
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 Abstract—Evolutionary computation (EC) is a kind of

meta-heuristic algorithm that takes inspiration from natural

evolution and swarm intelligence behaviors. In the EC algorithm,

there is a huge amount of data generated during the evolutionary

process. These data reflect the evolutionary behavior and

therefore mining and utilizing these data can obtain promising

knowledge for improving the effectiveness and efficiency of EC

algorithms to better solve optimization problems. Considering

this and inspired by the ability of human beings that acquire

knowledge from the historical successful experiences of their

predecessors, this paper proposes a novel EC paradigm, named

knowledge learning EC (KLEC). The KLEC aims to learn from

historical successful experiences to obtain a knowledge library

and to guide the evolutionary behaviors of individuals based on

the knowledge library. The KLEC includes two main processes

named “learning from experiences to obtain knowledge” and

“utilizing knowledge to guide evolution”. First, KLEC maintains a

knowledge library model and updates this model by learning the

successful experiences collected in every generation. Second,

KLEC not only adopts the evolutionary operation but also utilizes

the knowledge library model to guide individuals for better

evolution. The KLEC is a generic and effective framework, and

we propose two algorithm instances of KLEC, which are

knowledge learning-based differential evolution and knowledge

learning-based particle swarm optimization. Also, we combine the

knowledge learning framework with several state-of-the-art EC

algorithms, showing that the performance of the state-of-the-art

algorithms can be significantly enhanced by incorporating the

knowledge learning framework.

Index Terms—Evolutionary computation, knowledge learning,

differential evolution, particle swarm optimization, neural

network, knowledge library

Manuscript received XXXX; revised XXXX; accepted XXXX. This work

was supported in part by the National Key Research and Development Program
of China under Grant 2022ZD0120001, in part by the National Natural Science

Foundations of China (NSFC) under Grant 62176094, in part by the

Guangdong Natural Science Foundation Research Team under Grant
2018B030312003, and in part by the National Research Foundation of Korea

(NRF-2022H1D3A2A01093478). (Corresponding authors: Zhi-Hui Zhan; Jun

Zhang.)
Yi Jiang and Zhi-Hui Zhan are with the School of Computer Science and

Engineering, South China University of Technology, Guangzhou 510006,

China (e-mail: zhanapollo@163.com).
Kay Chen Tan is with the Department of Computing, The Hong Kong

Polytechnic University, Hong Kong SAR (e-mail: kctan@polyu.edu.hk).

Jun Zhang is with the Key Laboratory of Intelligent Education Technology
and Application of Zhejiang Province, Zhejiang Normal University, and also

with the Hanyang University, ERICA, South Korea.

I. INTRODUCTION

volutionary computation (EC) is a kind of meta-heuristic

algorithm that takes inspiration from natural evolution and

swarm intelligence behaviors. Currently, EC has been

developed rapidly because of its effectiveness and efficiency in

solving optimization problems [1]-[3]. EC algorithms mainly

include two branches [4], which are evolutionary algorithms

such as differential evolution (DE) [5]-[7] and genetic

algorithm [8]-[10] and swarm intelligence such as particle

swarm optimization (PSO) [11]-[13] and ant colony

optimization [14]-[16]. During the evolutionary process of the

EC algorithms, many data are generated, which can either

explicitly or implicitly reveal the evolutionary behavior of the

individuals. For example, in the evolutionary process of DE,

the successful differential vector reveals the successful

behavior of each individual. In PSO, the successful velocities

can guide the particles to approach the global optimum.

Through mining these data, the knowledge that can assist the

EC algorithms to achieve effective and efficient evolution can

be obtained, leading to a new EC paradigm named learning-aid

evolution for optimization (LEO) [17]. Currently, many studies

in the research area of EC have noted that appropriately

utilizing these data can greatly enhance the performance of EC

algorithms. First, some existing algorithms for evolutionary

transfer optimization [18]-[20] were proposed to transfer and

utilize the data generated during the evolutionary process of

solving other problems to assist the optimization process of the

current problem. We simply denote these algorithms as

cross-problem data utilizing algorithms. Second, another class

of algorithms, which we simply denote as historical data

utilizing algorithms, collects the data generated in the past

generations and utilizes them to enhance the effectiveness of

the evolution in the current generation. For example, Zhang et

al. [21] designed a directional mutation operator, which

randomly reused the historical evolutionary directions to help

better generate offspring. Ghosh et al. [22] proposed a

differential vector reuse mechanism, which collected

successful differential vectors of DE in an archive and

randomly selected vectors in the archive as new differential

vectors to guide evolution. The study of such data utilizing EC

algorithms has become a new research frontier in the field of

EC. The encouraging performance of these algorithms reveals

that utilizing data/knowledge to guide the evolution can greatly

enhance effectiveness and efficiency.

Although both the cross-problem data utilizing algorithms

and the historical data utilizing algorithms generally achieve

Knowledge Learning for Evolutionary

Computation

Yi Jiang, Student Member, IEEE, Zhi-Hui Zhan, Senior Member, IEEE, Kay Chen Tan, Fellow,

IEEE, and Jun Zhang, Fellow, IEEE

E

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

promising performance, these kinds of data utilizing strategies

only collect and reuse data without deeply mining the

knowledge among the data, which are tentative and still have

limitations. The two most intuitive and vital limitations are:

first, since there is a huge amount of data generated during the

past generations, most existing algorithms just simply collect

and reuse a very limited amount of them to guide evolution.

However, it is hard to obtain general knowledge about

successful evolutionary behavior without deeply mining a huge

amount of data. Second, most existing algorithms just simply

randomly use the data to guide the evolution of the individuals,

but without considering the influence of the deep relationship

between the individuals and the data.

For clarity, we illustrate an example of a maximum

optimization problem in Fig. 1 to show the limitations of the

current data utilizing algorithms, where the successful

evolutionary directions are collected and utilized. Herein, the

individuals in the past generation are illustrated as blue

triangles (i.e., P1, P1’, P2, and P2’), and the current individual A

and its two offspring A1 and A2 are illustrated as red circulars.

Two successful evolutionary directions (i.e., D1 and D2) are

collected, where D1 is a successful evolutionary direction from

P1 to P1’, and D2 is a successful evolutionary direction from P2

to P2’. Since the individual randomly selects a successful

direction and its offspring are generated along this direction. If

individual A selects direction D1, a promising offspring A1

which achieves better fitness than its parent A will be generated.

However, if D2 is selected, an offspring A2 with poor fitness

will be generated. That is because the start point of D2 (i.e., the

point P2) is located in another peak far away from A, and

therefore the direction D2 (i.e., successful experience of P2) is

not suitable for A to generate promising offspring. Herein,

direction D1 whose start point P1 is nearby individual A is more

suitable. Therefore, in such a case, the current data utilizing

algorithms may select a relatively worse direction to guide the

evolution.

To overcome the two above limitations, it is required to

design a novel mechanism that not only can deeply mine the

knowledge but also can properly utilize the knowledge. We

note that human beings can preserve all the successful

experiences of their predecessors by summarizing the

experiences as many kinds of knowledge. These kinds of

knowledge are preserved in a knowledge library, and people

can search for and learn suitable knowledge from the library

according to their properties to improve themselves.

Inspired by this, this paper proposes a novel and effective

knowledge learning (KL) framework for EC. Different from

existing data utilizing algorithms that just simply collect and

reuse the data, the KL framework is able to deeply mine the

knowledge from successful experiences and properly utilize the

knowledge to guide the individuals according to their position.

Herein, the relationships of data, experience, and knowledge of

this paper are briefly clarified. Data usually denotes the

information that reveals the evolutionary behavior of the

population during evolution. For example, the position

information, the direction information, and the fitness

information are all data. A successful experience is defined as

the successful evolutionary direction at a position. For example,

assume that an individual locates at position P1 with fitness

value F1 jumps to position P2 with fitness value F2. If F2 is

better than F1, which means this individual achieves a

successful evolution, then the position P1 and the successful

direction D = P2 – P1 are paired as a successful experience,

denoted as (P1, D). Moreover, knowledge is defined as a kind of

rule about how to obtain successful evolutionary directions by

mining from successful experiences. Therefore, the successful

experience is a special kind of data generated during the EC

evolutionary process, which then can be used for mining the

knowledge, so that the knowledge can be used for guiding the

evolution of the EC algorithms.

To achieve the goal of KL-based EC algorithms, the KL

framework has two processes, “learning from experiences to

obtain knowledge” and “utilizing knowledge to guide

evolution”. First, in the process of learning from experiences to

obtain knowledge, the KL framework maintains a knowledge

library model (KLM) based on a feedforward neural network

(FNN) to preserve the knowledge. During the evolutionary

process, the successful experiences obtained by all the

individuals are collected, and these experiences are mined and

learned by the KLM to obtain general knowledge about the

relation between the individuals and the successful experiences.

Second, in the process of utilizing knowledge to guide

evolution, individuals can inquire from KLM about the

guidance, and the KLM gives each individual a suitable

evolutionary direction according to the learned knowledge and

the position of the individual. Characteristics and contributions

of the proposed KL framework are summarized as follows:

1) A novel and effective KL framework is proposed in this

paper. The KL framework can deeply mine successful

experiences generated during the evolution to obtain

knowledge and can properly utilize the knowledge to guide

D1

P1

P1

P2

P2

D2 D1D2

A

A2

A1

(a) (b)

Fig. 1. An example of historical direction utilizing. (a) Two successful directions D1 and D2 in the past generations. (b) After applying the two directions D1 and

D2, two offspring A1’ and A2’ of individual A are generated. However, since the direction D2 is not suitable for A, the offspring A2 is worse than A.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

individuals according to their position. First, the knowledge in

the KL model is more general and effective to guide the

evolution, since the knowledge is obtained by mining a huge

amount of successful experiences. Second, the KL framework

can provide relatively effective guidance of evolutionary

direction to each individual, since the provided direction is

calculated based on the knowledge and the current status of the

individual.

2) The KL framework is a generic framework for EC

algorithms and can be easily embedded with many EC

algorithms. To clearly show how to combine the KL framework

and EC algorithm, we combine the KL framework with two

representative EC algorithms, DE and PSO, to propose

KL-based DE (denoted as KLDE) and KL-based PSO (denoted

as KLPSO). According to the experimental results, these two

KL-based EC algorithms are more effective and efficient than

their canonical versions.

3) To further evaluate the effect of the KL framework, we

combine the KL framework with several state-of-the-art and

even champion EC algorithms and show the performance

improvement of the KL-based algorithms compared to the

original algorithms. The experimental results on both the

benchmark functions and the real-world optimization problems

indicate our proposed KL framework can significantly improve

the performance of these EC algorithms.

The remainder of this paper is organized as follows. We first

introduce two representative EC algorithms (i.e., DE and PSO)

and the related works on EC algorithms in Section II. Then the

KL framework is detailed in Section III, as well as KLDE and

KLPSO. Experimental results and analyses are given in Section

IV. Section V summarizes the conclusion of this paper and

outlines our future works.

II. BACKGROUND

A. EC

EC algorithms can be divided into two categories, including

evolutionary algorithms and swarm intelligence. Herein, two

typical EC algorithms such as DE [5] in evolutionary algorithm

and PSO [11] in swarm intelligence are introduced.

1) DE

In the initialization operation, each individual is randomly

generated according to

 , rand(0,1) ()i j j j jU L L=  − +x (1)

where xi, j is the jth dimension of the ith individual, Uj and Lj are

the upper bound and lower bound of the jth dimension

respectively.

After initialization, the evolutionary operations of the DE

that include mutation, crossover, and selection are executed. In

the mutation operation, differential vector vi is generated via the

mutation of several parental individuals, as

1 2 3(-)i r r rF= + v x x x (2)

where r1, r2, and r3 are mutually exclusive indexes and are

randomly selected, F indicates the amplifier factor.

After mutation, the newly generated differential vector vi is

forwarded to the crossover operation. The differential vector vi

crossovers with the current individual xi to construct trial vector

ui via

,

,

,

, if rand(0,1) or

, otherwise

i j rand

i j

i j

CR j j =
= 



v
u

x
 (3)

where CR indicates the value of the crossover rate, and jrand is a

randomly selected dimension.

To preserve better individuals and discard worse individuals,

the selection operation is executed to select the better one

between trail vector ui and current individual xi. The selection

operation for solving a minimization optimization problem is

shown as

, if () ()

, otherwise

i i i

i

i

f f
= 



u u x
x

x
 (4)

2) PSO

Different from the DE algorithm, particles in PSO evolve

according to the position information of other particles and the

best particle. Each particle i in PSO maintains a current position

xi, a velocity vi, and a personal best position pbesti. The global

best position of the population is denoted by gbest.

At the beginning of PSO, the initialization operation is

carried out to randomly generate the position xi and the velocity

vi. Then, the particle uses a velocity update operation and a

position update operation to update its velocity and position by

learning from pbesti and gbest. The velocity update operation is

shown as

1 1 2 2() ()i i i i iw c r c r=  +   − +   −v v pbest x gbest x (5)

where w is the inertia weight, which controls the proportion of

velocity attenuation, c1 and c2 are two coefficients. r1 and r2 are

randomly sampled from [0, 1] independently for each

dimension.

The position update operation is carried out to adjust the

position xi of each particle according to its current velocity vi as

i i i= +x x v (6)

After the position update, the fitness of each particle is

evaluated, and pbesti and gbest are also updated if necessary.

B. Related Works

To enhance the EC algorithms’ performance, researchers

have proposed many data utilizing algorithms. We simply

classify the existing methods into two categories:

cross-problem data utilizing algorithms and historical data

utilizing methods.

First, we give a brief introduction to several existing

cross-problem data utilizing algorithms. The cross-problem

data utilizing algorithms utilize the data and information

generated in the solving process of the other optimization

problems to guide the evolutionary process of the current

problem. For example, Gupta et al. [23] proposed a

multifactorial optimization framework to utilize individuals of

different optimization problems as parents to generate offspring.

This way, the data on different problems can be shared to guide

the evolution of the current problems. This idea of

cross-problem individuals utilizing strategy is also adopted in

many existing algorithms for evolutionary multi-task

optimization, such as multifactorial evolutionary algorithm

with adaptive knowledge transfer [24], evolutionary

multitasking via explicit autoencoding [25], and adaptive

evolutionary multi-task optimization framework [26].

Moreover, some cross-problem data utilizing algorithms were

proposed to utilize the data of evolutionary directions from the

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

other problem to generate offspring of the current problems.

For example, Yin et al. [27] proposed to transfer the data of the

difference vector from other problems to the current problem to

effectively solve the current problem.

Second, several existing historical data utilizing algorithms

are introduced here. The historical data utilizing algorithms

utilize the historical data generated during the past generations

to guide the evolution of the current generation. Several

historical data utilizing algorithms were proposed to collect and

re-utilize the historical parameter settings or the historical

individuals. For example, Zhang et al. [28] proposed a JADE,

which collected historical successful parameters and generated

new parameters based on these successful parameters. Also, in

JADE, the past individuals are preserved in a fixed-size archive

and are utilized as parental individuals. Tanabe et al. [29]

further developed the idea of JADE and proposed a

success-history based adaptive DE, which maintained several

distributions estimated by the successful parameters, and new

parameters were sampled from different distributions. Also,

based on the idea of JADE and success-history based adaptive

DE, some variants were proposed, such as success-history

based adaptive DE with linear population size reduction [30]

and jSO [31]. Zhan et al. [32] proposed an adaptive distributed

DE (ADDE), where the parameters for each generation were

also adjusted according to the historical parameters and the

historical successful individuals were utilized to generate new

offspring. Liang et al. [33] proposed a self-adaptive dynamic

PSO (SaDPSO), where multiple swarms with different

parameter settings were evolved concurrently and data of the

promising parameter settings was shared among swarms. Zhan

and Zhang [34] proposed a PSO-based learning strategy to

utilize the historical successful parameters to adaptively control

the current parameters. Xue et al. [35] proposed an

archive-based PSO, where the historical well-performed

particles were stored in an archive and the particles in the

archive were served as exemplars to update the new particles.

Xia et al. [36] proposed a triple archive PSO (TAPSO) to

preserve historical particles with different properties in

different archives and reuse the historical particles to help

better evolution. Zhu et al. [37] proposed to effectively use the

observable parameters and the individuals in historical

environments, which achieved encouraging performance in

evolutionary dynamic optimization. In their method, the

optimal solution in the current environment is predicted via

both rote learning and FNN-based strategy, which are trained

based on historical parameters and positions.

In addition, some historical data utilizing algorithms were

proposed to reuse past successful directions to generate better

offspring in the current population. For example, Zhang et al.

[21] designed a directional mutation operator and incorporated

it with classical DE, which was termed directional mutation DE

(DMDE). In DMDE, if an individual x achieves a successful

evolution to generate a fitter offspring u, the evolutionary

direction (u – x) is collected and reused later to generate

offspring. In addition, Zhang et al. [38] extended DMDE by

adopting differential vector archive and the parameter control

strategy of success-history based adaptive DE [29]. Ghosh et al.

[22] proposed a difference vector reuse (DVR) mechanism to

utilize the successful differential vector in the past generation to

provide data for the current population.

According to the above introduction of existing data utilizing

algorithms, we can find that many studies have made great

attempts to design different data utilizing strategies to enhance

the effectiveness. These existing data utilizing algorithms have

achieved promising and encouraging performance on many

optimization problems, which indicates the data generated in

the evolutionary process contains the knowledge that can

effectively guide the evolution. However, these existing data

utilizing algorithms still stop at the tier of collecting and

utilizing the data, rather than deeply mining the knowledge

among the data. This encourages us to propose a novel and

effective KL framework to learn and utilize the knowledge

rather than just simply collect and utilize the data.

III. KLEC

A. KL Framework

The KL framework includes two main processes, learning

from experiences to update knowledge and utilizing knowledge

to guide evolution. To clearly describe the KL framework, we

illustrate the general framework of the KLEC in Fig. 2.

KL framework maintains the KLM to learn and store the

knowledge about the relationship between the individual

position and its successful evolutionary direction. Different

from the existing algorithms, the proposed KL framework is

able to learn all the historical experiences and provide

high-quality evolutionary direction to each individual based on

the obtained knowledge.

In the beginning, a population with NP individuals is

randomly initialized, where NP is the population size. In the

main loop of the evolutionary process of KLEC, first, each

Start

i = 1

rand < lr?

Utilizing knowledge to guide

evolution
Evolutionary operations

Fitness is improved?

Collecting experiences

i = i + 1

i NP?

Termination?

End

No

Yes

Yes

Yes

No

No

Yes

No

Learning from experiences to

obtain knowledge

Fig. 2. The general framework of KLEC.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

individual generates offspring via either utilizing the

knowledge of KLM or adopting the evolutionary operations of

the EC algorithm. Specifically, if a random number in [0, 1] is

smaller than the learning rate lr, the individual is selected to

utilize the knowledge of KLM. That is, the current position of

the individual will be fed to trained KLM as input and the KLM

will output a relatively good direction for this individual based

on the knowledge and its position. Then, if the fitness of the

offspring’s new position is better than that of its current

position, its successful experience is collected. Finally, the

process of learning from experiences to update knowledge is

carried out. Specifically, the collected successful experiences

are mined and learned by the KLM to update the knowledge

about the relationship between the individual position and the

successful evolutionary direction.

B. Learning from Experiences to Obtain Knowledge

1) KLM

The main principle of the KLM is to obtain an omniscient

knowledge learner that learns all the successful experiences in

the past generations to provide appropriate knowledge to

individuals according to their current positions. To achieve this,

the KLM should be a data structure that can store a huge

amount of knowledge and achieve fast knowledge retrieval.

We adopt FNN as the data structure of KLM, as the FNN is a

simple but effective model for learning the mapping between

position and optimal direction. The information inside the FNN

can proceed from the input layer, via the hidden layer, and to

the output layer. Recently, a lot of studies and applications have

shown that the FNN has good function-fitting ability and

pattern recognition ability [39], [40]. The FNN-based KLM can

learn the mapping relationship between positions and directions

of the experiences. After training, each individual can query for

knowledge by feeding its current position to KLM and

receiving output data as the evolutionary direction.

Three advantages of the FNN-based KLM are described as

follows. First, the FNN-based KLM can get knowledge via

learning all the collected successful experiences. For example,

if the positions of two experiences are nearby, the KLM can

adjust its weights via both these two experiences, thus it can

provide suitable direction according to the synthetic of the two

directions to the nearby individuals. Second, the FNN-based

KLM can provide relatively optimal evolutionary directions to

individuals according to their current position. That is because

the KLM can learn the knowledge about the relationship

between the position and the successful direction, and different

input positions for FNN lead to different output evolutionary

directions, thus the different individuals will be assigned with

different proper evolutionary directions. Third, the FNN-based

KLM can achieve relatively fast knowledge retrieval. Once the

training process is finished, it is fast to get results from the FNN.

To be specific, to get the suitable evolutionary direction from

the FNN-based KLM, only the computation of the activation

function and computation of the matrix multiplication in the

FNN need to be performed, thus the time complexity is

relatively low. Therefore, the FNN is a suitable choice for the

data structure of KLM.

The architecture of FNN-based KLM is illustrated in Fig. 3.

The FNN consists of an input layer, two hidden layers, and an

output layer, where the input dimension and the output

dimension are both D (D is the problem dimension, i.e., the

number of dimensions of decision variables). AF denotes the

activation function. Therefore, the output layer contains D

nodes, in which the linear activation function is adopted.

Besides, each hidden layer contains 16 nodes, in which the

sigmoid activation function is adopted to achieve non-linear

mapping. The sigmoid activation function is given as follows:

1

sigmoid()
1 x

x
e−

=
+

 (7)

The error backpropagation algorithm is adopted as the

supervised learning algorithm to train the FNN [41]. In the

backpropagation algorithm, the error between the predicted

output of the FNN and the expected output is calculated and

backpropagated inside the FNN to adjust its weight. The error is

calculated via a loss function, i.e., mean squared error (MSE)

loss function [42] as follows:

 2

1

1
(())

m

i i

i

MSE y f x
m =

= − (8)

where yi is the expected output of FNN, f(xi) stands for the

predicted output of xi, and m denotes the number of successful

experiences. Besides, to better update the KLM at every

generation, the gradient descent optimizer is carried out to

optimize the weights of the FNN-based KLM for ep epochs in

each training process. In the FNN-based KLM, the training data

is the collected experiences in every generation. Specifically,

the input of the training data is the positions of individuals and

the output of the training data is the successful directions

corresponding to the positions. For the testing data, the input is

the positions of the individuals that are selected to use KLM.

2) Learning from Experiences to Update KLM

In the KL framework, the successful experiences should be

first collected before the process of learning from experiences

to update KLM. To collect the successful experience, a list Q is

created to store the successful experience. Specifically, in each

generation, once the fitness value of an individual is improved,

this successful experience is collected in Q. The experience will

not be learned by KLM immediately until all the successful

experiences in the current generation are collected. That is, the

... ...

...

...

x
i
1 x

i
d x

i
D

... ...
u

j
1 u

j
d u

j
D

FNN-based KLM

Output Layer

Nodes = D,

AF = Linear;

Hidden Layer

Nodes = 16,

AF = Sigmoid;

Hidden Layer

Nodes = 16,

AF = Sigmoid;

Input Layer

Nodes = D,

Fig. 3. The architecture of the KLM. The two hidden layers are composed of

16 nodes with sigmoid activation function, the output layer is

composed of D (D is the dimension) nodes with linear activation

function, and the input dimension of the input layer is D.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

experience is temporarily stored in an experience list Q and

waits for being learned by KLM.

Then, the successful experiences collected in Q are learned

by KLM to obtain knowledge about the relationship between

the position and the successful direction. Specifically, the

position of each experience in the list Q is fed to KLM as input

and the corresponding direction is served as the expected output

to train the FNN-based KLM. In the training, the

backpropagation algorithm is adopted for ep epochs to adjust

the weights of KLM. After the learning process of KLM, all the

learned experiences in list Q are discarded (i.e., clear all the

experiences in list Q at the end of each generation) to make

space for the new experiences of the next generation. Noted that,

in every generation, KLM is not re-initialized, but is

continuously trained by the experiences newly collected in the

current generation based on the weights of KLM in the previous

generation. Therefore, KLM can in fact obtain knowledge by

learning the successful experiences generated over the whole

history. If no successful experience is collected in Q, i.e., no

individual achieves successful evolution, the KLM will not be

updated in the current generation.

C. Utilizing Knowledge to Guide Evolution

The process of utilizing knowledge to guide evolution aims

to provide proper evolutionary direction to the individual

according to its current position and the learned knowledge.

Since the KLM learns about the mapping from the position to

the direction according to historical successful experiences, we

only need to feed the current position of the individual to the

KLM as input, and the output of the KLM is the inquired

evolutionary direction for this individual. This way, the

utilizing operation of KLM can provide a suitable evolutionary

direction to each individual according to its current position.

Noted that, if the KLM has not learned any successful

experience (e.g., in the first generation or in the first few

generations), the KLM is not used to provide directions to

individuals. Besides, for clarity, we give Fig. 4 to better

illustrate the relationship between the successful experience

and the knowledge of KLEC and also to better illustrate the

knowledge learning and utilizing process in KLEC.

D. KLDE

To clearly describe how to incorporate the KL framework

with the EC algorithms, this section designs a KLDE algorithm

by combining the KL framework and DE. The complete KLDE

can be found in Algorithm 1.

First, a population P, an empty experience list Q to

temporarily store the successful experiences, and the KLM are

initialized at the beginning of the KLDE (line 1). After

initialization, the main loop of the evolutionary process is

carried out. Different from the basic DE, in KLDE, each

individual in KLDE can evolve via either utilizing knowledge

of KLM or evolutionary operations according to the probability

lr (lines 5-6). lr is the learning rate, which indicates the

probability of evolving individuals via utilizing knowledge of

KLM. Specifically, if the current individual xi is selected to be

evolved by utilizing KLM, firstly, a parental individual xr1 is

randomly selected. To avoid confusion, herein, the individual xi

is named as the current individual, while the individual xr1 is

named as the parental individual. Secondly, the position of xr1

is input to the KLM to get the evolutionary direction dr1. Then

the parental individual xr1 applies the direction provided by

KLM to generate a new offspring (line 6). The equation of

function applyDirection(xr1, dr1) that is used to apply the

evolutionary direction dr1 on xr1 is given as:

Evolutionary process of

 EC algorithm

Positions Directions

Successful experiences

 FNN-based

KLM

Knowledge

Mining and

learning

Learning and utilizing

Collecting

Fig. 4. Illustration of the knowledge learning and utilizing process in KLEC.

Algorithm 1 KLDE

Begin

1:Initialize population P, experience list Q, and KLM.

2:While FEs ≤ MaxFEs
3: For each individual xi:

4: If rand(0, 1) < lr:

5: dr1 = utilizeKnowledge(KLM, xr1); //Section III-C
6: vi = applyDirection(xr1, dr1); //Equation (9)

7: Else:

8: vi = mutation(xr1, xr2, xr3, DE/rand/1); //Equation (2)
9: End If

10: ui = crossover(vi, xi); //Equation (3)

11: If f(ui) < f(xi):
12: collecting(Q, xi, ui−xi);

13: xi = ui;

14: End If
15: End For

16: learningKnowledge(KLM, Q); //Section III-B-2)

17: clear(Q);
18:End While

End

Algorithm 2 KLPSO

Begin

1:Initialize population P, experience list Q, and KLM.
2:While FEs ≤ MaxFEs

3: For each particle xi:

4: tempi = xi;
5: If rand(0, 1) < lr:

6: di = utilizeKnowledge (KLM, xi); //Section III-C

7: xi = applyDirection(xi, di); //Equation (9)
8: Else

9: updateVelocity(xi, vi, pbesti, gbest); //Equation (5)

10: xi = xi + vi; //Equation (6)
11: End If

12: If f(xi) < f(tempi):

13: collecting (Q, tempi, xi−tempi);
14: End If

15: If f(xi) < f(pbesti):

16: pbesti = xi;

17: If f(pbesti) < f(gbest):

18: gbest = pbesti;
19: End If

20: End If

21: End For
22: learningKnowledge(KLM, Q); //Section III-B-2)

23: clear(Q);

24:End While
End

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

1 1 1 1applyDirection(,) 2 rand(0,1)r r r r= +  x d x d (9)

where rand(0, 1) is a random value generated within [0, 1] to

control the influence of the direction. After utilizing the

direction, the individual that is out of the search space is set on

the boundary.

Otherwise, if the current individual xi is selected to be

evolved via the evolutionary operations, the DE/rand/1

mutation strategy in Eq. (2) is applied to generate differential

vector vi (line 8). Then, the crossover operation of Eq. (3) is

carried out between the current individual xi and the differential

vector vi to generate the trial vector ui (line 10).

If the generated trial vector ui is better than the parental

individual xi, a successful experience (xi, ui−xi) can be collected.

The function collecting(Q, xi, ui−xi) is carried out to collect the

success experience (xi, ui−xi) and store it temporarily in the list

Q (line 12). After all the individuals finish their evolutionary

process in the current generation, the KLM is updated via

mining the experiences in list Q to learn the knowledge about

the relationship between the position and the successful

direction. (line 16). Finally, list Q is emptied to clear all the

successful experiences that are already learned by KLM to

make room for experiences generated in the next generation.

E. KLPSO

This section incorporates the KL framework with PSO to

propose KLPSO, which can be an example algorithm to help

clearly describe how to incorporate the KL framework with the

swarm intelligence-based algorithms. The pseudo-code of

KLPSO can be found in Algorithm 2.

In the initialization process of KLPSO, the current position xi

and the velocity vi are randomly initialized. Additionally, an

empty experience list Q is created, and the FNN-based KLM is

also randomly initialized (line 1).

After initialization, the main loop of KLPSO is iterated until

the termination condition. In the main loop of KLPSO’s

evolutionary process, first, with the probability lr, the

knowledge in KLM is utilized to provide suitable evolutionary

direction to the particle, and then the direction is applied to

update the position of this particle (lines 6-7). If the particle is

not selected to utilize the evolutionary direction provided by

KLM, the velocity update (line 9) and the position update (line

10) same as those in the basic PSO algorithm are executed (i.e.,

Eqs. (5) and (6)). After that, if the new position xi is better than

the former position tempi, successful experience (tempi,

xi−tempi) is collected and recorded into the experience list Q

(lines 12-14). Finally, the fitness of the new position is

compared with the fitness of pbesti and gbest to update them

(lines 15-20). After all the particles in the population have been

updated, the process of learning the experience to update KLM

is carried out. Specifically, the experiences temporally stored in

Q are learned by the KLM to adjust its weights (line 22). Then

the list Q is emptied (line 23).

From both KLDE and KLPSO, we can see that KLEC is

similar to its basic EC version except for three modifications.

Firstly, two kinds of offspring are generated in KLEC by both

utilizing knowledge and using traditional evolutionary

operations, and therefore the simple if-statement is added.

Secondly, a very simple collecting function is added to store the

successful experience (i.e., the position and its direction) in the

list Q. Thirdly, at the end of every generation, the KLM is

updated by the list Q (i.e., the learningKnowledge function in

Section III-B-2)) and then the list Q is cleared. Therefore, the

KLEC is as easy-used as its basic EC version.

IV. EXPERIMENTAL VERIFICATION

A. Experimental Settings

Three different experiments are designed to evaluate the

performance of the KL framework. In the first experiment, we

compare the experimental results on two canonical EC

algorithms (i.e., DE and PSO) and their KL-based variants (i.e.,

KLDE and KLPSO) to evaluate the effects of the KL

framework in improving the performance of basic EC

algorithms.

In the second experiment, we compare the results of several

state-of-the-art EC algorithms and their KL-based variants.

Through this experiment, we can observe that the KL

framework can significantly improve the performance of these

state-of-the-art algorithms. This way, the effect of the KL

framework on performance improvement can be better shown

and the effectiveness and efficiency of the KL framework can

be further evaluated. The compared state-of-the-art DE-based

algorithms include JADE [28], ADDE [32], jSO [31], and

hybrid-adaptive DE with decay function (HyDE-DF) [43],

while the compared state-of-the-art PSO-based algorithms

include SaDPSO [33], hierarchical PSO with time-varying

acceleration coefficients (HPSO-TVAC) [44], TAPSO [36],

and adaptive weighted PSO (AWPSO) [45]. Many algorithms

among these compared algorithms have achieved promising

results in many competitions. Specifically, jSO wins second

place in the CEC2017 single objective optimization

competition, HyDE-DF wins third place in the CEC2019

competition, and SaDPSO wins eighth in the CEC2015

competition, which is the best ranking among the PSO-based

algorithms.

In the third experiment, we compare the proposed KL

framework with several existing historical data utilizing

algorithms. Two recently-proposed historical data utilizing

algorithms, the directional mutation operator [21] and the DVR

method [22], are adopted in the comparison. Similar to the KL

framework, the directional mutation operator and DVR are also

easy to be incorporated with DE, termed DMDE and DVR-DE,

respectively. The comparison is performed on KLDE, DMDE,

and DVR-DE to verify the superiority of the KL framework

among historical data utilizing EC algorithms.

The three above experiments are conducted on the

well-known CEC2017 single objective test suite [46]. In

CEC2017, there are 29 benchmark functions, which include

two unimodal functions F1 and F2, seven simple multimodal

functions F3-F9, ten hybrid functions F10-F19, and ten complex

composition functions F20-F29. The detailed properties of the

CEC2017 test suite can be found in [46].

In the experiments, to reduce accidental error, results are

obtained over 51 independent runs for each algorithm. The

error value is adopted as the performance metric, which is

calculated as the gap between the best fitness obtained by the

algorithm and the real optimum fitness. To verify the

algorithms’ performance in different dimensions, three settings

of dimension D = 10, 30, and 50 are adopted. The maximum

function evaluations (MaxFEs) are adopted as the termination

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

condition for the algorithms. The value of MaxFEs is D×104 for

the experiments. Besides, Wilcoxon’s rank-sum test at 5%

significant level is used to evaluate the experimental results in

the statistic view. The notations “+/≈/−” indicate the results

obtained by the KL-based variant are significantly

“superior/equal/inferior” to those of the original algorithm. In

KL framework, the learning rate lr is 0.2 and the training epoch

ep is 10. The population size of the compared algorithms and

their KL-based variants are both set as 100. The parameter

settings of the compared algorithms are adopted as the

recommended values in their papers.

B. Comparisons on DE and PSO

The results of KLDE with DE and KLPSO with PSO are

analyzed to show the effectiveness and efficiency of the KL

framework. We show the experimental results for the mean

error values at D = 30 in Table I, while the results at D = 10 and

30 are shown in Table S.I and Table S.II of the supplementary

material.

From the results, we find that KLDE generally outperforms

the original DE at D = 10, 30, and 50 on most problems. Also,

the performance of KLPSO is generally superior to that of PSO.

Moreover, by comparing the results at different dimensions, we

can find that with the increase of dimensions, the effects of the

KL framework can be better reflected. For example, the

experimental results of KLDE are significantly superior to

those of DE on 10 functions when D = 10, while KLDE is

significantly superior to DE on 18 problems on D = 30 and 50.

That is because the population is often too small to cover the

full landscape if the dimension is huge. In this case, only a little

data is extracted to generate the offspring, which often leads to

the stagnation of pre-mature. However, the KL framework

provides extra knowledge with both high-quality and

large-quantity. Therefore, KL-based algorithms are generally

better than their original versions when encountering

high-dimensional problems.

Besides, the properties of the KL framework over the

evolutionary process can be observed through convergence

graphs of KLDE, DE, KLPSO, and PSO on some selected

problems. The convergence graphs of KLDE and DE at D = 30

are shown in Fig. 5, while Fig. 6 illustrates the convergence

graphs of KLPSO and PSO at D = 30. The convergence graphs

of KLDE and DE and the convergence graphs of KLPSO and

PSO at D = 10 are shown in Fig. S1 and Fig. S2, respectively.

The convergence graphs of KLDE and DE and the convergence

graphs of KLPSO and PSO at D = 50 are shown in Fig. S3 and

Fig. S4, respectively. As we can observe from the figures, after

several generations, DE and PSO are not able to extract

sufficient data to generate promising offspring, which makes

the individuals easily pre-mature. However, the KL framework

can help the algorithms to jump out of this situation to further

optimize the population.

C. Comparisons on State-of-the-Art Algorithms

1) Comparisons of DE-Based Algorithms against Their

KL-Based Variants

The experimental results for mean error values at D = 30 of

DE-based state-of-the-art algorithms (i.e., JADE, ADDE, jSO,

and HyDE-DF) and their KL-based variants are shown in Table

II, while the results at D = 10 and 50 are shown in Table S.III

and Table S.IV of the supplementary material.

Experimental results of KL-JADE, KL-ADDE, KL-jSO, and

KL-HyDE-DF are generally better than those of their original

algorithms: When D = 30, the KL-based algorithms achieve the

best results on most functions. The KL-JADE significantly

dominates JADE on 17 functions; KL-ADDE dominates

ADDE on 10 functions; KL-jSO defeats jSO on 13 functions;

KL-HyDE-DF defeats HyDE-DF on 20 functions. On the

high-dimensional problems, KL-based algorithms also achieve

promising performance: When D = 50, KL-JADE outperforms

JADE on 16 functions; KL-ADDE dominates ADDE on 17

TABLE I
RESULTS FOR MEAN ERROR OF KLDE, DE, KLPSO, AND PSO AT D = 30

Func KLDE DE KLPSO PSO

F1 0.00E+00 0.00E+00 ≈ 4.76E+03 6.04E+07 ≈

F2 1.68E-02 6.25E+01 + 2.63E+02 7.54E+01 −

F3 5.58E+01 5.88E+01 ≈ 9.27E+01 1.02E+02 ≈

F4 2.66E+01 1.78E+02 + 6.59E+01 7.18E+01 ≈

F5 6.46E-03 0.00E+00 − 1.48E-01 5.60E-01 ≈

F6 5.80E+01 2.09E+02 + 1.09E+02 9.73E+01 ≈

F7 2.92E+01 1.80E+02 + 6.46E+01 6.49E+01 ≈

F8 1.44E-01 0.00E+00 − 8.31E-01 9.30E+00 +

F9 2.27E+03 6.33E+03 + 2.63E+03 2.82E+03 ≈

F10 2.56E+01 6.32E+01 + 1.07E+02 1.14E+02 ≈

F11 1.46E+04 9.61E+03 ≈ 3.99E+05 6.30E+05 ≈

F12 2.39E+01 8.05E+01 + 1.44E+04 5.38E+05 ≈

F13 1.99E+01 6.16E+01 + 1.05E+04 1.71E+04 ≈

F14 5.10E+00 3.65E+01 + 5.25E+03 9.57E+03 ≈

F15 3.69E+02 6.46E+02 + 5.90E+02 6.25E+02 ≈

F16 5.74E+01 1.02E+02 + 1.82E+02 2.32E+02 +

F17 2.38E+01 3.78E+01 + 2.38E+05 1.67E+05 ≈

F18 6.33E+00 1.66E+01 + 8.17E+03 9.60E+03 ≈

F19 7.92E+01 5.82E+01 ≈ 2.89E+02 2.70E+02 ≈

F20 2.30E+02 3.68E+02 + 2.62E+02 2.73E+02 +

F21 8.72E+02 2.19E+03 ≈ 5.42E+02 1.13E+03 +

F22 3.86E+02 5.25E+02 + 4.71E+02 4.71E+02 ≈

F23 4.60E+02 5.93E+02 + 5.60E+02 5.51E+02 ≈

F24 3.87E+02 3.87E+02 ≈ 3.88E+02 3.90E+02 +

F25 1.32E+03 2.55E+03 + 1.19E+03 1.49E+03 +

F26 5.05E+02 4.97E+02 − 5.41E+02 5.36E+02 ≈

F27 3.29E+02 3.19E+02 − 4.38E+02 4.44E+02 ≈

F28 4.58E+02 5.92E+02 + 6.47E+02 6.20E+02 ≈

F29 2.07E+03 2.00E+03 − 8.64E+03 9.62E+03 ≈

Number of + / ≈ / − 18 / 6 / 5 + / ≈ / − 6 / 22 / 1

0.00 7.50x104 1.50x105 2.25x105 3.00x105

101

102

103

104

M
ea

n
 E

rr
o

r

Function Evaluations

 DE

 KLDE

Function f6

0.00 7.50x104 1.50x105 2.25x105 3.00x105

100

101

102

103

104

105

M
ea

n
 E

rr
o

r

Function Evaluations

 DE

 KLDE

Function f14

0.00 7.50x104 1.50x105 2.25x105 3.00x105

101

102

M
ea

n
 E

rr
o
r

Function Evaluations

 DE

 KLDE

Function f18

0.00 7.50x104 1.50x105 2.25x105 3.00x105

101

102

103

104

M
ea

n
 E

rr
o
r

Function Evaluations

 DE

 KLDE

Function f19

0.00 7.50x104 1.50x105 2.25x105 3.00x105

102

103

104

M
ea

n
 E

rr
o
r

Function Evaluations

 DE

 KLDE

Function f21

0.00 7.50x104 1.50x105 2.25x105 3.00x105

103

104

M
ea

n
 E

rr
o
r

Function Evaluations

 DE

 KLDE

Function f25

Fig. 5. The convergence graphs of KLDE and DE on f6, f14, f18, f19, f21, f25

when D = 30.

0.00 7.50x104 1.50x105 2.25x105 3.00x105

102

103

M
ea

n
 E

rr
o
r

Function Evaluations

 PSO

 KLPSO

Function f6

0.00 7.50x104 1.50x105 2.25x105 3.00x105

103

104

105

106

107

M
ea

n
 E

rr
o
r

Function Evaluations

 PSO

 KLPSO

Function f14

0.00 7.50x104 1.50x105 2.25x105 3.00x105

104

105

106

107

M
ea

n
 E

rr
o
r

Function Evaluations

 PSO

 KLPSO

Function f18

0.00 7.50x104 1.50x105 2.25x105 3.00x105

102

103

M
ea

n
 E

rr
o
r

Function Evaluations

 PSO

 KLPSO

Function f19

0.00 7.50x104 1.50x105 2.25x105 3.00x105

103

104

M
ea

n
 E

rr
o
r

Function Evaluations

 PSO

 KLPSO

Function f21

0.00 7.50x104 1.50x105 2.25x105 3.00x105

103

1.5x103

2x103

2.5x103

M
ea

n
 E

rr
o
r

Function Evaluations

 PSO

 KLPSO

Function f25

Fig. 6. The convergence graphs of KLPSO and PSO on f6, f14, f18, f19, f21, f25

when D = 30.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

functions; KL-HyDE-DF dominates HyDE-DF on 17 functions.

Although the performance of KL-jSO is inferior to jSO at D =

50 (KL-jSO achieves better performance than jSO on 9 cases,

and jSO dominates KL-jSO on 11 problems), KL-jSO

outperforms jSO at D = 10 and D = 30. Therefore, with the help

of the KL framework, the KL-based DE variants can achieve

significantly better performance than the original algorithms.

2) Comparisons of PSO-Based Algorithms against Their

KL-Based Variants

The experimental results for mean error values at D = 30 of

PSO-based state-of-the-art algorithms (i.e., SaDPSO,

HPSO-TVAC, TAPSO, and AWPSO) with their KL-based

variants can be found in Table III, while the results at D = 10

and D = 50 are shown in Table S.V and Table S.VI of the

supplementary material.

For the comparison between KL-SaDPSO and SaDPSO, the

performance of KL-SaDPSO dominates that of SaDPSO at D =

30 and D = 50 (KL-SaDPSO defeats SaDPSO on 4 functions

both at D = 30 and D = 50). For the comparison between

KL-HPSO-TVAC and HPSO-TVAC, in most functions, the

performance of KL-HPSO-TVAC dominates that of

HPSO-TVAC whatever at D = 10, 30, or 50. Besides,

KL-TAPSO and KL-AWPSO also outperform TAPSO and

AWPSO, respectively. Specifically, at D = 30, KL-TAPSO

significantly outperforms TAPSO at 5 problems, and

KL-AWPSO significantly outperforms AWPSO at 11 problems.

Moreover, comparing the experimental results of these

algorithms at different dimensions, the gap between the

performance of the original algorithms and the KL-based

variants increases with the increasing of problem dimension.

For example, the number of functions on which the

experimental results of KL-AWPSO are better than those of

AWPSO is 3 at D = 5, at D = 30 the number is 11, and at D = 50

the number is 17.

D. Comparisons among KLDE, DMDE, and DVR-DE

The detailed results for mean error values at D = 30 obtained

by KLDE, DMDE, and DVR-DE are given in Table IV, and the

results obtained by KLDE, DMDE, and DVR-DE at D = 10 and

50 are given in Table S.VII and Table S.VIII of the

supplementary material. The KLDE obtains generally superior

results than these two historical data utilizing methods. The

KLDE dominates DMDE on 13, 20, and 19 functions at D = 10,

30, and 50, respectively. KLDE defeats DVR-DE on 11, 17,

and 14 functions at D = 10, 30, and 50, respectively.

Due to the above experiments, the efficiency and

effectiveness of the KL framework are shown. We conclude

that, firstly, with the help of the KL framework, the

performance of the KL-based algorithm is greatly improved

when compared with the original algorithm. Secondly, if the

dimension of function becomes large and the population can

not cover the full landscape to extract useful data from the

current population, the KL framework can still provide extra

knowledge. From the convergence graphs, when the KL-based

algorithm meets the stagnant of pre-mature that the basic

algorithm can not jump out, the KL-based EC algorithms still

can improve the fitness of offspring to further evolve. Thirdly,

by the comparison among KLDE, DMDE, and DVR-DE, we

can conclude that the KL framework dominates the

state-of-the-art historical data utilizing methods.

E. Sensitivity Analysis

1) Sensitivity Analysis on Parameter lr

The learning rate lr in the KL framework determines the

proportion of individuals that learn the knowledge of KLM.

Intuitively, the learning rate lr can influence the exploration

and exploitation abilities of KL-based algorithms. If the lr is

relatively large, most of the individuals acquire knowledge

from KLM, and only a small proportion of individuals can

TABLE II
RESULTS FOR MEAN ERROR OF THE DE-BASED ALGORITHMS AND THEIR KL-BASED VARIANTS AT D = 30

Func KL-JADE JADE KL-ADDE ADDE KL-jSO jSO KL-HyDE-DF HyDE-DF

F1 0.00E+00 0.00E+00 ≈ 6.18E-02 3.72E-02 ≈ 0.00E+00 0.00E+00 ≈ 8.07E+00 4.98E+02 +

F2 1.12E+05 1.62E+05 + 1.20E+05 1.19E+05 ≈ 0.00E+00 0.00E+00 ≈ 8.99E-02 2.99E+01 +

F3 2.51E+01 3.79E+01 + 5.86E+01 5.87E+01 + 5.86E+01 5.91E+01 + 6.36E+01 5.65E+01 ≈

F4 6.36E+01 1.83E+02 + 3.03E+01 3.21E+01 ≈ 2.20E+01 1.02E+01 − 3.56E+01 4.43E+01 +

F5 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 4.03E-08 1.48E-08 − 1.91E-02 5.94E-02 +

F6 9.65E+01 2.18E+02 + 7.14E+01 6.96E+01 ≈ 5.32E+01 3.91E+01 − 6.76E+01 8.45E+01 +

F7 5.99E+01 1.75E+02 + 3.61E+01 3.48E+01 ≈ 2.49E+01 1.12E+01 − 3.40E+01 4.14E+01 +

F8 1.13E+01 7.19E-01 − 0.00E+00 0.00E+00 ≈ 0.00E+00 0.00E+00 ≈ 9.79E-02 3.41E+01 +

F9 3.98E+03 8.07E+03 + 3.68E+03 4.03E+03 + 1.88E+03 1.75E+03 − 2.00E+03 2.42E+03 +

F10 9.06E+01 8.31E+01 ≈ 3.57E+01 3.10E+01 ≈ 3.80E+00 8.04E+00 + 3.17E+01 4.50E+01 +

F11 4.91E+03 3.17E+03 − 6.53E+03 4.90E+03 − 3.20E+02 1.44E+02 − 2.14E+04 6.12E+03 −

F12 5.19E+02 4.30E+03 + 2.48E+02 2.25E+04 ≈ 1.13E+01 2.14E+01 + 6.55E+03 3.80E+02 ≈

F13 5.93E+04 2.69E+04 − 3.17E+03 3.32E+04 + 2.37E+01 2.30E+01 − 7.76E+01 1.03E+02 +

F14 8.58E+03 3.99E+03 ≈ 1.72E+02 4.74E+04 + 1.88E+00 3.25E+00 + 1.17E+02 1.24E+02 +

F15 9.40E+02 1.87E+03 + 7.49E+02 7.47E+02 ≈ 6.58E+01 1.25E+02 + 4.24E+02 3.80E+02 ≈

F16 3.19E+02 4.31E+02 + 2.17E+02 2.53E+02 + 2.93E+01 3.88E+01 + 9.21E+01 1.02E+02 +

F17 2.13E+05 7.27E+05 ≈ 5.74E+05 6.75E+05 + 2.10E+01 2.13E+01 + 2.37E+02 3.50E+02 +

F18 6.92E+03 6.14E+02 − 4.88E+01 3.44E+04 ≈ 4.20E+00 7.37E+00 + 6.06E+01 5.77E+01 −

F19 2.87E+02 5.19E+02 + 2.34E+02 2.98E+02 + 2.49E+01 3.53E+01 + 7.31E+01 1.33E+02 +

F20 2.63E+02 4.01E+02 + 2.35E+02 2.36E+02 ≈ 2.24E+02 2.11E+02 − 2.32E+02 2.41E+02 +

F21 6.66E+02 1.36E+03 + 1.00E+02 1.00E+02 + 1.00E+02 1.00E+02 + 1.00E+02 1.00E+02 +

F22 4.17E+02 5.33E+02 + 3.85E+02 3.86E+02 ≈ 3.73E+02 3.48E+02 − 3.85E+02 3.96E+02 +

F23 5.04E+02 6.34E+02 + 4.60E+02 4.60E+02 − 4.46E+02 4.24E+02 − 4.60E+02 4.67E+02 +

F24 3.87E+02 3.87E+02 − 3.87E+02 3.87E+02 + 3.87E+02 3.87E+02 + 3.93E+02 3.86E+02 −

F25 1.55E+03 2.49E+03 + 1.24E+03 1.21E+03 − 1.20E+03 9.13E+02 − 1.06E+03 1.27E+03 +

F26 5.03E+02 5.07E+02 + 5.06E+02 5.02E+02 ≈ 4.98E+02 4.94E+02 − 5.11E+02 5.08E+02 ≈

F27 3.69E+02 3.47E+02 ≈ 3.69E+02 3.25E+02 − 3.00E+02 3.09E+02 + 3.14E+02 3.45E+02 +

F28 6.40E+02 1.27E+03 + 5.70E+02 5.83E+02 ≈ 4.33E+02 4.46E+02 + 5.34E+02 5.28E+02 ≈

F29 2.23E+03 2.20E+03 ≈ 3.46E+03 7.91E+03 + 1.98E+03 1.97E+03 − 3.04E+03 2.94E+03 −

Number of + / ≈ / − 17 / 7 / 5 + / ≈ / − 10 / 15 / 4 + / ≈ / − 13 / 3 / 13 + / ≈ / − 20 / 5 / 4

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

explore undiscovered regions via evolutionary operations. In

this case, the exploration ability of KL-based algorithms will be

weakened. If the lr is specified as a very small value, most

individuals are evolved according to the evolutionary operation.

In this case, the KL framework takes no effect, thus the

exploitation ability reduces.

 Therefore, the learning rate lr should be studied and carefully

set. In the above experiments, lr is set as 0.2. To study the

performance of the KL framework with different settings of lr

and find the optimal setting of lr, we compare the performance

of the KLDE and KLPSO with lr = 0.2 and the variants with lr

= 0.1, 0.3, 0.4, and 0.5. The comparison results obtained by

these KLDE variants and KLPSO variants with different

settings of lr at D = 30 and ep = 10 are given in Table V. We can

find that by considering the results on both KLDE and KLPSO,

the lr = 0.2 achieves a generally better performance than other

lr values. Therefore, both considering the results and the

famous “80%/20% rule” [47], [48], lr is recommended to be set

as 0.2 in the KL framework.

2) Sensitivity Analysis on Parameter ep

The ep indicates the training epochs of the FNN-based KLM

in each generation. Similar to the setting of lr, ep also affects

the performance of the KL framework. On the one hand, if the

ep is too small, the KLM will be under-fitting and show poor

performance. On the other hand, if the ep is set as a relatively

large number, the KLM may be over-fitting and provides the

wrong evolutionary directions.

 In the above experiments, the value of ep is set as 10. Herein,

to show whether the setting ep = 10 is superior to other settings

of ep, we compare the performance of ep = 10 and ep = 1, 5, and

20. The experimental results of these KLDEs and KLPSOs with

different values of ep at D = 30 and lr = 0.2 are given in Table

VI. The KLDE with ep = 1 shows the worst performance since

KLM in KLDE is under-fitting. In the other aspect, with the ep

= 5 or ep = 20, KLDE can achieve comparative performance to

the KLDE with ep = 10. However, KLPSO with ep = 10 can

achieve better performance than KLPSO with ep = 5 or 20.

Moreover, ep = 10 means the KLM only needs to be trained for

10 epochs, whose time complexity is lower than that of the KL

framework with ep = 20. Therefore, the ep is set as 10 by both

considering the performance and the time complexity.

F. Analysis of KLM Architecture

In the proposed KL framework, the KLM is based on an

FNN, and the architecture of the KLM is shown in Fig. 3. The

architecture of the KLM can influence the performance of the

KL framework. To analyze the settings of KLM architecture,

we compare the performance of the KLM architecture in Fig. 3

and that of the other KLM architectures. Specifically, KLDE

and KLPSO variants with different KLM architectures are

compared, where the node number of each hidden layer is set as

4, 8, 16, and 32 (denoted as NN = 4, 8, 16, and 32), respectively.

The experimental results obtained by KLDE variants with

NN = 4, 8, 16, and 32 at D = 30 are shown in Table S.IX, while

results obtained by KLPSO and KLPSO variants with NN = 4, 8,

16, and 32 at D = 30 are shown in Table S.X of supplementary

material. To analyze the results, the number of best results

(denoted as NoB) and the mean rank of each algorithm are

adopted as statical metrics. According to the results, we can

find that the settings of NN = 16 and 32 achieve relatively

promising performance. Specifically, according to NoB, the

KLDE with NN = 32 and KLPSO with NN = 16 achieves the

best performance among the variants, while the KLDE with NN

= 16 and KLPSO with NN = 32 get the best results according to

the mean rank. However, when NN = 32, the time complexity of

the KLM can be relatively large, and executing the KL

framework can consume much time. Therefore, both

considering the experimental results and the time complexity,

NN = 16 is the optimal setting.

TABLE III
RESULTS FOR MEAN ERROR OF THE PSO-BASED ALGORITHMS AND THEIR KL-BASED VARIANTS AT D = 30

Func KL-SaDPSO SaDPSO
KL-HPSO-T

VAC
HPSO-TVAC KL-TAPSO TAPSO KL-AWPSO AWPSO

F1 8.82E+01 4.98E+02 ≈ 1.15E+07 2.01E+07 + 2.19E+03 2.46E+03 ≈ 4.85E+03 1.16E+08 ≈

F2 1.32E-05 7.10E-06 ≈ 1.91E+02 3.46E+02 + 9.89E+00 3.48E+01 ≈ 2.71E-02 3.51E-04 −

F3 1.56E+00 1.72E+00 ≈ 9.94E+01 1.03E+02 ≈ 4.91E+01 6.26E+01 + 8.58E+01 1.03E+02 +

F4 4.82E+01 4.85E+01 ≈ 1.26E+02 1.29E+02 ≈ 4.62E+01 4.16E+01 ≈ 4.60E+01 5.21E+01 +

F5 9.58E-03 3.35E-02 + 1.23E+01 1.33E+01 ≈ 1.96E-06 3.51E-07 − 1.59E-01 5.43E-01 +

F6 7.93E+01 7.41E+01 ≈ 1.96E+02 2.16E+02 + 6.64E+01 6.95E+01 ≈ 6.62E+01 8.41E+01 +

F7 5.27E+01 5.22E+01 ≈ 1.00E+02 1.04E+02 ≈ 4.30E+01 4.57E+01 ≈ 4.10E+01 5.14E+01 +

F8 3.17E+00 8.87E+00 + 1.20E+03 8.88E+02 ≈ 1.10E-01 2.65E-01 + 3.02E+00 5.57E+00 +

F9 2.54E+03 2.29E+03 − 3.23E+03 3.13E+03 ≈ 2.37E+03 2.48E+03 ≈ 2.48E+03 2.69E+03 ≈

F10 7.55E+01 8.12E+01 ≈ 1.24E+02 1.20E+02 ≈ 5.26E+01 4.93E+01 ≈ 9.56E+01 9.02E+01 ≈

F11 1.84E+03 2.19E+03 ≈ 3.27E+06 3.67E+06 ≈ 1.65E+05 3.09E+04 − 1.24E+05 1.35E+06 +

F12 1.46E+03 1.42E+03 ≈ 5.01E+05 1.19E+06 + 1.31E+04 1.39E+04 ≈ 2.04E+04 7.22E+05 +

F13 4.75E+02 4.38E+02 ≈ 9.44E+03 1.26E+04 ≈ 2.67E+03 6.90E+03 + 1.00E+04 5.99E+03 ≈

F14 3.23E+02 8.64E+02 ≈ 1.03E+05 1.41E+05 ≈ 2.11E+03 3.12E+03 ≈ 9.23E+03 1.16E+04 ≈

F15 5.52E+02 5.14E+02 ≈ 9.53E+02 1.02E+03 ≈ 7.24E+02 7.03E+02 ≈ 5.57E+02 6.34E+02 ≈

F16 1.35E+02 1.34E+02 ≈ 3.04E+02 4.06E+02 + 1.46E+02 1.62E+02 ≈ 2.16E+02 2.10E+02 ≈

F17 2.69E+03 2.67E+03 ≈ 2.17E+05 2.26E+05 ≈ 1.08E+05 1.05E+05 ≈ 2.37E+05 1.48E+05 −

F18 3.25E+02 3.44E+02 + 1.28E+05 1.37E+05 ≈ 4.01E+03 5.83E+03 + 7.59E+03 3.00E+04 ≈

F19 1.96E+02 1.94E+02 ≈ 3.32E+02 3.34E+02 ≈ 1.97E+02 2.10E+02 ≈ 2.56E+02 2.37E+02 ≈

F20 2.50E+02 2.53E+02 ≈ 3.29E+02 3.44E+02 + 2.41E+02 2.42E+02 ≈ 2.51E+02 2.54E+02 ≈

F21 1.43E+02 1.00E+02 − 1.33E+03 8.49E+02 ≈ 1.00E+02 1.60E+02 + 1.19E+03 7.21E+02 ≈

F22 4.05E+02 4.10E+02 ≈ 6.65E+02 7.34E+02 + 3.99E+02 4.02E+02 ≈ 4.49E+02 4.61E+02 +

F23 4.76E+02 4.84E+02 ≈ 8.54E+02 9.53E+02 + 4.76E+02 4.74E+02 ≈ 5.37E+02 5.45E+02 ≈

F24 3.83E+02 3.81E+02 ≈ 3.95E+02 3.99E+02 ≈ 3.89E+02 3.88E+02 ≈ 3.88E+02 3.91E+02 +

F25 6.06E+02 8.30E+02 ≈ 2.53E+03 2.55E+03 ≈ 1.35E+03 1.40E+03 ≈ 1.13E+03 1.16E+03 ≈

F26 5.07E+02 5.17E+02 + 6.85E+02 7.37E+02 ≈ 5.10E+02 5.09E+02 ≈ 5.33E+02 5.41E+02 ≈

F27 3.32E+02 3.23E+02 ≈ 4.12E+02 4.07E+02 ≈ 3.43E+02 3.35E+02 − 4.24E+02 4.44E+02 +

F28 5.90E+02 6.09E+02 ≈ 9.03E+02 9.29E+02 ≈ 5.15E+02 5.30E+02 ≈ 6.48E+02 6.43E+02 ≈

F29 1.35E+04 6.37E+03 − 1.45E+05 1.91E+05 ≈ 3.83E+03 3.92E+03 ≈ 9.05E+03 7.77E+03 ≈

Number of + / ≈ / − 4 / 22 / 3 + / ≈ / − 8 / 21 / 0 + / ≈ / − 5 / 22 / 3 + / ≈ / − 11 / 16 / 2

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

G. Runtime Analysis

This section analyzes the runtime of the KL-based

algorithms. In the runtime analysis, the average cost of CPU

time consumed by each algorithm is used as the metric. The

comparison of the runtime is conducted on KLDE, DE, KLPSO,

PSO, KL-JADE, JADE, KL-ADDE, ADDE, KL-TAPSO,

KL-AWPSO, and AWPSO. The experimental results with

respect to the runtime obtained by these compared algorithms

and their KL-based variants at D = 10, 30, and 50 are shown in

Table S.XI of the supplementary material. We can find that the

KL-based algorithms consume more time than the original

algorithms. This observation is intuitive since the KL

framework contains an FNN-based KLM and utilizing this

KLM can consume some time.

Besides, to evaluate whether the time cost is worth it, the

“error reduction versus time increase rate” (ETR) proposed by

Zhan et al. [17] is adopted. ETR is used to calculate the

percentage of improvement in algorithm performance caused

by each percentage of additional time consumption, which is

shown as:

ERR(,)

ETR(,)
TIR(,)

KL

KL

KL

A A
A A

A A
= (10)

where A and AKL indicate the original algorithm and its

KL-based variant, respectively. ERR(A, AKL) is the error

reduction rate, which is calculated via

() ()
, if () ()

()ERR(,)

0, otherwise

KL

KL

KL

E A E A
E A E A

E AA A

−


= 



 (11)

where E(A) and E(AKL) indicate the mean error obtained by

algorithm A and its KL-based variant AKL. TIR(A, AKL) is the

time cost increase rate, which is calculated via

() ()

TIR(,)
()

KL

KL

T A T A
A A

T A

−
= (12)

where T(A) and T(AKL) indicate the cost of CPU time of A and

AKL. The value of ETR(A, AKL) represents the percentage of

error reduction divided by the percentage of additional time

cost, and thus ETR can be used to assess whether the time

consumption is worth it.

Herein, the results with respect to ETR are obtained in six

settings of the time cost of each fitness evaluation (i.e., each

fitness evaluation costs 1, 2, 4, 6, 8, and 10ms, respectively).

The curve of the ETR obtained by DE and KLDE, JADE and

KL-JADE, ADDE and KL-ADDE on D = 50 is shown in Fig.

S5 (a) of the supplementary material, while the curve of the

ETR obtained by PSO and KLPSO, TAPSO and KL-TAPSO,

AWPSO and KL-AWPSO on D = 50 is shown in Fig. S5 (b).

According to the curves, we can find the ETR of these

DE-based algorithms is up to 2.0, while the ETR of these

PSO-based algorithms is up to 1.5, when the time cost of each

fitness evaluation is 10ms. In such a case, for every percent of

extra time consumed, the KL framework is able to improve the

performance of the DE-based algorithm by 2.0 percent and

improve the performance of the PSO-based algorithm by 1.5

percent. In many real-world expensive optimization problems,

the time cost of each fitness evaluation is very high, e.g., a

single fitness evaluation of some problems can consume a few

days [49]-[51], which is much higher than 10ms. Therefore, the

additional time cost of the KL framework is worth it, especially

in solving the expensive optimization problem.

Based on the results on runtime and solution accuracy, we

can conclude both the advantages and disadvantages of the

proposed KL framework. On the one hand, the advantages of

the KL framework are that it can help the population jump out

of the local optima and accelerate the convergence speed of the

population to fast approach the global optimum. Combing the

KL framework with the state-of-the-art EC algorithms can

significantly enhance the accuracy of the finally obtained

solutions. On the other hand, the disadvantage of the KL

framework is that the training and utilizing processes of the

KLM will consume additional time. Nevertheless, the

additional time cost of the KL framework is worthy for the

TABLE IV
RESULTS FOR MEAN ERROR OF KLDE, DMDE, DVR-DE AT D = 30

Func KLDE DMDE DVR-DE

F1 0.00E+00 0.00E+00 ≈ 0.00E+00 ≈

F2 1.68E-02 6.09E+00 + 6.11E+00 +

F3 5.58E+01 5.36E+01 ≈ 5.92E+01 ≈

F4 2.66E+01 1.66E+02 + 6.13E+01 +

F5 6.46E-03 4.95E-08 − 5.04E-03 ≈

F6 5.80E+01 1.96E+02 + 9.99E+01 +

F7 2.92E+01 1.66E+02 + 6.21E+01 +

F8 1.44E-01 3.56E-02 + 1.78E-02 −

F9 2.27E+03 6.31E+03 + 4.16E+03 +

F10 2.56E+01 2.67E+01 ≈ 2.61E+01 ≈

F11 1.46E+04 1.46E+04 ≈ 1.06E+04 ≈

F12 2.39E+01 8.63E+01 + 4.14E+01 +

F13 1.99E+01 5.69E+01 + 3.82E+01 +

F14 5.10E+00 1.39E+01 + 1.28E+01 +

F15 3.69E+02 4.30E+02 ≈ 1.07E+03 +

F16 5.74E+01 1.09E+02 + 3.68E+02 +

F17 2.38E+01 3.27E+01 + 3.05E+01 +

F18 6.33E+00 8.87E+00 + 1.13E+01 +

F19 7.92E+01 6.75E+01 − 3.47E+02 +

F20 2.30E+02 3.54E+02 + 2.57E+02 +

F21 8.72E+02 3.57E+03 + 1.45E+03 ≈

F22 3.86E+02 5.39E+02 + 4.07E+02 +

F23 4.60E+02 7.00E+02 + 4.67E+02 ≈

F24 3.87E+02 3.87E+02 ≈ 3.87E+02 −

F25 1.32E+03 2.38E+03 + 1.50E+03 +

F26 5.05E+02 5.57E+02 + 5.03E+02 ≈

F27 3.29E+02 1.78E+03 + 3.41E+02 ≈

F28 4.58E+02 5.57E+02 + 5.45E+02 +

F29 2.07E+03 2.04E+03 ≈ 2.03E+03 ≈

Number of + / ≈ / − 20 / 7 / 2 17 / 10 / 2

TABLE V
RESULTS FOR NUMBER OF + / ≈ / − OBTAINED BY COMPARING KLDE AND

KLPSO WITH lr = 0.2 AND OTHER lr SETTINGS AT D = 30 AND ep = 10

Algorithms
lr = 0.2 vs lr = 0.1 lr = 0.2 vs lr = 0.3

+ / ≈ / − + / ≈ / −
KLDE 8 / 12 / 9 9 / 17 / 3

KLPSO 4 / 22 / 3 6 / 21 / 2

Algorithms
lr = 0.2 vs lr = 0.4 lr = 0.2 vs lr = 0.5

+ / ≈ / − + / ≈ / −
KLDE 14 / 13 / 2 20 / 7 / 2

KLPSO 9 / 14 / 6 12 / 15 / 2

TABLE VI
RESULTS FOR NUMBER OF + / ≈ / − OBTAINED BY COMPARING KLDE AND

KLPSO WITH ep = 10 AND OTHER ep SETTINGS AT D = 30 AND lr = 0.2

Algorithms
ep = 10 vs

ep = 1
ep = 10 vs

ep = 5
ep = 10 vs

ep = 20

+ / ≈ / − + / ≈ / − + / ≈ / −
KLDE 16 / 12 / 1 5 / 19 / 5 3 / 21 / 5

KLPSO 6 / 19 / 4 3 / 24 / 2 6 / 19 / 4

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

accuracy improvement, especially in solving complex and

expensive optimization problems.

H. Comparison on Real-World Application

In this section, the performance of the KL framework is

evaluated in a real-world optimization problem, which is called

the planar kinematic arm control problem [52], [53]. Fig. 7

illustrates an example of the planar kinematic arm control

problem. The planar kinematic arm control problem contains a

kinematic arm with several links and joints, and the objective is

to control the angle of each joint to make the tip of the arm PD

as close as possible to the target T. Without loss of generosity,

the objective function fp(.) of the planar kinematic arm control

problem with d dimensions (i.e., with d joints) is shown as:

 ()1 2 max, ,..., ,[,]p d Df L P T    = − (13)

where α1, α2, …, αd denote the angle of the d joints, L denotes

the total length of the links, αmax denotes the sum of the

maximum angle of all the joints. The values of the parameters

are set as the same as those in [53]. In the experimental results,

the mean normalized fitness (MNF) is utilized as the metric to

more clearly evaluate the performance of each algorithm,

which is calculated via

min()

max() min()

f F
MNF

F F

−
=

−
 (14)

where f denotes the obtained fitness value, F denotes all the

fitness values obtained by both the KL-based algorithm and the

original algorithm on the current problem.

 First, the performance of four compared algorithms (i.e., DE,

HyDE-DF, PSO, and AWPSO) and their KL-based variants are

evaluated on two low-dimensional planar kinematic arm

control problems (i.e., D = 10 and 50). The experimental results

with respect to MNF obtained by the compared algorithms and

the KL-based algorithms on D = 10 and 50 are shown in Table

VII. According to the results, we can find the KL-based

algorithms generally outperforms the original algorithms.

Therefore, we can conclude that the KL framework achieves

promising performance on the low-dimensional planar

kinematic arm control problems.

Second, the performance of the compared algorithms and

their KL-based variants are evaluated on two high-dimensional

planar kinematic arm control problems (i.e., D = 100 and 500).

The experimental results with respect to MNF obtained by the

compared algorithms and the KL-based algorithms on D = 100

and 500 are shown in Table VIII. On both D = 100 and 500, the

performance of the KL-based algorithms is generally better

than that of the original algorithms. Specifically, on D = 100,

the performance of KLDE, KLPSO, and KL-AWPSO is

significantly greater than HyDE-DF, PSO, and AWPSO,

respectively. On D = 500, the performance of KL-HyDE-DF

and KLPSO is significantly superior to HyDE-DF and PSO,

respectively. Therefore, we can also conclude that the achieves

encouraging performance on the high-dimensional planar

kinematic arm control problems.

V. CONCLUSION

In this paper, an innovative KL framework for EC algorithms

has been proposed. The KL framework learns the knowledge

based on successful experiences and guides the evolution

according to the learned knowledge and the positions of the

individuals. In the KL framework, an FNN-based KLM is

created to learn the successful experience and get knowledge

about the relationship between the position of the individual

and the optimal direction. During the evolution, each individual

can acquire a suitable evolutionary direction from the KLM

according to its current position and the knowledge of KLM.

To evaluate the functionality of the KL framework, the

traditional DE and PSO, and several DE-based and PSO-based

state-of-the-art algorithms are compared with that of their

KL-based variants. In addition, the KL framework is also

compared with two recently proposed historical data utilizing

methods. In these experiments conducted on both the

benchmark functions and the real-world optimization problems,

the KL framework achieves a more promising performance

than the compared algorithms.

Although the concept and core idea of the proposed KL

framework is simple and easy to understand, it is very effective

and efficient. In future work, we hope to extend the idea of KL

to more research aspects of EC, such as large-scale

optimization problems [54]-[56], multimodal optimization

problems [57]-[59], multi-/many-objective optimization

[60]-[62], and multi-task optimization [63]-[65]. Additionally,

we will combine the KL framework with other kinds of EC

algorithms, such as genetic algorithms [66] and memetic

α4

α1

α2

α3

PD

T

Fig. 7. An example of the planar kinematic arm control problem.

TABLE VII

RESULTS FOR MNF OF DE, HYDE-DF, PSO, AWPSO, AND THEIR

KL-BASED VARIANTS ON LOW-DIMENSIONAL PROBLEMS

Dim KLDE DE KL-HyDE-DF HyDE-DF

D = 10 1.80E-01 2.74E-01 (≈) 1.56E-01 6.89E-01 (+)

D = 50 1.99E-01 5.20E-01 (+) 2.90E-01 7.09E-01 (+)

Number of + / ≈ / − 1 / 1 / 0 + / ≈ / − 2 / 0 / 0

Dim KLPSO PSO KL-AWPSO AWPSO

D = 10 2.80E-01 4.97E-01 (+) 2.63E-01 5.13E-01 (+)

D = 50 3.57E-01 6.17E-01 (+) 3.73E-01 6.81E-01 (+)

Number of + / ≈ / − 2 / 0 / 0 + / ≈ / − 2 / 0 / 0

TABLE VIII
RESULTS FOR MNF OF DE, HYDE-DF, PSO, AWPSO, AND THEIR

KL-BASED VARIANTS ON HIGH-DIMENSIONAL PROBLEMS

Dim KLDE DE KL-HyDE-DF HyDE-DF

D = 100 2.25E-01 6.40E-01 (+) 4.65E-01 5.10E-01 (≈)

D = 500 4.41E-01 5.60E-01 (≈) 4.68E-01 7.37E-01 (+)

Number of + / ≈ / − 1 / 1 / 0 + / ≈ / − 1 / 1 / 0

Dim KLPSO PSO KL-AWPSO AWPSO

D = 100 4.74E-01 7.91E-01 (+) 5.22E-01 8.29E-01 (+)

D = 500 6.22E-01 7.35E-01 (+) 6.40E-01 6.67E-01 (≈)

Number of + / ≈ / − 2 / 0 / 0 + / ≈ / − 1 / 1 / 0

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

algorithms [67], [68].

REFERENCES

[1] Z. H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary

computation for complex continuous optimization,” Artif. Intell. Rev.,

vol. 55, no. 1, pp. 59-110, Jan. 2022.
[2] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han, and Q. Pan, “A review on

swarm intelligence and evolutionary algorithms for solving flexible job

shop scheduling problems,” IEEE/CAA J. Autom. Sin., vol. 6, no. 4, pp.
904-916, July 2019.

[3] Z. G. Chen, Z. H. Zhan, S. Kwong, and J. Zhang, “Evolutionary

computation for intelligent transportation in smart cities: A survey,”
IEEE Comput. Intell. Mag., vol. 17, no. 2, pp. 83-102, May, 2022.

[4] Z. H. Zhan et al., “Matrix-based evolutionary computation,” IEEE Trans.

Emerging Topics Comp. Intell., vol. 6, no. 2, pp. 315-328, Apr. 2022.
[5] R. Storn and K. Price, “Differential evolution: A simple and efficient

adaptive scheme for global optimization over continuous spaces,” Int.

Comput. Sci. Inst., Berkeley, CA, USA, Rep. TR–95–012, 1995.
[6] A. Karbassi Yazdi, M. A. Kaviani, T. Hanne, and A. Ramos, “A binary

differential evolution algorithm for airline revenue management: A case

study,” Soft Comput., vol. 24, no. 18, pp. 14221–14234, Sep. 2020.
[7] C. Bu, W. Luo, T. Zhu, R. Yi, and B. Yang, “Species and memory

enhanced differential evolution for optimal power flow under
double-sided uncertainties,” IEEE Trans. Sust. Comp., vol. 5, no. 3, pp.

403-415, Sept. 2020.

[8] J. H. Holland, “Genetic algorithm,” Scientific American, vol. 267, no. 1,
pp. 66-83, Jul. 1992.

[9] S. C. Liu, Z. G. Chen, Z. H. Zhan, S. W. Jeon, S. Kwong, and J. Zhang,

“Many-objective job shop scheduling: A multiple populations for
multiple objectives-based genetic algorithm approach,” IEEE Trans.

Cybern., vol. 53, no. 3, pp. 1460-1474, Mar. 2023.

[10] Q. T. Yang, Z. H. Zhan, S. Kwong, and J. Zhang, “Multiple populations
for multiple objectives framework with bias sorting for many-objective

optimization,” IEEE Trans. Evol. Comput., to be published, doi:

10.1109/TEVC.2022.3212058.
[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[12] W. Luo, J. Sun, C. Bu, and H. Liang, “Species-based particle swarm

optimizer enhanced by memory for dynamic optimization,” Appl. Soft

Comput., vol. 47, pp. 130–140, Oct. 2016.

[13] J. R. Jian, Z. G. Chen, Z. H. Zhan, and J. Zhang, “Region encoding helps
evolutionary computation evolve faster: A new solution encoding

scheme in particle swarm for large-scale optimization,” IEEE Trans.

Evol. Comput., vol. 25, no. 4, pp. 779–793, Aug. 2021.
[14] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative

learning approach to the traveling salesman problem,” IEEE Trans. Evol.

Comput., vol. 1, no. 1, pp. 53-66, April 1997.
[15] X. Zhang, Z. H. Zhan, W. Fang, P. Qian, and J. Zhang,

“Multi-population ant colony system with knowledge-based local

searches for multiobjective supply chain configuration,” IEEE Trans.
Evol. Comput., vol. 26, no. 3, pp. 512-526, Jun. 2022.

[16] L. Shi, Z. H. Zhan, D. Liang, and J. Zhang, “Memory-based ant colony

system approach for multi-source data associated dynamic electric
vehicle dispatch optimization,” IEEE Trans. Intell. Transp. Syst., vol. 23,

no. 10, pp. 17491-17505, Oct. 2022.

[17] Z. H. Zhan, J. Y. Li, S. Kwong, and J. Zhang, “Learning-aided evolution

for optimization,” IEEE Trans. Evol. Comput., to be published, doi:

10.1109/TEVC.2022.3232776.

[18] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization -
A new frontier in evolutionary computation research,” IEEE Comput.

Intell. Mag., vol. 16, no. 1, pp. 22–33, Feb. 2021.

[19] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “Block-level knowledge
transfer for evolutionary multi-task optimization,” IEEE Trans. Cybern.,

to be published, doi: 10.1109/TCYB.2023.3273625.

[20] H. Han, X. Bai, Y. Hou, and J. Qiao, “Multi-task particle swarm
optimization with dynamic on-demand allocation,” IEEE Trans. Evol.

Comput., to be published, doi: 10.1109/TEVC.2022.3187512.

[21] X. Zhang and S. Y. Yuen, “A directional mutation operator for
differential evolution algorithms,” Appl. Soft Comput., vol. 30, pp. 529–

548, May. 2015.

[22] A. Ghosh, S. Das, A. K. Das, and L. Gao, “Reusing the past difference
vectors in differential evolution—A simple but significant improvement,”

IEEE Trans. Cybern., vol. 50, no. 11, pp. 4821–4834, Nov. 2020.

[23] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: Toward
evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 20, no. 3,

pp. 343–357, Jun. 2016.

[24] L. Zhou et al., “Toward adaptive knowledge transfer in multifactorial
evolutionary computation,” IEEE Trans. Cybern., vol. 51, no. 5, pp.

2563–2576, May 2021.

[25] L. Feng et al., “Evolutionary multitasking via explicit autoencoding,”
IEEE Trans. Cybern., vol. 49, no. 9, pp. 3457–3470, Sep. 2019.

[26] H. Xu, A. K. Qin, and S. Xia, “Evolutionary multi-task optimization with

adaptive knowledge transfer,” IEEE Trans. Evol. Comput., to be
published, doi: 10.1109/TEVC.2021.3107435.

[27] J. Yin, A. Zhu, Z. Zhu, Y. Yu, and X. Ma, “Multifactorial evolutionary

algorithm enhanced with cross-task search direction,” in Proc. IEEE
Congr. Evol. Comput., 2019, pp. 2244–2251.

[28] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution

with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no.
5, pp. 945–958, 2009.

[29] R. Tanabe and A. Fukunaga, “Success-history based parameter

adaptation for differential evolution,” in Proc. IEEE Congr. Evol.
Comput., 2013, pp. 71–78.

[30] R. Tanabe and A. S. Fukunaga, “Improving the search performance of

SHADE using linear population size reduction,” in Proc. IEEE Congr.
Evol. Comput., 2014, pp. 1658–1665.

[31] J. Brest, M. S. Maučec, and B. Bošković, “Single objective

real-parameter optimization: Algorithm jSO,” in Proc. IEEE Congr.
Evol. Comput., 2017, pp. 1311–1318.

[32] Z. H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed
differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633–

4647, Nov. 2020.

[33] J. J. Liang, L. Guo, R. Liu, and B. Y. Qu, “A self-adaptive dynamic
particle swarm optimizer,” in Proc. IEEE Congr. Evol. Comput., 2015,

pp. 3206–3213.

[34] Z. H. Zhan and J. Zhang, “Self-adaptive differential evolution based on
PSO learning strategy,” in Proc. Genet. Evol. Comput. Conf., 2010, pp.

39–46.

[35] B. Xue, A. K. Qin, and M. Zhang, “An archive-based particle swarm
optimisation for feature selection in classification,” in Proc. IEEE Congr.

Evol. Comput., 2014, pp. 3119-3126.

[36] X. Xia et al., “Triple archives particle swarm optimization,” IEEE Trans.
Cybern., vol. 50, no. 12, pp. 4862–4875, Dec. 2020.

[37] T. Zhu, W. Luo, C. Bu, and H. Ning, “Making use of observable

parameters in evolutionary dynamic optimization,” Inf. Sci., vol. 512, pp.
708–725, Feb. 2020.

[38] X. Zhang and X. Zhang, “Improving differential evolution by

differential vector archive and hybrid repair method for global
optimization,” Soft Comput., vol. 21, no. 23, pp. 7107–7116, 2017.

[39] Z. H. Zhan, J. Y. Li, and J. Zhang, “Evolutionary deep learning: A

survey,” Neurocomputing, vol. 483, pp. 42-58, April 2022.
[40] C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary generative

adversarial networks,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp.

921–934, Dec. 2019.
[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” Nature, vol. 323, pp. 533–

536, Oct. 1986.
[42] I. Goodfellow, A. Courville, and Y. Bengio, Deep Learning, Cambridge:

MIT press, 2016.

[43] F. Lezama, J. Soares, R. Faia, and Z. Vale, “Hybrid-adaptive differential
evolution with decay function (HyDE-DF) applied to the 100-digit

challenge competition on single objective numerical optimization,” in

Proc. Genet. Evol. Comput. Conf., 2019, pp. 7–8.
[44] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration

coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255, Jun.
2004.

[45] W. Liu, Z. Wang, Y. Yuan, N. Zeng, K. Hone, and X. Liu, “A novel

sigmoid-function-based adaptive weighted particle swarm optimizer,”
IEEE Trans. Cybern., vol. 51, no. 2, pp. 1085-1093, Feb. 2021.

[46] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N. Suganthan,

“Problem definitions and evaluation criteria for the CEC 2017 special
session and competition on single objective bound constrained

real-parameter numerical optimization,” Nanyang Technol. Univ.,

Singapore, Rep, 2016.
[47] B. Li and W. S. Jiang, “Heuristics genetic algorithm using 80/20 rule,” in

Proc IEEE Int. Conf. Ind. Technol., 1996, pp. 436-438.

[48] M. Iqbal and M. Rizwan, “Application of 80/20 rule in software

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

engineering waterfall model,” in Proc. Int. Conf. Inf. Commun. Technol.,
2009, pp. 223-228.

[49] J. Y. Li, Z. H. Zhan, and J. Zhang, “Evolutionary computation for

expensive optimization: A survey,” Mach. Intell. Res., vol. 19, no. 1, pp.
3– 23, 2022.

[50] S. H. Wu, Z. H. Zhan, and J. Zhang, “SAFE: Scale-adaptive fitness

evaluation method for expensive optimization problems,” IEEE Trans.
Evol. Comput., vol. 25, no. 3, pp. 479-491, Jun. 2021.

[51] J. Y. Li, Z. H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting

data-driven evolutionary algorithm with localized data generation,”
IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 923-937, Oct. 2020.

[52] H. Xu, A. K. Qin, and S. Xia, “Evolutionary multitask optimization with

adaptive knowledge transfer,” IEEE Trans. Evol. Comput., vol. 26, no. 2,
pp. 290-303, Apr. 2022.

[53] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “A bi-objective

knowledge transfer framework for evolutionary many-task optimization,”
IEEE Trans. Evol. Comput., to be published, doi:

10.1109/TEVC.2022.3210783.

[54] Z. J. Wang, Z. H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive
granularity learning distributed particle swarm optimization for

large-scale optimization,” IEEE Trans. Cybern., vol. 51, no. 3, pp.

1175-1188, Mar. 2021.
[55] Z. J. Wang, J. R. Jian, Z. H. Zhan, Y. Li, S. Kwong, and J. Zhang, “Gene

targeting differential evolution: A simple and efficient method for large

scale optimization,” IEEE Trans. Evol. Comput., to be published, doi:
10.1109/TEVC.2022.3185665.

[56] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “Dual differential grouping:
A more general decomposition method for large-scale optimization,”

IEEE Trans. Cybern., to be published,

doi:10.1109/TCYB.2022.3158391.
[57] Y. Jiang, Z. H. Zhan, K. C. Tan, and J. Zhang, “Optimizing niche center

for multimodal optimization problems,” IEEE Trans. Cybern., to be

published, vol. 53, no. 4, pp. 2544-2557, Apr. 2023.
[58] Z. G. Chen, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed individuals

for multiple peaks: A novel differential evolution for multimodal

optimization problems,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp.
708-719, Aug. 2020.

[59] Z. J. Wang et al., “Dual-strategy differential evolution with affinity

propagation clustering for multimodal optimization problems,” IEEE
Trans. Evol. Comput., vol. 22, no. 6, pp. 894-908, Dec. 2018.

[60] S. C. Liu, Z. H. Zhan, K. C. Tan, and J. Zhang, “A multi-objective

framework for many-objective optimization,” IEEE Trans. Cybern., vol.
52, no. 12, pp. 13654-13668, Dec. 2022.

[61] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,

“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.

Comput., vol. 23, no. 4, pp. 587-602, Aug. 2019.

[62] J. Y. Li et al., “A multi-population multi-objective ant colony system
considering travel and prevention costs for vehicle routing in

COVID-19-like epidemics,” IEEE Trans. Intell. Transp. Syst., vol. 23,

no. 12, pp. 25062-25076, Dec. 2022.
[63] S. H. Wu, Z. H. Zhan, K. C. Tan, and J. Zhang, “Orthogonal transfer for

multitask optimization,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp.

185-200, Feb. 2023.
[64] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge

transfer-based differential evolution for multitask optimization,” IEEE

Trans. Evol. Comput., vol. 26, no. 4, pp. 719-734, Aug. 2022.
[65] S. H. Wu, Z. H. Zhan, K. C. Tan, and J. Zhang, “Transferable adaptive

differential evolution for many-task optimization,” IEEE Trans. Cybern.,

to be published, doi: 10.1109/TCYB.2023.3234969. Dec. 2022.
[66] J. E. Lehner, R. Dornberger, R. Simić, and T. Hanne, “Optimization of

multi-robot sumo fight simulation by a genetic algorithm to identify

dominant robot capabilities,” in Proc. IEEE Congr. Evol. Comput., 2019,
pp. 490-496.

[67] J. Luo, Y. Yang, Q. Liu, X. Li, M. Chen, and K. Gao, “A new hybrid

memetic multi-objective optimization algorithm for multi-objective
optimization,” Inf. Sci., vol. 448–449, pp. 164–186, Jun. 2018.

[68] V. A. Shim, K. C. Tan, and H. Tang, “Adaptive memetic computing for

evolutionary multiobjective optimization,” IEEE Trans. Cybern., vol. 45,
no. 4, pp. 610-621, Apr. 2015.

Yi Jiang (Student Member, IEEE) received the B.S.
degree in computer science and technology from South

China University of Technology, Guangzhou, China, in

2020, where he is currently pursuing the Ph.D. degree in
computer science and technology with the School of

Computer Science and Engineering.

His research interests mainly include computational
intelligence, evolutionary computation, machine

learning, and their applications in real-world problems.

Zhi-Hui Zhan (Senior Member, IEEE) received the

Bachelor’s degree and the Ph. D. degree in Computer

Science from the Sun Yat-Sen University, Guangzhou
China, in 2007 and 2013, respectively.

He is currently the Changjiang Scholar Young

Professor with the School of Computer Science and
Engineering, South China University of Technology,

Guangzhou, China. His current research interests include

evolutionary computation, swarm intelligence, and their
applications in real-world problems and in environments of cloud computing

and big data.

Dr. Zhan was a recipient of the IEEE Computational Intelligence Society
(CIS) Outstanding Early Career Award in 2021, the Outstanding Youth Science

Foundation from National Natural Science Foundations of China (NSFC) in
2018, and the Wu Wen-Jun Artificial Intelligence Excellent Youth from the

Chinese Association for Artificial Intelligence in 2017. He is one of the
World’s Top 2% Scientists for both Career-Long Impact and Year Impact in
Artificial Intelligence and one of the Highly Cited Chinese Researchers in

Computer Science. He is currently the Chair of Membership Development

Committee in IEEE Guangzhou Section and the Vice-Chair of IEEE CIS
Guangzhou Chapter. He is currently an Associate Editor of the IEEE

Transactions on Evolutionary Computation, the Neurocomputing, the Memetic

Computing, and the Machine Intelligence Research.

Kay Chen Tan (Fellow, IEEE) received the B.Eng.
degree (First Class Hons.) and the Ph.D. degree from the

University of Glasgow, U.K., in 1994 and 1997,

respectively.
He is currently a Chair Professor (Computational

Intelligence) of the Department of Computing, The Hong

Kong Polytechnic University. He has published over 300
refereed articles and seven books.

Prof. Tan is currently the Vice-President (Publications) of IEEE

Computational Intelligence Society, USA. He served as the Editor-in-Chief of
the IEEE Computational Intelligence Magazine from 2010 to 2013 and the

IEEE Transactions on Evolutionary Computation from 2015 to 2020. He

currently serves as the Chief Co-Editor of Springer Book Series on Machine
Learning: Foundations, Methodologies, and Applications, and as an Editorial

Board Member for more than ten journals.

Jun Zhang (Fellow, IEEE) obtained his PhD degree in

Electrical Engineering from the City University of Hong
Kong in 2002.

He is a BP professor at Hanyang University, ERICA,

South Korea, and an honorary professor at Key
Laboratory of Intelligent Education Technology and

Application of Zhejiang Province, Zhejiang Normal

University, China. Prof. Zhang’s research contributions
span over 300 peer-reviewed publications, of which

more than 180 appear in IEEE Transactions. His

research interests include Computational Intelligence,
cloud computing, Big data mining, and Power Electronic Circuits.

Professor Zhang was a recipient of the China National Funds for

Distinguished Young Scientists from the National Natural Science Foundation
of China in 2011 and was appointed as a Cheung Kong Chair Professor in 2013

by the Ministry of Education, China. Presently, Prof. Zhang serves as an

associate editor for both the IEEE Transactions on Artificial Intelligence and
the IEEE Transactions on Cybernetics.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3278132

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

