
Received: 5 May 2021 - Revised: 7 May 2023 - Accepted: 30 June 2023 - IET Software
DOI: 10.1049/sfw2.12139

OR I G INAL RE SEARCH

Gravitational search algorithm‐extreme learning machine for
COVID‐19 active cases forecasting

Boyu Huang1 | Youyi Song2 | Zhihan Cui1 | Haowen Dou1 | Dazhi Jiang1 |
Teng Zhou2,3 | Jing Qin2

1Department of Computer Science, Shantou
University, Shantou, China

2Centre for Smart Health, School of Nursing, The
Hong Kong Polytechnic University, Hong Kong,
China

3School of Cyberspace Security, Hainan University,
Haikou, China

Correspondence

Teng Zhou and Jing Qin.
Email: teng.zhou@polyu.edu.hk and harry.
qin@polyu.edu.hk

Funding information

Natural Science Foundation of Guangdong
Province, Grant/Award Number:
2022A1515011590; Project of Strategic Importance
of The Hong Kong Polytechnic University, Grant/
Award Number: 1‐ZE2Q; National Natural Science
Foundation of China, Grant/Award Number:
61902232; Li Ka Shing Foundation, Grant/Award
Number: 2020LKSFG05D

Abstract
Corona Virus disease 2019 (COVID‐19) has shattered people's daily lives and is
spreading rapidly across the globe. Existing non‐pharmaceutical intervention solutions
often require timely and precise selection of small areas of people for containment or
even isolation. Although such containment has been successful in stopping or miti-
gating the spread of COVID‐19 in some countries, it has been criticized as inefficient
or ineffective, because of the time‐delayed and sophisticated nature of the statistics on
determining cases. To address these concerns, we propose a GSA‐ELM model based
on a gravitational search algorithm to forecast the global number of active cases of
COVID‐19. The model employs the gravitational search algorithm, which utilises the
gravitational law between two particles to guide the motion of each particle to optimise
the search for the global optimal solution, and utilises an extreme learning machine to
address the effects of nonlinearity in the number of active cases. Extensive experiments
are conducted on the statistical COVID‐19 dataset from Johns Hopkins University, the
MAPE of the authors’ model is 7.79%, which corroborates the superiority of the
model to state‐of‐the‐art methods.
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1 | INTRODUCTION

An outbreak of unexplained pneumonia in Wuhan, Hubei
Province, China, in early December 2019, has been confirmed
as an acute respiratory infection caused by a novel 2019
coronavirus infection [1–3]. Although the source of COVID‐
19 transmission has not been determined, Zhou et al. [4]
pointed out the possibility that the virus was transmitted from
bats to humans. Based on the assessment, the World Health
Organisation (WHO) believes that the current outbreak of new
coronavirus pneumonia can be described as a global pandemic
[5]. With the global spread of COVID‐19, many countries have
declared a state of emergency prevention and control, and have
introduced cross‐border travel restrictions one after another,
which has caused a large number of deaths and significant
economic devastation. As countries assess the severity of the

outbreak in their regions mainly based on the number of active
cases, accurate prediction of active COVID‐19 cases is an
essential technique for deciding on outbreak prevention and
control measures to reduce the number of COVID‐19 in-
fections. The quantity of active cases is not only influenced by
the randomness of infection between virus carriers and normal
individuals, but also displays seasonal variations [6]. Owing to
the variability and stochasticity of infection between individuals
[7, 8], it is still imperative to construct a model that can
accurately forecast.

The virus is transmitted from person to person primarily
through respiratory droplets [7–9] and causes a range of
symptoms and severe sequelae [10–12]. Nevertheless, the exact
virological and epidemiological characteristics of this third
zoonotic coronavirus, including transmissibility and mortality,
are not known. Deep learning has the ability to learn and
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model nonlinear complex relationships which has received
interest and attention in various fields [13–16]. Nevertheless,
with such a significant number of active cases worldwide,
training deep learning models would be time‐consuming and
vulnerable to overfitting [17]. Therefore, we need to formulate
a model that can solve these problems properly to forecast
COVID‐19 active cases.

Extreme learning machine (ELM) is a feedforward neural
network first proposed by Huang et al. [18] in 2006. It is illus-
trated that ELM has excellent generalisation performance as
well as extremely fast learning ability without gradient‐based
backpropagation to adjust the weights, and instead sets the
weights by the Moore‐Penrose (MP) generalised inverse, so it
can well overcome the problem of difficult training with large
amount of data [19, 20]. It is further proved that if the activation
function of the hidden layer is infinitely differentiable on any
interval, the input weight and the hidden layer threshold can be
set randomly before training and remain unchanged during the
training. ELM is currently applied not only to regression and
fitting problems [21, 22], but also to classification [23], pattern
recognition [24] and other fields. At the same time, a variety of
improved methods and strategies have been mentioned [25, 26],
so that the performance of ELMhas also been greatly improved,
and its importance is increasingly reflected.

Nevertheless, ELM generates the weight matrix of the input
layer and the hidden layer bias values by initializing them in a
random way. These parameter setting situations play a signifi-
cant role in the final prediction performance of the model. In
addition, the nonlinear active cases data leads to the possibility
that the model may suffer from performance degradation in the
face of samples that do not appear during the training process
due to the lack of generalisation ability. To address this limita-
tion, the GSA‐ELM algorithm proposed in this paper can solve
the above problems. We utilise the Gravitational Search Algo-
rithm (GSA) [27] to search for the most optimal weights and
biases of the extreme learning machine in cases forecasting,
referred to as GSA‐ELM. This model not only reduces the
complexity of the network to avoid overfitting, but also ensures
the reliability and stability of the prediction results and improves
the competitiveness relative to other methods. We summarise
the principal contributions of this work as follows.

� We optimise the weights and biases by gravitational search
algorithm to improve the performance of the extreme
learning machine.

� We innovatively applied deep learning methods to the pre-
diction of COVID‐19 and were capable of successfully
coping with the complexities of nonlinearity.

� We evaluate our hybrid learning model on a benchmark set
and compare it with several state‐of‐the‐art machine
learning forecasting models to demonstrate the superiority
of our model.

The rest of the paper is structured as follows. The second
part is the methodology, and the third part is an empirical study
of real‐world data from Johns Hopkins University statistics in
the United States. Then comes the conclusion.

2 | RELATED WORKS

Simulation of epidemics. Several epidemiological and clinical
characterisation studies have been conducted on patients with
this virus to analyse its biological features and viral patho-
genesis [28–31], this will help medical practitioners to develop
vaccines faster and effectively prevent the spread of this virus
in the population. Anastassopoulou et al. [32] made a pre-
liminary prediction of the evolution of the outbreak by means
of data modeling. Susceptible Infected Susceptible (SIS)
[33, 34], Susceptible Infected Recovered (SIR) [35] and Sus-
ceptible Exposed Infected Recovered (SEIR) [36, 37] models
provide an alternative approach to epidemic simulation and
many research works have been reported. The results show
that those SIS, SIR and SEIR models can reflect the dynamics
of different epidemics. Meanwhile, these models have been
used in COVID‐19 [38, 39].

Optimisation algorithms. There are a large number of
many excellent optimisation schemes being applied to solve
practical problems. Binary versions for RSO have not been
created for binary optimisation problems. Awadallah et al. [40]
proposed an enhanced binary version of the Rat Swarm
Optimiser (RSO) [41] to handle the Feature Selection (FS)
problem, and the amazing achievement proved the feasibility
of the proposed RSO version. Thawkar et al. [42] proposed a
hybrid feature selection method based on the Butterfly Opti-
misation Algorithm (BOA) [43] and Ant Lion Optimiser
(ALO) [44] for breast cancer prediction, which effectively
improved the optimisation and classification accuracy. To
change the low exploration capability of the traditional Whale
Optimisation Algorithm (WOA) [45], Chakraborty et al. [46]
studied to provide mWOAPR. A novel variant version im-
proves the exploration capability of the algorithm while
balancing the global and local search functions, and success-
fully applied it to solve image segmentation problems. How-
ever, none of these studies have considered the predictive
potential of the hybrid learning model in epidemiology, and
this study is the first to apply the model to the task of pre-
dicting active cases of COVID‐19.

Heuristic algorithms. Heuristic algorithms are proposed
relative to optimisation algorithms, where the optimal algo-
rithm for a problem seeks the optimal solution for each
instance of that problem. At the present stage, heuristic algo-
rithms are dominated by natural body‐like algorithms, which
have achieved great success. Typical works include Li et al. [47]
which proposed the Slime Mold Algorithm (SMA) as an al-
gorithm inspired by the biomotor behavior of simulated slime
molds. Through studying the behavioral pattern of slime mold
single cell growth and analysing the characteristics of its
simulated behavior applying it to computer simulations can
lead to optimised results. Tu et al. [48] proposed the Colony
Predation Algorithm (CPA) following the strategy used by
animal hunting groups, using success rate to adjust the strategy
and simulate the selective abandonment behavior of hunting
animals. It shows competitive, superior performance in
different search environments. Then, the Harris Hawk Opti-
misation (HHO) algorithm designed by Heidari et al. [49]

HUANG ET AL. - 555

 17518814, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sfw

2.12139 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [23/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://ietresearch.onlinelibrary.wiley.com/action/rightsLink?doi=10.1049%2Fsfw2.12139&mode=


achieves population evolution through mathematical modeling
of different predation strategies of Harris hawks, with a strong
algorithm for finding superiority and without tedious tuning of
parameters.

3 | METHODOLOGY

In this section, we first construct the extreme learning machine
(ELM) to predict the quantity of active cases. Then, we utilise
the gravitational search algorithm to globally optimise the
combination of parameters for the ELM.

3.1 | Extreme learning machine

Extreme Learning Machine (ELM) is a novel fast learning al-
gorithm in the neural network structure, which is a forward
propagating neural network. For traditional neural networks,
especially single hidden layer feedforward neural networks
(SLFNs), ELM can reduce the amount of model operations by
randomly initialising the input weights and biases [50] and no
longer needing to adjust them after they are set. In addition,
the connection weights between the implicit and output layers
do not need to be adjusted iteratively, but instead are deter-
mined by solving a system of equations. The experiments in
[51] prove that the algorithm not only has high generalisation
ability to guard against overfitting, but also can outperform
traditional machine learning algorithms while guaranteeing
learning accuracy. A three‐layer structure of ELM is demon-
strated in Figure 1.

An overview of the primary philosophy of ELM is pro-
vided below. For ELM with a three‐layer structure, suppose
there are Z training samples xi; tið Þ

Z
i¼1. Here, xi ¼ xi1; xi2;…;½

xin�
⊤ ∈Rn and ti ¼ ti1; ti2;…; tim½ �⊤ ∈ Rm represent the input

data and the ground truth of the ith sample, respectively.
This neural network with a single hidden layer can be rep-
resented as:

Xk

j¼1

βjg ω⊤
j ⋅ xi þ bj

� �
¼ ti; i¼ 1;…;Z; ð1Þ

where ωj ¼ ωj1;ωj2;…;ωjk
� �⊤ is the input weight vector that

links the input nodes to the jth hidden neuron and k is the
number of neurons in the hidden layer. g(x) is the activation
function of the hidden layer and bj denotes the bias of the jth

hidden neuron. We suppose hij ¼ g ω⊤
j ⋅ xi þ bj

� �
, where

ω⊤
j ⋅ xi is the inner product of ω⊤

j and xi, representing the
input value of the jth hidden neuron. Further express Equa-
tion (1) in matrix format as:

Hβ¼ T ; ð2Þ

where H ¼ hij
� �

i¼1;…;Z;j¼1;…;k indicates the output matrix of

the implied layer. The matrix β¼ β1; β2;…; βk½ �⊤ represents
the output weights of this network, in which βj ¼

βj1; βj2;…; βjm

h i
⊤ ∈ Rm; j ¼ 1;…; k is the weight vector

connecting the jth hidden neuron to the output nodes.
T ¼ t1; t2;…; tZ½ �⊤ represents the expected output of the
network.

In the ELM algorithm, once the input weights and the bias
values of the hidden layers are determined randomly, the ma-
trix H is also identified, and training a single hidden layer
neural network can be converted into a problem of solving a
linear system. The output weight matrix can be obtained by the
following equation:

bβ ¼H†T ; ð3Þ

where H† is derived by solving the Moore‐Penrose (MP)
generalised inverse by H.

3.2 | Hybrid GSA‐ELM algorithm

ELM inevitably has drawbacks in the learning process. The
random selection of its parameters leads to the generation of a
series of non‐optimal parameters, and these parameter setting
situations play an important role in the final prediction per-
formance of the model. This makes the number of required
implicit layer nodes more than the traditional learning algo-
rithm, which affects its generalisation performance and leads to
the pathological state of the system. Only the information of
the input parameters is used in the learning process for
computation, while the actual output values, which are very
valuable, are ignored. In addition, the nonlinear active case data
leads to a possible performance degradation of the model in
the face of samples that do not appear during the training
process due to the lack of generalisation capability. The accu-
racy obtained by applying it to the COVID‐19 active case
prediction does not satisfy the real situation. Therefore, we
propose here to use the gravitational search algorithm to
search for the internal network parameters that are most
suitable for ELM to predict the number of active cases of
COVID‐19, thus improving the overall performance of the
model. The overall architecture of the GSA‐ELM hybrid

F I GURE 1 Extreme learning machine. The forward propagating
neural network has only one hidden layer, whose parameters include input
weights ω, output weights β, and hidden layer biases (b).
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model is shown in Figure 2. As can be seen, we first initialise
the parameters of the GSA and the particle positions of the
population and evaluate the fitness value of each particle. Next,
we calculate the interaction forces between the particles to
update the velocity and position of each particle. The algorithm
is iterated several times until the termination condition is
satisfied. At this point, the global optimal solution of the
problem returned by the GSA is applied to the parameter
settings of the ELM. Finally, the ELM is used to generate the
final prediction of our model for the number of future active
cases. Next we present the details of the gravitational search
algorithm as follows.

In 2009, Rashedi et al. [27] proposed a novel optimisation
algorithm, the Gravitational Search Algorithm (GSA), based
on the law of gravity and the interaction between particles. The
mass of the individual measures the merit of the individual, and
the better the position, the greater the mass. Due to the effect
of gravity, individuals are attracted to each other and move in
the direction of the individual with the largest quality. As the
movement continues, ultimately the whole group will gather
around the individual with the largest mass, thereby finding the
individual with the largest mass, which occupies the best

position. Hence, the algorithm is able to obtain the optimal
solution to the problem. In the model, we consider a search
space with N particles. We define the position of the rth par-
ticle as follows:

Mr ¼ μ1r ;…; μd
r ;…; μD

r

� �
; r ¼ 1; 2;…;N ; ð4Þ

where μd
r represents the position of the rth particle in the dth

dimension. The dimension of each particle is D = k (n + 1), k
and n are the number of neurons in the hidden and input layers
in ELM, respectively. Similarly we define the velocity of the rth
particle among N particles as:

Vr ¼ v1r ;…; vd
r ;…; vD

r

� �
; r ¼ 1; 2;…;N ; ð5Þ

where vd
r denotes the velocity of the rth particle in the dth

dimension.
Based on the principle of force interaction, in the ith

iteration we define the force acting on the rth particle by the
sth particle as follows:

F I GURE 2 The general structure of our proposed GSA‐ELM model for COVID‐19 active cases forecasting.
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Fd
rs ¼GðiÞ

MrðiÞ �MsðiÞ
RrsðiÞ þ σ

μd
s ðiÞ − μd

r ðiÞ
� �

; ð6Þ

where Rrs(i) denotes the Euclidean distance between the par-
ticles r and s. Mr and Ms are respectively the passive gravita-
tional mass of particle r and the active gravitational mass of
particle s. σ is a small constant in order to prevent the de-
nominator turning into zero. G(i) denotes the gravitational
constant, whose value decreases with each iteration of the al-
gorithm to control the search accuracy. The specific repre-
sentation of G(i) is as follows:

GðiÞ ¼G0e−ϵ i
Ið Þ; ð7Þ

G0 is the initial value of the gravitational constant G(i), I is the
overall number of iterations of the algorithm and ϵ is the
constant which requires adjustment.

To introduce the complex property in the algorithm, as-
sume that the total force acting on the rth particle in the dth
dimension is a random weighted sum of the forces exerted by
the other particles, expressed as:

Fd
r ¼

XN

s¼1;s≠r
randsFd

rsðiÞ; ð8Þ

where rands ∈ (0, 1) represents a random variable that follows
a uniform distribution, and to add the random property.

The algorithm must start with a full exploration of the
search space to prevent falling into a local optimum. As
the iterations proceed, the search gradually decreases and the
exploitation gradually increases. Also, to improve the perfor-
mance of GSA by controlling the exploration and exploitation,
a good compromise is to reduce the number of particles over
time. Specifically, only δbest optimal particles can attract other
particles, where δbest is a function of time and decreases linearly
with the iteration process. Finally only one particle applies
force on the other particles. Therefore, Equation 8 can be
modified as follows:

Fd
r ¼

XN

s≠r;s∈δbest

randsFd
rsðiÞ; ð9Þ

where δbest is the set of the first δ particles has the largest mass
and the best fitness value. According to Newton's second law,
the acceleration of particle r at the ith iteration and in the dth
dimension, is defined as:

ad
r ðiÞ ¼

Fd
r ðiÞ

MrðiÞ
; ð10Þ

where Mr represents the inertial mass of rth particle. The next
velocity of particle r is considered to be part of the current
velocity plus its acceleration, which leads to the calculation of
its velocity and position update by:

vd
r ðiþ 1Þ ¼ randr � vd

r ðiÞ þ ad
r ðiÞ; ð11Þ

μd
r ðiþ 1Þ ¼ μd

r ðiÞ þ vd
r ðiþ 1Þ; ð12Þ

where vd
r ðiþ 1Þ and μd

r ðiþ 1Þ indicate the velocity and posi-
tion of particle r after the (i + 1)th iteration update, respec-
tively. randr ∈ (0, 1) is also a random variable obeying uniform
distribution.

The mass of the individual is obtained by fitness assess-
ment, the greater the mass the better the position, the stronger
the attraction, and the slower the movement. The inertial mass
and gravitational of particle r are updated according to the
following equation:

mrðiÞ ¼
f itrðiÞ − worstðiÞ
bestðiÞ − worstðiÞ

; ð13Þ

MrðiÞ ¼
mrðiÞ

PN
s¼1msðiÞ

; ð14Þ

where fitr(i) and Mr(i) respectively represent the value of the
MAPE and mass of the rth particle in the ith iteration. The
specific definitions of best(i) and worst(i) are as follows:

bestðiÞ ¼ min
s∈f1;2;…;Ng

f itsðiÞ; ð15Þ

worstðiÞ ¼ max
s∈f1;2;…;Ng

f itsðiÞ; ð16Þ

the best(i) and worst(i) represent the best fitness function value
and the worst fitness function value among all particles at the
ith iteration.

4 | CASE STUDY

The data utilised in this section are from the data repository of
the 2019 Novel Coronavirus Visual Dashboard operated by the
Johns Hopkins University Centre for Systems Science and
Engineering (JHU CSSE).1 In the second subsection a brief
description of the criteria for experimental evaluation is pro-
vided. Our experiments were conducted on a computing
hardware environment with Intel Core i7 3.60 GHz and 8 GB
RAM, running on Python 3.7.

4.1 | Data description

The active cases for the case study were obtained from the data
repository of the 2019 Novel Coronavirus Visual Dashboard
operated by the Johns Hopkins University Centre for Systems
Science and Engineering (JHU CSSE), which includes daily
case reports for COVID‐19 worldwide, daily status reports for
the United States, and time series summaries. The timestamped

1
https://github.com/CSSEGISandData/COVID‐19
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of all cases are denoted in UTC (GMT + 0). The number of
active cases for each country and region are aggregated by each
country and region from January 27, 2020 to December 21,
2020.

4.2 | Evaluation criteria

This experiment adopts two common evaluation metrics to
assess the performance of our model. These two criteria are
the mean absolute percentage error (MAPE) and the root
mean square error (RMSE), which are defined as follows.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
S

XS

s¼1

bf s − f s

� �2

v
u
u
t ; ð17Þ

MAPE ¼
1
S

XS

s¼1
j
bf s − f s

f s
j; ð18Þ

where S is the number of test samples, fs and bf s are the true
measured and predicted values of the sth test sample.

4.3 | Experiment & results analysis

The projections for COVID‐19 active cases are intended to
anticipate fluctuations in the population over time, rather
than to anticipate variations in the population on a per‐day
basis. Hence we calculated the number of active cases for
each country and region by adding up the original data to obtain
the total number of active cases for that day as one of our data
samples. We selected each experimental sample to be sequenced
by time series and intercepted the data using a rolling method
with a rolling step set to 1. The data were counted every 5 days
as one group, resulting in a total of 326 sets of data. The data
sample for each set is divided into two parts, the first part
consists of the data from the first 4 days and the second part
consists of the data from the last day, which is the value to be
predicted, that is, the target value. Hence, the ELM network has
a 4‐dimensional input vector and a 1‐dimensional output vec-
tor. The overall data is also divided into two parts, where 80%
of the data is utilised to train our model, while the residuals are
used to test the performance of the model. In this study, two
evaluation criteria, RMSE and MAPE, are applied to gauge the
performance of GSA for ELM optimisation. In purpose to
have a better training effectiveness of the ELM model, we set
the number of neurons in the hidden layer within the network
to 100, while the specific settings of the GSA parameters are
shown in Table 1. In our experiments we also analysed the
effect of different number of iterations on the prediction per-
formance of the model by setting the number of iterations of
the model to different values (1–100). We show in Figure 3 the
results comparing MAPE for different number of iterations. We
can observe that when the number of iterations exceeds 30, the
particles in the GSA move to the optimal position and MAPE

values converge to a smooth value. At this point, the perfor-
mance of the model does not improve significantly after more
iterations. Therefore, in this experiment we set the initial
number of iterations of the model to 100 to ensure that the
model can fully converge and that the model will not lose ac-
curacy due to insufficient training.

We also compare the performance of our model with a
model that utilises the particle swarm algorithm (PSO) to
optimise the ELM to demonstrate the superiority of GSA in
determining the ELM parameters. For the purpose of com-
parison between algorithms, all parameters should be consid-
ered as the same criteria, except for algorithm parameters that
require special settings. The particular parameter settings in PSO
follow previous work in our experiments [52, 19]. Specifically,
we set the social learning factor c1 and the individual learning
factor c2 in the algorithm to 0.55 and 0.35, respectively, and the
inertia weightω that regulates the search range over the solution
space is set to the default 0.9. The number of particle swarms is
20 and the maximum number of iterations is likewise 100. Ta-
ble 2 shows the prediction results of the ELM model with
optimised ELM parameters using the GSA and PSO algorithms,
respectively, versus the ELM model without any optimisation
algorithm. We can see that optimising the parameters of the
ELM by both the GSA and PSO algorithms can effectively
improve the performance of the ELM. Compared with the or-
dinary ELM, GSA helps the ELM network solve the optimal

TABLE 1 The GSA parameters setting.

Parameter Value

Gravitational constants initial value G0 100

Constant ϵ 20

Number of iterations I 100

Number of particles N 40

Constant σ 1

F I GURE 3 MAPE of the prediction results for different number of
iterations. After the number of iterations exceeds 30, the MAPE value tends
towards stability.
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input weight vector and bias value parameters that are most
suitable for the prediction task by simulating the motion of
particles. Not only can it effectively help ELM to get rid of local
extremes and thus obtain optimal results, but also the optimised
model can have certain generalisation ability. In particular, the
GSA‐ELM model proposed in this paper has obvious advan-
tages over the PSO‐ELM model in both metrics. The PSO al-
gorithm is easy to fall into the local extrema for functions with
multiple local extrema in the optimisation problem, thus
obtaining suboptimal results. Meanwhile, the PSO method of-
fers the possibility of global search, but does not strictly prove its
convergence on the global optimal point. The number of active
cases of COVID‐19 shows a nonlinear variation with time, and
the parameter optimisation problem of ELM has multiple local
extremum points, so it does not perform better compared to the
GSA algorithm.

We also report the time overhead of the three models for
training and testing. In the training phase, the ELM models
based on the optimisation algorithm all take more time.
Compared to the ELM, it just randomly assigns parameters
without the optimisation process and is relatively less accurate.
Secondly, GSA has faster convergence speed and superior
prediction effect than PSO, which is more practical in the
actual online active cases prediction. And in the testing phase,
the time overheads of the three models are roughly similar, the
reason being that the inference of the final prediction results all
depend mainly on the speed of ELM.

4.4 | Performance evaluation

Active cases prediction was performed utilising several con-
ventional machine learning models, where the datasets and data
are divided in a similar way as before for the comparison ex-
periments. These models were implemented by invoking the
sklearn algorithm library, and the parameters of the models
mostly used the default settings in sklearn. Table 3 exhibits the
prediction performance of each model. The individual models
are described below.

KNN [56]: Through finding the k nearest neighbors of a
sample and assigning the average of some attribute(s) of these
neighbors to that sample, the value of the corresponding
attribute(s) of that sample can be obtained. The choice of k
value in KNN algorithm will have a large impact on the pre-
diction performance of the model. If a smaller value of k is
chosen, it is equivalent to predicting with training instances in a
smaller domain, which means that the overall model becomes

complex and prone to overfitting; if a larger value of k is
chosen, it is equivalent to predicting with training instances in a
larger domain, which has the advantage of reducing the esti-
mation error of learning, but the disadvantage that the
approximation error of learning increases. Therefore, consid-
ering the above reasons, we experimentally set the value of k to
4 to make the KNN model have better prediction performance
and robustness to noise.

DecisionTree (DT) [54]: The study adopts a Decision Tree
model based on Classification and Regression Tree (CART) for
prediction. CART does not require any a priori assumptions
and is highly resistant to noise and missing data. Set where the
max _length parameter is 5.

SVR [53]: The principle of SVR is to locate a regression
plane in which all data of a collection have the closest distance
to that plane. This experiment applies the best‐fitted Gaussian
RBF kernel function.

RidgeRegression [58]: A regularised version of linear
regression, is a biased estimation regression method, which is
essentially a modified least squares estimation method. For
which the regularisation parameter α is set to 0.5.

ANN [57]: The artificial neural network can continuously
learn to extract the features of each part of the data, and
change the strength of each connection by training the network
weights of the connections until the output of the top layer
gets the correct answer. We set the number of hidden layers
here to 1 and the number of nodes to 50.

KF [55]: Kalman Filtering (KF) provides optimal estima-
tion of the system state through the system input and output
observations. We set the variance of the process error Q to 0.1
� I, where I represents the identity matrix. We set the variance
of the measurement noise to 0. The covariance matrix of the
initial state estimation error is denoted as 10−2 � I.

Among the GSA algorithm and PSO algorithm, the par-
ticles are randomly distributed and the results of each experi-
ment are different. Therefore, the experimental results of both
the GSA‐ELM model and the PSO‐ELM model are run over
100 times. Multiple experiments were conducted for each
model in the comparison experiments and the final results of

TABLE 2 Comparison of forecasting performance and
computational time overhead for different ELM‐based models.

Method MAPE RMSE Training (s) Testing (s)

ELM [18] 7.09 831957.76 0.033 1.9 £ 10−3

PSO‐ELM 5.81 498020.46 1039.87 2.9 � 10−3

GSA‐ELM 3.64 397025.31 482.53 2.4 � 10−3

Note: Bold values denote the best one among that column.

TABLE 3 The forecasting results of GSA‐ELM and other contrast
models.

Method MAPE RMSE Training (s) Testing (s)

SVR [53] 12.54 1156809.46 0.039 5.3 � 10−3

DT [54] 13.72 1242751.27 0.019 3.1 � 10−3

KF [55] 12.95 1204367.18 0.154 7.3 � 10−3

KNN [56] 10.47 845803.09 0.011 1.6 � 10−2

ANN [57] 10.76 813295.43 6.42 2.8 � 10−3

Ridge
Regression [58]

8.94 705551.56 0.115 4.0 � 10−3

ELM [18] 10.19 595782.92 0.033 1.9 £ 10−3

GSA‐ELM 7.79 474522.09 482.53 2.4 � 10−3

Note: Bold values denote the best one among that column.
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each outcome were averaged to ensure the fairness of our
experiments. The comparison of the prediction performance
and time overhead between the different methods is shown in
Table 3. We can observe that: 1) GSA‐ELM has better per-
formance in both metrics compared to other traditional ma-
chine learning methods. For example, the MAPE value
decreases by 14.8% compared to the ridge regression model,
which has the smallest MAPE value among the other five
models. Since SVR solves support vectors with the help of
quadratic programming, and solving quadratic programming
will involve the computation of a matrix of order m (m is the
number of samples), the storage and computation of this
matrix will consume a lot of machine memory and computing
time when the number of m is large. At the same time, the
performance of regression mainly depends on the selection of
kernel function, so the actual problem of COVID‐19 active
case prediction, how to choose the appropriate kernel function
according to the actual data model to construct the SVR al-
gorithm is still very challenging. The Kalman Filter does not
achieve optimal estimation in the nonlinear scenario of the
COVID‐19 active case because it only provides accurate esti-
mation of the linear process and measurement model. KNN
prediction results are easily affected by noisy data, the number
of active cases of COVID‐19 is not stable from day to day, and
the category of new samples biased towards the category with
the dominant number in the training sample, which easily leads
to prediction errors. It also has high computational complexity
and memory consumption because for each text to be classi-
fied, the distance to all known samples has to be calculated to
find its K nearest neighbors, and the computational time
overhead is also long. The Ridge Regression method is
essentially a modified least squares estimation method that
requires a more realistic and reliable regression coefficient at
the cost of losing some information and reducing accuracy by
abandoning the unbiased nature of the least squares method.
The ELM has good generalisation performance and remains
highly robust to the number of COVID‐19 active cases
affected by various background noises. Meanwhile, the RMSE
value decreased by 25.6% compared with the ELM model with
the smallest RMSE, which proved the effectiveness of the GSA
global optimisation of the parameters of the ELM. 2) GSA‐
ELM relies on the continuous shifting of the position of the
particles of the population to find the global optimal solution
of the problem. Therefore, it will take longer time in the model
training phase compared to other methods with lower
complexity. However, when comparing the time overhead of
the testing phase, it is clear that ELM has the fastest speed.
This is because in the training phase ELM derives the weights
from the hidden layer to the output layer by inverse operations,
while GSA determines the optimal input weight values and the
bias values of the hidden neurons. In the test phase ELM only
needs to perform a simple matrix multiplication operation to
accomplish the task of active cases number prediction. The test
phase has a similar time cost as other machine learning, which
greatly satisfies the need for fast prediction of the number of
activated cases in reality.

In addition, in order to better demonstrate the perfor-
mance of our model and avoid the overlapping of the fore-
casting result lines under the large scale condition that makes
multiple lines indistinguishable. For this reason, we selected
several periods of time when the number of active people
exploded for presentation. From Figure 4, we can notice that
the forecasted value of GSA‐ELM basically coincides with the
real value, while the other six models have a little discrepancy
with the real value, where the green line represents the real
value and the red line represents the forecasted value of GSA‐
ELM. We can observe that the GSA‐ELM model has high
accuracy and stability in most circumstances, and its perfor-
mance is better than other conventional machine learning
forecasting methods. In summary, our model has more
advanced performance and faster prediction response time
compared to other methods for future dynamic global active
cases forecasting.

It is worth noting that the model proposed in this paper
can be deployed online and the model training and active
cases prediction tasks can be performed in parallel. First, we
train the model with the help of existing data on the
number of active cases and deploy it online for prediction
work. In this case, the model takes little time to complete
the prediction task compared to other methods. Second, the
prediction capability is further enhanced by collecting the
latest reported daily active cases data worldwide to contin-
uously train and optimise the internal parameters of our
model. In addition, the latest trained parameters are uploa-
ded in parallel while running online. Finally, the ELM with
updated parameters is used to make more accurate and
faster predictions of the dynamic number of COVID‐19
active cases in the future. The model can effectively help
government agencies and related organisations to make
appropriate epidemic prevention decisions quickly and
further prevent the spread of the epidemic among the
population.

4.5 | Dataset division proportion

We split the overall data into two parts, that is, the training set
and the test set for the evaluation of the model's parameter
learning and predictive capability, respectively. We therefore
analysed the impact of different splitting ratios on the pre-
diction performance here. The detailed results are presented in
Table 4. We can see that when the proportion of the training
set is less than or equal to 80%, we obtain better results as the
proportion of the training set increases. In particular, the
RMSE and MAPE decrease by 10.9% and 6.6%, respectively,
when the ratio of training set to test set reaches 70%:30%. This
is due to the fact that the increase in the training set allows the
model to be more adequately trained to learn more complex
nonlinear patterns, which is more beneficial to improve the
performance and robustness of the model in the face of data
noise. We can also see that the metrics do not improve
significantly when the proportion of the training set reaches
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90%. A large proportion of the training set may result in
training a model closer to the one trained with the total sample,
increasing the possibility of data leakage. Also the model is
prone to overfitting, so it appears to perform poorly on the
emerging test set.

4.6 | Analysis of variance (ANOVA) test

To evidence whether there is a significant difference between
our model and the other methods, we performed an ANOVA
test. Table 5 shows the results. It is generally accepted that a

F I GURE 4 Six examples demonstrate our model outperforms the state‐of‐the‐art models.
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p‐value less than 0.05 means that the difference between the two
models is statistically significant. We can see that all p‐values in
the table are less than 0.05, which reflects that our model is more
statistically significant compared to other methods.

5 | DISCUSSION

To solve the problem of suboptimal prediction due to random
initial internal network parameters of the extreme learning
machine. In this paper, a gravitational search algorithm is used
to search for the optimal solution to the COVID‐19 active case
prediction task by simulating the gravitational motion of a
swarm of particles. This effectively prevents ELM from falling
into local optimality and improves its prediction ability in the
face of nonlinear and unstable data. The experimental findings
also show that our approach can improve the robustness of the
model to a certain extent while keeping its running time
overhead. The gravitational search algorithm has some ad-
vantages over traditional optimisation algorithms in terms of
efficiency in solving nonlinear functions and in solving high‐
dimensional search space optimisation problems. It also has
good search performance compared to other optimisation
models. However, only the current position information plays
a role in the iterative process, which indicates that the gravi-
tational search algorithm is a method lacking in memory, and
there is also the possibility of falling into a local optimum. This
difficulty is a problem that optimisation search methods often
encounter. This leads to the fact that using it together with
ELM may produce predictions that are not very satisfactory.
Therefore, in order to break the above limitations, we consider
that other optimisation search models can be used to solve or
other optimisation algorithms can also be used to optimise the
initial parameter values of GSA in order to speed up the overall
movement of the population and induce the algorithm to have
a stronger search capability.

Currently, there are several studies in the literature that
focus on optimising the network model to improve the im-
munity of the model to noise. For example, Cui et al [59]
proposed a two‐stage hybrid learning model to search the
initial parameter values of the GSA in a data‐driven manner
with the PSO algorithm to improve the efficiency of the global
optimum search. Yin et al [60] introduced a modified GSA
with crossover (CROGSA), where the crossover‐based search
scheme utilises the promising knowledge extracted from the

currently obtained global optimum positions to improve the
exploitation capabilities. We have been working on collecting
more COVID‐19 related data for inclusion in the learning and
training of the GSA‐ELM model to improve the generalisation
capability of the model for deployment in real applications.
This will greatly assist the work of the outbreak prevention and
control authorities and facilitate the implementation of tar-
geted outbreak prevention and control policies.

6 | CONCLUSION

In this paper, we propose a hybrid learning model GSA‐ELM
for COVID‐19 global active cases forecasting. To predict the
complex and multifactorial COVID‐19 active cases, we use a
gravitational search algorithm to search the global optimal
parameters of the extreme learning machine. The experimental
results demonstrate the reliability of the model in predicting
real‐life active cases compared to other state‐of‐the‐art
methods, and its excellent generalisation ability is of good
application. In addition, our model can be deployed and
applied online, the model uses a data‐driven approach for
training and the prediction of the number of active cases can
be performed in parallel. In the future, the model will be able
to assist the government and related organisations to make
appropriate epidemic prevention plans as early as possible to
control the spread of the epidemic among the population and
protect people's lives.
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TABLE 4 The results of using different
division proportions of the training and testing
sets. Metric

Training set: Testing set

60% : 40% 70% : 30% 80% : 20% 90% : 10%

MAPE 8.62 8.05 7.79 7.87

RMSE 689373.51 614400.75 474522.09 503040.32

Note: Bold values denote the best one among that column.

TABLE 5 Compare the p‐values of the
different methods in the ANOVA test.

Method SVR DT KF KNN RidgeRegression ELM

p‐value 8.45 � 10−5 1.91 � 10−6 1.34 � 10−6 3.13 � 10−5 4.20 � 10−4 3.96 � 10−4
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