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 Abstract—Evolutionary computation (EC) is a kind of 

meta-heuristic algorithm that takes inspiration from natural 

evolution and swarm intelligence behaviors. In the EC algorithm, 

there is a huge amount of data generated during the evolutionary 

process. These data reflect the evolutionary behavior and 

therefore mining and utilizing these data can obtain promising 

knowledge for improving the effectiveness and efficiency of EC 

algorithms to better solve optimization problems. Considering 

this and inspired by the ability of human beings that acquire 

knowledge from the historical successful experiences of their 

predecessors, this paper proposes a novel EC paradigm, named 

knowledge learning EC (KLEC). The KLEC aims to learn from 

historical successful experiences to obtain a knowledge library 

and to guide the evolutionary behaviors of individuals based on 

the knowledge library. The KLEC includes two main processes 

named “learning from experiences to obtain knowledge” and 

“utilizing knowledge to guide evolution”. First, KLEC maintains a 

knowledge library model and updates this model by learning the 

successful experiences collected in every generation. Second, 

KLEC not only adopts the evolutionary operation but also utilizes 

the knowledge library model to guide individuals for better 

evolution. The KLEC is a generic and effective framework, and 

we propose two algorithm instances of KLEC, which are 

knowledge learning-based differential evolution and knowledge 

learning-based particle swarm optimization. Also, we combine the 

knowledge learning framework with several state-of-the-art EC 

algorithms, showing that the performance of the state-of-the-art 

algorithms can be significantly enhanced by incorporating the 

knowledge learning framework. 

 
Index Terms—Evolutionary computation, knowledge learning, 

differential evolution, particle swarm optimization, neural 

network, knowledge library 
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I. INTRODUCTION 

volutionary computation (EC) is a kind of meta-heuristic 

algorithm that takes inspiration from natural evolution and 

swarm intelligence behaviors. Currently, EC has been 

developed rapidly because of its effectiveness and efficiency in 

solving optimization problems [1]-[3]. EC algorithms mainly 

include two branches [4], which are evolutionary algorithms 

such as differential evolution (DE) [5]-[7] and genetic 

algorithm [8]-[10] and swarm intelligence such as particle 

swarm optimization (PSO) [11]-[13] and ant colony 

optimization [14]-[16]. During the evolutionary process of the 

EC algorithms, many data are generated, which can either 

explicitly or implicitly reveal the evolutionary behavior of the 

individuals. For example, in the evolutionary process of DE, 

the successful differential vector reveals the successful 

behavior of each individual. In PSO, the successful velocities 

can guide the particles to approach the global optimum. 

Through mining these data, the knowledge that can assist the 

EC algorithms to achieve effective and efficient evolution can 

be obtained, leading to a new EC paradigm named learning-aid 

evolution for optimization (LEO) [17]. Currently, many studies 

in the research area of EC have noted that appropriately 

utilizing these data can greatly enhance the performance of EC 

algorithms. First, some existing algorithms for evolutionary 

transfer optimization [18]-[20] were proposed to transfer and 

utilize the data generated during the evolutionary process of 

solving other problems to assist the optimization process of the 

current problem. We simply denote these algorithms as 

cross-problem data utilizing algorithms. Second, another class 

of algorithms, which we simply denote as historical data 

utilizing algorithms, collects the data generated in the past 

generations and utilizes them to enhance the effectiveness of 

the evolution in the current generation. For example, Zhang et 

al. [21] designed a directional mutation operator, which 

randomly reused the historical evolutionary directions to help 

better generate offspring. Ghosh et al. [22] proposed a 

differential vector reuse mechanism, which collected 

successful differential vectors of DE in an archive and 

randomly selected vectors in the archive as new differential 

vectors to guide evolution. The study of such data utilizing EC 

algorithms has become a new research frontier in the field of 

EC. The encouraging performance of these algorithms reveals 

that utilizing data/knowledge to guide the evolution can greatly 

enhance effectiveness and efficiency. 

Although both the cross-problem data utilizing algorithms 

and the historical data utilizing algorithms generally achieve 
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promising performance, these kinds of data utilizing strategies 

only collect and reuse data without deeply mining the 

knowledge among the data, which are tentative and still have 

limitations. The two most intuitive and vital limitations are: 

first, since there is a huge amount of data generated during the 

past generations, most existing algorithms just simply collect 

and reuse a very limited amount of them to guide evolution. 

However, it is hard to obtain general knowledge about 

successful evolutionary behavior without deeply mining a huge 

amount of data. Second, most existing algorithms just simply 

randomly use the data to guide the evolution of the individuals, 

but without considering the influence of the deep relationship 

between the individuals and the data. 

For clarity, we illustrate an example of a maximum 

optimization problem in Fig. 1 to show the limitations of the 

current data utilizing algorithms, where the successful 

evolutionary directions are collected and utilized. Herein, the 

individuals in the past generation are illustrated as blue 

triangles (i.e., P1, P1’, P2, and P2’), and the current individual A 

and its two offspring A1 and A2 are illustrated as red circulars. 

Two successful evolutionary directions (i.e., D1 and D2) are 

collected, where D1 is a successful evolutionary direction from 

P1 to P1’, and D2 is a successful evolutionary direction from P2 

to P2’. Since the individual randomly selects a successful 

direction and its offspring are generated along this direction. If 

individual A selects direction D1, a promising offspring A1 

which achieves better fitness than its parent A will be generated. 

However, if D2 is selected, an offspring A2 with poor fitness 

will be generated. That is because the start point of D2 (i.e., the 

point P2) is located in another peak far away from A, and 

therefore the direction D2 (i.e., successful experience of P2) is 

not suitable for A to generate promising offspring. Herein, 

direction D1 whose start point P1 is nearby individual A is more 

suitable. Therefore, in such a case, the current data utilizing 

algorithms may select a relatively worse direction to guide the 

evolution. 

To overcome the two above limitations, it is required to 

design a novel mechanism that not only can deeply mine the 

knowledge but also can properly utilize the knowledge. We 

note that human beings can preserve all the successful 

experiences of their predecessors by summarizing the 

experiences as many kinds of knowledge. These kinds of 

knowledge are preserved in a knowledge library, and people 

can search for and learn suitable knowledge from the library 

according to their properties to improve themselves. 

Inspired by this, this paper proposes a novel and effective 

knowledge learning (KL) framework for EC. Different from 

existing data utilizing algorithms that just simply collect and 

reuse the data, the KL framework is able to deeply mine the 

knowledge from successful experiences and properly utilize the 

knowledge to guide the individuals according to their position. 

Herein, the relationships of data, experience, and knowledge of 

this paper are briefly clarified. Data usually denotes the 

information that reveals the evolutionary behavior of the 

population during evolution. For example, the position 

information, the direction information, and the fitness 

information are all data. A successful experience is defined as 

the successful evolutionary direction at a position. For example, 

assume that an individual locates at position P1 with fitness 

value F1 jumps to position P2 with fitness value F2. If F2 is 

better than F1, which means this individual achieves a 

successful evolution, then the position P1 and the successful 

direction D = P2 – P1 are paired as a successful experience, 

denoted as (P1, D). Moreover, knowledge is defined as a kind of 

rule about how to obtain successful evolutionary directions by 

mining from successful experiences. Therefore, the successful 

experience is a special kind of data generated during the EC 

evolutionary process, which then can be used for mining the 

knowledge, so that the knowledge can be used for guiding the 

evolution of the EC algorithms. 

To achieve the goal of KL-based EC algorithms, the KL 

framework has two processes, “learning from experiences to 

obtain knowledge” and “utilizing knowledge to guide 

evolution”. First, in the process of learning from experiences to 

obtain knowledge, the KL framework maintains a knowledge 

library model (KLM) based on a feedforward neural network 

(FNN) to preserve the knowledge. During the evolutionary 

process, the successful experiences obtained by all the 

individuals are collected, and these experiences are mined and 

learned by the KLM to obtain general knowledge about the 

relation between the individuals and the successful experiences. 

Second, in the process of utilizing knowledge to guide 

evolution, individuals can inquire from KLM about the 

guidance, and the KLM gives each individual a suitable 

evolutionary direction according to the learned knowledge and 

the position of the individual. Characteristics and contributions 

of the proposed KL framework are summarized as follows: 

1) A novel and effective KL framework is proposed in this 

paper. The KL framework can deeply mine successful 

experiences generated during the evolution to obtain 

knowledge and can properly utilize the knowledge to guide 
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(a)                                                                                                      (b) 

Fig. 1. An example of historical direction utilizing. (a) Two successful directions D1 and D2 in the past generations. (b) After applying the two directions D1 and 

D2, two offspring A1’ and A2’ of individual A are generated. However, since the direction D2 is not suitable for A, the offspring A2 is worse than A. 
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individuals according to their position. First, the knowledge in 

the KL model is more general and effective to guide the 

evolution, since the knowledge is obtained by mining a huge 

amount of successful experiences. Second, the KL framework 

can provide relatively effective guidance of evolutionary 

direction to each individual, since the provided direction is 

calculated based on the knowledge and the current status of the 

individual. 

2) The KL framework is a generic framework for EC 

algorithms and can be easily embedded with many EC 

algorithms. To clearly show how to combine the KL framework 

and EC algorithm, we combine the KL framework with two 

representative EC algorithms, DE and PSO, to propose 

KL-based DE (denoted as KLDE) and KL-based PSO (denoted 

as KLPSO). According to the experimental results, these two 

KL-based EC algorithms are more effective and efficient than 

their canonical versions. 

3) To further evaluate the effect of the KL framework, we 

combine the KL framework with several state-of-the-art and 

even champion EC algorithms and show the performance 

improvement of the KL-based algorithms compared to the 

original algorithms. The experimental results on both the 

benchmark functions and the real-world optimization problems 

indicate our proposed KL framework can significantly improve 

the performance of these EC algorithms. 

The remainder of this paper is organized as follows. We first 

introduce two representative EC algorithms (i.e., DE and PSO) 

and the related works on EC algorithms in Section II. Then the 

KL framework is detailed in Section III, as well as KLDE and 

KLPSO. Experimental results and analyses are given in Section 

IV. Section V summarizes the conclusion of this paper and 

outlines our future works. 

II. BACKGROUND 

A. EC 

EC algorithms can be divided into two categories, including 

evolutionary algorithms and swarm intelligence. Herein, two 

typical EC algorithms such as DE [5] in evolutionary algorithm 

and PSO [11] in swarm intelligence are introduced. 

1)  DE 

In the initialization operation, each individual is randomly 

generated according to 

 , rand(0,1) ( )i j j j jU L L=  − +x  (1) 

where xi, j is the jth dimension of the ith individual, Uj and Lj are 

the upper bound and lower bound of the jth dimension 

respectively. 

After initialization, the evolutionary operations of the DE 

that include mutation, crossover, and selection are executed. In 

the mutation operation, differential vector vi is generated via the 

mutation of several parental individuals, as 

 
1 2 3( - )i r r rF= + v x x x  (2) 

where r1, r2, and r3 are mutually exclusive indexes and are 

randomly selected, F indicates the amplifier factor. 

After mutation, the newly generated differential vector vi is 

forwarded to the crossover operation. The differential vector vi 

crossovers with the current individual xi to construct trial vector 

ui via 
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where CR indicates the value of the crossover rate, and jrand is a 

randomly selected dimension. 

To preserve better individuals and discard worse individuals, 

the selection operation is executed to select the better one 

between trail vector ui and current individual xi. The selection 

operation for solving a minimization optimization problem is 

shown as 
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2)  PSO 

Different from the DE algorithm, particles in PSO evolve 

according to the position information of other particles and the 

best particle. Each particle i in PSO maintains a current position 

xi, a velocity vi, and a personal best position pbesti. The global 

best position of the population is denoted by gbest. 

At the beginning of PSO, the initialization operation is 

carried out to randomly generate the position xi and the velocity 

vi. Then, the particle uses a velocity update operation and a 

position update operation to update its velocity and position by 

learning from pbesti and gbest. The velocity update operation is 

shown as 

 
1 1 2 2( ) ( )i i i i iw c r c r=  +   − +   −v v pbest x gbest x  (5) 

where w is the inertia weight, which controls the proportion of 

velocity attenuation, c1 and c2 are two coefficients. r1 and r2 are 

randomly sampled from [0, 1] independently for each 

dimension. 

The position update operation is carried out to adjust the 

position xi of each particle according to its current velocity vi as 

 
i i i= +x x v  (6) 

After the position update, the fitness of each particle is 

evaluated, and pbesti and gbest are also updated if necessary. 

B. Related Works 

To enhance the EC algorithms’ performance, researchers 

have proposed many data utilizing algorithms. We simply 

classify the existing methods into two categories: 

cross-problem data utilizing algorithms and historical data 

utilizing methods. 

First, we give a brief introduction to several existing 

cross-problem data utilizing algorithms. The cross-problem 

data utilizing algorithms utilize the data and information 

generated in the solving process of the other optimization 

problems to guide the evolutionary process of the current 

problem. For example, Gupta et al. [23] proposed a 

multifactorial optimization framework to utilize individuals of 

different optimization problems as parents to generate offspring. 

This way, the data on different problems can be shared to guide 

the evolution of the current problems. This idea of 

cross-problem individuals utilizing strategy is also adopted in 

many existing algorithms for evolutionary multi-task 

optimization, such as multifactorial evolutionary algorithm 

with adaptive knowledge transfer [24], evolutionary 

multitasking via explicit autoencoding [25], and adaptive 

evolutionary multi-task optimization framework [26]. 

Moreover, some cross-problem data utilizing algorithms were 

proposed to utilize the data of evolutionary directions from the 
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other problem to generate offspring of the current problems. 

For example, Yin et al. [27] proposed to transfer the data of the 

difference vector from other problems to the current problem to 

effectively solve the current problem. 

Second, several existing historical data utilizing algorithms 

are introduced here. The historical data utilizing algorithms 

utilize the historical data generated during the past generations 

to guide the evolution of the current generation. Several 

historical data utilizing algorithms were proposed to collect and 

re-utilize the historical parameter settings or the historical 

individuals. For example, Zhang et al. [28] proposed a JADE, 

which collected historical successful parameters and generated 

new parameters based on these successful parameters. Also, in 

JADE, the past individuals are preserved in a fixed-size archive 

and are utilized as parental individuals. Tanabe et al. [29] 

further developed the idea of JADE and proposed a 

success-history based adaptive DE, which maintained several 

distributions estimated by the successful parameters, and new 

parameters were sampled from different distributions. Also, 

based on the idea of JADE and success-history based adaptive 

DE, some variants were proposed, such as success-history 

based adaptive DE with linear population size reduction [30] 

and jSO [31]. Zhan et al. [32] proposed an adaptive distributed 

DE (ADDE), where the parameters for each generation were 

also adjusted according to the historical parameters and the 

historical successful individuals were utilized to generate new 

offspring. Liang et al. [33] proposed a self-adaptive dynamic 

PSO (SaDPSO), where multiple swarms with different 

parameter settings were evolved concurrently and data of the 

promising parameter settings was shared among swarms. Zhan 

and Zhang [34] proposed a PSO-based learning strategy to 

utilize the historical successful parameters to adaptively control 

the current parameters. Xue et al. [35] proposed an 

archive-based PSO, where the historical well-performed 

particles were stored in an archive and the particles in the 

archive were served as exemplars to update the new particles.  

Xia et al. [36] proposed a triple archive PSO (TAPSO) to 

preserve historical particles with different properties in 

different archives and reuse the historical particles to help 

better evolution. Zhu et al. [37] proposed to effectively use the 

observable parameters and the individuals in historical 

environments, which achieved encouraging performance in 

evolutionary dynamic optimization. In their method, the 

optimal solution in the current environment is predicted via 

both rote learning and FNN-based strategy, which are trained 

based on historical parameters and positions. 

In addition, some historical data utilizing algorithms were 

proposed to reuse past successful directions to generate better 

offspring in the current population. For example, Zhang et al. 

[21] designed a directional mutation operator and incorporated 

it with classical DE, which was termed directional mutation DE 

(DMDE). In DMDE, if an individual x achieves a successful 

evolution to generate a fitter offspring u, the evolutionary 

direction (u – x) is collected and reused later to generate 

offspring. In addition, Zhang et al. [38] extended DMDE by 

adopting differential vector archive and the parameter control 

strategy of success-history based adaptive DE [29]. Ghosh et al. 

[22] proposed a difference vector reuse (DVR) mechanism to 

utilize the successful differential vector in the past generation to 

provide data for the current population. 

According to the above introduction of existing data utilizing 

algorithms, we can find that many studies have made great 

attempts to design different data utilizing strategies to enhance 

the effectiveness. These existing data utilizing algorithms have 

achieved promising and encouraging performance on many 

optimization problems, which indicates the data generated in 

the evolutionary process contains the knowledge that can 

effectively guide the evolution. However, these existing data 

utilizing algorithms still stop at the tier of collecting and 

utilizing the data, rather than deeply mining the knowledge 

among the data. This encourages us to propose a novel and 

effective KL framework to learn and utilize the knowledge 

rather than just simply collect and utilize the data. 

III. KLEC 

A. KL Framework 

The KL framework includes two main processes, learning 

from experiences to update knowledge and utilizing knowledge 

to guide evolution. To clearly describe the KL framework, we 

illustrate the general framework of the KLEC in Fig. 2. 

KL framework maintains the KLM to learn and store the 

knowledge about the relationship between the individual 

position and its successful evolutionary direction. Different 

from the existing algorithms, the proposed KL framework is 

able to learn all the historical experiences and provide 

high-quality evolutionary direction to each individual based on 

the obtained knowledge. 

In the beginning, a population with NP individuals is 

randomly initialized, where NP is the population size. In the 

main loop of the evolutionary process of KLEC, first, each 
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Evolutionary operations
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Collecting experiences 

i = i + 1
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Fig. 2.  The general framework of KLEC. 
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individual generates offspring via either utilizing the 

knowledge of KLM or adopting the evolutionary operations of 

the EC algorithm. Specifically, if a random number in [0, 1] is 

smaller than the learning rate lr, the individual is selected to 

utilize the knowledge of KLM. That is, the current position of 

the individual will be fed to trained KLM as input and the KLM 

will output a relatively good direction for this individual based 

on the knowledge and its position. Then, if the fitness of the 

offspring’s new position is better than that of its current 

position, its successful experience is collected. Finally, the 

process of learning from experiences to update knowledge is 

carried out. Specifically, the collected successful experiences 

are mined and learned by the KLM to update the knowledge 

about the relationship between the individual position and the 

successful evolutionary direction. 

B. Learning from Experiences to Obtain Knowledge 

1) KLM 

The main principle of the KLM is to obtain an omniscient 

knowledge learner that learns all the successful experiences in 

the past generations to provide appropriate knowledge to 

individuals according to their current positions. To achieve this, 

the KLM should be a data structure that can store a huge 

amount of knowledge and achieve fast knowledge retrieval. 

We adopt FNN as the data structure of KLM, as the FNN is a 

simple but effective model for learning the mapping between 

position and optimal direction. The information inside the FNN 

can proceed from the input layer, via the hidden layer, and to 

the output layer. Recently, a lot of studies and applications have 

shown that the FNN has good function-fitting ability and 

pattern recognition ability [39], [40]. The FNN-based KLM can 

learn the mapping relationship between positions and directions 

of the experiences. After training, each individual can query for 

knowledge by feeding its current position to KLM and 

receiving output data as the evolutionary direction. 

Three advantages of the FNN-based KLM are described as 

follows. First, the FNN-based KLM can get knowledge via 

learning all the collected successful experiences. For example, 

if the positions of two experiences are nearby, the KLM can 

adjust its weights via both these two experiences, thus it can 

provide suitable direction according to the synthetic of the two 

directions to the nearby individuals. Second, the FNN-based 

KLM can provide relatively optimal evolutionary directions to 

individuals according to their current position. That is because 

the KLM can learn the knowledge about the relationship 

between the position and the successful direction, and different 

input positions for FNN lead to different output evolutionary 

directions, thus the different individuals will be assigned with 

different proper evolutionary directions. Third, the FNN-based 

KLM can achieve relatively fast knowledge retrieval. Once the 

training process is finished, it is fast to get results from the FNN. 

To be specific, to get the suitable evolutionary direction from 

the FNN-based KLM, only the computation of the activation 

function and computation of the matrix multiplication in the 

FNN need to be performed, thus the time complexity is 

relatively low. Therefore, the FNN is a suitable choice for the 

data structure of KLM. 

The architecture of FNN-based KLM is illustrated in Fig. 3. 

The FNN consists of an input layer, two hidden layers, and an 

output layer, where the input dimension and the output 

dimension are both D (D is the problem dimension, i.e., the 

number of dimensions of decision variables). AF denotes the 

activation function. Therefore, the output layer contains D 

nodes, in which the linear activation function is adopted. 

Besides, each hidden layer contains 16 nodes, in which the 

sigmoid activation function is adopted to achieve non-linear 

mapping. The sigmoid activation function is given as follows: 

 
1

sigmoid( )
1 x

x
e−

=
+

 (7) 

The error backpropagation algorithm is adopted as the 

supervised learning algorithm to train the FNN [41]. In the 

backpropagation algorithm, the error between the predicted 

output of the FNN and the expected output is calculated and 

backpropagated inside the FNN to adjust its weight. The error is 

calculated via a loss function, i.e., mean squared error (MSE) 

loss function [42] as follows: 

 2

1

1
( ( ))

m

i i

i

MSE y f x
m =

= −  (8) 

where yi is the expected output of FNN, f(xi) stands for the 

predicted output of xi, and m denotes the number of successful 

experiences. Besides, to better update the KLM at every 

generation, the gradient descent optimizer is carried out to 

optimize the weights of the FNN-based KLM for ep epochs in 

each training process. In the FNN-based KLM, the training data 

is the collected experiences in every generation. Specifically, 

the input of the training data is the positions of individuals and 

the output of the training data is the successful directions 

corresponding to the positions. For the testing data, the input is 

the positions of the individuals that are selected to use KLM. 

 

2) Learning from Experiences to Update KLM 

In the KL framework, the successful experiences should be 

first collected before the process of learning from experiences 

to update KLM. To collect the successful experience, a list Q is 

created to store the successful experience. Specifically, in each 

generation, once the fitness value of an individual is improved, 

this successful experience is collected in Q. The experience will 

not be learned by KLM immediately until all the successful 

experiences in the current generation are collected. That is, the 
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Input Layer

Nodes = D,

 
Fig. 3. The architecture of the KLM. The two hidden layers are composed of 

16 nodes with sigmoid activation function, the output layer is 

composed of D (D is the dimension) nodes with linear activation 

function, and the input dimension of the input layer is D. 
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experience is temporarily stored in an experience list Q and 

waits for being learned by KLM. 

Then, the successful experiences collected in Q are learned 

by KLM to obtain knowledge about the relationship between 

the position and the successful direction. Specifically, the 

position of each experience in the list Q is fed to KLM as input 

and the corresponding direction is served as the expected output 

to train the FNN-based KLM. In the training, the 

backpropagation algorithm is adopted for ep epochs to adjust 

the weights of KLM. After the learning process of KLM, all the 

learned experiences in list Q are discarded (i.e., clear all the 

experiences in list Q at the end of each generation) to make 

space for the new experiences of the next generation. Noted that, 

in every generation, KLM is not re-initialized, but is 

continuously trained by the experiences newly collected in the 

current generation based on the weights of KLM in the previous 

generation. Therefore, KLM can in fact obtain knowledge by 

learning the successful experiences generated over the whole 

history. If no successful experience is collected in Q, i.e., no 

individual achieves successful evolution, the KLM will not be 

updated in the current generation. 

C. Utilizing Knowledge to Guide Evolution 

The process of utilizing knowledge to guide evolution aims 

to provide proper evolutionary direction to the individual 

according to its current position and the learned knowledge. 

Since the KLM learns about the mapping from the position to 

the direction according to historical successful experiences, we 

only need to feed the current position of the individual to the 

KLM as input, and the output of the KLM is the inquired 

evolutionary direction for this individual. This way, the 

utilizing operation of KLM can provide a suitable evolutionary 

direction to each individual according to its current position. 

Noted that, if the KLM has not learned any successful 

experience (e.g., in the first generation or in the first few 

generations), the KLM is not used to provide directions to 

individuals. Besides, for clarity, we give Fig. 4 to better 

illustrate the relationship between the successful experience 

and the knowledge of KLEC and also to better illustrate the 

knowledge learning and utilizing process in KLEC. 

D. KLDE 

To clearly describe how to incorporate the KL framework 

with the EC algorithms, this section designs a KLDE algorithm 

by combining the KL framework and DE. The complete KLDE 

can be found in Algorithm 1. 

First, a population P, an empty experience list Q to 

temporarily store the successful experiences, and the KLM are 

initialized at the beginning of the KLDE (line 1). After 

initialization, the main loop of the evolutionary process is 

carried out. Different from the basic DE, in KLDE, each 

individual in KLDE can evolve via either utilizing knowledge 

of KLM or evolutionary operations according to the probability 

lr (lines 5-6). lr is the learning rate, which indicates the 

probability of evolving individuals via utilizing knowledge of 

KLM. Specifically, if the current individual xi is selected to be 

evolved by utilizing KLM, firstly, a parental individual xr1 is 

randomly selected. To avoid confusion, herein, the individual xi 

is named as the current individual, while the individual xr1 is 

named as the parental individual. Secondly, the position of xr1 

is input to the KLM to get the evolutionary direction dr1. Then 

the parental individual xr1 applies the direction provided by 

KLM to generate a new offspring (line 6). The equation of 

function applyDirection(xr1, dr1) that is used to apply the 

evolutionary direction dr1 on xr1 is given as: 

Evolutionary process of

 EC algorithm

Positions Directions

Successful experiences

 FNN-based 

KLM

Knowledge

Mining and 

learning

Learning and utilizing

Collecting

 
Fig. 4. Illustration of the knowledge learning and utilizing process in KLEC. 

 

Algorithm 1 KLDE 

Begin 

1:Initialize population P, experience list Q, and KLM. 

2:While FEs ≤ MaxFEs 
3:     For each individual xi: 

4:         If rand(0, 1) < lr: 

5:              dr1 = utilizeKnowledge(KLM, xr1);  //Section III-C 
6:              vi = applyDirection(xr1, dr1);  //Equation (9) 

7:          Else: 

8:              vi = mutation(xr1, xr2, xr3, DE/rand/1);  //Equation (2) 
9:          End If 

10:          ui = crossover(vi, xi);  //Equation (3) 

11:          If f(ui) < f(xi): 
12:               collecting(Q, xi, ui−xi); 

13:               xi = ui; 

14:          End If 
15:     End For 

16:     learningKnowledge(KLM, Q);  //Section III-B-2) 

17:     clear(Q); 
18:End While 

End 

 

Algorithm 2 KLPSO 

Begin 

1:Initialize population P, experience list Q, and KLM. 
2:While FEs ≤ MaxFEs 

3:     For each particle xi: 

4:          tempi = xi; 
5:          If rand(0, 1) < lr: 

6:               di = utilizeKnowledge (KLM, xi);  //Section III-C 

7:               xi = applyDirection(xi, di);  //Equation (9) 
8:          Else 

9:               updateVelocity(xi, vi, pbesti, gbest);  //Equation (5) 

10:               xi = xi + vi;  //Equation (6) 
11:          End If 

12:          If f(xi) < f(tempi): 

13:               collecting (Q, tempi, xi−tempi); 
14:          End If 

15:          If f(xi) < f(pbesti): 

16:               pbesti = xi; 

17:               If f(pbesti) < f(gbest): 

18:                    gbest = pbesti; 
19:               End If 

20:          End If 

21:     End For 
22:    learningKnowledge(KLM, Q);  //Section III-B-2) 

23:    clear(Q); 

24:End While 
End 
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1 1 1 1applyDirection( , ) 2 rand(0,1)r r r r= +  x d x d  (9) 

where rand(0, 1) is a random value generated within [0, 1] to 

control the influence of the direction. After utilizing the 

direction, the individual that is out of the search space is set on 

the boundary. 

Otherwise, if the current individual xi is selected to be 

evolved via the evolutionary operations, the DE/rand/1 

mutation strategy in Eq. (2) is applied to generate differential 

vector vi (line 8). Then, the crossover operation of Eq. (3) is 

carried out between the current individual xi and the differential 

vector vi to generate the trial vector ui (line 10). 

If the generated trial vector ui is better than the parental 

individual xi, a successful experience (xi, ui−xi) can be collected. 

The function collecting(Q, xi, ui−xi) is carried out to collect the 

success experience (xi, ui−xi) and store it temporarily in the list 

Q (line 12). After all the individuals finish their evolutionary 

process in the current generation, the KLM is updated via 

mining the experiences in list Q to learn the knowledge about 

the relationship between the position and the successful 

direction.  (line 16). Finally, list Q is emptied to clear all the 

successful experiences that are already learned by KLM to 

make room for experiences generated in the next generation. 

E. KLPSO 

This section incorporates the KL framework with PSO to 

propose KLPSO, which can be an example algorithm to help 

clearly describe how to incorporate the KL framework with the 

swarm intelligence-based algorithms. The pseudo-code of 

KLPSO can be found in Algorithm 2. 

In the initialization process of KLPSO, the current position xi 

and the velocity vi are randomly initialized. Additionally, an 

empty experience list Q is created, and the FNN-based KLM is 

also randomly initialized (line 1). 

After initialization, the main loop of KLPSO is iterated until 

the termination condition. In the main loop of KLPSO’s 

evolutionary process, first, with the probability lr, the 

knowledge in KLM is utilized to provide suitable evolutionary 

direction to the particle, and then the direction is applied to 

update the position of this particle (lines 6-7). If the particle is 

not selected to utilize the evolutionary direction provided by 

KLM, the velocity update (line 9) and the position update (line 

10) same as those in the basic PSO algorithm are executed (i.e., 

Eqs. (5) and (6)). After that, if the new position xi is better than 

the former position tempi, successful experience (tempi, 

xi−tempi) is collected and recorded into the experience list Q 

(lines 12-14). Finally, the fitness of the new position is 

compared with the fitness of pbesti and gbest to update them 

(lines 15-20). After all the particles in the population have been 

updated, the process of learning the experience to update KLM 

is carried out. Specifically, the experiences temporally stored in 

Q are learned by the KLM to adjust its weights (line 22). Then 

the list Q is emptied (line 23). 

From both KLDE and KLPSO, we can see that KLEC is 

similar to its basic EC version except for three modifications. 

Firstly, two kinds of offspring are generated in KLEC by both 

utilizing knowledge and using traditional evolutionary 

operations, and therefore the simple if-statement is added. 

Secondly, a very simple collecting function is added to store the 

successful experience (i.e., the position and its direction) in the 

list Q. Thirdly, at the end of every generation, the KLM is 

updated by the list Q (i.e., the learningKnowledge function in 

Section III-B-2)) and then the list Q is cleared. Therefore, the 

KLEC is as easy-used as its basic EC version. 

IV. EXPERIMENTAL VERIFICATION 

A. Experimental Settings 

Three different experiments are designed to evaluate the 

performance of the KL framework. In the first experiment, we 

compare the experimental results on two canonical EC 

algorithms (i.e., DE and PSO) and their KL-based variants (i.e., 

KLDE and KLPSO) to evaluate the effects of the KL 

framework in improving the performance of basic EC 

algorithms. 

In the second experiment, we compare the results of several 

state-of-the-art EC algorithms and their KL-based variants. 

Through this experiment, we can observe that the KL 

framework can significantly improve the performance of these 

state-of-the-art algorithms. This way, the effect of the KL 

framework on performance improvement can be better shown 

and the effectiveness and efficiency of the KL framework can 

be further evaluated. The compared state-of-the-art DE-based 

algorithms include JADE [28], ADDE [32], jSO [31], and 

hybrid-adaptive DE with decay function (HyDE-DF) [43], 

while the compared state-of-the-art PSO-based algorithms 

include SaDPSO [33], hierarchical PSO with time-varying 

acceleration coefficients (HPSO-TVAC) [44], TAPSO [36], 

and adaptive weighted PSO (AWPSO) [45]. Many algorithms 

among these compared algorithms have achieved promising 

results in many competitions. Specifically, jSO wins second 

place in the CEC2017 single objective optimization 

competition, HyDE-DF wins third place in the CEC2019 

competition, and SaDPSO wins eighth in the CEC2015 

competition, which is the best ranking among the PSO-based 

algorithms. 

In the third experiment, we compare the proposed KL 

framework with several existing historical data utilizing 

algorithms. Two recently-proposed historical data utilizing 

algorithms, the directional mutation operator [21] and the DVR 

method [22], are adopted in the comparison. Similar to the KL 

framework, the directional mutation operator and DVR are also 

easy to be incorporated with DE, termed DMDE and DVR-DE, 

respectively. The comparison is performed on KLDE, DMDE, 

and DVR-DE to verify the superiority of the KL framework 

among historical data utilizing EC algorithms. 

The three above experiments are conducted on the 

well-known CEC2017 single objective test suite [46]. In 

CEC2017, there are 29 benchmark functions, which include 

two unimodal functions F1 and F2, seven simple multimodal 

functions F3-F9, ten hybrid functions F10-F19, and ten complex 

composition functions F20-F29. The detailed properties of the 

CEC2017 test suite can be found in [46]. 

In the experiments, to reduce accidental error, results are 

obtained over 51 independent runs for each algorithm.  The 

error value is adopted as the performance metric, which is 

calculated as the gap between the best fitness obtained by the 

algorithm and the real optimum fitness. To verify the 

algorithms’ performance in different dimensions, three settings 

of dimension D = 10, 30, and 50 are adopted. The maximum 

function evaluations (MaxFEs) are adopted as the termination 
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condition for the algorithms. The value of MaxFEs is D×104 for 

the experiments. Besides, Wilcoxon’s rank-sum test at 5% 

significant level is used to evaluate the experimental results in 

the statistic view. The notations “+/≈/−” indicate the results 

obtained by the KL-based variant are significantly 

“superior/equal/inferior” to those of the original algorithm.  In 

KL framework, the learning rate lr is 0.2 and the training epoch 

ep is 10. The population size of the compared algorithms and 

their KL-based variants are both set as 100. The parameter 

settings of the compared algorithms are adopted as the 

recommended values in their papers. 

B. Comparisons on DE and PSO 

The results of KLDE with DE and KLPSO with PSO are 

analyzed to show the effectiveness and efficiency of the KL 

framework. We show the experimental results for the mean 

error values at D = 30 in Table I, while the results at D = 10 and 

30 are shown in Table S.I and Table S.II of the supplementary 

material. 

From the results, we find that KLDE generally outperforms 

the original DE at D = 10, 30, and 50 on most problems. Also, 

the performance of KLPSO is generally superior to that of PSO. 

Moreover, by comparing the results at different dimensions, we 

can find that with the increase of dimensions, the effects of the 

KL framework can be better reflected. For example, the 

experimental results of KLDE are significantly superior to 

those of DE on 10 functions when D = 10, while KLDE is 

significantly superior to DE on 18 problems on D = 30 and 50. 

That is because the population is often too small to cover the 

full landscape if the dimension is huge. In this case, only a little 

data is extracted to generate the offspring, which often leads to 

the stagnation of pre-mature. However, the KL framework 

provides extra knowledge with both high-quality and 

large-quantity. Therefore, KL-based algorithms are generally 

better than their original versions when encountering 

high-dimensional problems. 

Besides, the properties of the KL framework over the 

evolutionary process can be observed through convergence 

graphs of KLDE, DE, KLPSO, and PSO on some selected 

problems. The convergence graphs of KLDE and DE at D = 30 

are shown in Fig. 5, while Fig. 6 illustrates the convergence 

graphs of KLPSO and PSO at D = 30. The convergence graphs 

of KLDE and DE and the convergence graphs of KLPSO and 

PSO at D = 10 are shown in Fig. S1 and Fig. S2, respectively. 

The convergence graphs of KLDE and DE and the convergence 

graphs of KLPSO and PSO at D = 50 are shown in Fig. S3 and 

Fig. S4, respectively. As we can observe from the figures, after 

several generations, DE and PSO are not able to extract 

sufficient data to generate promising offspring, which makes 

the individuals easily pre-mature. However, the KL framework 

can help the algorithms to jump out of this situation to further 

optimize the population. 

C. Comparisons on State-of-the-Art Algorithms 

1) Comparisons of DE-Based Algorithms against Their 

KL-Based Variants 

The experimental results for mean error values at D = 30 of 

DE-based state-of-the-art algorithms (i.e., JADE, ADDE, jSO, 

and HyDE-DF) and their KL-based variants are shown in Table 

II, while the results at D = 10 and 50 are shown in Table S.III 

and Table S.IV of the supplementary material. 

Experimental results of KL-JADE, KL-ADDE, KL-jSO, and 

KL-HyDE-DF are generally better than those of their original 

algorithms: When D = 30, the KL-based algorithms achieve the 

best results on most functions. The KL-JADE significantly 

dominates JADE on 17 functions; KL-ADDE dominates 

ADDE on 10 functions; KL-jSO defeats jSO on 13 functions; 

KL-HyDE-DF defeats HyDE-DF on 20 functions. On the 

high-dimensional problems, KL-based algorithms also achieve 

promising performance: When D = 50, KL-JADE outperforms 

JADE on 16 functions; KL-ADDE dominates ADDE on 17 

TABLE I  
RESULTS FOR MEAN ERROR OF KLDE, DE, KLPSO, AND PSO AT D = 30 

Func KLDE DE KLPSO PSO 

F1 0.00E+00 0.00E+00 ≈ 4.76E+03 6.04E+07 ≈ 

F2 1.68E-02 6.25E+01 + 2.63E+02 7.54E+01 − 

F3 5.58E+01 5.88E+01 ≈ 9.27E+01 1.02E+02 ≈ 

F4 2.66E+01 1.78E+02 + 6.59E+01 7.18E+01 ≈ 

F5 6.46E-03 0.00E+00 − 1.48E-01 5.60E-01 ≈ 

F6 5.80E+01 2.09E+02 + 1.09E+02 9.73E+01 ≈ 

F7 2.92E+01 1.80E+02 + 6.46E+01 6.49E+01 ≈ 

F8 1.44E-01 0.00E+00 − 8.31E-01 9.30E+00 + 

F9 2.27E+03 6.33E+03 + 2.63E+03 2.82E+03 ≈ 

F10 2.56E+01 6.32E+01 + 1.07E+02 1.14E+02 ≈ 

F11 1.46E+04 9.61E+03 ≈ 3.99E+05 6.30E+05 ≈ 

F12 2.39E+01 8.05E+01 + 1.44E+04 5.38E+05 ≈ 

F13 1.99E+01 6.16E+01 + 1.05E+04 1.71E+04 ≈ 

F14 5.10E+00 3.65E+01 + 5.25E+03 9.57E+03 ≈ 

F15 3.69E+02 6.46E+02 + 5.90E+02 6.25E+02 ≈ 

F16 5.74E+01 1.02E+02 + 1.82E+02 2.32E+02 + 

F17 2.38E+01 3.78E+01 + 2.38E+05 1.67E+05 ≈ 

F18 6.33E+00 1.66E+01 + 8.17E+03 9.60E+03 ≈ 

F19 7.92E+01 5.82E+01 ≈ 2.89E+02 2.70E+02 ≈ 

F20 2.30E+02 3.68E+02 + 2.62E+02 2.73E+02 + 

F21 8.72E+02 2.19E+03 ≈ 5.42E+02 1.13E+03 + 

F22 3.86E+02 5.25E+02 + 4.71E+02 4.71E+02 ≈ 

F23 4.60E+02 5.93E+02 + 5.60E+02 5.51E+02 ≈ 

F24 3.87E+02 3.87E+02 ≈ 3.88E+02 3.90E+02 + 

F25 1.32E+03 2.55E+03 + 1.19E+03 1.49E+03 + 

F26 5.05E+02 4.97E+02 − 5.41E+02 5.36E+02 ≈ 

F27 3.29E+02 3.19E+02 − 4.38E+02 4.44E+02 ≈ 

F28 4.58E+02 5.92E+02 + 6.47E+02 6.20E+02 ≈ 

F29 2.07E+03 2.00E+03 − 8.64E+03 9.62E+03 ≈ 

Number of + / ≈ / − 18 / 6 / 5 + / ≈ / − 6 / 22 / 1 
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Fig. 5. The convergence graphs of KLDE and DE on f6, f14, f18, f19, f21, f25 

when D = 30. 
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Fig. 6. The convergence graphs of KLPSO and PSO on f6, f14, f18, f19, f21, f25 

when D = 30. 
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functions; KL-HyDE-DF dominates HyDE-DF on 17 functions. 

Although the performance of KL-jSO is inferior to jSO at D = 

50 (KL-jSO achieves better performance than jSO on 9 cases, 

and jSO dominates KL-jSO on 11 problems), KL-jSO 

outperforms jSO at D = 10 and D = 30. Therefore, with the help 

of the KL framework, the KL-based DE variants can achieve 

significantly better performance than the original algorithms. 

 

2) Comparisons of PSO-Based Algorithms against Their 

KL-Based Variants 

The experimental results for mean error values at D = 30 of 

PSO-based state-of-the-art algorithms (i.e., SaDPSO, 

HPSO-TVAC, TAPSO, and AWPSO) with their KL-based 

variants can be found in Table III, while the results at D = 10 

and D = 50 are shown in Table S.V and Table S.VI of the 

supplementary material. 

For the comparison between KL-SaDPSO and SaDPSO, the 

performance of KL-SaDPSO dominates that of SaDPSO at D = 

30 and D = 50 (KL-SaDPSO defeats SaDPSO on 4 functions 

both at D = 30 and D = 50). For the comparison between 

KL-HPSO-TVAC and HPSO-TVAC, in most functions, the 

performance of KL-HPSO-TVAC dominates that of 

HPSO-TVAC whatever at D = 10, 30, or 50. Besides, 

KL-TAPSO and KL-AWPSO also outperform TAPSO and 

AWPSO, respectively. Specifically, at D = 30, KL-TAPSO 

significantly outperforms TAPSO at 5 problems, and 

KL-AWPSO significantly outperforms AWPSO at 11 problems. 

Moreover, comparing the experimental results of these 

algorithms at different dimensions, the gap between the 

performance of the original algorithms and the KL-based 

variants increases with the increasing of problem dimension. 

For example, the number of functions on which the 

experimental results of KL-AWPSO are better than those of 

AWPSO is 3 at D = 5, at D = 30 the number is 11, and at D = 50 

the number is 17. 

D. Comparisons among KLDE, DMDE, and DVR-DE 

The detailed results for mean error values at D = 30 obtained 

by KLDE, DMDE, and DVR-DE are given in Table IV, and the 

results obtained by KLDE, DMDE, and DVR-DE at D = 10 and 

50 are given in Table S.VII and Table S.VIII of the 

supplementary material. The KLDE obtains generally superior 

results than these two historical data utilizing methods. The 

KLDE dominates DMDE on 13, 20, and 19 functions at D = 10, 

30, and 50, respectively. KLDE defeats DVR-DE on 11, 17, 

and 14 functions at D = 10, 30, and 50, respectively. 

Due to the above experiments, the efficiency and 

effectiveness of the KL framework are shown. We conclude 

that, firstly, with the help of the KL framework, the 

performance of the KL-based algorithm is greatly improved 

when compared with the original algorithm. Secondly, if the 

dimension of function becomes large and the population can 

not cover the full landscape to extract useful data from the 

current population, the KL framework can still provide extra 

knowledge. From the convergence graphs, when the KL-based 

algorithm meets the stagnant of pre-mature that the basic 

algorithm can not jump out, the KL-based EC algorithms still 

can improve the fitness of offspring to further evolve. Thirdly, 

by the comparison among KLDE, DMDE, and DVR-DE, we 

can conclude that the KL framework dominates the 

state-of-the-art historical data utilizing methods. 

E. Sensitivity Analysis 

1) Sensitivity Analysis on Parameter lr 

The learning rate lr in the KL framework determines the 

proportion of individuals that learn the knowledge of KLM. 

Intuitively, the learning rate lr can influence the exploration 

and exploitation abilities of KL-based algorithms. If the lr is 

relatively large, most of the individuals acquire knowledge 

from KLM, and only a small proportion of individuals can 

TABLE II  
RESULTS FOR MEAN ERROR OF THE DE-BASED ALGORITHMS AND THEIR KL-BASED VARIANTS AT D = 30 

Func KL-JADE JADE KL-ADDE ADDE KL-jSO jSO KL-HyDE-DF HyDE-DF 

F1 0.00E+00 0.00E+00 ≈ 6.18E-02 3.72E-02 ≈ 0.00E+00 0.00E+00 ≈ 8.07E+00 4.98E+02 + 

F2 1.12E+05 1.62E+05 + 1.20E+05 1.19E+05 ≈ 0.00E+00 0.00E+00 ≈ 8.99E-02 2.99E+01 + 

F3 2.51E+01 3.79E+01 + 5.86E+01 5.87E+01 + 5.86E+01 5.91E+01 + 6.36E+01 5.65E+01 ≈ 

F4 6.36E+01 1.83E+02 + 3.03E+01 3.21E+01 ≈ 2.20E+01 1.02E+01 − 3.56E+01 4.43E+01 + 

F5 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 4.03E-08 1.48E-08 − 1.91E-02 5.94E-02 + 

F6 9.65E+01 2.18E+02 + 7.14E+01 6.96E+01 ≈ 5.32E+01 3.91E+01 − 6.76E+01 8.45E+01 + 

F7 5.99E+01 1.75E+02 + 3.61E+01 3.48E+01 ≈ 2.49E+01 1.12E+01 − 3.40E+01 4.14E+01 + 

F8 1.13E+01 7.19E-01 − 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 9.79E-02 3.41E+01 + 

F9 3.98E+03 8.07E+03 + 3.68E+03 4.03E+03 + 1.88E+03 1.75E+03 − 2.00E+03 2.42E+03 + 

F10 9.06E+01 8.31E+01 ≈ 3.57E+01 3.10E+01 ≈ 3.80E+00 8.04E+00 + 3.17E+01 4.50E+01 + 

F11 4.91E+03 3.17E+03 − 6.53E+03 4.90E+03 − 3.20E+02 1.44E+02 − 2.14E+04 6.12E+03 − 

F12 5.19E+02 4.30E+03 + 2.48E+02 2.25E+04 ≈ 1.13E+01 2.14E+01 + 6.55E+03 3.80E+02 ≈ 

F13 5.93E+04 2.69E+04 − 3.17E+03 3.32E+04 + 2.37E+01 2.30E+01 − 7.76E+01 1.03E+02 + 

F14 8.58E+03 3.99E+03 ≈ 1.72E+02 4.74E+04 + 1.88E+00 3.25E+00 + 1.17E+02 1.24E+02 + 

F15 9.40E+02 1.87E+03 + 7.49E+02 7.47E+02 ≈ 6.58E+01 1.25E+02 + 4.24E+02 3.80E+02 ≈ 

F16 3.19E+02 4.31E+02 + 2.17E+02 2.53E+02 + 2.93E+01 3.88E+01 + 9.21E+01 1.02E+02 + 

F17 2.13E+05 7.27E+05 ≈ 5.74E+05 6.75E+05 + 2.10E+01 2.13E+01 + 2.37E+02 3.50E+02 + 

F18 6.92E+03 6.14E+02 − 4.88E+01 3.44E+04 ≈ 4.20E+00 7.37E+00 + 6.06E+01 5.77E+01 − 

F19 2.87E+02 5.19E+02 + 2.34E+02 2.98E+02 + 2.49E+01 3.53E+01 + 7.31E+01 1.33E+02 + 

F20 2.63E+02 4.01E+02 + 2.35E+02 2.36E+02 ≈ 2.24E+02 2.11E+02 − 2.32E+02 2.41E+02 + 

F21 6.66E+02 1.36E+03 + 1.00E+02 1.00E+02 + 1.00E+02 1.00E+02 + 1.00E+02 1.00E+02 + 

F22 4.17E+02 5.33E+02 + 3.85E+02 3.86E+02 ≈ 3.73E+02 3.48E+02 − 3.85E+02 3.96E+02 + 

F23 5.04E+02 6.34E+02 + 4.60E+02 4.60E+02 − 4.46E+02 4.24E+02 − 4.60E+02 4.67E+02 + 

F24 3.87E+02 3.87E+02 − 3.87E+02 3.87E+02 + 3.87E+02 3.87E+02 + 3.93E+02 3.86E+02 − 

F25 1.55E+03 2.49E+03 + 1.24E+03 1.21E+03 − 1.20E+03 9.13E+02 − 1.06E+03 1.27E+03 + 

F26 5.03E+02 5.07E+02 + 5.06E+02 5.02E+02 ≈ 4.98E+02 4.94E+02 − 5.11E+02 5.08E+02 ≈ 

F27 3.69E+02 3.47E+02 ≈ 3.69E+02 3.25E+02 − 3.00E+02 3.09E+02 + 3.14E+02 3.45E+02 + 

F28 6.40E+02 1.27E+03 + 5.70E+02 5.83E+02 ≈ 4.33E+02 4.46E+02 + 5.34E+02 5.28E+02 ≈ 

F29 2.23E+03 2.20E+03 ≈ 3.46E+03 7.91E+03 + 1.98E+03 1.97E+03 − 3.04E+03 2.94E+03 − 

Number of + / ≈ / − 17 / 7 / 5 + / ≈ / − 10 / 15 / 4 + / ≈ / − 13 / 3 / 13 + / ≈ / − 20 / 5 / 4 
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explore undiscovered regions via evolutionary operations. In 

this case, the exploration ability of KL-based algorithms will be 

weakened. If the lr is specified as a very small value, most 

individuals are evolved according to the evolutionary operation. 

In this case, the KL framework takes no effect, thus the 

exploitation ability reduces. 

 Therefore, the learning rate lr should be studied and carefully 

set. In the above experiments, lr is set as 0.2. To study the 

performance of the KL framework with different settings of lr 

and find the optimal setting of lr, we compare the performance 

of the KLDE and KLPSO with lr = 0.2 and the variants with lr 

= 0.1, 0.3, 0.4, and 0.5. The comparison results obtained by 

these KLDE variants and KLPSO variants with different 

settings of lr at D = 30 and ep = 10 are given in Table V. We can 

find that by considering the results on both KLDE and KLPSO, 

the lr = 0.2 achieves a generally better performance than other 

lr values. Therefore, both considering the results and the 

famous “80%/20% rule” [47], [48], lr is recommended to be set 

as 0.2 in the KL framework. 

 

2) Sensitivity Analysis on Parameter ep 

The ep indicates the training epochs of the FNN-based KLM 

in each generation. Similar to the setting of lr, ep also affects 

the performance of the KL framework. On the one hand, if the 

ep is too small, the KLM will be under-fitting and show poor 

performance. On the other hand, if the ep is set as a relatively 

large number, the KLM may be over-fitting and provides the 

wrong evolutionary directions. 

 In the above experiments, the value of ep is set as 10. Herein, 

to show whether the setting ep = 10 is superior to other settings 

of ep, we compare the performance of ep = 10 and ep = 1, 5, and 

20. The experimental results of these KLDEs and KLPSOs with 

different values of ep at D = 30 and lr = 0.2 are given in Table 

VI. The KLDE with ep = 1 shows the worst performance since 

KLM in KLDE is under-fitting. In the other aspect, with the ep 

= 5 or ep = 20, KLDE can achieve comparative performance to 

the KLDE with ep = 10. However, KLPSO with ep = 10 can 

achieve better performance than KLPSO with ep = 5 or 20. 

Moreover, ep = 10 means the KLM only needs to be trained for 

10 epochs, whose time complexity is lower than that of the KL 

framework with ep = 20. Therefore, the ep is set as 10 by both 

considering the performance and the time complexity. 

F. Analysis of KLM Architecture 

In the proposed KL framework, the KLM is based on an 

FNN, and the architecture of the KLM is shown in Fig. 3. The 

architecture of the KLM can influence the performance of the 

KL framework. To analyze the settings of KLM architecture, 

we compare the performance of the KLM architecture in Fig. 3 

and that of the other KLM architectures. Specifically, KLDE 

and KLPSO variants with different KLM architectures are 

compared, where the node number of each hidden layer is set as 

4, 8, 16, and 32 (denoted as NN = 4, 8, 16, and 32), respectively. 

The experimental results obtained by KLDE variants with 

NN = 4, 8, 16, and 32 at D = 30 are shown in Table S.IX, while 

results obtained by KLPSO and KLPSO variants with NN = 4, 8, 

16, and 32 at D = 30 are shown in Table S.X of supplementary 

material. To analyze the results, the number of best results 

(denoted as NoB) and the mean rank of each algorithm are 

adopted as statical metrics. According to the results, we can 

find that the settings of NN = 16 and 32 achieve relatively 

promising performance. Specifically, according to NoB, the 

KLDE with NN = 32 and KLPSO with NN = 16 achieves the 

best performance among the variants, while the KLDE with NN 

= 16 and KLPSO with NN = 32 get the best results according to 

the mean rank. However, when NN = 32, the time complexity of 

the KLM can be relatively large, and executing the KL 

framework can consume much time. Therefore, both 

considering the experimental results and the time complexity, 

NN = 16 is the optimal setting. 

TABLE III  
RESULTS FOR MEAN ERROR OF THE PSO-BASED ALGORITHMS AND THEIR KL-BASED VARIANTS AT D = 30 

Func KL-SaDPSO SaDPSO 
KL-HPSO-T

VAC 
HPSO-TVAC KL-TAPSO TAPSO KL-AWPSO AWPSO 

F1 8.82E+01 4.98E+02 ≈ 1.15E+07 2.01E+07 + 2.19E+03 2.46E+03 ≈ 4.85E+03 1.16E+08 ≈ 

F2 1.32E-05 7.10E-06 ≈ 1.91E+02 3.46E+02 + 9.89E+00 3.48E+01 ≈ 2.71E-02 3.51E-04 − 

F3 1.56E+00 1.72E+00 ≈ 9.94E+01 1.03E+02 ≈ 4.91E+01 6.26E+01 + 8.58E+01 1.03E+02 + 

F4 4.82E+01 4.85E+01 ≈ 1.26E+02 1.29E+02 ≈ 4.62E+01 4.16E+01 ≈ 4.60E+01 5.21E+01 + 

F5 9.58E-03 3.35E-02 + 1.23E+01 1.33E+01 ≈ 1.96E-06 3.51E-07 − 1.59E-01 5.43E-01 + 

F6 7.93E+01 7.41E+01 ≈ 1.96E+02 2.16E+02 + 6.64E+01 6.95E+01 ≈ 6.62E+01 8.41E+01 + 

F7 5.27E+01 5.22E+01 ≈ 1.00E+02 1.04E+02 ≈ 4.30E+01 4.57E+01 ≈ 4.10E+01 5.14E+01 + 

F8 3.17E+00 8.87E+00 + 1.20E+03 8.88E+02 ≈ 1.10E-01 2.65E-01 + 3.02E+00 5.57E+00 + 

F9 2.54E+03 2.29E+03 − 3.23E+03 3.13E+03 ≈ 2.37E+03 2.48E+03 ≈ 2.48E+03 2.69E+03 ≈ 

F10 7.55E+01 8.12E+01 ≈ 1.24E+02 1.20E+02 ≈ 5.26E+01 4.93E+01 ≈ 9.56E+01 9.02E+01 ≈ 

F11 1.84E+03 2.19E+03 ≈ 3.27E+06 3.67E+06 ≈ 1.65E+05 3.09E+04 − 1.24E+05 1.35E+06 + 

F12 1.46E+03 1.42E+03 ≈ 5.01E+05 1.19E+06 + 1.31E+04 1.39E+04 ≈ 2.04E+04 7.22E+05 + 

F13 4.75E+02 4.38E+02 ≈ 9.44E+03 1.26E+04 ≈ 2.67E+03 6.90E+03 + 1.00E+04 5.99E+03 ≈ 

F14 3.23E+02 8.64E+02 ≈ 1.03E+05 1.41E+05 ≈ 2.11E+03 3.12E+03 ≈ 9.23E+03 1.16E+04 ≈ 

F15 5.52E+02 5.14E+02 ≈ 9.53E+02 1.02E+03 ≈ 7.24E+02 7.03E+02 ≈ 5.57E+02 6.34E+02 ≈ 

F16 1.35E+02 1.34E+02 ≈ 3.04E+02 4.06E+02 + 1.46E+02 1.62E+02 ≈ 2.16E+02 2.10E+02 ≈ 

F17 2.69E+03 2.67E+03 ≈ 2.17E+05 2.26E+05 ≈ 1.08E+05 1.05E+05 ≈ 2.37E+05 1.48E+05 − 

F18 3.25E+02 3.44E+02 + 1.28E+05 1.37E+05 ≈ 4.01E+03 5.83E+03 + 7.59E+03 3.00E+04 ≈ 

F19 1.96E+02 1.94E+02 ≈ 3.32E+02 3.34E+02 ≈ 1.97E+02 2.10E+02 ≈ 2.56E+02 2.37E+02 ≈ 

F20 2.50E+02 2.53E+02 ≈ 3.29E+02 3.44E+02 + 2.41E+02 2.42E+02 ≈ 2.51E+02 2.54E+02 ≈ 

F21 1.43E+02 1.00E+02 − 1.33E+03 8.49E+02 ≈ 1.00E+02 1.60E+02 + 1.19E+03 7.21E+02 ≈ 

F22 4.05E+02 4.10E+02 ≈ 6.65E+02 7.34E+02 + 3.99E+02 4.02E+02 ≈ 4.49E+02 4.61E+02 + 

F23 4.76E+02 4.84E+02 ≈ 8.54E+02 9.53E+02 + 4.76E+02 4.74E+02 ≈ 5.37E+02 5.45E+02 ≈ 

F24 3.83E+02 3.81E+02 ≈ 3.95E+02 3.99E+02 ≈ 3.89E+02 3.88E+02 ≈ 3.88E+02 3.91E+02 + 

F25 6.06E+02 8.30E+02 ≈ 2.53E+03 2.55E+03 ≈ 1.35E+03 1.40E+03 ≈ 1.13E+03 1.16E+03 ≈ 

F26 5.07E+02 5.17E+02 + 6.85E+02 7.37E+02 ≈ 5.10E+02 5.09E+02 ≈ 5.33E+02 5.41E+02 ≈ 

F27 3.32E+02 3.23E+02 ≈ 4.12E+02 4.07E+02 ≈ 3.43E+02 3.35E+02 − 4.24E+02 4.44E+02 + 

F28 5.90E+02 6.09E+02 ≈ 9.03E+02 9.29E+02 ≈ 5.15E+02 5.30E+02 ≈ 6.48E+02 6.43E+02 ≈ 

F29 1.35E+04 6.37E+03 − 1.45E+05 1.91E+05 ≈ 3.83E+03 3.92E+03 ≈ 9.05E+03 7.77E+03 ≈ 

Number of + / ≈ / − 4 / 22 / 3 + / ≈ / − 8 / 21 / 0 + / ≈ / − 5 / 22 / 3 + / ≈ / − 11 / 16 / 2 
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G. Runtime Analysis 

This section analyzes the runtime of the KL-based 

algorithms. In the runtime analysis, the average cost of CPU 

time consumed by each algorithm is used as the metric. The 

comparison of the runtime is conducted on KLDE, DE, KLPSO, 

PSO, KL-JADE, JADE, KL-ADDE, ADDE, KL-TAPSO, 

KL-AWPSO, and AWPSO. The experimental results with 

respect to the runtime obtained by these compared algorithms 

and their KL-based variants at D = 10, 30, and 50 are shown in 

Table S.XI of the supplementary material. We can find that the 

KL-based algorithms consume more time than the original 

algorithms. This observation is intuitive since the KL 

framework contains an FNN-based KLM and utilizing this 

KLM can consume some time. 

Besides, to evaluate whether the time cost is worth it, the 

“error reduction versus time increase rate” (ETR) proposed by 

Zhan et al. [17] is adopted. ETR is used to calculate the 

percentage of improvement in algorithm performance caused 

by each percentage of additional time consumption, which is 

shown as: 

 
ERR( , )

ETR( , )
TIR( , )

KL

KL

KL

A A
A A

A A
=  (10) 

where A and AKL indicate the original algorithm and its 

KL-based variant, respectively. ERR(A, AKL) is the error 

reduction rate, which is calculated via 

 

( ) ( )
, if ( ) ( )

( )ERR( , )

0, otherwise

KL

KL

KL

E A E A
E A E A

E AA A

−


= 



 (11) 

where E(A) and E(AKL) indicate the mean error obtained by 

algorithm A and its KL-based variant AKL. TIR(A, AKL) is the 

time cost increase rate, which is calculated via 

 
( ) ( )

TIR( , )
( )

KL

KL

T A T A
A A

T A

−
=  (12) 

where T(A) and T(AKL) indicate the cost of CPU time of A and 

AKL. The value of ETR(A, AKL) represents the percentage of 

error reduction divided by the percentage of additional time 

cost, and thus ETR can be used to assess whether the time 

consumption is worth it. 

Herein, the results with respect to ETR are obtained in six 

settings of the time cost of each fitness evaluation (i.e., each 

fitness evaluation costs 1, 2, 4, 6, 8, and 10ms, respectively). 

The curve of the ETR obtained by DE and KLDE, JADE and 

KL-JADE, ADDE and KL-ADDE on D = 50 is shown in Fig. 

S5 (a) of the supplementary material, while the curve of the 

ETR obtained by PSO and KLPSO, TAPSO and KL-TAPSO, 

AWPSO and KL-AWPSO on D = 50 is shown in Fig. S5 (b). 

According to the curves, we can find the ETR of these 

DE-based algorithms is up to 2.0, while the ETR of these 

PSO-based algorithms is up to 1.5, when the time cost of each 

fitness evaluation is 10ms. In such a case, for every percent of 

extra time consumed, the KL framework is able to improve the 

performance of the DE-based algorithm by 2.0 percent and 

improve the performance of the PSO-based algorithm by 1.5 

percent. In many real-world expensive optimization problems, 

the time cost of each fitness evaluation is very high, e.g., a 

single fitness evaluation of some problems can consume a few 

days [49]-[51], which is much higher than 10ms. Therefore, the 

additional time cost of the KL framework is worth it, especially 

in solving the expensive optimization problem. 

Based on the results on runtime and solution accuracy, we 

can conclude both the advantages and disadvantages of the 

proposed KL framework. On the one hand, the advantages of 

the KL framework are that it can help the population jump out 

of the local optima and accelerate the convergence speed of the 

population to fast approach the global optimum. Combing the 

KL framework with the state-of-the-art EC algorithms can 

significantly enhance the accuracy of the finally obtained 

solutions. On the other hand, the disadvantage of the KL 

framework is that the training and utilizing processes of the 

KLM will consume additional time. Nevertheless, the 

additional time cost of the KL framework is worthy for the 

TABLE IV  
RESULTS FOR MEAN ERROR OF KLDE, DMDE, DVR-DE AT D = 30 

Func KLDE DMDE DVR-DE 

F1 0.00E+00 0.00E+00 ≈ 0.00E+00 ≈ 

F2 1.68E-02 6.09E+00 + 6.11E+00 + 

F3 5.58E+01 5.36E+01 ≈ 5.92E+01 ≈ 

F4 2.66E+01 1.66E+02 + 6.13E+01 + 

F5 6.46E-03 4.95E-08 − 5.04E-03 ≈ 

F6 5.80E+01 1.96E+02 + 9.99E+01 + 

F7 2.92E+01 1.66E+02 + 6.21E+01 + 

F8 1.44E-01 3.56E-02 + 1.78E-02 − 

F9 2.27E+03 6.31E+03 + 4.16E+03 + 

F10 2.56E+01 2.67E+01 ≈ 2.61E+01 ≈ 

F11 1.46E+04 1.46E+04 ≈ 1.06E+04 ≈ 

F12 2.39E+01 8.63E+01 + 4.14E+01 + 

F13 1.99E+01 5.69E+01 + 3.82E+01 + 

F14 5.10E+00 1.39E+01 + 1.28E+01 + 

F15 3.69E+02 4.30E+02 ≈ 1.07E+03 + 

F16 5.74E+01 1.09E+02 + 3.68E+02 + 

F17 2.38E+01 3.27E+01 + 3.05E+01 + 

F18 6.33E+00 8.87E+00 + 1.13E+01 + 

F19 7.92E+01 6.75E+01 − 3.47E+02 + 

F20 2.30E+02 3.54E+02 + 2.57E+02 + 

F21 8.72E+02 3.57E+03 + 1.45E+03 ≈ 

F22 3.86E+02 5.39E+02 + 4.07E+02 + 

F23 4.60E+02 7.00E+02 + 4.67E+02 ≈ 

F24 3.87E+02 3.87E+02 ≈ 3.87E+02 − 

F25 1.32E+03 2.38E+03 + 1.50E+03 + 

F26 5.05E+02 5.57E+02 + 5.03E+02 ≈ 

F27 3.29E+02 1.78E+03 + 3.41E+02 ≈ 

F28 4.58E+02 5.57E+02 + 5.45E+02 + 

F29 2.07E+03 2.04E+03 ≈ 2.03E+03 ≈ 

Number of + / ≈ / − 20 / 7 / 2 17 / 10 / 2 

 

TABLE V  
RESULTS FOR NUMBER OF + / ≈ / − OBTAINED BY COMPARING KLDE AND 

KLPSO WITH lr = 0.2 AND OTHER lr SETTINGS AT D = 30 AND ep = 10 

Algorithms 
lr = 0.2 vs lr = 0.1 lr = 0.2 vs lr = 0.3 

+ / ≈ / − + / ≈ / − 
KLDE 8 / 12 / 9 9 / 17 / 3 

KLPSO 4 / 22 / 3 6 / 21 / 2 

Algorithms 
lr = 0.2 vs lr = 0.4 lr = 0.2 vs lr = 0.5 

+ / ≈ / − + / ≈ / − 
KLDE 14 / 13 / 2 20 / 7 / 2 

KLPSO 9 / 14 / 6 12 / 15 / 2 

 

TABLE VI  
RESULTS FOR NUMBER OF + / ≈ / − OBTAINED BY COMPARING KLDE AND 

KLPSO WITH ep = 10 AND OTHER ep SETTINGS AT D = 30 AND lr = 0.2 

Algorithms 
ep = 10 vs  

ep = 1 
ep = 10 vs  

ep = 5 
ep = 10 vs  

ep = 20 

+ / ≈ / − + / ≈ / − + / ≈ / − 
KLDE 16 / 12 / 1 5 / 19 / 5 3 / 21 / 5 

KLPSO 6 / 19 / 4 3 / 24 / 2 6 / 19 / 4 
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accuracy improvement, especially in solving complex and 

expensive optimization problems. 

H. Comparison on Real-World Application 

In this section, the performance of the KL framework is 

evaluated in a real-world optimization problem, which is called 

the planar kinematic arm control problem [52], [53]. Fig. 7 

illustrates an example of the planar kinematic arm control 

problem. The planar kinematic arm control problem contains a 

kinematic arm with several links and joints, and the objective is 

to control the angle of each joint to make the tip of the arm PD 

as close as possible to the target T. Without loss of generosity, 

the objective function fp(.) of the planar kinematic arm control 

problem with d dimensions (i.e., with d joints) is shown as: 

 ( )1 2 max, ,..., ,[ , ]p d Df L P T    = −  (13) 

where α1, α2, …, αd denote the angle of the d joints, L denotes 

the total length of the links, αmax denotes the sum of the 

maximum angle of all the joints. The values of the parameters 

are set as the same as those in [53]. In the experimental results, 

the mean normalized fitness (MNF) is utilized as the metric to 

more clearly evaluate the performance of each algorithm, 

which is calculated via 

 
min( )

max( ) min( )

f F
MNF

F F

−
=

−
 (14) 

where f denotes the obtained fitness value, F denotes all the 

fitness values obtained by both the KL-based algorithm and the 

original algorithm on the current problem. 

 First, the performance of four compared algorithms (i.e., DE, 

HyDE-DF, PSO, and AWPSO) and their KL-based variants are 

evaluated on two low-dimensional planar kinematic arm 

control problems (i.e., D = 10 and 50). The experimental results 

with respect to MNF obtained by the compared algorithms and 

the KL-based algorithms on D = 10 and 50 are shown in Table 

VII. According to the results, we can find the KL-based 

algorithms generally outperforms the original algorithms. 

Therefore, we can conclude that the KL framework achieves 

promising performance on the low-dimensional planar 

kinematic arm control problems. 

Second, the performance of the compared algorithms and 

their KL-based variants are evaluated on two high-dimensional 

planar kinematic arm control problems (i.e., D = 100 and 500). 

The experimental results with respect to MNF obtained by the 

compared algorithms and the KL-based algorithms on D = 100 

and 500 are shown in Table VIII. On both D = 100 and 500, the 

performance of the KL-based algorithms is generally better 

than that of the original algorithms. Specifically, on D = 100, 

the performance of KLDE, KLPSO, and KL-AWPSO is 

significantly greater than HyDE-DF, PSO, and AWPSO, 

respectively. On D = 500, the performance of KL-HyDE-DF 

and KLPSO is significantly superior to HyDE-DF and PSO, 

respectively. Therefore, we can also conclude that the achieves 

encouraging performance on the high-dimensional planar 

kinematic arm control problems. 

V. CONCLUSION 

In this paper, an innovative KL framework for EC algorithms 

has been proposed. The KL framework learns the knowledge 

based on successful experiences and guides the evolution 

according to the learned knowledge and the positions of the 

individuals. In the KL framework, an FNN-based KLM is 

created to learn the successful experience and get knowledge 

about the relationship between the position of the individual 

and the optimal direction. During the evolution, each individual 

can acquire a suitable evolutionary direction from the KLM 

according to its current position and the knowledge of KLM. 

To evaluate the functionality of the KL framework, the 

traditional DE and PSO, and several DE-based and PSO-based 

state-of-the-art algorithms are compared with that of their 

KL-based variants. In addition, the KL framework is also 

compared with two recently proposed historical data utilizing 

methods. In these experiments conducted on both the 

benchmark functions and the real-world optimization problems, 

the KL framework achieves a more promising performance 

than the compared algorithms. 

Although the concept and core idea of the proposed KL 

framework is simple and easy to understand, it is very effective 

and efficient. In future work, we hope to extend the idea of KL 

to more research aspects of EC, such as large-scale 

optimization problems [54]-[56], multimodal optimization 

problems [57]-[59], multi-/many-objective optimization 

[60]-[62], and multi-task optimization [63]-[65]. Additionally, 

we will combine the KL framework with other kinds of EC 

algorithms, such as genetic algorithms [66] and memetic 

α4

α1

α2

α3

PD
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Fig. 7. An example of the planar kinematic arm control problem. 

 
TABLE VII  

RESULTS FOR MNF OF DE, HYDE-DF, PSO, AWPSO, AND THEIR 

KL-BASED VARIANTS ON LOW-DIMENSIONAL PROBLEMS 

Dim KLDE DE KL-HyDE-DF HyDE-DF 

D = 10 1.80E-01 2.74E-01 (≈) 1.56E-01 6.89E-01 (+) 

D = 50 1.99E-01 5.20E-01 (+) 2.90E-01 7.09E-01 (+) 

Number of + / ≈ / − 1 / 1 / 0 + / ≈ / − 2 / 0 / 0 

Dim KLPSO PSO KL-AWPSO AWPSO 

D = 10 2.80E-01 4.97E-01 (+) 2.63E-01 5.13E-01 (+) 

D = 50 3.57E-01 6.17E-01 (+) 3.73E-01 6.81E-01 (+) 

Number of + / ≈ / − 2 / 0 / 0 + / ≈ / − 2 / 0 / 0 

 

TABLE VIII  
RESULTS FOR MNF OF DE, HYDE-DF, PSO, AWPSO, AND THEIR 

KL-BASED VARIANTS ON HIGH-DIMENSIONAL PROBLEMS 

Dim KLDE DE KL-HyDE-DF HyDE-DF 

D = 100 2.25E-01 6.40E-01 (+) 4.65E-01 5.10E-01 (≈) 

D = 500 4.41E-01 5.60E-01 (≈) 4.68E-01 7.37E-01 (+) 

Number of + / ≈ / − 1 / 1 / 0 + / ≈ / − 1 / 1 / 0 

Dim KLPSO PSO KL-AWPSO AWPSO 

D = 100 4.74E-01 7.91E-01 (+) 5.22E-01 8.29E-01 (+) 

D = 500 6.22E-01 7.35E-01 (+) 6.40E-01 6.67E-01 (≈) 

Number of + / ≈ / − 2 / 0 / 0 + / ≈ / − 1 / 1 / 0 
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algorithms [67], [68]. 
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