a single converter connected to an

ideal DC bus.
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for power electronics‐based power system are fully studied in
several papers [29–31].

As for the power system investigated in this study, the
SEPs can be directly calculated based on the steady‐state
model of the whole system without using the Newton–
Raphson method, which involves quantities of numerical cal-
culations. Hence, the system plant model and control model
can be re‐written in a steady state as follows.

System Plant Model (Steady State):

8
>>>>>>><

>>>>>>>:

Uacn − Ud
cð0Þ ¼ RacIdacð0Þ − ωacLacI

q
acð0Þ

Us
dc − Udcn ¼ RdcIdcð0Þ

Icð0Þ ¼ 0; Ig − Idð0Þ ¼ Idcð0Þ
Ptð0Þ ¼UacnIdacð0Þ ¼Us

dcð0Þ
�
Ig − Idð0Þ

�

ð18Þ

Control Model (Steady State):

8
>>>>>>>>><

>>>>>>>>>:

Idacð0Þ ¼ Idrefacð0Þ; Ptð0Þ ¼ Pref
tð0Þ

xpð0Þ ¼ Idrefacð0Þ

Uacn − Ud
cð0Þ ¼ xcð0Þ − ωacLacI

q
acð0Þ

Pref
tð0Þ ¼ KV

�
Us

dcð0Þ − Udcn

�
þ Pn

ð19Þ

where the subscript (0) represents the steady‐state value of a
certain state variable. Uacn and Udcn are separately the
nominal voltage value of an ideal AC voltage source and ideal
DC bus.

Based on Equations (18) and (19), the SEPs of the studied
VSC‐HVDC system can be obtained.

8
<

:

Us
dcð0Þ ¼

h
ðUdcn þ KVRdcÞ þ

ffiffiffi
Δ
p i

=2

Δ¼ ðUdcn þ KVRdcÞ
2
þ 4RdcðPn − KVUdcnÞ

ð20Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Ptð0Þ ¼ Pref
tð0Þ ¼ Pn þ KV

�
Us

dcð0Þ − Udcn

�

Idcð0Þ ¼ Ig − Idð0Þ ¼ Ptð0Þ=Us
dcð0Þ

Idacð0Þ ¼ Idrefacð0Þ ¼ Ptð0Þ=Uacn; I
q
acð0Þ ¼ 0

Ud
cð0Þ ¼Uacn − RacIdacð0Þ

xcð0Þ ¼ RacIdacð0Þ; xpð0Þ ¼ Idacð0Þ

ð21Þ

Hence, the derived small‐signal model of the studied VSC‐
HVDC system is linearised around the SEPs by Equa-
tions (21), and the small‐signal stability of the converter‐tied
DC system will be thoroughly evaluated in the next section.

3.3 | Electrical torque analysis

It is indicated by classical electrical torque analysis that the
feedback torque deviation consists of two individual parts.
Generally, the torque deviation component whose phasor di-
rection is perpendicular to the direction of the power angle is
defined as a damping torque, while the synchronising torque is
defined as the component whose phasor direction is parallel to
that of the power angle. The authors in Ref. [23] point out that
although both damping torque and synchronising torque may
influence the small‐signal stability of the whole system, the
impacts contributed by the damping torque is dominant.
Hence, it is necessary to derive the concrete expression of the
damping torque for stability analysis.

Based on Equations (9), (13) and (15), the transfer function
model describes the dynamics of the studied VSC‐HVDC
system can be obtained, which is illustrated by Figure 6.
Following the definitions of damping torque and synchronising
torque in the SGs dominated power system in Ref. [22], the
DC current deviation component perpendicular to the direc-
tion of Idc is defined as a damping current, which is denoted by
superscript D, and the component parallel to the direction of
Idc is defined as a synchronising current, which is distinguished
by superscript S. H(s) is the transfer function between the DC
current flowing through the DC cables Idc and equivalent
inductance voltage UL, which yields as follows.

HðsÞ ¼
�
gdc − kuKVBðsÞ

�
�

1þ
Rdc

sLdc

�

ð22Þ

Based on Equations (22) and the transfer function model
shown in Figure 6, the damping coefficient noted as KD and
the synchronising coefficient marked as KS can be obtained.

F I GURE 6 Transfer function model of a single converter connected
to an ideal DC bus.
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8
><

>:

KD ¼
RdcCdc

Ldc
þ Re½HðsÞ�

KS ¼ 1þ ωdcLdcIm½HðsÞ�
ð23Þ

In addition, the authors in Ref. [23] indicate that the system
stability can be guaranteed when the damping coefficient is
positive. Based on the stability criterion, the small‐signal sta-
bility of the grid‐tied converter under different control modes
can be well‐studied in stabilising conditions.

3.4 | Stabilising conditions under different
control modes

3.4.1 | Mode 1: constant active power control:

Equation (5) reveals that when the droop gain KV is selected
as zero, the grid‐tied converter operates under constant active
power control mode, and the active power reference is con-
stant. Hence, the damping coefficient of the studied VSC‐
HVDC system can be reduced below.

KV ¼ 0 ⇒ KD ¼ gdc þ
RdcCdc

Ldc
ð24Þ

Based on the electrical torque analysis, the stabilising
condition under constant active power control mode can be
obtained.

KD > 0 ⇒ Ptð0Þ > −
RdcLdc

Cdc

�
Us

dcð0Þ

�2
ð25Þ

It can be easily summarised from Equation (25) that the
studied system can always remain stable when the grid‐tied
converter works as a rectifier under constant active power
control mode. On the contrary, when the grid‐tied converter
operates as an inverter, the network dynamics may introduce
negative virtual damping to the power system. Based on
Equation (25), the system stability will be destroyed once the
transmitted active power exceeds the threshold, which yields as
follows.

Pcri
t ¼

RdcCdc

Ldc
U2

dcn ð26Þ

Due to the slight fluctuation of DC‐link voltage during the
normal operation of the VSC‐HVDC system, the steady‐state
voltage value marked as Us

dcð0Þ can be replaced by the nomi-
nal voltage of the converter‐tied DC system noted as Udcn. Pcri

t
is the active power transfer limit of the studied system. In
addition, in the normal operation of the VSC‐HVDC system,
the smoothing reactors are often installed at the terminal of DC
cables to suppress the DC short‐circuit current. In addition, the
transmission lines usually adopt a double‐circuit line to guar-
antee the voltage stability and reduce the power loss. Hence, the
equivalent resistance and inductance can be defined as follows.

Rdc ¼ r0l Ldc ¼ l0l þ 2LT ð27Þ

where r0 and l0 separately denote the unit resistance and unit
inductance of the DC cables. l is the power transmission dis-
tance of the studied system. LT represents the smoothing
reactor installed at the terminal of DC cables.

It is obviously indicated by Equations (26) and (27) that if
the active power transfer capacity is expected to be enhanced
as much as possible without destroying the system stability, and
a larger DC‐link capacitance should be selected, and the level
of DC‐link voltage should be raised.

Furthermore, considering the capacity of the grid‐tied
converter, the active power transfer limit of the studied sys-
tem when the converter works under this control mode can be
re‐written below.

Pcri
t ¼min

�

PB;
r0lCdc

ðl0l þ 2LT Þ
U2

dcn

�

ð28Þ

where PB is the capacity of the grid‐tied converter.

3.4.2 | Mode 2: constant DC‐link voltage control:

When the grid‐tied converter operates under constant DC‐link
voltage control mode, the DC‐link voltage deviation is the
same as the DC‐link voltage reference deviation. Hence, the
following relationship is satisfied.

ΔPref
t ðsÞ
KV

¼ 0 ⇒ KV→ −∞ ð29Þ

Equation (29) reveals that the droop gain KV needs to be
regulated to one sufficient small value to ensure that the grid‐
tied converter operates under constant DC‐link voltage control
mode. Based on Equation (22), the damping coefficient
affected by control dynamics will approach a relative large
positive value, which reveals that the grid‐tied converter under
constant DC‐link voltage control mode will always introduce
positive virtual damping to the power system. Hence, under
this circumstance, the damping coefficient will satisfy the
following approximation.

KD ¼
RdcCdc

Ldc
þ Re½HðsÞ�→ þ∞ ð30Þ

(30) reveals that the damping coefficient will always be
positive for the grid‐tied converter under constant DC‐link
voltage control mode, implying the system will always remain
stable.

3.4.3 | Mode 3: universal droop‐based control

In order to derive the stabilising conditions for the grid‐tied
converter under universal droop‐based control mode, the
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real and imaginary parts of B(s) need to be separated. Hence,
the transfer function B(s) is re‐written as follows.

BðsÞ ¼
KV

P sþ KV
I

bsþ a
;

8
<

:

a¼ 1:5Ud
acð0ÞK

V
I − τcω2

dc

b¼ 1þ 1:5Ud
acð0ÞK

V
P

ð31Þ

Rationalising the dominator of the expression Equa-
tion (31), the real part of the transfer function B(s) can be
separated out, which yields as follows,

Re½BðsÞ� ¼
aKV

I þ bKV
P ω2

dc

a2 þ ðbωdcÞ
2 ð32Þ

Substituting Equation (32) into Equation (23), the damping
coefficient of the studied system under universal droop‐based
control mode can be expressed as follows.

KD ¼ gdc þ
RdcCdc

Ldc
−
kuKV

�
cKV

P þ dKV
I
�

a2 þ ðbωdcÞ
2 ð33Þ

where

c ¼ bω2
dc þ Rdca=Ldc; d ¼ a − Rdcb=Ldc ð34Þ

Equation (33) indicates that the system stability is related to
all three controllers when the grid‐tied converter is under this
kind of control mode. Hence, it is necessary to discuss the
contribution of different controllers to the system stability.

In order to investigate the impacts of inner current control
on theVSC‐HVDC system stability, the sensitivity analysis of the
time constant of the grid‐tied converter can be carried out.
Hence, by derivation of τc, the following expression can be held.

∂KD

∂τc
¼ −

k1ðaþ bωdcÞða − bωdcÞh
a2 þ ðbωdcÞ

2
i ð35Þ

with

k1 ¼ kuKV

�

KV
I þ

RdcKV
P

Ldc

�

< 0 ð36Þ

Based on Equations (35) and (36), it can be concluded that
increasing the time constant within the following range can
improve the system stability.

1:5UacnKV
I − bωdc

ω2
dc

< τc <
1:5UacnKV

I þ bωdc

ω2
dc

ð37Þ

where Uacn is the nominal voltage of the converter‐tied AC
system.

It is interesting to mention that the time constant is always
selected as several milliseconds to meet the action speed of
inner current control in the normal operation of the grid‐tied

converter. Hence, the impacts the inner current control
imposed on the system stability are monotonic and limited.

In addition, since the voltage level of the converter‐tied AC
system is relatively high, Equation (31) can be further reduced
for more detailed and concise conclusions, which yields as
follows.

8
<

:

a¼ 1:5Ud
acð0ÞK

V
I − τcω2

dc ≈ 1:5Ud
acð0ÞK

V
I ¼ a

b¼ 1:5Ud
acð0ÞK

V
P þ 1 ≈ 1:5Ud

acð0ÞK
V
P ¼ b

ð38Þ

Substituting Equation (38) into Equation (33), the damping
coefficient of the studied system can be simplified.

KD ¼ gdc þ
RdcCdc

Ldc
−

KV

Us
dcð0Þ

a2 þ
�
bωdc

�2

a2 þ
�
bωdc

�2

¼ gdc þ
RdcCdc

Ldc
−

KV

Us
dcð0Þ

> 0

ð39Þ

Equation (39) indicates that the damping coefficient is
hardly influenced by outer power control, which means that
this kind of control also has limited impacts on the small‐signal
stability of the VSC‐HVDC system. Thus, the dynamics of PQ
controllers can be neglected when the VSC‐HVDC system
stability is further investigated in the future. Furthermore, it
indicates that increasing the droop gain may deteriorate the
system stability due to the negative value of KV .

Substitution of Equations (10) into (39), the critical
transmitted power mapping the stability boundary can be
obtained.

Ptð0Þ > KVUs
dcð0Þ −

RdcCdc

Ldc

�
Us

dcð0Þ

�2
¼ −Pcri

t ð40Þ

Considering the minor voltage fluctuations and converter
capacity limitations, the active power transfer limit under this
control mode can be expressed as follows.

Pcri
t ¼min

�

PB;−KVUdcn þ
r0lCdc

ðl0l þ 2LT Þ
U2

dcn

�

ð41Þ

It is indicated by Equation (41) that the active power
transfer limit can be greatly improved due to the negative value
of the droop gain. In addition, when the droop gain is set as
zero, the expression of active power transfer limit is the same
as Equation (26), and when the droop gain is set as a sufficient
small value, VSC controllers will no longer influence the sys-
tem active power transfer capacity.

In addition, in order to better characterise the stability of
the grid‐tied converter, the stability margin can be defined as
the relative distance between the actual transmitted active
power and the calculated active power transfer limit by
Equation (41), which can be expressed as follows.
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M ¼ 1þ
Pt

Pcri
t

≥ 1 −
PB

Pcri
t

ð42Þ

It is indicated by Equation (42) that the stability margin
decays with the decrease of the actual transmitted active power
and reaches its minimum at Pt ¼ −PB. To ensure that the
system has adequate margin under any operating points,
Equation (42) should exceed a certain positive value noted as
Mmin. Hence, the critical values of certain system parameters
can be easily obtained.

8
>>><

>>>:

Kmax
V ¼

PB

ðMmin − 1ÞUdcn
þ

r0lCdcUdcn

ðl0l þ 2LT Þ

Cmin
dc ¼

ðl0l þ 2LT Þ

r0lU2
dcn

�
PB

1 − Mmin
þ KVUdcn

� ð43Þ

Based on Equation (43), the relative parameters can be
optimised to guarantee the DC‐side stability of the studied
VSC‐HVDC system even with the worst operating points.

4 | NUMERICAL SIMULATIONS

To validate the proposed stabilising conditions for the grid‐tied
converter under DC‐side perturbations, a test VSC‐HVDC
system is simulated in the PSCAD/EMTDC. The trans-
mitted active power can be regulated as a constant value or it
can be changed automatically according to the universal droop‐
based control strategy. And the ideal DC bus is regarded as a
constant DC voltage source in this case so that the mutual
interaction between grid‐tied converter controllers and DC
networks can be thoroughly investigated. Furthermore, in or-
der to achieve the fast‐tracking property of the grid‐tied con-
verter, the time constant is set to 2 ms. The initial values of
system parameters are listed in Table 1.

4.1 | Method verification

Figure 7 compares the electrical torque analysis method and
the modal analysis method to verify the validity of the pro-
posed method in DC‐side stability analysis. In this case, the
initial transmitted active power is set to −50 MW, and the
negative sign indicates that the grid‐tied converter is operating
as an inverter.

Figures 7a,b depict the system dynamics under different
active power perturbations. It apparently reveals that the sys-
tem stability deteriorates with the decrease of the transmitted
active power. Particularly, in this case, the divergent oscillation
phenomenon will appear when the transmitted active power
drops to −130 MW and the damping coefficient becomes a
negative value of −0.0006, which well proves the feasibility of
the electrical torque analysis method. It also indicates that the
system stability may be compromised once the transmitted
active power exceeds the critical value by Euation (41).

Figure 7c illustrates the root locus of the VSC‐HVDC
system under active power perturbations. It is apparently
indicated that the dominant characteristic roots λ1 and λ2
gradually move towards the right half of the complex plane
with the decrease of transmitted active power, which reveals
that the system stability deteriorates. In contrast, the rest
characteristic roots (λ3, λ4 and λ5) remain the same, implying
that they have little impacts on system stability. Figure 7d
illustrates the variation trends of the real part of the domi-
nant characteristic root and the damping coefficient with
transmitted active power variations. It indicates that the real
part of the dominant characteristic roots increases while the
damping coefficient decays with the decrease of the trans-
mitted active power. It is interesting to find that the signs of
both stability indexes reverse almost at the same operating
point (Pt ¼ 105:04MW). The above results fully prove that
the electrical torque analysis method can be utilised to judge
and analyse the DC‐side stability of high‐order power sys-
tems without excessive model reduction and numerical
calculations.

4.2 | Impacts of physical parameter
variations on DC‐side stability

The impacts of physical parameters on the DC‐side stability
are thoroughly investigated in Figure 8. Figure 8a reveals that
the damping coefficient increases, and the dominant charac-
teristic roots move towards the left half of the complex plane
with the increase of Cdc. In contrast, promoting LT will make

TABLE 1 Parameters of the test VSC‐HVDC system.

Symbol Item Value

Cdc DC‐link capacitance 330 μF

LT Smoothing reactor 50 mH

r0 Unit DC cable resistance 0.015 Ω/km

l0 Unit DC cable inductance 1.635 mH/km

l Length of DC cables 400 km

Udcn Rated DC voltage 200 kV

Uacn Rated AC voltage (line to line) 220 kV

Rac Resistance of converter‐tied AC system 0.016 Ω

Lac Inductance of converter‐tied AC system 150 mH

KC
P Proportional gain of inner current control 75

KC
I Integral gain of inner current control 8

KV
P Proportional gain of outer power control 1

KV
I Integral gain of outer power control 10

KV Droop gain of power‐voltage control 0

τc Time constant of grid‐tied converter 2 ms

SB Base capacity of the test system 150 MVA

SCR Short circuit ratio of the test system 1.5
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the damping coefficient approaches to and eventually less
than zero as shown in Figure 8b. Meanwhile, the dominant
characteristic roots will move to the right half of the complex
plane. The above results again verify the feasibility of the
electrical torque analysis method in the DC‐side stability
analysis of high order power system, which has a certain
application prospect. Figures 8c,d illustrate the system dy-
namic response with different physical parameters after a
small perturbation. It is indicated by the non‐linear simulation
results that the system damping decays with the increase of
LT or the decrease of Cdc, which can be well explained by
Equations (39) and (41). Once the damping coefficient

becomes negative, the divergent oscillation may appear, and
the system stability will be compromised. In addition,
Figure 8 also reveals that Cdc and Ldc are highly related to the
system oscillation frequency, which can be proved by (15).
The system oscillation frequency can be reduced by elevating
Cdc and LT . However, in the general operation of VSC‐
HVDC systems, the variation range of physical parameters
is not large, which indicates that the system oscillation fre-
quency is always around 5 Hz. Hence, it is reasonable to use
Cdc and Ldc to estimate the dominant oscillation frequency of
the HVDC systems.

F I GURE 7 Comparison between different methods.
F I GURE 8 Impacts of physical parameters on DC‐side stability.
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4.3 | Impacts of control parameter variations
on DC‐side stability

Figure 9 depicts the impacts of the bandwidth of PQ con-
trollers on DC‐side stability. The perturbation is set as the
transmitted active power drop from 50 MW to 100 MW. From
Figure 9a, the system is slightly improved with the increase of
the time constant of inner current control, which can be
proved by Equation (37). In addition, Figures 9b,c reveal that
changing the proportional and integral gains of outer power
control hardly influence the DC‐side stability of the grid‐tied
converter, which can be explained by Equation (39). Hence,
it is feasible to properly ignore the PQ controller dynamics
when studying the small‐signal stability of CIG dominated
power systems, as some papers have assumed.

Figure 10 depicts the impacts of power‐voltage droop‐
based controller on DC‐side stability. Figure 10a presents
the system root locus under various droop gains. With the
increase of droop gain KV , the dominant characteristic roots
λ1 and λ2 gradually move towards the right half of the com-
plex plane, which indicates that the system stability de-
teriorates. While the eigenvalue λ5 associated with control
dynamics moves in the positive direction of the real axis with
the decrease of KV . However, it is far from the imaginary axis
so that the system stability will not be jeopardised. As for the
rest roots, λ3 and λ4 remain constant with various KV nor they
can influence the stability of the overall system. In addition, as
shown in Figure 10b, the damping coefficient decays with the
increase of KV , which is consistent with the trend of domi-
nant eigenvalues, implying that the system damping gradually
decreases and the system stability cannot be guaranteed.
Figure 10c shows the dynamics of DC‐side current with
different droop gains under the same perturbation. With in-
crease of KV , the system stability is worsened, and the
divergent oscillation will finally appear. The above results once
again demonstrate the feasibility of the electrical torque anal-
ysis method in analysing the DC‐side stability of CIG domi-
nated power systems. Furthermore, the system stability can be
greatly improved by selecting appropriate droop gain based on
Equation (41).

4.4 | Impacts of system parameter variations
on stability margin

Figure 11 illustrates the impacts of system parameters on the
transmitted active power limit and stability margin. As shown
in Figure 11a, the transmitted active power limit can be
greatly enhanced by increasing DC‐link capacitance or
deceasing droop gain, which can be proved by Equation (41).
In addition, Figure 11b depicts the trend of stability margin
under different system parameters. When the Ms min is set to
0.2, the critical values of system parameters noted as Kmax

V
and Cmin

dc can be calculated, and the results are −0.4123 and
589.06 μF. It is interesting to mention that, compared with
adjusting the value DC‐link capacitance, tuning the droop

gain can better improve the system stability margin. The rest
figures depict the dynamics of the studied VSC‐HVDC sys-
tem under the condition that the transmitted active power
drops to ‐PB. The non‐linear simulations indicate that the
divergent oscillations may appear once the system parameters
are outside the specified range, and the whole system stability
can no more be guaranteed due to the negative damping
coefficient. On the contrary, when the system parameters are
appropriately optimised according to Equation (43), the
studied system may have sufficient stability margin and the
DC‐side oscillations can be well suppressed under any
possible operation points.

4.5 | Impacts of AC system dynamics on
DC‐side stability

In order to better illustrate the impacts of AC system dy-
namics on DC‐side stability, the related simulation results are

F I GURE 9 Impacts of the bandwidth of controllers on DC‐side
stability.
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presented in this study, which is also beneficial to the expla-
nation of the hypothesis about converter‐tied AC system. As
shown in Figure 12a, when the system perturbation is set as an
active power fluctuation from 50 MW to 120 MW, the fre-
quency and magnitude of DC‐link current oscillation have no
significant change under converter‐tied AC system SCR vari-
ations. It indicates that the impacts of SCR variations on DC‐
side stability are minimal. This can be well explained that the
strength was limited. In addition, the impacts of control gains
of PLL controller on DC‐side stability are described in
Figure 12b,c. The simulation results reveal that the system
stability always maintains with the variation of the bandwidth
of the PLL controller, which indicates that the PLL dynamics
also have limited impacts on DC‐side stability and may not
threaten the stable operation of the converter‐tied DC system.
Moreover, when the proportional and integral gains are
selected appropriately (KPPLL = 2, KIPLL = 400) (see Ap-
pendix A), the related eigenvalues (σPLL = −220 � 199j) are
far from the imaginary, which is beneficial to the system
overall stability. Hence, the above control gains are used in the
simulation studies.

5 | CONCLUSION AND FUTURE WORK

5.1 | Conclusion

The electrical torque analysis method is firstly applied in ana-
lysing the DC‐side stability of VSC‐HVDC systems considering
the impacts of controllers, networks and their mutual in-
teractions. The small‐signal model of a single converter con-
nected to an ideal DC bus is formulated and the analytical
stabilising conditions of the grid‐tied converter under different
control modes are further deduced on the basis of the electrical
torque method. Under the constant active power control mode,

F I GURE 1 0 Impacts of the droop gain on DC‐side stability.

F I GURE 1 1 Impacts of system parameters on stability margin.
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the system stability is mainly influenced by DC network dy-
namics. In contrast, the system stability can be well guaranteed
when the grid‐tied converter is under constant DC‐link voltage
control mode. It is also indicated by Equation (39) that the
system stability may be destroyed once the positive damping of
the whole system can no more offset the negative virtual
damping contributed by control dynamics. To guarantee suffi-
cient stability margin reserve under any possible operating
points, the relative system parameters can be tuned according to
the principle by Equation (43). In addition, the classical PQ
controllers are proven to have limited impacts on the DC‐side
stability. In conclusion, the electrical torque analysis method
can be utilised to assess the stability of high‐order power systems,
which may provide some inspiration for future research on the
stability analysis of multi‐terminal HVDC links.

5.2 | Future work

In order to further investigate the DC‐side stability of VSC‐
HVDC links, some more research works need to be carried
out in the future, which are illustrated as follows.

A. The dynamics of the converter‐tied AC system, such as
SCR, PLL and AC voltage controller dynamics, have in-
fluences on system stability. In addition, the interaction
between AC‐side dynamics and DC‐side dynamics may
generate different oscillation characteristics. Hence, both of
them deserve further research and comparative studies
with the results in this study

B. Even though the single converter connected to an ideal DC
bus under different control modes is well studied in this
paper, the investigations on the stability of generic two‐
terminal/multi‐terminal VSC‐HVDC links based on the
proposed method have not been completed yet. Accord-
ingly, the grid modelling method of MTDC links will be
proposed, and the feasibility and applicability of the elec-
trical torque analysis method in a radial or meshed MTDC
links can be verified in future work.
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APPENDIX A

Main parameters of the PLL
According to the authors in Ref. [32], the transfer function of
the PLL can be expressed as follows.

sΔθðsÞ ¼
�

KPPLL þ
KIPLL

s

�

ΔuqpðsÞ ðA:1Þ

where uqp is the q‐axis component of the voltage of the point of
common coupling (PCC), and θ denotes the tracking phase
angle provided by PLL. KPPLL and KIPLL are separately the
proportional and integral gains of the PLL controller, which
are configured as 2 and 400 in the simulation studies,
respectively.
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