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Abstract
Human parsing is very important in a diverse range of industrial applications. Despite the
considerable progress that has been achieved, the performance of existing methods is still
less than satisfactory, since these methods learn the shared features of various parsing
labels at the image level. This limits the representativeness of the learnt features, especially
when the distribution of parsing labels is imbalanced or the scale of different labels is
substantially different. To address this limitation, a Region‐level Parsing Refiner (RPR) is
proposed to enhance parsing performance by the introduction of region‐level parsing
learning. Region‐level parsing focuses specifically on small regions of the body, for
example, the head. The proposed RPR is an adaptive module that can be integrated with
different existing human parsing models to improve their performance. Extensive ex-
periments are conducted on two benchmark datasets, and the results demonstrated the
effectiveness of our RPR model in terms of improving the overall parsing performance as
well as parsing rare labels. This method was successfully applied to a commercial
application for the extraction of human body measurements and has been used in various
online shopping platforms for clothing size recommendations. The code and dataset are
released at this link https://github.com/applezhouyp/PRP.
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1 | INTRODUCTION

Human parsing has attracted considerable attention in recent
years, because it is the core technology that supports many
research studies and applications in the fields of retailing [1–3],
social science [4, 5], medicine [6, 7], and even security [8, 9]. The
aim of human parsing is to segment the pixels of an input image
into regions according to different labels of body parts and
clothes. As a pixel‐level classification method, human parsing
can be regarded as a branch of semantic segmentation. How-
ever, the application of general semantic segmentation methods
for human parsing tasks can rarely achieve optimal perfor-
mance, since human parsing involves fine‐grained segmentation
targets [10]. To achieve better parsing accuracy, one of the key
research strategies is to consider the contextual relationships
between different semantic labels, and to exploit the physical
structure of the human body in network designs [11–14]. For
example, Ji et al. [12] designed a semantic neural tree to encode

the physiological structure of the human body and achieved
better parsing results. Wang et al. [13] applied a graph structure
to develop network model by leveraging the relationships be-
tween body parts.

Despite the effectiveness of this approach, we argue that
there are still several challenges that have been overlooked or are
insufficiently addressed in existing methods of human parsing.
The two most significant ones are (i) negative transfer and (ii)
imbalanced labels. The problem of negative transfer arises
because existing models typically learn shared features for all the
segmented parts, that is, all body parts and types of clothing.
However, from the perspective of multi‐task learning, this
shared approach to feature learning can result in negative
transfer when the tasks are less closely related [15, 16]. The
negative transfer problem may deteriorate the overall perfor-
mance of the model, and this idea was recently discussed in the
task of pose estimation [17]. In fact, the negative transfer can
also be a serious issue in human parsing, but has received little
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attention so far. The second problem of imbalanced labels arises
because the number of training samples for parsing classes are
different in human parsing tasks, meaning that human parsing
data are naturally imbalanced [18]. For example, the face class is
typically present in all images, while the bag class is not, meaning
that the number of samples in the face class is much more
numerous than those in the bag class. Previous models have
treated these imbalanced classes equally, which has inevitably
resulted in biased learning results. Zhao et al. [19] proposed to
balance feature magnitude to address the problem of imbal-
anced problem in semantic segmentation. Nevertheless, they
ignored the imbalance between segmentation regions.

To tackle these two problems and to achieve better parsing
accuracy,we propose aRegion‐level ParsingRefiner (RPR) in this
paper. The basic idea is to enhance the image‐level parsing results
by introducing region‐level learning. More specifically, we first
segment the whole human body into several regions, for
example, a head region (with face, hair, glasses etc.), and a body
region (with upper clothing, dress, left leg, right leg etc.), and then
use a parsing branch for each region to learn a parser for all the
semantic labels within the region. Each parser consists of a
pyramid scene parsing module [20], a decoder and a convolu-
tional layer. The region‐level parsing results are then integrated
with the image‐level results to give enhanced parsing scoremaps.

The underlying idea of RPR is simple yet effective. Each
region‐level parser aims to parse a small region of the human
body, for example, the head. This branch can learn the features
of the labels used for parsing more effectively, because (i) the
label imbalance problem is alleviated by focusing on a specific
region rather than the whole image; (ii) the target label area for
parsing is reduced; and (iii) the variation in scale over the re-
gion is smaller than that over the entire image. The results of
image‐level parsing, which can be obtained using any human
parsing model [21, 22], can be further refined by region‐level
parsing learning.

The main contributions of this paper are as follows.

� We propose a RPR module that uses region‐level learning to
refine the results of image‐level parsing.

� The proposed RPR module is highly portable, and can be
easily integrated with existing human parsing models, such
as CE2P [21] or DeepLab3 [22] to give performance
improvements.

� We conduct extensive experiments on two benchmark
datasets, ATR [23] and LIP [24], to evaluate our RPR
module, and the results demonstrate its effectiveness and
portability.

� We demonstrate the proposed method using a real‐world
application.

2 | RELATED WORK

2.1 | Semantic segmentation

Current mainstream semantic segmentation methods are based
on Fully Convolutional Networks (FCNs) [25]. Although the

use of an FCNmakes possible to achieve an end‐to‐end training
for semantic segmentation, there are still many challenges, such
as resolution recovery, contextual feature capturing and
boundary preservation. Since the resolution of the segmentation
prediction is reduced and many local details are lost due to a
series of pooling layers and convolution strides, an FCN
upsamples the prediction and fuses with the features extracted
from lower layers. Some researchers [26–28] have used encoder‐
decoder structures that downsample the features in the encoder
and then upsample in the decoder.

To capture contextual features, Chen et al. [22] designed an
atrous spatial pyramid pooling (ASPP) module that used con-
volutions with different dilation rates, while Zhao et al. [20]
proposed a pyramid pooling module (PPM) in which features
were fused at different pyramid scales. Although both ASPP and
PPM can effectively capture contextual features, they cannot
capture the object features well. Recently, Yuan et al. [29]
exploited initial segmentation results to generate object features
and then used the relationship between the pixel features and
object features to refine the segmentation results.

To preserve boundary information, some earlier works have
used conditional random fields (CRFs) either as a post‐
processing step [26, 30] or by end‐to‐end training [31, 32].
Rather than using costly CRFs, some models have learnt
boundary prediction using a separate branch, and the learnt
boundary features have then been combined to refine the results
[33–36]. For example, Gated‐SCNN [34] used a shape stream
module to learn the boundary features and a regular stream
module to learn the segmentation features, these features were
then fused to refine the segmentation results. Li et al. [36] learnt
body features using smoothed images and then obtained the
boundaries by deducing the body features from the segmenta-
tion features. Bai and Zhou [37] directly applied an edge decoder
for edges. Wang et al. [38] proposed a position attention module
to emphasise the detail edge information in low‐level features,
and a channel correlation coefficient attention module to learn
between‐channel correlation in high‐level features.

2.2 | Human parsing

Recently, a great deal of research effort has been devoted to
human parsing and part segmentation, such as for animals and
cars. Human parsing can be divided into single‐human parsing
and multi‐human parsing. Single‐human parsing [39] assumes
that there is only one human instance in the input images and
tackle the category‐level human segmentation while multi‐
human parsing [40] aims to segment the human parts of all hu-
man instances in the input images. It is noted that single‐human
parsing can be used with human detector [14, 21] or trained with
pose estimation [41] to address the problem of multi‐human
parsing [39]. In this paper, we mainly focus on single‐human
parsing.

Similar to the case of semantic segmentation, these ap-
proaches have been based on FCNs. For example, Liang et al.
[42] proposed a co‐CNNarchitecture based onFCNs for human
parsing, and designed a local‐global‐local structure to achieve
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better feature learning. A long short term memory (LSTM)
network was proposed in ref. [43] to improve feature learning by
jointly capturing the local and global spatial dependencies at
different distances for semantic object parsing. In an extension
to this work, a graph LSTM method [44] was proposed in order
to fully exploit the natural properties of the image (e.g. the local
boundaries). The model took a superpixel of an arbitrary shape
as a node of a graph, and connected it with other superpixel
nodes based on their spatial neighbourhood connections.

The knowledge of the hierarchical structure of human
body has been exploited to design networks for human parsing.
Zhu et al. [11] developed a progressive cognitive network to
recognise different human body parts gradually, based on a
component‐aware region convolution structure. Wang et al.
[13] adopted bottom‐up and top‐down hierarchical views of a
human body structure to reason about human body part seg-
mentation. Li et al. [14] constructed a dual graph reasoning
framework using a hierarchical approach, while Ji et al. [12]
proposed a neural tree to encode the structure of human body.

Pose and boundary information have also been exploited to
improve the performance of human parsing. Wang et al. [45]
leveraged co‐occurrence of pose skeleton and the clothing parts
to improve the parsing performance based on a chain‐CRFs
model. Gong et al. [46] proposed a part grouping network
that combined semantic part segmentation and instance‐aware
edge detection into a single network to tackle instance‐level
human parsing. Feature resolution, global context information
and edge details were used to design a context embedding with

edge perceiving (CE2P) framework [21] for human parsing. Su
et al. [47] used a pose estimation network module to provide
pose heatmaps about the human pose information for human
parsing. Zhang et al. [48] proposed a Correlation Parsing Ma-
chine to take advantage of both edge and pose features to
improve human parsing. Zeng et al. [49] used nerual network
search technology to search a optimise network structure to
joint human parsing and pose estimation. Zhou and Mok [39]
used the global joint representation for human parsing and
proposed a pose‐aware global representation network
model enhance feature learning in human parsing. Yang et al.
[50] leveraged both hierarchical human body structure and
pose estimation for human parsing, and proposed a pose‐
guided hierarchical semantic decomposition and composition
framework.

All of these methods have treated the classes equally and
used a shared network to learn the features of all classes. In
contrast, we propose a range of region‐level parsers that learn
the specific features for the related classes within a particular
region. This approach is beneficial in terms of solving the data
imbalance problem and avoiding negative transfer.

3 | THE METHOD

Figure 1 shows the overall architecture of a human parsing
model equipped with the proposed RPR modules. It consists
of a backbone network and an image‐level parsing branch, and

F I GURE 1 Architecture of the proposed Region‐level Parsing Refiner (RPR) on a CE2P baseline.
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the RPRs are applied on top of these as additional parsing
branches. We present the baseline model, the construction of
the RPR, the fusion module, and the loss function one by one.

3.1 | Baseline

A typical parsing model consists of a backbone and an image‐
level parser, this type of two‐stage structure design is found in
most existing human parsing methods [21, 22].

The backbone network is usually a convolutional neural
network (CNN) that is good for the extraction of visual repre-
sentations. Typical backbones include Visual Geometry Group
[51], ResNet [52] andHRNet [53]. Since ResNet has been widely
used in many human parsing models and has yielded superior
performance [21, 22], we employ ResNet‐101 [52] here as our
backbone network. The outputs from the first to fourth residual
stages of ResNet‐101 are extracted as low‐level features for
further processing.

The image‐level parser takes the low‐level visual features as
input, and outputs the pixel‐level classification results in the
form of a map of parsing scores. Different structures have been
proposed in the literature for building human parsers. Of the
existing designs for human parser, CE2P [21] is a representative
and effective choice, and we thus adopt it as our image‐level
parser. The key structure of CE2P is shown as green squares
in Figure 1, including Context Embedding Module (CEM),
High‐Resolution Embedding Module (HREM), and Edge
Perceiving Module (EPM). It is important to note that the
structure of the parser is not fixed, and our method is flexible
enough to work with other parser structures. Since we do not
focus this paper on identifying the best design for an image‐level
parser, we choose CE2P as a baseline to test our concept of
region‐level parsing learning. In the experimental section, we
compare our method with different image‐level parser designs.

In our model, an input image I is first processed by
ResNet‐101 to generate four sets of low‐level features, F1, F2,
F3 and F4, where the subscript denotes the residual stage. Next,
the low‐level features are input to the image‐level parser to
generate the image‐level score maps (P0). The data processing
at the image‐level parsing stage is similar to that for region‐
level parsing, and this is explained in detail below.

3.2 | Region‐level parsing branches

Context Embedding Module consists of four average pooling
layers with different scales, a 1 � 1 convolution layer to reduce
the feature channel after each stage of average pooling, and a
concatenation operation to fuse the features upsampled from
low‐level features.

Rt ¼ f F4; θt
CEM

� �
t ¼ 0; 1;…;n ð1Þ

where θt
CEM are the parameters of the CEM of the tth parser. A

value of t = 0 refers to the image‐level parser, while values of
t = 1, …, n refer to the region‐level parsers. Context

Embedding Module is designed to learn different sub‐region
representations [20]; it not only learns better global represen-
tations for local regions but also provides additional contextual
information.

The low‐level feature F1 and the high‐level feature Rt from
CEM each undergo a 1 � 1 convolution to transform the
features, and then unsample the transformed feature of Rt to
the size of feature F1 with bilinear interpolation to form a
HREM feature:

Rt∗ ¼ conv F1ð Þ þ upsample conv Rtð Þð Þ ð2Þ

where conv (⋅) represents a 1� 1 convolution and upsample (⋅)
represents bilinear interpolation. The HREM feature Rt* is
followed by two 1 � 1 convolutions to output score map Pt.
Both CEM and HREM learn specific features for local regions,
and therefore are included in region‐level parser learning.

For image‐level parser learning, the low‐level image fea-
tures F1, F2, and F3 are input to learn two feature maps, Fe and
RE, as follows:

Fe ¼ upsample conv F1ð Þð Þ⊕ … ⊕ upsample conv F3ð Þð Þ ð3Þ

RE ¼ upsample conv Fe1ð Þð Þ⊕ … ⊕ upsample conv Fe3ð Þð Þ

ð4Þ

where ⊕ denotes concatenation.
As shown in Equation (3), F1, F2 and F3 are first trans-

formed as edge features Fe1, Fe2 and Fe3, respectively, via
convolution operations. These edge features are upsampled
and concatenated to form Fe. Similarly, Fe1, Fe2 and Fe3 are then
transformed by convolutions, upsampled and concatenated to
form the feature RE in Equation (4). The resulting R0* from
Equation (2) and Fe from Equation (3) are processed by two
1 � 1 convolution operations to generate the image‐level
parsing results P0.

3.3 | Fusion module

Based on the image‐level parsing score maps P0 and the
region‐level parsing score maps P1, P2, …, Pn, we can refine
the image‐level parsing results using the region‐level pre-
dictions as follows:

P∗
k ¼

P0
k; k¼ 0

P0
k þ Pt

lk k¼ 1;…;K; and lk ∈ Lt;

(

ð5Þ

where k represents the kth class in the image‐level parser, K
denotes the total number of parsing labels, lk represents the in-
dex of the kth class in the tth region, andLt is the set of the labels
covered in the tth region. As shown in Equation (5), for each
class k in the image‐level branch, except for the background
(k = 0), there is a score map in the prediction of region‐level
parsing branch Pt

lk that corresponds to that class. We therefore
extract the score maps for all the region‐level branches and

ZHOU and MOK - 63

 17519640, 2024, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cvi2.12222 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://ietresearch.onlinelibrary.wiley.com/action/rightsLink?doi=10.1049%2Fcvi2.12222&mode=


re‐order these score maps according to the class labels of the
image‐level branch.We then sum the re‐ordered scoremapswith
the score maps from the image‐level parsing to give a refined
prediction P*. We refer Equation (5) as late fusion, because the
final prediction results of all the branches in our model are fused.

Figure 2 gives an example of the qualitative score maps for
the head‐region, body‐region and image‐level parsers before
fusion. The score maps after fusion are shown in Figure 3. By
comparing Figure 2c and Figure 3, we can see that some
missing and inaccurate regions in the image‐level parsing re-
sults, such as the sunglasses, left shoe and right shoe, have been
corrected by incorporating the region‐level parsing results us-
ing the proposed fusion operation in Equation (5).

In addition to late fusion, we also introduce a mid‐fusion
scheme, in which we fuse the intermediate features to refine
the parsing results. The mid‐fusion scheme concatenates the
extracted high‐level features from the image‐level parser R0*,
the high‐level features of Rt* obtained from Equation (2) and
the extracted edge features Fe from Equation (3), as follows:

R∗ ¼ R0∗ ⊕ R1∗ ⊕ … ⊕ Rn∗ ⊕ Fe ð6Þ

The concatenated features R* are then input to two
convolution layers to generate the refined image‐level predic-
tion P*.

3.4 | Loss function

To train the model, we adopt a cross‐entropy loss averaged over
all pixel positions for all the network branches, including the

image‐level parsing branch (shown in green in Figure 1), the
region‐level parsing branches (shown in orange in Figure 1), and
the fusion parsing results (shown in red in Figure 1). The overall
loss function is as follows:

L¼ L∗ Y ; P∗ð Þ þ LI† Y ; P†� �
þ LI Y ; P0� �

þ LE E; PE� �
þ
Xn

t¼1
λt ⋅ Lt Y t; Ptð Þ

ð7Þ

where L*, LI, and Lt denote the fusion, image‐level and region‐
level parsing losses, and LI† is the auxiliary loss for image‐level
parsing and LE is the edge loss. Y is the image‐level parsing
ground truth, {Y1, Y2, …, Yn} is the set of region‐level ground
truths for all the regions, E is the edge ground truth, and λt is
the weight of the tth region‐level parsing loss.

As the number of classes covered in different region‐level
parsers varies, we alleviate the influence of data imbalance by
setting the weight of tth region‐level parser as follows:

λt ¼
K
jLtj

; ð8Þ

which is the ratio of the total number of classes to the number
of classes covered in the tth region.

To generate the ground truths for each region‐level parsing
branch, we relabel the pixels belonging to the region with the
labels corresponding to the definitions of the region‐level
branches, and relabel any other pixels as zero (i.e. back-
ground). Figure 4 shows the parsing ground truths for an
example image.

F I GURE 2 Example score maps from (a) the head‐region parser,
(b) the body‐region parser, and (c) the image‐level parser.

F I GURE 3 Score maps after fusion.

F I GURE 4 Parsing ground truths: (a) original image; (b) ground truth
for the head‐region; (c) ground truth for the body‐region; (d) ground truth
for the image‐level branch; and (e) ground‐truth for the edge features.
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4 | EXPERIMENTAL RESULTS

In this section, we report the results of extensive experiments
carried out on two benchmark human parsing datasets.

4.1 | Experimental settings

4.1.1 | Datasets

Experiments were conducted on two benchmark datasets as
follows. The ATR dataset [23] contains 7700 human images,
each of which is annotated with a pixel mask with 18 semantic
labels. We split the available data into three sets: 6000 images
were used for training, 700 for validation and the remaining
1000 for testing. The LIP dataset [24] is a widely used human
parsing dataset that is partitioned into training, validation and
testing sets, containing 30,462, 10,000 and 10,000 images
respectively. The LIP dataset contains images of people
labelled in 20 body‐part and clothing classes, which makes the
parsing task more challenging.

4.1.2 | Evaluation metrics

To facilitate comparative studies with other reported work
using the two datasets, we calculated the pixel accuracy, fore-
ground (denoted as ‘F.G.’) accuracy and mean accuracy (pre-
cision, recall score, and F1‐score per pixel) and used as
evaluation metrics [54] on the ATR dataset. For the LIP
dataset, we calculated the pixel accuracy, mean accuracy and
mean accuracy for the intersection over union (IoU) region
[25]. We scaled the outputs of pixelwise prediction back to the
size of the original ground‐truth labels before calculating these
metrics.

4.1.3 | Region‐level Parsing Refiner settings and
implementation details

We defined two region‐level parsers for the head and body
regions. The head‐region parser included classes for the hat,
face, sunglasses and hair, whereas the body‐region parser
included classes of the gloves, upper clothing, dress, coat,
socks, pants, jumpsuit, scarf, skirt, face, left arm, right arm, left
leg, right leg, left shoe and right shoe. We used CE2P as
baseline to evaluate the proposed RPR module, except for the
results reported in Section 4.3.

We implemented our method using PyTorch. The input
size of each image was 473 � 473 for the ATR dataset and
384 � 384 for the LIP dataset during training and testing, and
we augmented the number of training images by mirroring,
random cropping, and normalisation. We trained the RPR by
fine‐tuning the parameters from a model that was pretrained
on the ImageNet dataset. The model was trained using a min‐
batch stochastic gradient descent with a momentum of 0.9, a
weight decay of 0.0005 and an initial learning rate of 0.0001.

The learning rate was updated by multiplying the initial rate by

1 − it
itttl

� �0:9
after each iteration. We trained the model on two

NVIDIA Giga Texel Shader eXtreme1080Ti graphics pro-
cessing units for 180 epochs. The batch sizes were set to 8 and
16 for training on the ATR and LIP datasets respectively.

4.2 | Comparison with state‐of‐the‐art
models

4.2.1 | Performance on the ATR dataset

We compared our proposed RPR with other state‐of‐the‐art
methods based on the defined metrics in Table 1. To ensure
a fair comparison, we added another Chictopia10K dataset to
the training data, in a way similar to the studies in refs. [20, 22,
42, 55, 56]. We applied RPR with two region‐level parsers for
the head and body regions on a CE2P baseline [21].

It can be seen from Table 1 that the value of the F1‐score,
the most important metric, showed significant improvement
for our method compared to all other state‐of‐the‐arts
methods. For example, our model achieved F1‐score value of
85.11%, compared to the values of 80.14% yielded by Co‐
CNN [42], 81.00% yielded by CPNet [47] and 81.76% by
TGPNet [56]. As shown in Table 1, the pixel accuracy value of
our RPR‐CE2P is only slightly lower than that of CPNet [47]
and TGPNet [56] by 0.2%. Compared to CPNet, the fore-
ground accuracy (F.G. acc) of our RPR‐CE2P is lower, because
CPNet uses the edge‐preserving filter as a pre‐processor to
denoise the training set's label and improve the annotation
quality, particularly the foreground. However, CPNet's preci-
sion value is 0.91% lower than that of our RPR‐CE2P.
Compared to Co‐CNN [42], the precision value of our RPR‐
CE2P is lower by 0.77%. This is because that Co‐CNN uses
the human detection algorithm [57] to detect the human body
and uses the detected human body as the input, which avoids
the inference of background and human scale. Comparatively,

TABLE 1 Comparison of human parsing performance metrics (%)
on the ATR test set.

Models Pixel acc F.G. acc Precision Recall F1‐score

Yamaguchi [58] 84.38 55.59 37.54 51.05 41.80

Paperdoll [1] 88.96 62.18 52.75 49.43 44.76

ATR [23] 91.11 71.04 71.69 60.25 64.38

DeepLab2 [22] 94.42 82.93 78.48 69.24 73.53

PSPNet [20] 95.2 80.23 79.66 73.79 75.84

DeepLab3+ [59] 95.96 83.04 80.41 78.79 79.49

Co‐CNN [42] 96.02 83.57 84.95 77.66 80.14

CPNet [47] 96.46 90.38 83.27 80.03 81.00

TGPNet [56] 96.45 87.91 83.36 80.22 81.76

RPR‐CE2P 96.25 88.23 84.18 86.05 85.11
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our RPR‐CE2P directly uses the original image as the input
while the network is designed to automatically focus on the
foreground pixels, achieving an impressive F1‐score.

We compare the F1‐scores for different foreground labels
in Table 2, where the best performance in each label is high-
lighted in bold. Our method achieved better performance than
the other methods on eight out of 17 labels. For the classes
with few samples, such as hat, belt, bag and scarf, our method

yielded larger gains, for example, 86.93% versus 80.18%
(TGPNet) for the hat class, 61.75% versus 51.73% (TGPNet)
for belt, 88.11% versus 84.72% (TGPNet) for bag, and 66.37%
versus 61.79% (CPNet) for scarf. These results demonstrate
that the RPR performs particularly well on rare labels, and this
is one of main advantages of our method.

4.2.2 | Performance on the LIP dataset

In this section, we compare our RPR‐CE2P with nine other
methods on the LIP dataset. The overall results are presented
in Table 3. It can be seen that our PRP‐CE2P outperformed
the baseline model of CE2P [21] by 2.61 in terms of the
mean IoU score, again the most important metric. Our RPR‐
CE2P achieved a score 0.75 higher than that of BraidNet
[64], which is similar to CE2P except that the EPM module
is replaced by a separated sub‐net to preserve local details
and a pairwise hard region embedding strategy is used.
Compared to SNT [12], which exploited the hierarchical
structure of human body in the network design, our RPR‐
CE2P model achieved a score that was higher by 0.31.
These results demonstrate that our model can learn features
for human parsing more effectively than methods that do no
use region‐level parsers.

Table 4 shows a comparison of per‐class mean IoU results,
where the best performance in each class is highlighted in bold.
As shown, the performance of other image‐level parsing
methods was very poor on classes with scarce samples (e.g.
scarf, jumpsuit, skirt, and dress), since these methods suffer
from data imbalance issues. In comparison, our method yiel-
ded significant improvements on these challenging classes. For
example, the mean IoU for the dress, skirt, glove, and scarf
classes were increased by 3.88, 2.38, 1.63, and 0.77, respec-
tively, compared to SNT [12]. Our RPR module is shown also
effective on the LIP dataset and especially good on the rare
classes.

Some qualitative results are compared in Figure 5. In the
example in Figure 5a, baseline CE2P did not recognise the hat
due to low level of illumination, but our model correctly

TABLE 2 Comparison of F1‐scores (%) of our Region‐level Parsing
Refiner (RPR) module and other benchmark methods on the ATR testing
set.

Models Hat Hair Sgls Uclo Skirt Pants

Yamaguchi [58] 8.44 59.96 12.09 56.07 17.57 55.42

PaperDoll [1] 1.72 63.58 0.23 71.87 40.20 69.35

ATR [23] 77.97 68.18 29.20 79.39 80.36 79.77

DeepLab2 [22] 72.25 82.58 44.61 87.12 80.91 85.80

PSPNet [20] 74.30 86.51 67.78 88.53 79.04 86.73

DeepLab3+ [59] 77.22 87.44 73.06 89.64 85.15 90.11

Co‐CNN [42] 75.88 89.97 81.26 87.38 71.94 84.89

CPNet [47] 79.38 88.59 71.96 90.73 85.03 90.48

TGPNet [56] 80.18 87.13 70.93 91.01 88.95 90.72

RPR‐CE2P 86.93 89.59 79.27 90.40 82.95 90.64

Models Dress Belt L‐shoe R‐shoe Face L‐leg

Yamaguchi [58] 40.94 14.68 38.24 38.33 72.10 58.52

PaperDoll [1] 59.49 16.94 45.79 44.47 61.63 52.19

ATR [23] 82.02 22.88 53.51 50.26 74.71 69.07

DeepLab2 [23] 79.05 24.96 65.44 65.70 85.33 80.21

PSPNet [20] 77.14 41.76 64.53 62.94 89.45 82.55

DeepLab3+ [59] 79.99 44.48 70.08 71.13 90.53 85.60

Co‐CNN [42] 71.03 40.14 81.43 81.49 92.73 88.77

CPNet [47] 79.94 38.16 76.31 75.10 91.00 88.38

TGPNet [56] 87.42 51.73 75.13 75.36 89.78 89.06

RPR‐CE2P 81.87 61.75 79.88 79.83 91.88 90.97

Models Rleg Larm Rarm Bag Scarf

Yamaguchi [58] 57.03 45.33 46.65 24.53 11.43

PaperDoll [1] 55.60 45.23 46.75 30.52 2.95

ATR [23] 71.69 53.79 58.57 53.66 57.07

DeepLab2 [22] 80.34 73.04 74.49 78.33 46.99

PSPNet [20] 81.92 77.68 78.01 77.69 49.83

DeepLab3+ [59] 85.25 81.96 82.48 81.73 53.46

Co‐CNN [42] 88.48 89.00 88.71 83.81 46.24

CPNet [47] 88.19 84.67 85.55 83.58 61.79

TGPNet [56] 88.73 83.91 83.96 84.72 52.86

RPR‐CE2P 90.36 90.23 90.11 88.11 66.37

TABLE 3 Overall accuracy (%) achieved by our RPR‐CE2P model
and other benchmark methods on the LIP validation set.

Models Pixel acc Mean acc Mean IoU

FCN‐8s [25] 76.06 36.75 28.29

DeepLab2 [60] 82.66 51.64 41.64

MMAN [61] (ECCV’18) ‐ ‐ 46.81

SS‐NAN [62] 87.59 56.03 47.92

JPPNet [63] (TPAMI’18) 86.39 62.32 51.37

CE2P [21] (AAAI’19) ‐ ‐ 52.56

BraidNet [64] (MM’19) 87.60 66.09 54.42

SNT [12] (ECCV’20) 88.10 70.41 54.86

RPR‐CE2P 87.62 66.88 55.17
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segmented the hat. In Figure 5b and Figure 5c, the segmen-
tation of the dress and upper clothing was confused by
CE2P, but these two regions were well distinguished by our
method. For the segmentation of rare classes, such as glove
and scarf, our model also performed better than CE2P
(Figure 5c). These results demonstrate that our proposed RPR
has both good robustness and strong feature discrimination
ability.

4.3 | Ablation study

To evaluate the effects of each of the different components in
our RPR module, including the region‐level parser, fusion
module, loss weight settings, and the different baselines, we
conducted a set of ablation experiments on the ATR dataset.

TABLE 4 Comparison of per‐class mean IoU accuracy (%) for our
RPR‐CE2P model and other benchmark methods on the LIP validation set.

Models Hat Hair Glove Sgl Uclo

FCN‐8s [25] 39.79 58.96 5.32 3.08 49.08

DeepLab2 [60] 57.94 66.11 28.50 18.40 60.94

MMAN [61] 57.66 65.63 30.07 20.02 64.15

SS‐NAN [62] 63.86 70.12 30.63 23.92 70.27

JPPNet [63] 63.55 70.20 36.16 23.48 68.15

CE2P [21] 64.62 72.07 38.36 32.20 68.92

BraidNet [64] 66.80 72.00 42.50 32.10 69.80

SNT [12] 66.9 72.20 42.7 32.30 70.10

RPR‐CE2P 67.00 71.95 44.33 30.45 69.93

Models Dress Coat Socks Pants Jps

FCN‐8s [25] 12.36 26.82 15.66 49.41 6.48

DeepLab2 [60] 23.17 47.03 34.51 64.00 22.38

MMAN [61] 28.39 51.98 41.46 71.03 23.61

SS‐NAN [62] 33.51 56.75 40.18 72.19 27.68

JPPNet [63] 31.42 55.65 44.56 72.19 28.39

CE2P [21] 32.15 55.61 48.75 73.54 27.24

BraidNet [64] 33.70 57.40 49.00 74.90 32.40

SNT [12] 35.60 57.50 48.9 75.20 33.4

RPR‐CE2P 39.48 56.64 50.91 75.56 33.58

Models Scarf Skirt Face Larm Rarm

FCN‐8s [25] 0.00 2.16 62.65 29.78 36.63

DeepLab2 [60] 14.29 18.74 69.70 49.44 51.66

MMAN [61] 9.65 23.20 69.54 55.30 58.13

SS‐NAN [62] 16.98 26.41 75.33 55.24 58.93

JPPNet [63] 18.76 25.14 73.36 61.97 63.88

CE2P [21] 13.84 22.69 74.91 64.00 65.87

BraidNet [64] 19.30 27.20 74.90 65.50 67.90

SNT [12] 21.40 27.40 74.90 66.80 68.10

RPR‐CE2P 22.17 29.78 74.66 66.21 68.47

Models Lleg Rleg Lshoe Rshoe Bkg

FCN‐8s [25] 28.12 26.05 17.76 17.70 78.02

DeepLab2 [60] 37.49 34.60 28.22 22.41 83.25

MMAN [61] 51.90 52.17 38.58 39.05 84.75

SS‐NAN [62] 44.01 41.87 29.15 32.64 88.67

JPPNet [63] 58.21 57.99 44.02 44.09 86.26

CE2P [21] 59.66 58.02 45.70 45.63 87.41

BraidNet [64] 60.20 59.60 47.40 47.90 88.00

SNT [12] 60.30 59.80 47.60 48.10 88.20

RPR‐CE2P 60.25 59.56 47.10 48.05 87.74

F I GURE 5 Qualitative comparison of results: The first column shows
the input images, the second shows the parsing results from CE2P, the third
shows the parsing results from our RPR‐CE2P method, and the last shows
the ground truths.
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4.3.1 | Effects of the region‐level parser

As discussed in Section 3.2, the proposed RPR module allows
the additional region‐level parser to reinforce the learning of
specific classes. To evaluate the effectiveness of region‐level
parsing, we assembled different ablation models that incorpo-
rated different RRPs. In particular, we compare the perfor-
mance of five different models, as follows: CE2P (baseline
model without a region‐level parser);RPR‐head (baseline model
with only a head‐region parser);RPR‐body (baseline model with
only a body‐region parser); RPR2 (baseline model with both
head‐ and body‐region parsers); and RPR3 (the RPR2 model
with one additional sunglasses‐region parser). The overall and
per‐class results from each of these models are compared in
Tables 5 and 6.

We can drawing the following observations from the
experimental results. First, both the head and body parsers not

only improved the parsing performance on their specific re-
gions, but also improved the performance on other regions.
Second, the performance of the classes covered by a region‐
level parser would improve more than the classes not being
covered by the region‐level parser. Third, the simultaneous use
of two region‐level parsers (i.e. for the head and body regions)
generally achieved better performance than using a single
parser, since the two parsers cover all classes of the body parts
and clothing (foreground). These results clearly show that the
use of regional parsing learning can significantly improve the
parsing results on the corresponding regions, and further
support the idea of leveraging region‐level parsing learning to
enhance human parsing performance.

4.3.2 | Effects of the fusion module

We investigated the fusion module of our RPR network by
comparing the performance of different fusion schemes. Ta-
ble 7 shows the results of the mid‐fusion scheme defined in
Equation (6) and that of the late fusion scheme defined in
Equation (5). It is shown that the late fusion scheme was
consistently better than the mid‐fusion scheme for all evalua-
tion metrics, thus demonstrating the superiority of our design.

4.3.3 | Effects of weight loss

As discussed in Section 3.4, different weights can be set in the
loss function Equation (7) to balance the learning between the
region‐level and image‐level parsers. The specific way in which
we set the loss weights is given in Equation (8). In this section,
we report the effectiveness of different loss weight settings.
Table 7 gives the performance of the model for two different
values of λ. It can be seen that compared to the RPR with a
loss weight λ = 1, the precision of the RPR model with λt
calculated using Equation (8) improved by 0.64%, which
demonstrates the effectiveness of our loss weight setting.

4.3.4 | Different baselines

As discussed in the Introduction, one of the key characteristics
of the proposed RPR model is that its network structure is
flexible, meaning that it can easily work with different baseline
models. We demonstrate this advantage by applying RPR to
three different baseline models: DeepLab3 [22], CE2P [21]

TABLE 5 Comparison of overall accuracy (%) achieved by our
Region‐level Parsing Refiner (RPR) with different region‐level parser
settings.

Models Pixel acc F.G. acc Precision Recall F1‐score

CE2P 95.45 85.10 79.85 82.37 81.09

RPR‐head 95.63 85.79 81.01 83.62 82.29

RPR‐body 95.74 86.21 81.53 83.40 82.45

RPR2 95.80 86.52 82.05 83.73 82.88

RPR3 95.85 86.65 82.00 83.86 82.92

TABLE 6 Comparison of F1‐score (%) of our model with different
Region‐level Parsing Refiner (RPR) settings.

Models Hat Hair Sgls Ucloth Skirt Pants

CE2P 82.78 88.39 74.57 88.37 78.78 88.09

RPR‐head 85.44 89.13 76.97 88.73 78.51 88.93

RPR‐body 84.88 89.07 76.41 89.04 79.94 88.93

RPR2 85.75 88.97 77.18 89.28 80.20 89.46

RPR3 85.41 88.99 77.73 89.46 81.32 89.28

Models Dress Belt Lshoe Rshoe Face Lleg

CE2P 76.85 52.16 74.47 74.61 91.13 87.44

RPR‐head 77.38 54.89 76.41 76.49 91.62 88.54

RPR‐body 78.61 55.54 76.55 76.72 91.47 88.63

RPR2 79.06 54.60 76.84 76.58 91.68 89.72

RPR3 80.44 54.73 76.87 76.78 91.76 89.26

Models Rleg Larm Rarm Bag Scarf Bkg

CE2P 87.58 87.40 87.18 84.23 54.94 98.88

RPR‐head 88.53 87.72 87.90 85.63 57.54 98.92

RPR‐body 88.71 88.15 88.21 85.80 57.69 98.94

RPR2 89.50 88.75 88.78 86.00 59.50 98.90

RPR3 89.13 88.28 87.92 85.62 59.55 98.90

TABLE 7 Comparison of overall accuracy (%) achieved by our
Region‐level Parsing Refiner (RPR) with different fusion schemes and loss
weight settings.

Fusion
Loss
weight

Pixel
acc

F.G.
acc Precision Recall

F1‐
score

Mid‐fusion λ by (8) 95.74 86.20 81.53 83.40 82.45

Late fusion λ = 1 95.70 86.01 81.41 83.77 82.57

Late fusion λ by (8) 95.80 86.52 82.05 83.73 82.88
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and HRNet‐OCR [29]. All selected baselines are representa-
tive network models for human parsing. DeepLab3 and CE2P
use ResNet‐101 as a backbone while HRNet‐OCR based on
HRNet. DeepLab3 and HRNet‐OCR do not exploit edge in-
formation, whereas CE2P uses edge information to improve
the parsing results. Table 8 presents the pixel accuracy, fore-
ground accuracy, precision, recall and F1‐scores of different
baselines and their corresponding RPR‐enhanced models. For
all three baselines, our RPR module improved all metrics. In
terms of the F1‐score, our RPR‐enhanced models out-
performed DeepLab3 [22] by 1.20%, CE2P [21] by 2.24%,
and HRNet‐OCR [29] by 0.41%. This demonstrates both the
effectiveness and the adaptability of our method.

4.4 | Application

By applying this RPR method, we developed a mobile appli-
cation called “1Measure” that allows users to obtain their ac-
curate body measurements and shape information by taking
two (front and back view) photographs, as shown in Figure 6.
The RPR human parsing method is very suitable for 3D hu-
man shape modelling and size extraction. Our app can be
downloaded from Apple App Store and Google Play Store and
has been widely used in online shopping platforms for size
recommendations [65].

4.5 | Efficiency and resource consumption

Table 9 reports the model parameter numbers as well as speed
based on the LIP validation set. It can be found that the

frequency per second (FPS) value of the proposed model is
lower than that of the baseline CE2P model by 6.7 FPS,
because the region‐level parsing results are learnt by extra
parameters and then directly fused with image‐level parsing
results so as to enhance parsing results. To solve this problem,
online knowledge distillation [66] can be used to distill the
knowledge from region enhanced image‐level parsing to the
image‐level parsing in the future work.

4.6 | Failure analysis and limitations

Figure 7 shows some failure examples of the proposed RPR‐
model on LIP validation set. As the first row of Figure 7
shown, when the pose of the human is very complex, our
model could not segment well for certain regions. This is
because that the complex poses with self‐occlusion and upside‐
down orientation increase the difficulty of segmentation. In the
future, we will use pose estimation to assist human parsing. In
addition, our model tends to segment human parts of all
persons in the image and may confuse with segmentation of
different persons, resulting in failure cases. This may be related
to ground‐truth annotation problems. As shown in the second
row of Figure 7, the part segmentation of all persons is an-
notated for the first image while only one person's part seg-
mentation is annotated in the second image. Inconsistent data
annotations may affect model training. We can alleviate this
problem by re‐annotating these noisy data.

5 | CONCLUSION

In this paper, we have proposed a novel PRP model for hu-
man parsing. Unlike existing methods that learn shared fea-
tures for all labels, we apply region‐level parsing learning toTABLE 8 Comparison of overall accuracy (%) achieved by our

Region‐level Parsing Refiner (RPR) with different baseline models.

Models Pixel acc F.G. acc Precision Recall F1‐score

DeepLab3 95.41 85.08 79.79 81.51 80.64

RPR‐DeepLab3 95.65 86.02 81.08 82.61 81.84

CE2P 95.45 85.10 79.85 82.37 81.09

RPR‐CE2P 95.80 86.52 82.05 83.73 82.88

HRNet‐OCR 95.78 86.49 82.49 84.12 83.29

RPR‐HRNet‐OCR 95.93 86.96 82.53 84.91 83.70

F I GURE 6 Two examples of size and shape extraction.

TABLE 9 Model parameters and the mean frequency per second
(FPS) that was tested on a Giga Texel Shader eXtreme (GTX) 1080Ti GPU
based on the LIP validation set.

Model Model parameters FPS

CE2P [21] 66.61M 26.88

RPR‐CE2P (ours) 113.65M 20.18

F I GURE 7 Failure examples of the LIP validation set.
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enhance the representation of different parsing labels. Ex-
periments show that compared with other state‐of‐the‐art
models, our proposed PRP model is more effective and is
particularly superior for rare parsing labels. We have also
carried out experiments on our method using a variety of
baseline models, and have shown that our approach can work
with all of them. Our PRP network allows for the flexible
definition of region‐level parsers, which can improve the
overall network performance. In future work, we intend to
explore different region‐level parser settings, as well as use
pose estimation and knowledge distillation, to optimise the
network design.
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