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Abstract
The past two decades have seen a rapid increase in electric vehicles (EVs) for several
reasons, such as policy directives to reduce carbon emissions in the transport sector and
technology advancements in the EV industry. However, this has increased the load de-
mand on the power grid, especially in the low‐voltage (LV) network, as most EVs are
charged at EV owner premises. This paper investigates the impact of EVs on the LV
residential distribution network using a probabilistic modelling framework. Probability
distribution functions for EV charging power are derived using the United Kingdom
(UK) EV dataset. The study has investigated multiple EV penetration levels, different
probability distribution functions for EV charging representation, vehicle‐to‐grid (V2G),
solar photovoltaic (PV) generation, and the volt‐var capability of the solar‐PV inverter.
The results have shown that as EV penetration increases in the distribution network,
there is a significant increase in transformer loading and a decrease in the steady‐state
voltage levels. V2G has positively impacted the distribution network. A case study car-
ried out on a real LV feeder with solar‐PV generation has shown how PV generation and
volt‐var functionality of the PV inverter help reduce the impact of EV charging and V2G.
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1 | INTRODUCTION

The transport sector is one of the major contributors to air
pollution, with vehicular transport at the top of the list. Themain
component responsible in a vehicle for air pollution is the in-
ternal combustible engine (ICE). The ICE vehicle pollution
contributes to over 1700 deaths in Australia annually, so an
alternative solution is required [1]. Electric vehicles (EVs) can
reduce air pollution and greenhouse gas emissions in the trans-
portation sector. Therefore, various countries (e.g. Norway and
the United Kingdom (UK)) have implemented policy directives
to promote EVs in their transport sector aggressively [2].

These policy directives and concerns about greenhouse gas
emissions have led to a significant increase in EV sales. For
example, EV sales is expected to reach 145 million by 2030 [2].
Also, in Australia, EV sales increased by 300% in 2021 compared

to 2020 [1]. Like refuelling an ICE vehicle's petrol tank, the EV
battery should be charged after an EV has been used for travel.
To charge the battery of an EV, it is connected to the grid via a
home charger or a charging station. Therefore, an increase in
EVs will increase the load demand on the grid, resulting in an
overloading of network assets, high system peak demand,
voltage unbalance and so on [3]. According to forecasts, by 2040,
54% of new car sales around the globe will be EVs [4], which
further highlights the need to examine the impacts of EVs on the
grid and plan for future potential effects on the power grid.

1.1 | Motivation

Deterministic studies provide the worst‐case impact on the
power grid without considering the probabilistic nature of EV
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charging. Such analysis may provide unrealistic predictions on
EV charging demand, and hence it is uneconomical to design a
network with the data from a deterministic study. Hence, it is
imperative to examine the EV impact from a probabilistic
perspective. The probabilistic analysis will help realistically
characterise the EV impact on the grid. It will provide insight
to distribution network service providers (DNSPs) on how EV
penetration would affect the distribution network assets, such
as transformers and cables. Consequently, it will help DNSPs
to make economic planning decisions.

1.2 | Related studies

Power quality is one of the most critical aspects for DNSPs,
since they should ensure that power delivered to consumers
meet a certain minimum standard. Main power quality issues
are over and under voltage, voltage unbalance and harmonics.
In addition, from the DNSP's perspective, line losses, trans-
former loading and thermal limits of assets are essential to
maintain the reliability of the distribution network. It is well‐
known that uncontrolled EV charging may lead to adverse
power quality effects [2]. Under uncontrolled charging, the
voltage and thermal limits can exceed safe operating limits,
which is detrimental to the grid equipment's lifespan and safe
operation [5]. Another effect is harmonic distortion, as high‐
frequency switching happens at semiconductor switches used
in EV chargers. Some studies have concluded that as the EV
penetration level increases, the total harmonic distortion of
current and voltage increases beyond the standard limits,
damaging the grid equipment [6].

The lifespan of grid equipment, such as feeders, trans-
formers, transmission lines and so on, will be affected as more
EVs are integrated into the grid. The transformer ageing was
seen to be accelerated as the EV charging demand increased
[7]. The low‐voltage (LV) transformers are significantly
affected due to probable violations of statutory voltage limits
[8]. A study that characterises the effects of EVs on the LV
grid has used a novel statistical analysis method and has
considered parameters such as the number of cars, daily travel
times and daily travel distance to characterise the EV grid
impact [9]. That study has shown that an increase in EV
penetration level leads to LV transformer overloading.

For a more accurate analysis of the impact of EVs, it is
essential to have real‐world EV dataset. Ref. [10] provides a list
of open EV datasets and models available for studies from
various countries worldwide, including countries such as
Norway, UK, Sweden, USA, Germany, the Netherlands and
Japan. The parameters considered in EV modelling include
battery characteristics (e.g. the state of charge and depth of
discharge) and travel behaviour. The travel behaviour of
vehicle owners is pivotal to simulating real‐time scenarios.
Moreover, weather parameters need to be considered, which
include wind speed, rainfall, sunny hours etc. Economic factors
(e.g. tariffs and incentives) should also be considered since
tariffs and government incentives on EVs affect the purchase
of EVs. Lastly, daily and seasonal patterns should be taken into

consideration. This refers to how EVs are simulated in days,
weeks and months [10].

The slow and fast charging modes are the different modes
of EV charging. Depending on the EV charging mode, it
impacts the low‐voltage grid differently. Electric vehicle
owners can charge their EVs at any time of the day, and hence
leading to uncontrollable charging. This leads to obvious
problems, such as spontaneous power demand increase,
voltage violations and voltage unbalance [11]. A solution for
this is creating a differential price for electricity, that is, a low
price during the night when the energy consumption is low and
a high price during peak hours. This would lead to a reduction
in overloading and power losses as well as flattening the load
curve [12]. Coordinated EV charging can positively impact the
grid, such that improved voltage regulation, power quality and
better power management can be achieved [2, 13]. Moreover,
orchestrating EV charging with renewable energy sources can
further help reduce green‐house gasses emissions [2].

The majority of the studies discussed above used deter-
ministic approaches to characterise the impact of EVs on the
power grid. The impact of EVs on the LV grid has been
examined with the deterministic approach, and a limited
number of studies have used a probabilistic approach for EV
impact assessment on the grid [14–17].

A probabilistic load‐flow technique was used in Ref. [14] to
determine the impact of smart charging in an unbalanced LV
distribution network. This study has demonstrated the benefits
of smart charging and has also shown that concentrated allo-
cation could adversely affect the LV network. A probabilistic
study of EV impact was conducted on a typical British dis-
tribution network has considered uncertainties associated with
the EV charging locations, types, time and duration and has
concluded that EV charging could breach the lower voltage
limit under high EV penetration, and DGs can assist in flat-
tening the load profile [15]. Another study on the UK LV
residential networks has modelled the uncertainties associated
with EV’s demand and location and highlighted the trans-
former overloading issues under low EV penetration [16]. A
high‐performance computing framework is employed in Ref.
[17] to conduct a probabilistic EV impact analysis using the
Monte Carlo simulation. A probabilistic approach will provide
a more realistic analysis of the impact on the LV network from
EVs, which helps DNSPs to implement more economically
feasible strategies in tackling the challenges associated with
high EV penetration.

1.3 | Paper outline and structure

This paper models the charging power of EVs as a probability
distribution function (PDF) and uses it as the primary input to
the unbalanced load‐flow simulation. PDF of EV charging
power was derived using a UK EV dataset [18], and 1000
unbalanced simulations were conducted for each scenario us-
ing 1000 samples generated from the Monte Carlo method.
Since PDF was derived from a real dataset, it encapsulates the
nature of the EV charging (e.g. charging power, time effects
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and charging behaviour) within the PDF itself, and hence
additional complexities need not be modelled separately. Both
grid‐to‐vehicle (G2V) (i.e. EV charging) and vehicle‐to‐grid
(V2G) impacts are analysed in this study. Two LV network
models, namely a standard LV feeder and a real LV feeder,
have been used for simulations. In particular, the real LV
feeder with solar‐PV generation has been used to analyse the
impact of solar PV generation and inverter volt‐var
functionality.

The remainder of the paper is organised as follows; Sec-
tion 2 covers the research methodology and the step‐by‐step
process followed to characterise the impact of EVs on the
grid. Study results for the standard LV feeder are discussed and
analysed in Section 3. A case study based on a real LV feeder
model is presented in Section 4. Discussion and Conclusions
are presented in Sections 5 and 6, respectively.

2 | PROBABILISTIC ANALYTICAL
METHODOLOGY

To analyse the impact of EVs on the grid, a probabilistic
analytical framework is developed in this study. This section
delineates the probabilistic analysis framework supported by a
flowchart shown in Figure 1. The methodology consists of
three main stages: data preparation, data fitting and probability
density function generation, and DIgSILENT PowerFactory

simulation study using LV distribution feeders with EVs. The
following subsections delineate each stage of the framework.

2.1 | Data preparation

The following factors are considered in data preparation: ‘Does
it contains a raw dataset of EV charging characteristics?’,
‘Does the data contain residential profile information?’, ‘Does
the data have charging power versus time’ and ‘Can the data
be downloaded and used?’. The credibility of data is also
important as most literature cites different sources available on
the Internet [9].

This study has used the domestic UK EV charging dataset
from [18] to derive the appropriate probability density function
for representing the charging behaviour of EVs. The dataset
includes charging data over a one‐year period from 1st January,
2017 to 31st December, 2017. These data contain the driving
duration and parking duration of EVs, which show an average
parking duration of 9.16 h. These data indicate a typical resi-
dential EV owner characteristic, and hence it is used in this
study to develop appropriate probability distribution functions.
The key characteristics of this dataset are illustrated in Figure 2.

F I GURE 1 Probabilistic electric vehicle grid impact analysis
framework.

F I GURE 2 United Kingdom electric vehicle charging dataset
characteristics, (a) Number of charging events versus an hour of the day,
(b) Mean charging energy versus an hour of the day.
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According to Figure 2a, most EV charging events happen
between 4 and 7 pm. However, according to Figure 2b,
charging energy peaks between 9 pm and 1 am, where peak
mean charging energy was reported at 11 pm. Since the pri-
mary objective is to develop a probability density function
(PDF) for charging power, the charging energy corresponding
to each charging event is converted to power per‐charging
event to develop the EV charging PDF.

2.2 | Data modelling

The focus of this study is to analyse the impact on the
distribution grid from large‐scale EV charging and V2G;
therefore, this study explores the impact on parameters such
as voltage unbalance, transformer loading and the voltage
profiles across the feeder. Characteristics of the EV itself
have not been focused on in this study. Since the study has
used real data, it is envisaged that characteristics such as EV
charger type and EV model are encapsulated within the
charging power profile derived from the real EV dataset. For
example, if it is a level 2 charger, the power profile will
indicate a charging power between 7 and 22 kW. Therefore,
the charging power profile is ideal for developing an
appropriate PDF to represent EV charging.

A PDF or probability distribution of x is given by function
f (x) as follows:

Pða ≤ x ≤ bÞ ¼
Zb

a

f ðxÞdx ð1Þ

For all values of x, f (x) > 0.
To determine the best probability distribution to represent

EV charging, the EV charging characteristics should be
compared against the characteristics of the probability distri-
bution function. Although an EV charging event can be
considered as a discrete quantity, the charging power can be
viewed as a continuous quantity as it varies over time, which
can be broken down into finer levels. The two distributions
that fit this characteristic are the Weibull distribution and the
lognormal distribution.

2.2.1 | Weibull distribution

The Weibull distribution is a continuous probability distribu-
tion function, as given as follows:

f ðx; λ; kÞ ¼

8
>><

>>:

k
λ

�
x
λ

�k−1

e
−
�

x
�

λ

�k

; x ≥ 0

0; x < 0

ð2Þ

where k > 0 is the shape parameter and λ > 0 is the scale
parameter of the distribution. The shape parameter shows the
main characteristics of the distribution: if k < 1, it means the
distribution has a failure rate that decreases over time; if k = 1,
it means the distribution has a failure rate that is constant over
time; and if k > 1, it means the distribution has a failure rate
that increases over time.

2.2.2 | Lognormal distribution

Lognormal is also a continuous probability distribution func-
tion. The main characteristic of a lognormal distribution is that
it is the logarithm of a normal distribution. One of the dis-
advantages of the lognormal distribution is it can only fit
positive values in a dataset, and this will be discussed later
when the V2G scenario is explained. For a random set of
variables fitted to a lognormal distribution, the probability
density function is given as follows:

fxðxÞ ¼
1

xσ
ffiffiffiffiffiffi
2π
p exp

 

−
ðln x − μÞ2

2σ2

!

ð3Þ

where μ and σ are the mean and standard deviation of the
dataset.

2.2.3 | MATLAB data fitting

To develop the PDFs to represent EV charging based on the
selected dataset, the MATLAB Distribution Fitter App has
been used. The raw data file for the domestic UK EV dataset
discussed above is used to develop the PDFs. This data con-
tains session start and end times, energy consumed, plugin
duration, charging‐cycle duration and customer identifier. Us-
ing a basic energy conversion formula, the charging power at
each time interval can be calculated as follows:

Charging Power; P ðkWÞ ¼
Energy Consumed;E ðkWhÞ

Charging Cycle Duration; t ðhrÞ
ð4Þ

The distribution fitter toolbox in MATLAB aids in
generating the parameters for each PDF. Figure 3 illustrates the
fitting of the charging data into the Weibull and the lognormal
distributions. The parameters of the Weibull and the lognormal
distributions after fitting into the EV charging dataset are
shown in Table 1.

2.3 | Probabilistic electric vehicle simulation

This section presents test networks, load profiles and simula-
tion scenarios analysed in this study.
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2.3.1 | LV network model

Two LV network models, namely a standard LV network
model and a real LV residential feeder, are used for simulations.
Standard LV distribution network consists of eight terminals
per‐phase, and each terminal is connected to a residential
household (see Figure 4). The MV/LV transformer is rated at
0.3 MVA and has a short‐circuit voltage of 4.5%. Transformer
has 32 tap positions with a 2.5% voltage change per tap, and
the tap position is fixed at 3.

The real residential LV feeder is comprised of 56 cus-
tomers, and 23 customers have solar‐PV systems on their
rooftops (see Figure 5) [19]. The rated power of each solar‐
PV system varies from 1.65 to 6 kW. The total installed solar‐
PV capacity is 96 kW, and solar‐PV systems operate at a unity
power factor. The 11/0.415 kV upstream transformer has a
short‐circuit voltage of 4.5%. Transformer has six tap posi-
tions with a 2.5% step voltage change per tap. The tap po-
sition was fixed at 1. The hosting capacity of this feeder is
constrained by the transformer loading and not by the
voltage limits [19]. A case study was developed using this LV
feeder to analyse EVs' impact on residential LV networks
with solar‐PV generation.

2.3.2 | Residential load profile

The residential load of 2.4 kW was considered across each
terminal as the base case load in the standard LV network

model. Also, the LV network model has used three different
load profiles (shown in Figure 11) to assess the EV
charging impact under load variations. This enables the
simulation of a more realistic scenario for LV feeder with
load unbalance.

Regarding the real residential LV feeder, three household
load conditions (e.g. 1.8 kW, 3.4 kW and 8.4 kW with 0.95
lagging power factor), typically seen in residential LV
feeders, are randomly assigned to household loads [20]. Also,
it is assumed that each household load is operating at 0.95
lagging power factor. Therefore, the feeder has a total
active and reactive power load of 229 kW and 75 kVAr,
respectively.

TABLE 1 Parameters of the Weibull and lognormal distributions
after fitting into the electric vehicle dataset.

Lognormal μ = −9.48838

σ = 1.97991

Weibull λ = 0.000196954

k = 0.598432

F I GURE 4 A standard three‐phase low‐voltage residential distribution
network model.

F I GURE 5 A real residential LV feeder with solar‐PV generation.

F I GURE 3 Distribution fitter result for the Weibull and the lognormal
distributions.

540 - HUNGBO ET AL.

 25152947, 2023, 5, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12123 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ietresearch.onlinelibrary.wiley.com/action/rightsLink?doi=10.1049%2Fstg2.12123&mode=


2.3.3 | Electric vehicle penetration

An EV charger has been assigned to each terminal of both LV
networks. They have been connected to the same point as the
household load. To analyse the impact of EV penetration on
the LV feeder, EV chargers connected to each terminal are
enabled to achieve different penetration levels (e.g. 25%, 50%,
75% and 100% penetration). For example, only two EV
chargers per phase have been enabled in the standard LV
network to achieve 25% EV penetration.

2.3.4 | Probabilistic simulations

To initiate a probabilistic simulation in DIgSILENT Power-
Factory, the EV charging was represented by the PDFs derived
in Section 2.2. Then unbalanced load‐flow studies were per-
formed in DIgSILENT PowerFactory with 1000 samples
generated from the Monte Carlo method.

3 | STANDARD LV NETWORK: RESULTS
AND DISCUSSION

3.1 | Voltage distribution in each node

Figure 6 shows the voltage distribution at each node after
running a probabilistic load‐flow simulation. It must be
noted that the distribution feeder is simulated with the base
residential load (2.4 kW) and EV charging load mentioned
above. The normal distribution represented the EV charging
load.

According to Figure 6, the voltage distribution plot is
skewed more when the node is closer to the distribution
transformer. In contrast, a much larger voltage distribution
can be seen when the node is located far from the distri-
bution transformer. Therefore, the voltage drop along the
feeder becomes more prominent when the node is away from
the transformer.

3.2 | Weibull versus lognormal distribution

A simulation was conducted to analyse the effect of two PDFs
(i.e. Weibull and lognormal distributions) derived from the real
EV data in Section 2.2. The household loads were set to
2.4 kW. The probabilistic simulation is conducted using 1000
random samples generated through the Monte Carlo method.
Simulations have been conducted with 1000 samples for each
distribution function (i.e. Weibull and lognormal distributions)
to represent the EV charging. Weibull and lognormal distri-
butions are considered separately in DIgSILENT Power-
Factory probabilistic simulations. Moreover, analysis has been
conducted under different EV penetration levels (e.g. 25%–
100% with increments of 25%). Figures 7–10 show the average
transformer loading, failure rate and voltage levels at each
terminal.

For each simulation, the transformer loading was recorded,
and the average transformer loading for 1000 Monte Carlo
simulations under different EV penetration levels are shown in
Figure 7. The transformer loading shows that the EV pene-
tration is directly proportional to transformer loading. For
example, under 25% EV penetration, the transformer loading
is 30%, which increased to 50% when the EV penetration
reached 50%. Both distribution types indicate similar results

F I GURE 6 Voltage distribution plot for each node after running the
probabilistic load‐flow simulation.

F I GURE 7 Average transformer loading under different electric
vehicle penetration levels.

F I GURE 8 Sample failure under each distribution.
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with the transformer loading increase above 50% under 100%
EV penetration.

Failure rate represents the undesirable conditions where
load flow does not converge. The lognormal distribution
shows a higher failure rate as the penetration level increases,
and Weibull shows a zero‐failure rate as the EV penetration
increases (see Figure 8). Thus, making Weibull a more suitable
distribution for this study.

Due to the household load and EV charging power being
the same across all terminals and phases, the plot across each
phase is the same with a boxplot representation in Figures 9
and 10. The voltage level decreases downstream of the feeder.
Also, the voltage levels do not exceed 1.10 pu. However, the
voltage levels drop below 0.96 pu as it reaches terminal five (i.e.
TA5), which is the feeder's midpoint. From the plot, it can also

be observed that after the EV penetration increases beyond
50%, terminals above the midpoint, that is, TA5 to TA8,
decrease below 0.96 pu.

There is a minimal difference between the voltage profiles
generated from the two PDFs. However, due to the slightest
failure rate observed for the Weibull distribution, it has been
used for the rest of the study.

3.3 | Household load profiles

To produce a more realistic scenario, the household load was
varied across each phase while each household has a unique
load profile (e.g. Profile‐1 for households connected to phase‐
A, Profile‐2 for phase‐B and Profile‐3 for phase C). The load
profiles are shown in Figure 11. These load profiles represent a
typical residential load profile where peak periods are from
5:30–11 pm and off‐peak periods are after midnight until 6 am.
Each profile is assigned to households in each phase and then
probabilistic simulation was conducted with the Weibull dis-
tribution representing the EV charging load.

Figure 12 shows the per‐phase loading at the transformer,
which increases uniformly as EV penetration increases. The

F I GURE 9 The voltage variation in each terminal with the Weibull
distribution for electric vehicle charging (TA represents the terminal, so
TA1 represents terminal 1 in Figure 4).

F I GURE 1 0 The voltage variation in each terminal with lognormal
distribution for electric vehicle charging (TA represents the terminal, so
TA1 represents terminal 1 in Figure 3).

F I GURE 1 1 Household load profiles.

F I GURE 1 2 Transformer loading per phase for household load‐
profile simulation.
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transformer loading at 100% EV penetration is four times the
transformer loading at 25% EV penetration; whereas, for the
simulation done in Section 3.2, the transformer loading at
100% EV penetration is 1.7 times the transformer loading at
25% EV penetration.

The voltage unbalance factor (VUF) is calculated using the
National Equipment Manufacturers Association definition, and
is given by:

V UF

¼
Maximum Deviation of the Mean from V ab;V bc;V ca

Mean of V ab;V bc;V ca
ð5Þ

The VUF is calculated for the start of the feeder (TA1),
middle of the feeder (TA4) and end of the feeder (TA8) under
each EV penetration level. The VUFs are shown in Figure 13.

According to Figure 13, the end of the feeder indicates a
much larger voltage unbalance compared with the start of the
feeder. For example, at 25% EV penetration, it indicates a VUF
of 0.023% at the start of the feeder, and it has been increased
to 0.064% at the end of the feeder. Moreover, high EV
penetration scenarios have resulted in a slightly lower VUF
level. However, VUF levels are far from the maximum limits
stipulated in standards for these scenarios.

The load profiles show a significant impact on the voltage
distribution across the feeder, since the household load varies
during the day. The voltage levels across each phase can be
seen to be within the maximum and minimum voltage level
threshold, as shown in Figure 14.

3.4 | Vehicle to grid (V2G) simulation

The V2G scenario was simulated using the Weibull distribu-
tion. The effect on the transformer loading is observed as well
as the voltage levels across the feeder. Figure 15 illustrates the
transformer loading for both V2G and G2V. It must be noted
that the household load is kept at 2.4 kW under the V2G
scenario. According to Figure 15, under V2G scenarios, the
transformer loading has significantly reduced as it caters for
the local load. Since the local load is constant, it does not
capture the actual effect of V2G on the transformer loading.
However, it is more beneficial to implement V2G under high
local load conditions to relieve the transformer loading.

It can be observed that there is an opposite effect with
V2G compared to G2V scenarios. According to Figure 16, the
voltage level increases across the feeder as the EV penetration

F I GURE 1 3 Voltage unbalance factor for household load‐profile
simulation.

F I GURE 1 4 Voltage distribution across each terminal for each‐phase, (a) phase‐A, (b) phase‐B, (c) phase C.

F I GURE 1 5 Transformer loading of the vehicle‐to‐grid (V2G) versus
grid‐to‐vehicle (G2V).
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increases. However, the voltage levels of the feeder stay within
the maximum and minimum limits stipulated in standards.

4 | CASE STUDY: IMPACT OF EV ON
THE REAL RESIDENTIAL LV FEEDER
WITH SOLAR‐PV GENERATION

This case study was formulated further to verify the findings
from the standard network study and analyse the effect of
solar‐PV generation. The Weibull PDF was used to represent
EV charging. The EV charging loads are randomly assigned to
each household in the real LV feeder (Figure 5) to achieve 0%,
25% and 100% penetration levels. The EV penetration is
defined based on the same definition as in Section 2.3.3. The
following scenarios were analysed in this case study:

a) Different solar‐PV penetration levels
b) Smart‐PV inverter with volt‐var control
c) V2G with and without smart inverter volt‐var control

4.1 | Different solar‐PV penetration levels

Following solar‐PV generation levels are analysed with EV
charging scenarios:

i. 0% solar‐PV generation (base scenario)
ii. 25% solar‐PV generation (late afternoon during the

summer)
iii. 100% solar‐PV generation (during mid‐day)

The same power output is applied to all solar‐PV systems
under each generation scenario, and all PV systems were
operated at unity power factor. Figure 17 shows the mean
terminal voltages under various EV and solar‐PV generation
scenarios. It must be noted that the terminal voltages are the

mean voltage of 1000 voltage values obtained from the Monte
Carlo simulation.

According to Figure 17, high PV scenarios are likely to
increase the terminal voltages despite the EV load in each
terminal. For example, under the 0% PV and 100% EV sce-
narios, the terminal voltage was 0.9987 pu, which has increased
to 1.005 pu under 100% PV and 100% EV scenarios. However,
it is unlikely that 100% PV generation is present when 100%
EV load exists in the feeder. However, 25% PV generation is
possible during the summer months when 100% EV load is in
the feeder. Under such a scenario, the voltage was at 1 pu,
indicating how PV generation can harmonise the adverse effect
of the EV load.

A boxplot of transformer loading for each scenario is
illustrated in Figure 18.

According to Figure 18, PV generation has assisted in
reducing transformer loading, particularly under high EV
scenarios (e.g. 100% EV load). For example, under 25% PV
generation, it has reduced transformer loading by 7% on
average for 100% EVs in the feeder. Under 100% PV gener-
ation, transformer loading has decreased by approximately
24%, with 100% EVs in the feeder. Therefore, probabilistic

F I GURE 1 6 Voltage distribution across each terminal for V2G.

F I GURE 1 7 The mean terminal voltages for electric vehicle and solar‐
PV scenarios.

F I GURE 1 8 Transformer loading for electric vehicle and solar‐PV
scenarios.
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analysis confirms the positive effects of PV generation under
high EV penetration in the feeder.

4.2 | Smart inverter scenario for solar‐PV

Smart inverters can provide volt‐var control, injecting or
absorbing reactive power to regulate the terminal voltage
within a defined limit. IEEE Std. 1547 and AS4777.2 specify
volt‐var set points [21, 22] the inverter should follow when
injecting or absorbing reactive power for voltage regulation.
This paper adopts the volt‐var settings, and the minimum
reactive power capability standard specified in AS4777 (see
Figure 19).

Simulations have been conducted for the 100% EV sce-
nario under 25% and 100% solar‐PV generation levels.
Figures 20 and 21 show the terminal voltage boxplots.

According to Figure 20, the terminal voltage variation
along each terminal has reduced after implementing the volt‐
var control at solar‐PV inverters, for example, the terminal
voltage has decreased approximately by 0.16% with the volt‐
var control. However, that reduction has been reduced due

F I GURE 1 9 AS4777.2 Inverter specifications, (a) volt‐var control
setting, (b) inverter minimum P‐Q capability.

F I GURE 2 0 Terminal voltage boxplots with 100% electric vehicle and
25% solar‐PV generation in the feeder, (a) without volt‐var control, (b) with
volt‐var control.

F I GURE 2 1 Terminal voltage boxplots with 100% electric vehicle and
100% solar‐PV generation in the feeder, (a) without volt‐var control,
(b) with volt‐var control.
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to high PV generation as only a less reactive power headroom
is available under 100% PV generation. In terms of trans-
former loading (see Figure 22), it does not have much effect at
100% PV generation; however, transformer loading has shifted
slightly towards the rated loading level under volt‐var control.

4.3 | V2G with and without volt‐var control

The V2G scenario was simulated with 100% EVs operating in
V2G mode. Several solar‐PV generation levels (e.g. 25% and
100% solar generation) are simulated with and without the
volt‐var control functionality of the inverter. Figures 23 and 24
illustrate the boxplot of bus voltages obtained from Monte
Carlo simulation under V2G with and without volt‐var control.

According to Figures 23 and 24, the terminal voltage
spread has reduced after implementing the volt‐var control at
the inverter. For example, the voltage recordings between 25%

and 75% have decreased by ≈30% (difference relative to the
nominal 1 pu) after implementing the volt‐var control, and
thus a relatively better voltage regulation can be achieved.
However, due to the low X/R ratio (<1) of the LV network,
the voltage regulation employing reactive power is not very
effective compared to the HV network. Since active power
is more dominant due to high resistance in the LV network
(since R.P > Q.X ). The failure rate has also been reduced by
40% after enabling the smart inverter capability. Since the

F I GURE 2 2 Transformer loading with and without volt‐var control,
(a) 25% PV generation, (b) 100% PV generation.

F I GURE 2 3 Terminal voltage boxplots with 100% electric vehicle in
V2G mode and 25% solar‐PV generation in the feeder, (a) without volt‐var
control, (b) with volt‐var control.

F I GURE 2 4 Terminal voltage boxplots with 100% electric vehicle in
V2G mode and 100% solar‐PV generation in the feeder, (a) without volt‐
var control, (b) with volt‐var control.
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failure rate is directly associated with undesirable operating
conditions, such conditions can be reduced with the volt‐var
control.

Finally, the transformer loading has been analysed for the
scenarios and they are shown in Figure 25. Transformer loading
has reduced with the higher solar‐PV generation. However, with
the volt‐var control, transformer loading distribution has ske-
wed towards 100% loading, as more reactive power is trans-
ferred under the volt‐var control mode through the transformer.

5 | DISCUSSION

The probabilistic EV impact analysis framework can be
extended to any LV network to assess the EV impact on the
network. However, DNSPs need to acquire more accurate

charging energy and charging duration data to produce the
probability distribution function for EV charging power. As
DNSPs are increasingly utilising the smart metres in customer
premises, they can be used to capture these data; however, smart
metres should be configured to capture data at high‐resolution.
Otherwise, high‐resolution data acquisition systems can be uti-
lised to capture charging data. Since the proposed method
employs 1000 samples to run the probabilistic simulation, the
computational burden may increase by 10–20 times more than a
simple load‐flow simulation. However, it can be mitigated by
utilising multi‐core computing architecture. Moreover, the load
and solar‐PV generation data can also be represented as a
probability distribution function in these impact studies. How-
ever, this analysis did not consider it, as it purely focuses on the
probabilistic nature of EV charging and V2G. However, it may
increase the computational burden further.

In terms of smart inverters, they can also provide some
voltage control in distribution feeders using their reactive po-
wer control capability. However, the voltage control bandwidth
of reactive power is limited, since the LV distribution feeders
are predominantly resistive. Therefore, active power control
methods are more effective for the LV grid, and hence smart
charging methods which actively control the active power
should be deployed to tackle voltage control challenges.

6 | CONCLUSIONS

This paper has investigated the impact of EVs on low‐voltage
networks using a probabilistic simulation framework. Proba-
bilistic impact analysis of EVs' integrated into LV networks
shows the unpredictability of the loading per feeder with
approximately a 20% increase in transformer loading, as EV
penetration increases from 25% to 100%. Also, V2G simula-
tion has resulted in an interesting outcome on how EVs can
work in a smart grid with just a 1% increase in transformer
loading from 25% EV penetration to 100% EV penetration.
Voltage unbalance reduced slightly under a high EV penetra-
tion level; however, the downstream of the feeder has shown a
much higher VUF level compared with the upstream.

A case study developed based on a real residential LV
distribution feeder with solar‐PV generation has shown how
solar‐PV generation can assist in reducing the adverse effects
of EV charging. However, it is limited to a certain PV gener-
ation (e.g. 25%) in summer months as most EV loads are likely
to appear in the evening or late afternoon hours. However, if
the charging stations are connected to the LV residential
feeders with solar‐PV generation, they can exploit the benefits
of solar‐PV generation. Also, the study has shown how the
volt‐var functionality of the solar‐PV inverter can help
improve the feeder voltage profile under EV charging and
V2G; however, volt‐var support is constrained by the low X/R
ratio of the LV feeder.
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