The VLDB Journal (2024) 33:1913-1943
https://doi.org/10.1007/s00778-024-00875-8

REGULAR PAPER O‘)

Check for
updates

A versatile framework for attributed network clustering via K-nearest
neighbor augmentation

Yiran Li' - Gongyao Guo' - Jieming Shi'® - Renchi Yang? - Shiqi Shen3 - Qing Li' - Jun Luo*

Received: 29 December 2023 / Revised: 8 June 2024 / Accepted: 7 August 2024 / Published online: 16 September 2024
© The Author(s) 2024

Abstract

Attributed networks containing entity-specific information in node attributes are ubiquitous in modeling social networks,
e-commerce, bioinformatics, etc. Their inherent network topology ranges from simple graphs to hypergraphs with high-order
interactions and multiplex graphs with separate layers. An important graph mining task is node clustering, aiming to partition
the nodes of an attributed network into k disjoint clusters such that intra-cluster nodes are closely connected and share similar
attributes, while inter-cluster nodes are far apart and dissimilar. It is highly challenging to capture multi-hop connections via
nodes or attributes for effective clustering on multiple types of attributed networks. In this paper, we first present AHCKA
as an efficient approach to attributed hypergraph clustering (AHC). AHCKA includes a carefully-crafted K -nearest neighbor
augmentation strategy for the optimized exploitation of attribute information on hypergraphs, a joint hypergraph random walk
model to devise an effective AHC objective, and an efficient solver with speedup techniques for the objective optimization.
The proposed techniques are extensible to various types of attributed networks, and thus, we develop ANCKA as a versatile
attributed network clustering framework, capable of attributed graph clustering, attributed multiplex graph clustering, and
AHC. Moreover, we devise ANCKA-GPU with algorithmic designs tailored for GPU acceleration to boost efficiency. We have
conducted extensive experiments to compare our methods with 19 competitors on 8 attributed hypergraphs, 16 competitors
on 6 attributed graphs, and 16 competitors on 3 attributed multiplex graphs, all demonstrating the superb clustering quality
and efficiency of our methods.

Keywords Clustering - Attributed Graph - Random Walks - KNN - GPU Computing

1 Introduction

< Jieming Shi

jieming.shi@polyu.edu.hk

Yiran Li
yi-ran.li@connect.polyu.hk

Gongyao Guo
gongyao.guo@connect.polyu.hk

Renchi Yang
renchi @hkbu.edu.hk

Shiqi Shen
shigishen @tencent.com

Qing Li
csqli@comp.polyu.edu.hk

Jun Luo

jluo@Iscm.hk

The Hong Kong Polytechnic University, Hung Hom, Hong
Kong SAR, China

Hong Kong Baptist University, Kowloon Tong, Hong Kong
SAR, China

An attributed network contains a network topology with
attributes associated with nodes. Representative types of
attributed networks include attributed graphs, attributed
hypergraphs, and attributed multiplex graphs. Given an
attributed network N, node clustering is an important task
in graph mining, which aims to divide the n nodes of A\ into
k disjoint clusters, such that nodes within the same cluster
are close to each other in the network topology and simi-
lar to each other in terms of attribute values. Clustering on
attributed networks finds important applications in biologi-
cal analysis [1], online marketing [2], social network [3, 4],
Web analysis [5], etc.

3 WeChat Tencent, Beijing, China

4 Logistics and Supply Chain MultiTech R&D Centre, Pok Fu
Lam, Hong Kong

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00875-8&domain=pdf
http://orcid.org/0000-0002-0465-1551

1914

Y.Lietal

In this work, we present ANCKA, an effective and efficient
attributed network clustering method that is versatile to sup-
port attributed hypergraph clustering (AHC), attributed graph
clustering (AGC), and attributed multiplex graph clustering
(AMGC). ANCKA subsumes our previous work AHCKA [6]
that is dedicated to AHC. In what follows, we first elaborate
on AHC and then generalize to AGC and AMGC.

In a hypergraph, each edge can join an arbitrary number
of nodes, referred to as a hyperedge. The hyperedge allows
a precise description of multilateral relationships between
nodes, such as collaboration relationships of multiple authors
of a paper, interactions among proteins [7], products pur-
chased together in one shopping cart, transactions involving
multiple accounts [8]. In practice, nodes in hypergraphs are
often associated with many attributes, e.g., the academic
profile of authors and the descriptive data of products. The
AHC problem is to divide the n nodes in such an attributed
hypergraph into k disjoint clusters such that nodes within the
same cluster are close to each other with high connected-
ness and homogeneous attribute characteristics. AHC finds
numerous real-life applications in community discovery [9],
organization structure detection [1], Web query analysis [5],
biological analysis [10], etc. As another example, AHC
can cluster together academic publications with high rele-
vance by considering co-authorship hyperedges and keyword
attributes in academic hypergraphs [11].

Effective AHC computation is a highly challenging task,
especially for large attributed hypergraphs with millions of
nodes. First, nodes, hyperedge connections, and attributes
are heterogeneous objects with inherently different traits,
whose information cannot be seamlessly integrated in a sim-
ple and straightforward way. Second, as observed in previous
works on simple graphs [12, 13], higher-order relationships
between nodes and node-attribute associations are crucial
for clustering. However, computing such multi-hop relation-
ships and associations via hyperedges usually with more than
two nodes in attributed hypergraphs is rather difficult due to
the complex hypergraph structures and prohibitive computa-
tional overheads (up to O (n?) in the worst case).

In the literature, a plethora of clustering solutions [14—16]
are developed for plain hypergraphs. These methods over-
look attribute information, leading to severely compromised
AHC result quality. Besides, a large body of research on
attributed graph clustering is conducted, resulting in a cor-
nucopia of efficacious techniques [2, 13]. However, most
of these works cannot be directly applied to handle large
attributed hypergraphs with more complex and unique struc-
tures. Inspired by the technical advances in the above fields,
a number of efforts have been made towards AHC compu-
tation in the past years. The majority of AHC methods rely
on non-negative matrix factorization [1, 5], which requires
numerous iterations of expensive matrix operations and even
colossal space costs of materializing n x n dense matrices.

@ Springer

Particularly, none of them take into account the higher-order
relationships between nodes, thereby limiting their result
utility. The state-of-the-art approach GRAC [11] extends
graph convolution [17] to hypergraphs, indirectly incorpo-
rating higher-order relationships of nodes and attributes for
clustering. Notwithstanding its enhanced clustering quality,
GRAC runs in O (n?) time as an aftermath from costly graph
convolution and SVD operations, which is prohibitive for
large hypergraphs. To recapitulate, existing AHC approaches
either yield sub-optimal clustering results or incur tremen-
dous computational costs, rendering them impractical to cope
with large attributed hypergraphs with millions of nodes.

Given the above, can we combine and orchestrate hyper-
graph topology and attribute information in an optimized
way for improved clustering quality while achieving high
scalability over large attributed hypergraphs? We offer a pos-
itive answer by presenting AHCKA (Attributed Hypergraph
Clustering via K-nearest neighbor Augmentation), a novel
AHC approach that significantly advances the state of the art
in AHC computation. AHCKA surpasses existing solutions
through several key techniques. The first one is a K -nearest
neighbor (KNN) augmentation scheme, which augments the
original hypergraph structure with a KNN graph containing
additional connections constructed by adjacent nodes with K
highest attribute similarities. This is inspired by a case study
on a real dataset manifesting that incorporating all-pairwise
node connections via attributes or none of them jeopardizes
the empirical clustering quality. Second, AHCKA formulates
the AHC task as anovel optimization problem based on a joint
random walk model that allows for the seamless combina-
tion of high-order relationships from both the hypergraph and
KNN graph. Further, AHCKA converts the original NP-hard
problem into an approximate matrix trace optimization and
harnesses efficient matrix operations to iteratively and greed-
ily search for high-quality solutions. Lastly, AHCKA includes
an effective initialization method that considerably facilitates
the convergence of the optimization process using merely a
handful of iterations. We conduct extensive experiments on
attributed hypergraph data in different domains. Compared
with baselines, AHCKA exhibits superior performance in both
clustering quality and efficiency. For instance, on the Amazon
dataset with 2.27 million nodes, AHCKA gains over 10-fold
speedup and a significant improvement of 4.8% in clustering
accuracy compared to state-of-the-art. Our work AHCKA has
been published in [6].

In addition to attributed hypergraphs, attributed graphs
and attributed multiplex graphs are prevalent in real-world
scenarios, such as social networks [18] and citation networks
[19]. Different from hypergraphs that allow more than two
nodes to form an edge, in a graph, an edge connects exactly
two nodes. A multiplex graph consists of multiple layers of
graphs with a shared set of nodes, and different graph layers
represent node connections from different perspectives or

A versatile framework for attributed network clustering via K-nearest neighbor... 1915

domains, e.g., different types of relationships or relations
formed in different time frames or spaces [18, 19]. Attributed
graph clustering (AGC) is one of the most significant graph
mining problems, extensively studied in the literature [2,
13], with many applications, e.g., community detection in
social networks [20] and functional cartography of metabolic
networks [21]. Furthermore, a rich collection of studies on
attributed multiplex graph clustering (AMGC) also exists in
[22-25], to support important applications, e.g., biological
analysis [19], community detection [18] and social analysis
[26]. A previous general framework [27] relies on expensive
graph convolutions to support various clustering tasks.

In this work, we extend AHCKA for AHC to a versa-
tile framework ANCKA that can efficiently handle attributed
Network clustering tasks (AHC, AGC, and AMGC) to pro-
duce high-quality clusters on large data. ANCKA inherits
the powerful KNN augmentation scheme and the formula-
tion of clustering objective in AHCKA. We further develop
a generalized joint random walk model in ANCKA with
proper transition matrices to support random walks on KNN
augmented hypergraphs, graphs, and multiplex graphs simul-
taneously. Efficient optimization techniques are applied in
ANCKA to retain the advantage of high efficiency for cluster-
ing. Despite the superior efficiency, clustering million-scale
datasets with ANCKA can still take dozens of minutes. More-
over, after observing the limited speedup ratio by increasing
the number of CPU threads used, we pinpoint the efficiency
bottlenecks and design the GPU-accelerated ANCKA-GPU,
to boost the efficiency to another level, especially on large-
scale datasets. ANCKA-GPU consists of GPU-based opti-
mization techniques and KNN construction procedures to
speed up. We have conducted extensive experiments to com-
pare ANCKA with 16 competitors on various attributed graphs
and 16 competitors on attributed multiplex graphs. In all three
tasks, ANCKA obtains superior performance regarding both
clustering quality and efficiency. The GPU implementation
ANCKA-GPU further reduces time costs significantly, often
by an order of magnitude on large datasets.

We summarize the contributions of this work as follows:

— We devise a KNN augmentation scheme that exploits
attributes to augment the original hypergraph structure
in a cost-effective manner.

— We formulate the AHC task as an optimization with the
objective of optimizing a quality measure based on a joint
random walk model over the KNN augmented hyper-
graph.

— We propose a number of techniques for efficient opti-
mization of the objective, including a theoretically-
grounded problem transformation, a greedy iterative
framework, and an effective initialization approach that
drastically reduces the number of iterations till conver-
gence.

— We justify the application of KNN augmentation to var-
ious types of networks, generalize the techniques, and
design a versatile method ANCKA to efficiently perform
AHC, AGC, and AMGC and produce high-quality clus-
ters.

— We develop ANCKA-GPU with customized GPU kernels
to improve the efficiency further with a series of GPU-
based optimizations while maintaining clustering quality.

— The excellent performance of ANCKA is validated by
comprehensive experiments against 19 AHC competi-
tors, 16 AGC competitors, and 16 AMGC competitors,
over real-world datasets.

The remainder of this paper is structured as follows: Sect. 2
introduces the preliminaries of AHC, AGC, and AMGC. Sec-
tion 3 outlines the KNN augmentation strategy and random
walk scheme for AHC, along with the AHC clustering objec-
tive. Section4 offers a theoretical analysis of the proposed
AHC method AHCKA, while Sect.5 details the algorith-
mic procedures of AHCKA. Section6 presents the versatile
ANCKA framework for AHC, AGC, and AMGC. Section7
discusses GPU-based techniques for enhancing clustering
efficiency in ANCKA-GPU. Section8 provides a compre-
hensive experimental evaluation. Section9 reviews relevant
literature, and Sect. 10 concludes the paper.

2 Preliminaries

Attributed Network. Let AV = (V, £, X) be an attributed
network, where V is the node set with cardinality |V| = n,
€ is the edge (or hyperedge) set with cardinality || = m,
and X € R"*? represents a node attribute matrix. A node
v; € V has degree §(v;), which is the number of edges (or
hyperedges) incident to v;. Each node v; in V is associated
with a d-dimensional attribute vector, denoted as X[], i.e.,
the j-th row of the node attribute matrix X. We consider
three types of attributed networks N, including attributed
hypergraphs H, attributed graphs G, and attributed multiplex
graphs Gy, characterized by different nature of £.
Attributed Hypergraph is denoted by H = (V, £, X). £ is
the set of m hyperedges where each ¢; € £ is a subset of V
containing at least two nodes. A hyperedge e; is said to be
incident with a node v; if v; € ¢;. We denote by H € R"*"
the incidence matrix of hypergraph H, where each entry
H[i, j] = 1if v; € ¢;, otherwise H[7, j] = 0. Let diagonal
matrices Dy € R"*" and Dg € R™*™ represent the degree
matrix and hyperedge-size matrix of H, where the diagonal
entry Dy[j, j] = 8(v;) forv; € V and Dg[i, i] = |e;] for
ei € &, respectively. Figure 1 shows an attributed hypergraph
‘H with 8 nodes and 5 hyperedges, where each node has an
attribute vector and hyperedges e, e> contain 4 and 3 nodes,
i.e., {v1, v2, v4, v5} and {v1, v3, v4}, respectively.

@ Springer

1916

Y.Lietal

Cy = {v1, 75, V3,04, U5}

C; = {ve, 7, Vg}

f(wz,v3) =0

f(vz,v7) = 0.41

fz,v1) = f(v2,v4) = 0.5
f(va,v5) =05

Fig.1 An Example Attributed Hypergraph

Attributed Graphisdenotedby G = (V, &, X), where every
edge in £ connects exactly two nodes. A graph G can be undi-
rected or directed. An undirected edge can be viewed as two
directed edges of the same node pair in reversed directions.
Different from a hypergraph incident matrix between nodes
and hyperedges, graph adjacency matrix A € R"*" encodes
the structure of G, where entry A[i, j]is 1 if there is an edge
from node v; tonode v}, i.e., (v;, v;) € g, or 0 if otherwise.
Let D € R"*" be the diagonal node degree matrix of §.
Attributed Multiplex Graph is Gy, = (V, &1, ..., &L, X),
consisting of L graph layers. Every [-th layer has its own
edge set £, and can be viewed as an attributed graph G; with
&1, adjacency matrix A;, and diagonal node degree matrix
D;.

The Clustering Problem. Given an attributed network A/
that can be H, G, or Gy, we study the clustering problem
that encompasses attributed hypergraph clustering (AHC),
attributed graph clustering (AGC), and attributed multiplex
graph clustering (AMGC). Given a specified number k of
clusters and an attributed network A/, the clustering task is to
divide the node set V into & disjoint subsets {Cy, . . ., Cx} such
that Ule C; =V and the following properties are satisfied:

1. Nodes within the same cluster are closely connected to
each other in the network structure, while nodes in differ-
ent clusters are far apart (structure closeness);

2. Nodes in the same cluster have similar attribute values,
while nodes in different clusters vary significantly in
attribute values (attribute homogeneity).

For instance, when the input network A is the attributed
hypergraph H in Fig. 1, H is partitioned into two clusters C;
and Cp. We can observe that nodes v;-vs in C; share similar
attributes and are closely connected to each other, whereas
nodes vg, v7 and vg form a cluster C; that is separated from
C; with a paucity of connections and distinct attributes.

3 Attributed hypergraph clustering

As mentioned, we first focus on attributed hypergraph clus-
tering (AHC) and present our method AHCKA [6] in Sects. 3,

@ Springer

4, and 5. Specifically, we will devise a random walk scheme
on a K-nearest neighbor augmented hypergraph and present
the AHC objective in Sect.3, conduct theoretical analysis
to support the design of AHCKA in Sect.4, and develop the
algorithmic details of AHCKA in Sect. 5.

For the problem of AHC, a central challenge is how
to simultaneously exploit both hypergraph structure and
attribute information for improved clustering quality. In lit-
erature, it is a natural and effective approach to augment
network structure with attribute similarity strengths [13, 28].
However, since a hypergraph yields different topological
characteristics as illustrated in Fig. 1, we argue that attribute
augmentation should be conducted in a controlable ways;
otherwise, attributes may hamper, instead of improving, clus-
tering quality, as shown in experiments (Sect. 8.3).

Therefore, in this section, we first develop a carefully-
crafted augmentation strategy to augment attributes of nodes
with hypergraph topology, which will benefit the cluster-
ing quality shown later on. As this augmentation strategy is
orthogonal to the topological nature of hypergraph, its appli-
cation to other types of networks, such as attributed graphs
and attributed multiplex graphs, will be explained shortly
in Sect.6. Then we formulate Attributed Hypergraph Clus-
tering as Augmented Hypergraph Clustering, with the same
abbreviation AHC. The augmented hypergraph involves both
hypergraph connections as well as augmented attribute con-
nections. It is challenging to define a unified way to preserve
the high-order information of both sides. To tackle this, we
design the («, B8, y)-random walk to uniformly model the
node relationships (in terms of both the structural close-
ness and attribute similarity) in the augmented hypergraphs.
Based thereon, we define a multi-hop conductance (MHC),
and formulate the objective of AHC as optimizing the con-
ductance.

3.1 KNN augmentation

Although the vanilla augmentation strategy improves the
clustering quality in attributed graphs [13, 28], to our knowl-
edge, its effectiveness over attributed hypergraphs is as of yet
under-explored. Moreover, it requires constructing a densely
connected graph, causing severe efficiency issues on large
graphs. To this end, we first demystify the attribute homo-
geneity of nodes within the same cluster through an empirical
study on a real-world attributed hypergraph, i.e., the Cora-
CA dataset! containing 2.7k academic papers in 7 research
fields (i.e., 7 clusters). Every node has an attribute vector
indicating the presence of words in the corresponding pub-
lication. First, we use f(v;,v;) = cosine(X[i], X[j]) to
denote the attribute similarity of nodes v;, v;. We refer to
v; as the K-th nearest neighbor of v; if f(v;, v;) is the K-

1 https://people.cs.umass.edu/~mccallum/data.html.

https://people.cs.umass.edu/~mccallum/data.html

A versatile framework for attributed network clustering via K-nearest neighbor... 1917

0.8
— AAS
0.6 1 —— RCC
0.4 4
0.2 *.LQ pig
0 T T T — K

T
1 200 400 600 800 1,000
Fig.2 AAS and RCC on Cora-CA (best viewed in color)

thlargest Vv; € V \ v;. Figure 2 plots the averaged attribute
similarity (AAS for short) f(v;, v;) of any randomly picked
node v; and its K-th nearest neighbor v;, and their ratio
of co-occurring in the same cluster (RCC for short), when
varying K from 1 to 1000. The AAS and RCC results from
this real-world example demonstrate that two nodes with
higher attribute similarity are also more likely to appear in
the same cluster. Intuitively, applying the attribute-based aug-
mentation strategy to hypergraphs can enhance the clustering
results.

However, excessively augmenting the hypergraph with
attribute information, namely, building too many connec-
tions between nodes according to attributes, will introduce
distortion and adversely impact the clustering performance.
To illustrate this, consider the example in Fig. 1, where nodes
v, v3 are in the same cluster as they share multiple common
neighbors while vy, v7 are not. If we were to assign a cluster to
node v; as per the additional connections created by attribute
similarities, it is more likely to be v,, v7 rather than vy, v3 in
the same cluster given f(vp, v7) = 0.41 > f(v2,v3) =0,
which is counter-intuitive.

Therefore, unlike the vanilla augmentation strategy
employed in prior works, we propose a KNN augmenta-
tion strategy. That is, given the input attributed hypergraph
H = (V,&,X) and an integer K, we augment H with an
undirected KNN graph Gx = (V, £x). More specifically,
for each node v; € V, we identify K nodes in V' (exclud-
ing v; itself) that are most similar to v; in terms of attribute
similarity computed based on a similarity function f (-, -) as
v;’s neighbors in Gk, denoted by Nk (v;). In other words, for
every two nodes v;, v; (v; € Nk (v;)), we construct an edge
(v, vj) with weight f(X[i], X[j]) in k. Accordingly, the
adjacency matrix Ag of Gk is defined as follows:

0, ifv; ¢N]((U_,‘) and Vj ¢NK(U,'),
2. f(X[i1. X[jD, ifvi € Ng(v;) andv; € Ng(vp), (1)
FXIiTL X)),

Axli, jl=
otherwise.

Thus, we obtain an augmented hypergraph 74 containing
the hypergraph Ho = (V,) and the KNN graph Gx =
(V, €k). The reasons that we only consider K nearest neigh-
bors for augmented hypergraph construction are three-fold.
In the first place, the case study in Fig.2 suggests that there
is no significant difference between the RCC of two random

nodes (depicted by the gray dashed line) and that of two
nodes v;, v; such that v; € Ng(v;), when K is beyond a
number (roughly 500 in Fig. 2). Therefore, such connections
can be overlooked without impeding the clustering quality.
Secondly, if we revisit the example in Fig. 1 and apply the
KNN strategy (K = 3) here, we can exclude the connection
between vy and v7 from Gk since f(vp, v1) = f(v2, v4) =
f(a,v5) = 0.5 > f(v2,v7) = 0.41. The distortion issue
mentioned previously is therefore resolved. In comparison
with the densely connected graph that encodes all attribute
similarities (with up to 0(n? edges in the worst case), Gx
can be efficiently constructed by utilizing well-established
approximate nearest neighbor techniques with O(nlogn)
complexity [29, 30].

The range of the KNN neighborhood is determined by
parameter K. While a larger K allows the KNN graph to
include more attribute similarity relations, this also leads to a
higher proportion of unwanted inter-cluster edges in the KNN
graph as evidenced by the lower RCC in Fig. 2. Meanwhile,
K cannot be too small (e.g., 5), or it will fail to utilize highly
similar nodes that usually have high RCC. The trade-off of
choosing K is evaluated in Sect. 8.3.

Now, the question lies in how to model the relationships of
nodes in V of the augmented graph H 4, which is a linchpin
to AHC. In the following section, we present a joint random
walk model that enables us to capture the multi-hop proxim-
ities of nodes over H o and Gk jointly.

3.2 (a, B, Y)-random walk

Random walk with restart [31] (RWR) is one of the most
common and effective models for capturing the multi-hop
relationships between nodes in a graph [32], and is widely
used in many tasks such as ranking [31, 33], recommendation
[34], and clustering [35]. Given a graph G, a source node u
and a stopping probability « (typically « = 0.2), ateach step,
an RWR originating from u either stops at the current node
with probability «, or randomly picks an out-neighbor v of
the current node according to the weight of edge («, v) and
navigates to v with the remaining 1 — « probability. It follows
that RWR score (a.k.a. personalized PageRank [36]) of any
node pair (u, v) represents the probability that an RWR from
u ends at node v. Intuitively, two nodes with dense (one-hop
or multi-hop) connections should have a high RWR score.

Nevertheless, RWR is designed for general graphs, and
thus cannot be directly applied to our augmented hypergraph
‘H 4 as it consists of a hypergraph Ho and a general graph
Gk . We devise a joint random walk scheme, named («, 8, y)-
random walk, which conducts the RWR process over H o and
Gk jointly to seamlessly integrate topological proximity over
both networks. Definition 1 states the formal definition of the
(o, B, y)-random walk process.

@ Springer

1918

Y.Lietal

Definition 1 Given an augmented hypergraph H4 = (Ho,
Gk) and a source node u, an («, 8, y)-random walk W start-
ing from u conducts y steps and at each step proceeds as
follows.

— With probability «, W terminates at the current node v;;
— with the other 1 — « probability, W navigates to a node
v; picked by the following rules:

— with probability g;, W draws an out-neighbor v; of

the current node v; in Gg according to probability
Akli.j] .
D yeng op Ak
— or with probability 1 — g;, W first draws an hyperedge
e; incident to v; in H ¢, and then draws node v; from

e; uniformly at random.

Each node v; is associated with a parameter ; (see Eq. (2))
used to control the joint navigation between hypergraph Ho
and KNN Gk . The larger g; is, the more likely that the random
walk jumps to the neighbors of v; in KNN Gk .

0, if X[i] is a zero vector;
Bi=11, else if §(v;) = 0; 2)
B, otherwise.

In general, we set §; to 8 € [0, 1], which is a user-specified
parameter. In particular cases, when node v; ’s attribute vector
X[i]is a zero vector, i.e., v; has no useful information in the
KNN Gk, we set 8; to 0. Conversely, B; is configured as 1 if
v; is connected to none of the hyperedges, i.e., § (v;) = 0. Let
s(v;, v;) denote the probability of an (o, B, y)-random walk
from v; stopping at v; in the end. Based on Definition 1, we
can derive the following formula for s (v;, v;):

s(i,vj) = Sli, jl = o 3_o(1 —)P, jl, 3)
where P is a transition matrix defined by
P=(I-B)-D,'H'D;'H+BD;'Ag,)

B = diag(pB1, ..., Bn) is a diagonal matrix containing B;
parameters, and D is the diagonal degree matrix of Gg.
P'[i, j]is the probability that a £-hop walk from v; terminates
atv;.

3.3 Objective function

In what follows, we formally define the objective function of
AHC. Intuitively, a high-quality cluster C in the augmented
hypergraph H 4 should be both internally cohesive and well
disconnected from the remainder of the graph with the con-
sideration of multi-hop connections. Hence, if we simulate
an («, B, y)-random walk W from any node in C, W should

@ Springer

have a low probability of escaping from C, i.e., ending at any
node outside C. We refer to this escaping probability ¢ (C) as
the multi-hop conductance (MHC) of C, defined in Eq. (5).

$(C) = 1 Xviec Xov; ¢ S Wi v)) ®)

Since a low MHC ¢ (C) reflects a high coherence of clus-
ter C, we then formulate AHC as an optimization problem
of finding k clusters {Cj,...,Cx} such that their MHC
@ {Cy,...,Ck}) (Eq. (6)) is minimized.

1 1
SGh=7) T > sivp) (6)

vierj¢C

D({Cy, ..

Directly minimizing Eq. (6) requires computing s (v;, v;)
(Eg. (3)) of every two nodes v; € C, v; € V\C,
YC e {C1,Cs, ---,Cy}, which is prohibitively expensive
due to intractable computation time (i.e., O (n?)) and stor-
age space (i.e., O(n?)). In addition, the minimization of
@ ({Cy, ..., Cx}) is an NP-complete combinatorial optimiza-
tion problem [37], rendering the exact solution unattainable
on large graphs.

4 Theoretical analysis for AHCKA

This section presents the top-level idea of our proposed
solution, AHCKA, to AHC computation, and explains the intu-
itions behind it. At a high level, AHCKA first transforms the
objective of AHC in Eq. (6) to a matrix trace maximization
problem, and then derives an approximate solution via a top-
k eigendecomposition. Note that for any k non-overlapping
clusters {Cy, Ca, - - - , Cx} on ‘H satisfying Ui'(:] Ci =V, they
can be represented by a binary matrix Y € {0, 1}"**, where
for each node v; and cluster C;

1, v; GC]'

Y[i. j]=
. J] 0, v EV\C]'.

(N

We refer to Y as a binary cluster membership (BCM) matrix
of H and we use

h(Y)=(X'Y) Y =Y (8)
to stand for the L, normalization of Y. Particularly, Y
has orthonormal columns, i.e., Y'Y = I, where I is a
k x k identity matrix. Given k non-overlapping clusters
{C1,Ca, - - -, Cx} and their corresponding BCM matrix Y, it
is trivial to show

A versatile framework for attributed network clustering via K-nearest neighbor... 1919

where ¥ (Y) is defined as follows:
1 AT =
v(Y) = Ztrace(Y SY). (10)

Equation (9) suggests that the minimization of MHC @&
({Cy, ..., Cy}) is equivalent to finding a BCM matrix Y such
that the trace of matrix Y'SY is maximized. Due to its NP-
completeness, instead of computing the exact solution, we
utilize a two-phase strategy to derive an approximate solu-
tion as follows.

If we relax the binary constraint on Y, the following lemma
establishes an upper bound ¥, for ¥ (Y).

Lemma1 Let oy > 0y > --- > oy be the k largest singular
values of matrix S in Eq. (3). Given any matrix W € Rk
such that h(W) satisfies k(W) T - h(W) = Ik, then W (W) <
% Zf:l 0 = I/Ia«

Lemma 1 implies that if we can first find a fractional matrix
W such that ¥ (W) is close to ¥, a high-quality BCM matrix
Y can be converted from W by leveraging algorithms such
as k-Means [38]. Although we can obtain such a fractional
matrix W by applying trace maximization techniques [39] to
Eq. (10), it still remains tenaciously challenging to compute
S. (All proofs are in the technical report [40].)

Lemma 2 Let the columns of Q € R"*¥ be the second to
(k 4 1)-th leading eigenvectors of P (Eq. (4)). Then, we have
Q) = %Zfizl Ai = Y, where Ay > -+ > A > Apyy
are the second to (k + 1)-th leading eigenvalues of S, sorted
by algebraic value in descending order.

We exclude the first eigenvector JLE -1 of P as itis useless
for clustering. By virtue of our analysis in Lemma 2, the
second to (k + 1)-th leading eigenvectors Q of P (see Eq.
(4)) can be regarded as a rough W since ¥ (Q) = ¥, < ¥,
and the gap between ¥, and V¥, is insignificant in practice.
For instance, on the Cora-CA dataset, we can obtain v, =
0.668 and ¥, = 0.596 (i.e., P = 1 — Y5 = 0.332, @, =
1 — ¥, = 0.404), both of which are better than ¥ (Y*) =
0.533 (i.e., @* = 1 — ¥ (Y*) = 0.467) of the ground-truth
BCM matrix Y*. Consequently, using the second to (k + 1)-
th leading eigenvectors Q of P as the fractional solution W
is sufficient to derive a favorable BCM matrix. Moreover, in
doing so, we can avoid the tremendous overhead incurred by
the materialization of S.

To summarize, AHCKA adopts a two-phase strategy to
obtain an approximate solution to the AHC problem. First,
AHCKA computes the second to (k + 1)-th leading eigenvec-
tors Q of P. After that, AHCKA transforms Q into a BCM
matrix Y through a discretization approach [41] that mini-
mizes the difference between Q and Y. The rationale is that
v(Q) = ¥(QR) if Ris a k x k orthogonal matrix, ensur-
ing RTR = I;. Accordingly, we can derive a BCM matrix

Refine eigenvectors

.—==< BCM .- }_ _ \Elge?tvectoEs_ ——- BCM . -- :|_ .
| Initial) Y {Orlhogonal ' QY ’D‘ . \l YO Eval MHC\'
1
| Clusters : —> ! lteration : —> ,\ lscretlzell —> I‘ valuate !
N ’ \ P ,

Fig.3 Overview of AHCKA

Y = QR by minimizing the Frobenius norm ||Q — QR||F
with a binary constraint exerted on QR. Note that we do
not adopt k-Means over Q to get the BCM matrix Y as it
deviates from the objective in Eq. (10), and thus, produces
sub-par result quality, as revealed by experiments (Table 14).

Nevertheless, to realize the above idea, there still remain
two crucial technical issues to be addressed:

1. The brute-force computation of Q is time-consuming as
it requires numerous iterations and the construction of P.

2. In practice, directly utilizing the exact or near-exact Q
might incur overfitting towards the objective instead of
ground-truth clusters, and hence, lead to sub-optimal clus-
tering quality. It is challenging to derive a practically
effective and robust BCM matrix Y from Q.

5 The AHCKA algorithm

To circumvent the above challenges, AHCKA integrates the
aforementioned two-phase scheme into an iterative frame-
work, which enables us to approximate the second to (k +
1)-th leading eigenvectors Q without constructing P explic-
itly, and greedily search the BCM matrix Y with the best
MHC. Figure 3 sketches the main ingredients and algorithmic
procedure of AHCKA. More specifically, AHCKA employs
orthogonal iterations [42] to approximate the second to
(k 4 1)-th leading eigenvectors Q of P. During the course,
AHCKA starts with an initial BCM matrix, followed by an
orthogonal iteration to compute an approximate Q and an
updated BCM matrix Y from the Q through Discretize
algorithm [41]. Afterward, AHCKA inspects if Q reaches con-
vergence and computes the MHC with the current BCM
matrix Y via CalMHC algorithm (Algorithm 2). If Q con-
verges (i.e., the BCM remains nearly stationary) or the early
termination condition is satisfied (i.e., the MHC of current Y
is satisfying), AHCKA terminates. Otherwise, AHCKA enters
into the next orthogonal iteration with the updated Q and Y.

In what follows, a detailed description of AHCKA is given
in Sect.5.1. Section5.2 introduces an effective approach
InitBCM for initializing the BCM matrix Y, which dras-
tically curtails the number of iterations needed and signif-
icantly boosts the computation efficiency of AHCKA. The
complexity of the complete algorithm is analyzed in Sect. 5.3.

@ Springer

1920

Y.Lietal

Algorithm 1: AHCKA

Algorithm 2: CalMHC

Input: Hypergraph 7, KNN transition matrix Pg, the number of
clusters k, diagonal matrix B, constant «, error threshold
€0, the numbers of iterations 7, y, an integer 7, and an
initial BCM matrix Y©.

Output: BCM matrix Y

1Y < YO YO py©),
0 1) .
ZQ()(_W.“Y()’
3fort < 1,2,---,T,do
Compute Z) according to Eq. (12);
QW R® « or(ZM) ;
if z mod © = 0 then
Y®" < Discretize(Q®);
& (YD) < caimuc(Y®, Py, Py, Pk, B, v, a);
if ®(Y®) < d(Y) thenY « YO
10 if Eq. (15) or Eq. (16) holds then break;

e ® N !

11 return Y;

5.1 Main algorithm

The pseudo-code of AHCKA is presented in Algorithm 1,
which takes as input an attributed hypergraph H, transition
matrix of attribute KNN graph P, the number & of clusters, a
diagonal matrix B containing n parameters defined in Eq. (2),
the random walk stopping probability «, an error threshold
€@, the numbers y, T, of iterations, an integer 7, and an
initial BCM matrix Y©. AHCKA starts by computing the
normalized BCM matrix Y@ = 1 (Y®) (Eq. (8)) and setting
the initial X 4+ 1 leading eigenvectors Q@ as ﬁ . 1|?(O)
(Lines 1-2), where | represents the horizontal concatenation
and \/LE - 1 is the first leading eigenvector of P since it is
a stochastic matrix. After that, AHCKA enters into at most
T, orthogonal iterations for computing the k + 1 leading
eigenvectors Q and the BCM matrix Y (Lines 3—10). At step
t, orthogonal iteration updates the approximate k + 1 leading
eigenvectors of P as Q(” by the formula below (Lines 4-5):

Q(Z)R(l) =70 — PQ(I_I), (11)

where Q) is obtained by a QR decomposition over Z®) . If 7 is
sufficiently large, Q) will converge to the exact k + 1 leading
eigenvectors of P [42]. Note that the direct computation of
Z) = PQ'~! requires constructing P explicitly as per Eq.
(4), which incurs an exorbitant amount of time and space (up
to O(n?) in the worst case). To mitigate this, we decouple
and reorder the matrix multiplication as in Eq. (12).

20 =A-B) Py (PrQ"") +BPc - Q. (12)
where Py = D,'H", P =D'H (13)

Py and Pg are two sparse matrices of Hand Px = D}IAK is
the sparse transition matrix of the KNN graph Gg defined in

@ Springer

Input: YO Py, Pr,Pg,B, v, «
Output: MHC ¢,

1 YO h(YO); FO « YO,

2 ford < 1,2,...y do

3 L Compute F® according to Eq. (14);

4 ¢ < 1= race YOTFD);
5 return ¢ ;

Sect.3.1. Note that all of them can be efficiently constructed
in the preprocessing stage. As such, we eliminate the need to
materialize P and reduce the time complexity of computing
Z9 to O (nk - (5 + K)).

After obtaining Q), AHCKA converts Q) into a new
BCM matrix Y® (Lines 6-7) using the Discretize algo-
rithm [41]. Notice that we conduct this conversion every other
T iterations in order to avert unnecessary operations as the
difference between Y and Y'Y~V is often insignificant.

Next, at Line 8, AHCKA invokes Cal1MHC (i.e., Algorithm
2) with a BCM matrix Y other parameters including Py,
Pg, Pk, B, o, and the number of iterations y as input to cal-
culate the MHC ¢, of the current BCM matrix Y®. To avoid
the materialization of S required in Egs. (9) and (10), Algo-
rithm 2 computes ¢; in an iterative manner by reordering the
matrix multiplications (Lines 2-3 in Algorithm 2). More pre-
cisely, at the £-th iteration, it obtains the intermediate result
F® via the following equation:

FO =1 —a)(@d-B) Py - (PF¢ D)+ BPx -F¢-D) + FO. (14)

F© is initialized as Line 1 in Algorithm 2. It can be verified
that ¢, = 1 — %trace(?(t)TF(V)) (Line 4 in Algorithm 2).
Once the convergence criterion of QW (Eq. (15)) is sat-
isfied, or the early termination condition (Eq. (16)) holds,
AHCKA ceases the iterative process and returns the BCM
matrix Y with the lowest MHC (Lines 9-11 in Algorithm 1).

1Q® — Q" V|| < ¢g (15)
¢t—21 < ¢t—r < ¢t (16)

Otherwise, AHCKA proceeds to the next orthogonal iteration.
The rationale for the early termination condition in Eq. (16)
is that, in practice, successive increases in ¢, indicate that
clusters with desirable MHC objective have been attained.

5.2 Greedy initialization of BCM

Akin to many optimization problems, AHCKA requires many
iterations to achieve convergence when Y(© is randomly
initialized. To tackle this issue, we propose a greedy initial-
ization technique, InitBCM, whereby we can immediately

A versatile framework for attributed network clustering via K-nearest neighbor... 1921

Algorithm 3: InitBCM

Input: Hypergraph H, matrices Py, Pf, integer k, constant «,
the number of iterations 7;.
Output: An initial BCM matrix Y@,
1 V. < The sorted indices of nodes with k largest degrees;
2 Initialize Zy < 0%>";
3for j < 1tokdo Zolj,V:[jll < 1;
4 Tnitialize T « aZ;
s fort < 1,2,...7; do
6 L Compute n? according to Eq. (17);

7 for v; € V do
8 Calculate g(v;) according to Eq. (18);
YU, gwp] < I;

10 return YO ;

9

gain a passable BCM matrix Y(?) and expedite the conver-
gence, as demonstrated by our experiments in Sect. 8.4.

The rationale of InitBCMis that most nodes tend to clus-
ter together around a number of center nodes [43]. Therefore,
we can first pick a set V. of top influential nodes w.r.t. the
whole hypergraph, and calculate the multi-hop proximities
(i.e., RWR scores) of each node to the influential nodes V.
(i.e., centers). Then, the cluster center of each node can be
determined by its proximity to nodes in V. accordingly.

Algorithm 3 displays the pseudo-code of InitBCM.
Given hypergraph H, and transition matrices Py, Pg defined
in Eq. (13), the number k of clusters, random walk stop-
ping probability «, and the number of iterations 7;, as input,
InitBCM begins by initializing an ordered set V), consisting
of the k nodes with k largest degrees in H (sorted by their
indices), which later serves as the cluster centers (Line 1).
Then, a k x n matrix Zg is created, where for each integer
jell,kl,Zolj, V:[j]]is setto 1 and O otherwise and V[]
denotes the node index of the j-th node in V. (Lines 2-3).
Next, InitBCM launches 7; iterations to calculate the RWR
scores of all nodes w.r.t the k nodes in), (Lines 5-6). Specif-
ically, at #-th iteration, we compute approximate RWR IT E.t)
(Line 6):

nY = (1 —a) (AP Py + Mo, (17)

where ITo) = aZg (Line 4). Note that we reorder the matrix
multiplications as in Eq. (17) so as to bypass the material-
ization of the n x n matrix PyPg. After obtaining IT ET"),
InitBCM assigns the node V.[g(v;)] as the cluster center
to each node v; in H as per Eq. (18) (Lines 7-9).

g(vj) = arg max M1, j, (18)

meaning that we pick a cluster center from)V, such that its
RWR score HETi) [/, jlw.r.tv; is the highest. Finally, ann x k

binary matrix Y@ is constructed by setting Y[, g(v)] to
1 for v; € V and returned as the initial BCM matrix.

5.3 Complexity

One of the main computational costs of AHCKA stems from
the sparse matrix multiplications, i.e., Line 4 in Algorithm 1,
Line 3 in Algorithm 2, and Line 6 in Algorithm 3. We first
consider Line 4 in Algorithm 1, i.e., Eq. (12). Since QU1 is
ann X (k + 1) matrix and the numbers of non-zero entries in
sparse matrices Py, Pg, and P are 18, n8, and nK, respec-
tively, its complexity is O ((n8 +nK) - k) [44]. Analogously,
according to Egs. (14), and (17), both the time costs of Line
3 in Algorithm 2 and Line 6 in Algorithm 3 are bounded by
O (n8k). Recall that these three operations are conducted up
to T,, v, and 7; times in Algorithms 1, 2, and 3, respectively.
Therefore, the total time cost of sparse matrix multiplications
is O(kné - (T, + T; + y) + knKT,). Moreover, in Algo-
rithm 1, the QR decomposition at Line 5 takes O(kzn) time
and Discretize [41] runs in O (k*n + k%) time. Overall,
the time complexity of AHCKA is O (knd - (T, + T; + y) +
knK T,+k*n), which equals O (n8) when T,,, T;, y, k,and K
are regarded as constants. The space complexity of AHCKA
is O(n - (6 + K + k)) as all matrices are in sparse form.

6 The ANCKA framework

In this section, we generalize AHCKA that is for AHC to a
versatile framework ANCKA to process all of AHC, AGC, and
AMGC, formulated in Sect. 2. ANCKA aims to efficiently find
high-quality clusters on various types of network N

Asmentioned, the proposed KNN augmentation in Sect. 3.1
is orthogonal to the high-order nature of hypergraph, and
therefore, we can apply the KNN augmentation to input
attributed network A that can be an attributed hypergraph
'H, graph G, and multiplex graph Gy.

Recall that, in Fig.2, we have empirically shown that
nodes with higher attribute similarity are more likely to
appear in the same cluster of a hypergraph . This also holds
for attributed graphs and attributed multiplex graphs. Fig-
ures4 and 5 illustrate the AAS and RCC on the attributed
graph Citeseer-DG and the attributed multiplex graph ACM,
with binary keyword vectors as node attributes. On both
datasets, nodes with higher attribute similarity (i.e., higher
AAS with smaller K') are more likely to be in the same clus-
ter (i.e., higher RCC). Moreover, above a certain K value,
there is no significant difference between the RCC of two
random nodes and that of two nodes v; and v; such that
v; is the K-nearest neighbor of v;. Based on these observa-
tions, it is viable to extend KNN augmentation in Sect. 3.1 to
an attributed network N with n nodes and attribute matrix

@ Springer

Y.Lietal

1922
0.8
—— AAS
0.6 ——RCC
0.4

02 l\]
K

i 260 460 6(;0 860 1,(;00
Fig.4 AAS and RCC on Citeseer-DG

0.9

— AAS

0.7

0.5

0.3

T T T T T — K
1 200 400 600 800 1,000

Fig.5 AAS and RCC on ACM

X € R"*4 by building a KNN augmentation graph Gg via
Eq. (1).

Then we obtain an augmented network N4 with topology
No and KNN graph Gk, where Ny is (V, £) when N is
an attributed hypergraph H or (V,) for graph G, and N
is(V, &1, ...,EL) when N is an attributed multiplex graph
Gu.

6.1 Generalized (a, B, y)-random walk

For the augmented network Ny = (Np, Gk), define Py
and Px as the random walk transition matrices of Ny and
Gk respectively. The generalized («, 8, y)-random walk on
Ny is an RWR process over the augmented network Ny,
similar to the case of attributed hypergraphs in AHCKA. The
difference from Definition 1 is that when the random walk
navigates to another node, with probability 1 — B;, an out-
neighbor is drawn from the distribution of Py instead of
incident hyperedges. This generalized random walk can also
be characterized by the probability in Eq. (3), with transition
matrix P given as follows.

P=I-B)-Py+B-Pg. (19)

We now formulate Py for different types of networks,
including attributed hypergraphs as one special case.

Attributed Hypergraph. H When Ay is a hypergraph with
hyperedge incidence matrix H, based on Eq. (4), Py is shown
below. Py considers the transition probability Py from a
node to its incident hyperedges and the transition probability
Pr from each hyperedge to nodes connected by the hyper-
edge.

Py = PyPg, where Py = D,'H" and Pz = D;'H. (20)

@ Springer

Attributed Graph G. When Ny is an undirected graph, we
can acquire the transition matrix Py in Eq. (21). If Ny is
directed, we introduce a reversed edge for each edge and
consider bidirectional connections between nodes to get A,
D, and subsequently Py.

Py =D 'A, 1)

where A is the adjacency matrix and D is the degree matrix.

Attributed Multiplex Graph. G3; When Ny is a multiplex
graph comprising L layers with the same node set V, the [-th
layer has its own edge set & representing a unique type of
connections. The overall goal of the clustering task is to make
cluster assignments that capture the collective structure of the
multiplex graph, transcending the differences across layers.
To achieve this, intuitively, we treat every layer equally and
compute Py as in Eq. (22), while layer weighting is left as
future work [27]. Given the degree matrix D; and adjacency
matrix A; of every [-th layer, we get the layer’s random walk
transition matrix DZ_IAI, and then compute Py of the multi-
plex graph by averaging the layer-specific transition matrices.
Consequently, from the current node v, a random walk has
1/L probability of selecting each layer G;, and then within
this chosen layer, the next node to visit is picked uniformly
at random from the out-neighbors of v in G;.

L
1 —1
Py = l}_lﬁ DA, (22)

where D; and A; are the degree matrix and adjacency matrix
of the [-th layer.

6.2 ANCKA algorithm

With the random walk transition matrix P formulated above
for various types of attributed networks N, Eq. (3) can be
reused to calculate S[i, j], the probability of a generalized
(o, B, y)-random walk from v; stopping at v; in the end.
The objective function in Sect. 3.3 is naturally extended to
ANCKA. Consequently, our theoretical analysis in Sect.4
remains valid for ANCKA over attributed networks that can
be hypergraphs, graphs, and multiplex graphs.

The pseudo-code of ANCKA is outlined in Algorithm
4. At Line 1, it obtains transition matrix Pgx for attribute
KNN augmentation. Then as a framework supporting various
attributed networks, ANCKA is a generalization of Algo-
rithms 1-3 with transition matrix Py computed depending
on the network type at Line 2. Py is then used throughout the
algorithm as a part of the generalized (o, B, y)-random walk.
The greedy initialization of clusters in Lines 3—11 resembles
the procedure in InitBCM with the corresponding Py for
RWR simulation. Since ANCKA needs to pick k nodes in A/

A versatile framework for attributed network clustering via K-nearest neighbor... 1923

Algorithm 4: ANCKA

Input: Attributed network A with KNN augmented graph G,
the number of clusters k, diagonal matrix B, constant ¢,
error threshold €, the numbers of iterations 7, y, T;, an
integer t.

Output: BCM matrix Y

1 Py < DEIAK;

2 Get Py by Egs. (20), (21), or (22), depending on the type of N;
3 V. < sorted indices of k nodes in N with k largest degrees;
4 Initialize Zo <« 0F*7;

s for j < 1tokdo Zol[j,V:[jll < 1;

6 Initialize Hﬁ‘” <~ aZy;

7fort < 1,2,...7T; do

s | 1Y« a-on! ey + 0

9 for v; € Vdo

w | g(v)) < argmaxi << ATV 1

n | YO[gwp] < I

2Y <« YO YO phyO),
() 1 1170 .

13 QY « 7 1YW

14 fort < 1,2,---,T,do

15 | ZO <« A —-B)Py-QU"D £ BPg - QU~D;
16 | QW,R® « Qr(Z");

17 if t mod © = 0 then

18 Y® «— Discretize(Q®);

19 YO — n(Y®); FO oY,

20 for¢ < 1,2,...y do

21 L Compute F® according to Eq. (23)
2 O(Y?V) < 1 - traceYOTFD);

23 if ®(Y®) < d(Y) thenY « YO

24 | if Eq. (15) or Eq. (16) holds then break;
25 return Y;

with the largest degrees as tentative cluster centers at Line 3
when MV is an attributed multiplex graph, we rank the nodes
by their summed degrees across all layers.

Lines 12-24 describe the main clustering process of
ANCKA, which extends the hypergraph-specific Algorithms
1 and 2 with modifications to support attributed graphs and
multiplex graphs. First, in orthogonal iterations, calculating
Z" is dependent on the type of /. Second, the MHC objec-
tive for general networks stems from the analysis in Sect. 4,
while the formulation with Py is slightly different. In partic-
ular, to get MHC ¢, without materializing the dense matrix S
in Eq. (10) that is expensive to compute, we iteratively obtain
¢, via the intermediate matrix F©) in Eq. (23) at Line 21.

FO = (1 —a)((I - B)PyF D + BPxFCD) 4 FO
(23)

where Py is Egs. (20), (21), or (22), depending on the type of
N Finally, ANCKA adopts the early stopping criteria in Line
24 and returns the clusters with the lowest MHC obtained.

Complexity. When N is an attributed graph, constructing
transition matrix Py takes O (n8) time, where § is the average
node degree. For a multiplex network A/ with L layers, the
previous results are still valid when L is regarded as constant,
as Py is aggregated from the transition matrices of all simple
graph layers. Given that the number of nonzero entries in Py
is subject to O (n8), ANCKA (Algorithm 4) has the same com-
plexity as Algorithm 1. According to our analysis in Sect. 5.3,
the time complexity of ANCKA is O (kn(8 + K +k)) while its
space complexity is O (n (8 + K +k)). Since k and K can be
viewed as constants, ANCKA has space and time complexity
of O(nd).

7 GPU-accelerated ANCKA-GPU

On large attributed networks, e.g., Amazon and MAG-
PM hypergraphs, each with more than 2 million nodes, as
reported in Table 7, AHCKA with 16 CPU threads still needs
1286s and 1372s respectively for clustering, despite its supe-
rior efficiency compared with baselines. Moreover, AHCKA
does not exhibit acceleration proportional to increased CPU
threads. As shown in Fig. 6, when the number of CPU threads
is raised from 1 to 32, the time drops from around 3000 to
1200 s, with a speedup of merely 2.5 (Amazon) or 2.7 (MAG-
PM). In particular, increasing the number of threads from 16
to 32 provides rather limited acceleration (less than 10%).

To overcome the limitation of CPU parallelization, we
resort to the massive parallel processing power of GPUs
(graphical processing unit) and develop ANCKA-GPU to
boost efficiency, with about one order of magnitude speedup
on large networks with millions of nodes in experiments. For
example, ANCKA-GPU only needs 120s on an MAG-PM
dataset, over 10 times faster than the 1372s of ANCKA. Com-
pared to CPUs, the design of GPUs enables them to leverage
numerous threads to handle data processing simultaneously,
which is beneficial for vector and matrix operations at scale.
Please see [45] for details on GPU computing.

As shown in Fig. 15 of Sect.8.5 for runtime analysis,
the major time-consuming components of ANCKA include
invoking Discretize (Line 18 in Algorithm 4), the con-
struction of KNN graph G, and expensive matrix operations
in orthogonal iterations, greedy initialization and MHC eval-
uation. With the CuPy library, matrix operations throughout
Algorithm 4 can be done on GPUs more efficiently. In the
following, we elaborate on the GPU-based discretization and
Gk construction techniques adopted in ANCKA-GPU.

GPU-based Discretization Discretize-GPU. ANCKA
uses the off-the-shelf Discretize approach [41] to com-
pute discrete cluster labels Y from real-valued eigenvectors
Q, which could cost substantial time on large datasets. Here,
we develop a CUDA kernel Discretize-GPU for effi-

@ Springer

Y.Lietal

1924
Ti .
Lo
=—4— Amazon
2,800 - MAG-PM
2,000
1,200 TS—

CPU Threads

Fig.6 Runtime of AHCKA with CPU parallelization

ciency. In what follows, we first explain how the discretiza-
tion algorithm improves the optimization objective in Defi-
nition 2, and then present the design of Discretize-GPU
in Algorithm 5.

Given an eigenvector matrix Q with its row-normalized
matrix Q, discretization is aimed to find a discrete solution
Y,p: that minimizes the objective in Definition 2.

Definition 2 (Discretization [41]) The solution to the follow-
ing optimization problem is the optimal discrete Y.

Y,p: = argmin |[[Y — QR|[
Y

st.Y €{0,)% Y1, =1,, Re R RTR =1,

where Q is the row-normalized matrix of an eigenvector
matrix Q, R is a rotation matrix, and ||M||r denotes the
Frobenius norm of matrix M.

The Discretize approach finds a nearly global opti-
mal solution by alternately updating one of Y and R while
keeping the other fixed. With R fixed, Y[i, /] is updated to

Yii.g] = 1, if g = argmax|<;<x (QR)[, j] 24)

0, otherwise.

With Y fixed, Y is the column-normalized matrix of Y,
and R can be updated as follows with SVD decomposition.

R = VU', where URV" is an SVD of Y' Q. (25)

The iterative process can terminate early when an objec-
tive value obj based on £2 converges, i.e., its change over the
last iteration is within machine precision. This objective is
calculated as obj = n — 2 x trace(R2) [41].

We implement the CUDA kernel Discretize-GPU in
Algorithm 5 to perform the process above to obtain Y. In
details, Discretize-GPU leverages the grid-block-thread
hierarchy of GPU to assign threads to handle n x k matrices,
including Q and Y. Each row in such a matrix is processed
by a block of threads, identified by a block id bid; each of the
k elements in the row is handled by a thread #id in the block.
Consequently, given a matrix Q, we can use Q[bid, tid] to
represent that the corresponding element in Q is handled by

@ Springer

Algorithm 5: Discretize-GPU
Input: eigenvector matrix Q
QOutput: Intermediate BCM matrix Y
1 Parallel fori < 1,2,--- ,ndo
Of; Qli] .
[Qlil < s
3R «I;
4 while iter < 1,2,--- ,max_iter do
5 Update Y by Eq. (24) via argmax kernel on GPU;
6
7

[

Parallel for j < 1,2,--- , kdo

L col_sum[j] < Z,’-lzl Y[i, j]
8 Parallel for each tid < k in blocks do
L Yibid, tid] < Ybid-rid] .

col_sumltid]’

1 | U 2,V < svp_cruYTQ);

11 R < VU" on GPU;

12 if Objective value obj does not change then break;

13 return Y;

the tid-th thread in block bid on a GPU. Parallel row normal-
ization is performed at Lines 1-2 to get Q. After initializing
R as a k x k identity matrix (Line 3), we alternately update
Y and R for at most max_iter iterations (Lines 4-12) and
terminate early when the objective value obj does not change
over the current iteration at Line 12. Within an iteration, we
first update Y at Line 5, then perform column normalization
to get Y (Lines 6-9), and then perform SVD on GPU over
Y'Q to get U and V at Line 10, which helps to update R at
Line 11. Finally, Y is returned at Line 13.

KNN construction. An n x d attributed matrix X requires
KNN search on its rows to construct the augmented graph Gg
and thus the transition matrix Pg . For this purpose, we adopt
Faiss [30], a GPU-compatible similarity search library. In
Algorithm 6 for Gk construction, we first normalize all rows
in X at Lines 1-2 to facilitate the computation of cosine sim-
ilarity between row vectors. Faiss supports various indexes
for KNN computation, and the index type suitable for ANCKA
is determined based on the input data volume. For small or
medium datasets where the number of nodes |)| is below
100,000, since the time cost for exact similarity search is
affordable, we choose the flat index with a plain encoding
of each row vector in X, to achieve exact KNN computa-
tion (Lines 3—4). Otherwise, we turn to approximate nearest
neighbor search on large datasets with the IVFPQ index that
combines the inverted file index (IVF) with the product quan-
tization (PQ) technique at Line 6. In particular, IVF index
narrows down the search to closely relevant partitions that
contain the nearest neighbors at a high probability, while
PQ produces memory-efficient encoding of attribute vectors.
Faiss on GPU is invoked to get the KNN of each row in X,
and Ak is obtained by Eq. (1) at Lines 7-8. Then, the degree
matrix Dg and transition matrix Px are computed on GPU
(Lines 9-10) and returned at Line 11.

A versatile framework for attributed network clustering via K-nearest neighbor... 1925

Algorithm 6: GPU-based Gk construction

Input: Network A/, attribute matrix X, parameter K.
Output: KNN transition matrix Pg
1 Parallel fori < 1,2,.--- ,ndo

. XIi] .
2 L Xli] < mxun

3 if |[V] < 100, 000 then
4 L index < FlatIndex (X);

5 else

6 L index < IVFPQIndex (X) ;

7 Invoke Faiss on GPU to get the KNN of each row in X ;
8 Get Ak by Eq. (1) on GPU ;

9 Dy < Diag(Agl,) on GPU ;

10 Px < D'Ag on GPU;

11 return Pg;

8 Experiments

We evaluate the proposed ANCKA and competitors in terms
of clustering quality and efficiency. We also evaluate the
performance of ANCKA-GPU on all clustering tasks. In
experiments, we uniformly refer to our method as ANCKA
while making it clear in the context whether ANCKA is for
AHC (i.e., AHCKA), AGC, or AMGC. All the experiments
are conducted on a Linux machine powered by Intel Xeon(R)
Gold 6226R CPUs, 384GB RAM, and NVIDIA RTX 3090
GPU. A maximum of 16 CPU threads are available if not oth-
erwise stated. The code is at https://github.com/gongyguo/
ANCKA.

8.1 Experimental setup
8.1.1 Datasets

Table 1 provides the statistics of 17 real-world attributed net-
works used in experiments, including attributed hypergraphs
(HG), undirected graphs (UG), directed graphs (DG), and
multiplex graphs (MG). |V| and |£] are the number of nodes
and edges (or hyperedges), respectively, d is the attribute
dimension and k is the number of ground-truth clusters.

We gather 8 attributed hypergraph datasets. Query dataset
[5]is a Web query hypergraph, where nodes represent queries
and are connected by hyperedges representing query ses-
sions, and nodes are associated with attributes of keyword
embeddings and associated webpages. Cora-CA, Cora-CC,
Citeseer, and DBLP are four benchmark datasets used in
prior work [46]. All of them are originally collected from
academic databases, where each node represents a publi-
cation, node attributes are binary word vectors of abstract,
and research topics are regarded as ground-truth clusters.
Hyperedges correspond to co-authorship in Cora-CA and
DBLP datasets or co-citation relationship in Cora-CC and
Citeseer datasets. 20News dataset [47] consists of messages

taken from Usenet newsgroups. Messages are nodes, and the
messages containing the same keyword are connected by a
corresponding hyperedge, and the TF-IDF vector for each
message is used as the node attribute. Amazon dataset is
constructed based on the 5-core subset of Amazon reviews
dataset [48], where each node represents a product and a
hyperedge contains the products reviewed by a user. For each
product, we use the associated textual metadata as the node
attributes and the product category as its cluster label. MAG-
PM dataset is extracted from the Microsoft Academic Graph
[49], where nodes, co-authorship hyperedges, attributes, and
cluster labels are obtained as in other academic datasets (i.e.,
Cora-CA, Cora-CC, Citeseer, and DBLP).

In Table 1, we also consider 6 attributed graphs, which are
commonly used for AGC[13,27, 50, 51]. Cora, Citeseer-UG,
Wiki, and Amazon2M are undirected, while Citeseer-DG and
TWeibo are directed. TWeibo [13] and Amazon2M [51] are
two large-scale attributed graphs. TWeibo is a social net-
work where each node represents a user, and the directed
edges represent relationships between users. Amazon2M is
constructed based on the co-purchasing networks of prod-
ucts on Amazon. Cora, Citeseer-UG, and Citeseer-DG are
citation networks where nodes represent publications, a pair
of nodes are connected if one cites the other, and nodes are
associated with binary word vectors as features. Wiki is a
webpage network where each edge in the graph indicates that
one webpage is linked to the other, while the node attributes
are TF-IDF feature vectors.

Moreover, three attributed multiplex graphs, namely
ACM, IMDB, and DBLP-MG, are considered for AMGC
[22-24]. ACM is an academic publication network com-
prising co-author and co-subject graph layers, as well as
bag-of-words attributes of keywords. IMDB is a movie net-
work with plot text embeddings as attributes and two graph
layers representing the co-director (directed by the same
director) and co-actor (starring the same actor) relations,
respectively. DBLP-MG is a researcher network including
publication keyword vectors as attributes and three graph
layers: co-author, co-conference (publishing at the same con-
ference), and co-term (sharing common key terms). ACM
and DBLP-MG have research areas labeled as ground truth
clusters, while IMDB is labeled by movie genres.

8.1.2 Competitors and parameter settings

The 19 competitors for AHC are summarized as follows:

— 3 plain hypergraph clustering methods including HNCut
[52], HyperAdj [53], and KaHyPar [54];

— the extended AHC versions of the 3 methods above
(dubbed as ATHNCut, ATHyperAdj,and ATKaHyPar),
which work on an augmented hypergraph with attribute-

@ Springer

https://github.com/gongyguo/ANCKA
https://github.com/gongyguo/ANCKA

1926 Y.Lietal

Table 1 Dataset statistics

Task Dataset Type V| €] d k
AHC Query HG 481 15,762 426 6
Cora-CA HG 2708 1072 1433 7
Cora-CC HG 2708 1579 1433 7
Citeseer HG 3312 1079 3703 6
20News HG 16,242 100 100 4
DBLP HG 41,302 22,363 1425 6
Amazon HG 2,268, 083 4,285,295 1000 15
MAG-PM HG 2,353,996 1,082,711 1000 22
AGC Cora uG 2708 5429 1433
Citeseer-UG uG 3327 4732 3703
Wiki uG 2405 17,981 4973 17
Citeseer-DG DG 3312 4715 3703
TWeibo DG 2320, 895 50, 655, 143 1657
Amazon2M uG 2,449, 029 61,859, 140 100 47
AMGC ACM MG 3025 29,281 1870 3
2,210,761
IMDB MG 3550 13,788 2000 3
66, 428
DBLP-MG MG 4057 11,113 334 4
5,000, 495
7,043,571

KNN hyperedges of all nodes merged into the input
hypergraph;

— ATMetis that applies the traditional graph clustering
algorithm Metis [55] over a graph constructed by clique
expansion of the input hypergraph and attribute KNN
graph augmentation; Infomap [56], Louvain [57],
k-MQI and k-Nibble (extended from MQI [58] and
PageRank-Nibble [59] for k-way clustering via k — 1
consecutive bisections as described in technical report
[40]) on the same KNN-augmented clique-expansion
graph;

— 3 AHC algorithms including the recent GRAC [11] and
NMF-based approaches (GNMF [11, 60] and JNMF [1]);

— ACMin-C and ACMin-S, obtained by applying an
attributed graph clustering method ACMin [13] over
the graphs reduced from hypergraphs by clique expan-
sion and star expansion, respectively; probabilistic model
CESNA [3] with clique-expansion;

— k-means and HAC (hierarchical agglomerative
clustering [61]) algorithms applied to the node attribute
matrix.

To evaluate the ANCKA framework, we compare 16
competitors for AGC, including k-means, HAC and the fol-

lowing:

— 6 AGC approaches including NMF-based algorithm
GNMF [60], graph convolution algorithm AGCGCN [50],

@ Springer

probabilistic model CESNA [3], spectral clustering on
fine-grained graphs method FGC [62], attributed random
walk approach ACMin [13], and the clustering frame-
work GRACE [27] generalized from GRAC.

NCut [37] and Metis [55] that are conventional graph
clustering methods applied to the input graph;

ATNCut and ATMetis that are NCut and Metis
applied to the augmented graph with attribute KNN;

Infomap[56],Louvain[57],k-MQI [58]and k-Nibble

[59] on the augmented graph with attribute KNN.

We compare ANCKA with 16 competitors for AMGC task,

including k-means, HAC and the following:

— 5 AMGC methods: a multi-view graph auto-encoder

model O2MAC [25], HDMI [24] that learns node embed-
dings via higher-order mutual information loss, MCGC
[22] and MAGC [23] which perform graph filtering
and find a consensus graph for spectral clustering, and
GRACE [27] that is a general graph convolution cluster-
ing method;

— NCut [37] and Metis [55] that apply traditional graph

clustering methods over the aggregation of the adjacency
matrices of all graph layers in the input multiplex graph;

— ATNCut and ATMetis that apply NCut and Metis to

the aggregated matrix of all layers’ adjacency matrices
and the attribute KNN graph; Infomap [56], Louvain
[57], k-MQT [58] and k-Nibble [59] in the same way;

A versatile framework for attributed network clustering via K-nearest neighbor... 1927

— CESNA [3] that treats the aggregated adjacency matrix of
all layers as an attributed graph.

For all competitors, we adopt the default parameter
settings as suggested in their respective papers. Hyperpa-
rameters for AMGC algorithms MCGC and MAGC are tuned as
instructed in the corresponding papers, and we report the best
results acquired. As for ANCKA on attributed hypergraphs,
i.e., AHCKA [6], unless otherwise specified, we set parame-
ters on all datasets: « = 0.2, 8 = 0.5, and y = 3, parameter
K = 10 for KNN construction, the convergence threshold
€p = 0.005, and the numbers of iterations 7, = 1000,
T; = 25. The interval parameter 7 is set to 5 on all datasets
except the large and dense hypergraph Amazon, where we set
T = 1 to expedite early termination in light of the immense
per-iteration overhead when processing Amazon. On large
datasets (i.e., Amazon and MAG-PM), T; is set to 1 and
B = 0.4. In ANCKA, for attributed graphs and multiplex
graphs, we fix K = 50, except for large datasets TWeibo and
Amazon2M with K = 10. In particular, we find it necessary
to adjust the 8 parameter for certain instances following the
practice in recent works [22, 23, 27]. B is set to 0.5 for Cora
and Wiki and 0.4 on Citeseer-UG, Citeseer-DG, TWeibo, and
Amazon2M. We tune $ in [0.1, 0.9] by step size 0.1 for mul-
tiplex graphs. All the remaining hyperparameters in ANCKA
follow the default setting of AHCKA. The parameter settings
in GPU-based ANCKA-GPU are identical to ANCKA.

8.2 Performance evaluation

In this section, we report clustering quality and efficiency of
all methods on all datasets. For each method, we repeat 10
times and report the average performance.

8.2.1 Quality evaluation

The clustering quality is measured by 4 classic metrics
including overall accuracy (Acc), average per-class F1 score
(F1), normalized mutual information (NMI), and adjusted
Rand index (ARI). The former three metrics are in the range
[0, 1], whereas ARI ranges from —0.5 to 1. We also sort all
methods by each metric and calculate their average Qual-
ity Rank for AHC, AGC, and AMGC, provided in the last
column of Tables 3, 5 and 6.

AHC. Tables 2 and 3 present the Acc, F1, NMI, and ARI
scores of each method on small and medium/large attributed
hypergraph datasets, respectively. The first observation from
Tables 2 and 3 is that ANCKA on attributed hyergraphs (i.e.,
AHCKA) consistently achieves outstanding performance over
all competitors on all datasets under almost all metrics, often
by a significant margin. ANCKA has a quality rank of 1.3,
much higher than the runner-up ATMetis (4.9) and GRAC

(5.2). On all the four small datasets (i.e., Query, Cora-CA,
Cora-CC, and Citeseer), ANCKA outperforms the best com-
petitors (underlined in Table 2) by at least 1.9% in terms
of Acc and NMI. On all the four medium/large attributed
hypergraphs (i.e., 20News, DBLP, Amazon, and MAG-PM),
ANCKA also yields remarkable improvements upon the com-
petitors, with percentages up to 12.6%, 10.4%, 6.5%, 13.6%
in Acc, F1, NMI, and ARIrespectively. Few exceptions exist,
where ANCKA still leads in three out of the four metrics,
demonstrating the best overall performance. The results in
Tables 2 and 3 also confirm the effectiveness of ANCKA
over various attributed hypergraphs from different applica-
tion domains, e.g., web queries, news messages, and review
data. The performance of ANCKA is ascribed to our opti-
mizations based on KNN augmentation and MHC in Sects. 3
and 4, and the framework for generating high-quality BCM
matrices in Sect. 5.

AGC. Tables 4 and 5 present the Acc, F1, NMI, and ARI
scores of each method on all attributed graphs for AGC task.
ANCKA consistently outperforms existing competitors under
most metrics, though few exceptions exist where ANCKA is
comparable to the best. ANCKA has a quality rank of 1.3,
much higher than the runner-up with quality rank 4.0. For
example, on Citeseer-UG in Table 4, ANCKA achieves higher
Acc, FI, NMI and ARI than the runner-up performance
underlined. On the two large datasets, TWeibo and Ama-
zon2M in Table 5, ANCKA also produces clusters with high
quality, while GNMF, AGCGCN, and FGC run out of memory
or cannot finish within 12 h. Notably, on Amazon2M, ANCKA
surpasses all methods on all metrics except F1 (0.006 behind
ATMetis) while achieving 0.494 accuracy (runner-up is
Louvain at 0.463) and 0.545 ARI (runner-up is Louvain
at 0.520). The effectiveness of ANCKA validates the ver-
satility of the proposed techniques for different clustering
tasks, e.g., AGC. Besides, ATMetis and ATNCut gener-
ally outperform Metis and NCut in AGC performance,
respectively, exhibiting the efficacy of the proposed KNN
augmentation.

AMGC. Table 6 reports the Acc, F1, NMI, and ARI scores
of all methods on all attributed multiplex graphs. ANCKA has
the best quality rank. As shown, on ACM and DBLP-MG,
ANCKA achieves the best clustering quality among all meth-
ods under all metrics, with NMI and ARI leading by at least
3% on ACM, while being the second best in three metrics on
IMDB. As shown later in Table 9, on these datasets, ANCKA is
faster than existing native AMGC methods by atleast an order
of magnitude. With the intuitive design of random walk tran-
sition matrix P on multiplex graphs in Sect. 6.1, ANCKA can
utilize the proposed KNN augmentation, clustering objec-
tive, and optimization techniques to maintain its excellent
performance on the AMGC task.

@ Springer

1928

Y.Lietal

8.2.2 Efficiency evaluation

Tables 7, 8 and 9 report the runtime (in seconds, with KNN
construction included) and memory overhead (in Gigabytes),
for AHC, AGC, and AMGC, respectively. For ease of com-
paring the trade-off between quality and efficiency, the last
column of Tables 7, 8 and 9 contains the corresponding qual-
ity ranks from Tables 3, 5 and 6, respectively. In each table,
the methods are separated into two categories: non-native
methods extended from other clustering problems and native
methods for the corresponding task. For instance, in Table 7,
there are 4 native AHC methods in the last 4 rows, while the
non-native methods are in the rows above.

In Tables 7, 8, and 9, although certain non-native meth-

ods are efficient, their quality ranks in terms of clustering
quality are typically low. Hence, in the following, we mainly
compare the efficiency of ANCKA against the native methods
for each task. A method is terminated early if it runs out of
memory (OOM) or cannot finish within 12h.
AHC. In Table 7, compared with native AHC methods,
we can observe that ANCKA is significantly faster on most
datasets, often by orders of magnitude. For example, on a
small graph Citeseer, ANCKA takes 0.635 seconds, while the
fastest AHC competitor GRAC needs 13.15 seconds, meaning
that ANCKA is 20.7 x faster. On large attributed hypergraphs
including Amazon and MAG-PM, most existing AHC solu-
tions fail to finish due to the OOM errors, whereas ANCKA
achieves 11.4x and 2.6 x speedup over the only viable native
AHC competitor GRAC on Amazon and MAG-PM, respec-
tively. An exception is 20News, which contains a paucity
of hyperedges (100 hyperedges), where ANCKA is slower
than GRAC. Recall that in Table 3, compared to ANCKA,
GRAC yields far inferior accuracy in terms of clustering on
20News, which highlights the advantages of ANCKA over
GRAC. Additionally, while ATMetis is fast, it achieves
an average quality rank of 4.9, which falls short of the 1.7
quality rank attained by ANCKA. As shown in Tables 2 and 3,
ANCEKA surpasses ATMet 1 s in all metrics but one. Moreover,
ATMetis encounters OOM on Amazon. As for the mem-
ory consumption (including the space to store hypergraphs),
observe that ANCKA has comparable memory overheads with
the native AHC competitors on small graphs and up to 3.1x
memory reduction on medium/large graphs.

AGC. In Table 8 for AGC, ANCKA has comparable running
time to ACMin, a recent AGC method that is optimized for
efficiency, while being faster than the other native AGC meth-
ods. However, the quality rank of ANCKA is 1.3, much higher
than 5.6 of ACMin. Specifically, in Tables 4 and 5, ANCKA
consistently achieves better clustering quality than ACMin on
all six attributed graphs under all metrics. Moreover, ANCKA
remains to be the runner-up in terms of running time on the
first five datasets, and is the fastest on the largest Amazon2M

@ Springer

for clustering. Memory-wise, ANCKA consumes a moderate
amount of memory that stays below 1GB over the first four
small datasets and achieves decent performance on two large
datasets, TWeibo and Amazon2M.

AMGC. In Table 9, ANCKA achieves a significant speedup
ratio over the native AMGC baselines, often by an order
of magnitude, while being memory efficient. Specifically,
ANCKA achieves a speedup of 15.0x, 13.9x,and 9.5 x, com-
pared to the runner-up native AMGC methods MAGC and
GRACE. The memory consumption of ANCKA is also less
than the majority of existing native AMGC methods.

8.2.3 Evaluation on ANCKA-GPU

We compare the cluster quality and efficiency of the CPU-
based ANCKA against ANCKA-GPU in Sect.7, with results
reported in Table 10 for the three tasks (AHC, AGC, and
AMGC) over all datasets. First, observe that ANCKA-GPU
achieves similarly high-quality cluster results as the CPU-
based ANCKA across all datasets for all three tasks, and the
quality difference between ANCKA-GPU and ANCKA are
often negligible, in terms of Acc, F1, NMI, and ARI.

The last column of Table 10 provides the running time
of ANCKA-GPU and ANCKA with 16 CPU threads. For the
AHC task, the speedup of ANCKA-GPU is less significant on
the small attributed hypergraphs (Query, Cora-CA, Cora-CC,
and Citeseer). We ascribe this to the numerous SVD opera-
tions on small k x k matricesin Discretize-GPU,asithas
been known that small dimensions of input matrices may hurt
the efficiency of GPU-based SVD [63]. On medium/large
attributed hypergraphs (20News, DBLP, Amazon, and MAG-
PM), the GPU-accelerated version, ANCKA-GPU, achieves
speedup ratios of 30.5, 70.2, 8.44, and 11.4, respectively,
over the CPU version ANCKA. The high speedup ratios of
ANCKA-GPU, often exceeding an order of magnitude, val-
idate the efficiency of the technical designs elaborated in
Sect.7, especially on large-scale hypergraphs. For the AGC
task, similarly, on small attributed graphs, Cora, Citeseer-
UG, Wiki, and Citeseer-DG, ANCKA-GPU is faster than
ANCKA while the speedup ratio is usually below 10, due to
the same reason explained above. On large attributed graphs
(TWeibo and Amazon2M), ANCKA-GPU is more efficient
than ANCKA by an order of magnitude. For the AMGC
task, ANCKA-GPU is also consistently faster than ANCKA
on all attributed multiplex graphs. The memory consump-
tion of ANCKA-GPU is measured by GPU video memory
(VRAM), while that of ANCKA is by RAM, and the con-
sumption is reported in the second last column of Table 10
in GBs. The memory usage of ANCKA-GPU and ANCKA is
not directly comparable, due to the different computational
architectures and libraries used on GPUs and CPUs. Note
that the major memory consumption of our implementations

1929

A versatile framework for attributed network clustering via K-nearest neighbor...

paurprepun st dn-Iouuni oy) pue p[oq ur st 1s3q Y],

L6€°0 76¢£°0 S19°0 7990 8€€0 (484 02s0 7650 90t°0 w90 809°0 1S90 ILS0 $19°0 799°0 SILO YHONY
(430 6C¢°0 SLSO 190 29¢0 6v¢0 L0S°0 9660 80¢0 9LE0 €650 1090 L80°0 961°0 68¢0 010 OVdD
o 9C0 8IS0 £vs0 8LI°0 0€C0 90 13940 91T0 980 evy0 ¥61°0 100°0— ¥10°0 11c0o 91T0 ARNL
LSTO 1LT0 14\ 0050 o ¥61°0 ceeo 9et’0 So1°0 0’0 (484 09t°0 LyTo Sre0 elvo IS0 AAND
S A0 1S€°0 L650 9¢9°0 6vC0 0re0 9170 9¢S0 6¢C0 81¢0 LLYO €¢s0 000~ 8000 or1o 1¥C0 S-UTWOY
9LE0 ¢eeo L8S°0 €790 65C0 6v¢0 €LY0 9660 LETO 61¢0 £€6v°0 90 €000 L10°0 61C0 €€T0 O-UTWOY
0000 (4100 090°0 90C°0 €500 or1o 0yco 8LE0 0000 0€0°0 2600 c0e0 2000 ¥20°0 161°0 o YNSHD
80¢°0 61¢€0 9810 0LS0 69C0 €LE0 IS0 6950 LITO0 0 (9 40] 10S°0 €000 L10°0 81C0 6¢C0 uteAno]
1cC0 €920 £97°0 L6t°0 LYe0 €6£0 6L1°0 S0 99C0 eveo ¥91°0 716°0 2000 L10°0 SITo SET0 dewojur
(N0 6€1°0 0L1°0 SYe0 860°0 ¢e1o S91°0 16€°0 0900 0L0°0 611°0 120 800°0 ¢200 1c1o sTo STAITN-3
0000 €000 650°0 clco 0000 S00°0 6900 c0¢0 100°0 S00°0 0L0°0 ¥0€°0 100°0— 6100 1L0°0 o I0W-
9LT0 ¥0€°0 430 15570 9CT0 66C°0 08¥°0 6¢S0 0920 91¢0 LLY'O 8¢SO 600°0 ¢c00 ¢ceo eveo TedAHRNILY
8¥¢0 LSE0 065°0 190 01¢€°0 6LE°0 6250 ¢SS0 9re0 €0¥'0 0550 SLSO 920 6v€’0 LOS°0 02s0 STASWLY
98C°0 §Teo £87°0 £€95°0 88C°0 L1€0 9¢¥°0 9660 €81°0 €970 L6T0 8EY'0 €000 L10°0 0cC0 1vTo ANONHLY
S00°0 0100 861°0 81C°0 S€00 190°0 8€C°0 2970 €00 190°0 °eTo §ST0 6100 9¢0°0 6SC0 182°0 (pyxedAHLY
£80°0 881°0 se0 9LE0 960°0 Y€C0 9¢€0 YLEO 960°0 €T0 9¢€’0 YLEO €LT'0 3940} SLSO 1750 OVH
S81°0 61C0 144\ 09¥°0 L6070 9LT°0 Cleo 15€°0 980°0 8S1°0 L6T0 6vE0 0€T0 19%°0 185°0 98¢°0 suesw-3
9¢0°0 S¥0'0 §9T0 SLTO 680°0 celo 68C°0 60€°0 0500 ¥80°0 §9T0 SLTO €000 9100 S0T°0 020 TedAHeys
¥00°0 0100 L91°0 o S00°0— 1200 Scro €1co 00°0— €200 LTl'0 8€C0 2000 9100 81C°0 6£C°0 ANONH
2000 800°0 810 90 S10°0 6£0°0 I61°0 §ST0 00 8¢0°0 91T0 €€C0 ¥00°0— €100 861°0 CIco fpvaredin
av NN 14 NV v AN 14 NV v AN 14 NV v NN 14 NV
199591 DD-e10) VD-BI0OD K1anQ) wyLIo3[y

sjoseyep [rews uo Ajenb (QHY) Sutdsnio ydeiSiedAy poinqumy g 9|qel

pringer

As

Y.Lietal

1930

paurprepun st dn-Iouuni oy) pue p[oq ur st 1s3q Y],

€T TLFO 1950 SOF0 9950 bTSO 0£90 T6V0 0990 TEYO0 TE9O0 PLLO L6LO 690 600 8SO0 SIILO VMONY
€¢ L61°0 98¢0 SIE0 86£0 98%0 ST90 880 TIOO L8YO €950 LS90 890 9S00 8900 90£0 16£°0)
011 INOO NOO 96£0 L¥r0 8850 8190 I¥T0 L¥CO €TFO 7850 ARNL
901 INOO NOO LOV'0 LI¥'0 90S0 €190 1900 0L00 ILTO 9¢r°0 ARND
89 66V'0 0SSO TPEO0 0SSO €9T0 €6£0 9S00 €LF0 6S€0 TLKO HLFO LPSO OIF0 S9E0 6990 OIILO S-UTHOY
€9 0Er’'0 660 €670 6IS0 vPTO vSE0 €110 8SH0 ShP0 €0S0 €950 L090 6£T0 6IT0 ¥TSO 8550 D-UTHOY
9 qzi< yzi< 0000 1000 TLOO0 TLTO LbO'O 9800 0SE0 6LE°0 YNSHD
€8 INOO NOO 0Ly'0 ¥SS0 0850 €v90 €T€0 +0€0 TTSO ££9°0 UTeANOT
$6 8¥C0 08€0 TLI'0 86£0 NOO +0v'0 88Y'0 €450 $650 0000 +000 6T1°0 8€€°0 dewozur
a 0000 0000 6100 TSTO NOO 9000 8200 9800 ¥STO 0000 TO00 6C1°0 8¢€°0 STAqTIN-
I'LT 0000 0000 8100 TSTO NOO 0000 0000 TL00 TLTO 0000 0000 9210 9€€°0 IOW-3{
LS S0T0 TI¥'0 S6T0 TSEO0 98¢0 0890 H0SO LTSO LSKO TTSO 8590 0S90 8IE0 S6T0 0190 7€9°0 TedAHRNLY
67 961'0 10¥'0 ¥ST0 +0€0 NOO 960 L9S0 090 TZ90 18C0 +9T0 9650 T19°0 STISHLY
80T T000— SE00 SE00 69T0 0000 €000 €€00 OIE0 €LT0 98¢0 SHTO 8SH0 1000 TOO0 €€1°0 8€€°0 INDONHLY
€T 9000— €00 800 6810 LSOO 0SO0 €010 €LT0 SE00 8900 0TTO 960 9000 9100 19T0 LTE€0 CpvaedAHiv
11 INOO NOO 0I€0 TLEO TESO TILSO 8S00 LETO TVEO 0£¥°0 OVH
101 IL00 62C0 9610 TLZO SLT'0O T9E0 LSTO 080 €8T0 T9€0 €IS0 6TS0 SHO0 LPI'O €LE0 Y0¥'0 sueau-3y
601 LYTO €8%°0 90€0 L9E0 S8E€0 #6900 THFO v6K0 8€€0 06€0 FESO 6SSO TLIO 6910 890 6L1°0 TedAHey
8¢l 10000 S000 TTO0 €STO0 0000 1000 TEOD0 OIE0 6000 0T00 €10 6LT0 LSE0 €LEO0 1950 £€89°0 ANDNH
ST 8200 ISO0 8,00 8E€I'0 0L00 €00 SOI'0 T6CTO LOOO 6100 8SI'0 ¥ECTO 0OI00 0I00 +LTO 8€€°0 CpviedAH
yuer NV AN 14 2V YV IAN 14 20y MY AN I 20y MY IAN I 20y
Aren® Nd-DVIN uozewy d1da SMONOT WyLoS[Y

syoseyep ag1ef/wnipaw uo Aenb (QHV) Suudsnyo yderdrodAy painqumy € ajqel

pringer

Qs

A versatile framework for attributed network clustering via K-nearest neighbor...

Table 4 Attributed graph clustering (AGC) quality on cora, Citeseer-UG & Wiki

Algorithm Cora Citeseer-UG Wiki
Acc Fl1 NMI ARI Acc F1 NMI ARI Acc Fl1 NMI ARI

Metis 0.448 0.436 0.330 0.238 0.391 0.380 0.155 0.131 0.408 0.364 0.351 0.206
NCut 0.298 0.072 0.012 —0.003 0.218 0.087 0.009 0.004 0.172 0.025 0.016 0.000
k-means 0.318 0.295 0.151 0.072 0.454 0.429 0.223 0.173 0.275 0.176 0.272 0.081
HAC 0.372 0.328 0.219 0.095 0.422 0.383 0.190 0.139 0.449 0.375 0.437 0.185
ATMetis 0.471 0.448 0.317 0.241 0.586 0.566 0.337 0.318 0.506 0.440 0.505 0.336
ATNCut 0417 0.403 0.271 0.112 0.409 0.374 0.212 0.090 0.424 0.381 0.471 0.150
k-MQI 0.302 0.068 0.004 0.000 0.211 0.059 0.003 0.000 0.169 0.021 0.013 0.000
k-Nibble 0.378 0.167 0.138 0.041 0.281 0.151 0.097 0.018 0.217 0.105 0.114 0.021
Infomap 0.569 0.503 0.455 0.301 0.590 0.546 0.312 0.317 0.467 0.417 0.468 0.290
Louvain 0.671 0.640 0.474 0.397 0.680 0.621 0.426 0.413 0.611 0.513 0.572 0.427
CESNA 0.320 0.251 0.198 0.053 0.212 0.074 0.022 0.001 0.450 0.332 0.371 0.251
GNMF 0.554 0.450 0.413 0.283 0.562 0.478 0.296 0.301 0.486 0.353 0.504 0.352
AGCGCN 0.689 0.655 0.531 0.446 0.675 0.630 0.418 0.424 0.446 0.384 0.422 0.108
FGC 0.693 0.590 0.541 0.470 0.682 0.635 0431 0.439 0.513 0.420 0.484 0.239
ACMin 0.655 0.558 0.492 0.417 0.674 0.636 0.416 0.429 0.450 0.281 0.391 0.255
GRACE 0.720 0.723 0.533 0.456 0.678 0.634 0.416 0.431 0.603 0.453 0.526 0.302
ANCKA 0.723 0.686 0.556 0.484 0.691 0.651 0.438 0.450 0.551 0.467 0.543 0.353

The best is in bold and the runner-up is underlined

is in the KNN augmentation step. On small or medium-
sized datasets, e.g., Query and Cora-CA, VRAM usage by
ANCKA-GPU is higher than the RAM usage by ANCKA.
The reason is that ANCKA-GPU uses GPU-based Faiss for
nearest-neighbor search and Faiss allocates about 700MB
of VRAM for temporary storage. On large datasets, ANCKA
requires a substantial RAM space due to the implementation
of the ScaNN algorithm for KNN, while GPU-based Faiss in
ANCKA-GPU requires less VRAM space.

Then we enhance GRACE [27] with GPU acceleration
using CuPy and cuML libraries, resulting in GRACE-GPU for
comparison. We also compare with the GPU-based imple-
mentation of the Spectral Modularity Maximization [64]
clustering method dubbed as SMM-GPU, which operates on
the graph adjacency matrix for AGC (or clique expansion of
the hypergraph for AHC, or the sum of multiplex adjacency
matrices for AMGC) with the attribute KNN augmentation.
The results for AHC, AGC, and AMGC are presented in
Tables 11, 12 and 13, respectively. On the first six smaller
datasets in Table 11 for AHC, SMM-GPU exhibits lower
quality in terms of Acc, F1, NMI, and ARI, despite com-
parable efficiency to ANCKA-GPU, which delivers signifi-
cantly better clustering quality. ANCKA-GPU outperforms
GRACE-GPU in both quality and efficiency across all AHC
datasets. Notably, on large datasets Amazon and MAG-PM
in Table 11, ANCKA-GPU efficiently produces satisfactory
clusters, whereas GRACE-GPU and SMM-GPU encounter
out-of-memory due to their requirement to expand hyper-
graphs into graphs. Similar observations are made for AGC

and AMGC in Tables 12 and 13. Similar patterns are observed
for AGC and AMGC in Tables 12 and 13. In these tasks,
ANCKA-GPU delivers superior clustering quality and effi-
ciency on most datasets, except IMDB where ANCKA-GPU
is the second best, while SMM-GPU yields lower-quality out-
comes and GRACE-GPU falls behind our method in speed.
We conclude that ANCKA-GPU offers high clustering quality
with remarkable efficiency.

8.3 Experimental analysis

Varying K. Figure7 depicts the Acc, F1, NMI scores, and
the KNN computation time of ANCKA on 8 attributed hyper-
graphs (AHC) when varying K from 2 to 1000. We can
make the following observations. First, on most hypergraphs,
the clustering accuracies of ANCKA first grow when K is
increased from 2 to 10 and then decline, especially when K
is beyond 50. The reasons are as follows. When K is small,
the KNN graph Gg in ANCKA fails to capture the key infor-
mation in the attribute matrix X, leading to limited result
quality. On the other hand, when K is large, more noisy or
distorted information will be introduced in Gk, and hence,
causes accuracy loss. This coincides with our observation in
the preliminary study in Fig. 2. Moreover, as K goes up, the
time of KNN construction increases on all datasets. Figures 8
and 9 show the Acc, F1, NMI scores and KNN computation
time of ANCKA on the 6 attributed graphs and 3 attributed
multiplex graphs for AGC and AMGC, respectively, when
varying K from 2 to 1000. On small graphs in Fig. 8a—d and

@ Springer

1932 Y.Lietal
Table 5 Attributed graph clustering (AGC) quality on Citeseer-DG, Tweibo & Amazon2M
Algorithm Citeseer-DG Tweibo Amazon2M Quality
Acc Fl1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI rank
Metis 0410 0397 0.175 0.155 0.141 0.093 0.007 0.004 0.223 0.163 0.277 0.080 10.0
NCut 0278 0.069 0.009 —0.004 0427 0.067 0.000 0.000 0.136 0.016 0.004 —0.005 13.8
k-means 0440 0419 0209 0.158 0277 0.108 0.013 —0.011 0.178 0.055 0.100 0.008 10.9
HAC 0461 0444 0208 0.153 OOM OOM 11.7
ATMetis 0594 0575 0366 0.340 0.131 0.086 0.005 0.003 0267 0197 0411 0.127 6.8
ATNCut 0465 0378 0277 0.120 0420 0.078 0.003 0.008 0272 0.010 0.003 —0.001 10.2
k-MQI 0212 0.059 0.003 0.000 0411 0.048 0.001 0.000 0.273 0.009 0.000 0.000 14.3
k-Nibble 0.283 0.151 0.098 0.019 0428 0.067 0.000 0.000 0375 0.042 0.015 0.004 12.0
Infomap 0.621 0565 0357 0.368 0.417 0.084 0.000 0.001 0357 0.191 0424 0214 6.6
Louvain 0.682 0.617 0419 0.408 0271 0.113 0.015 0.007 0463 0.154 0429 0.520 4.0
CESNA 0213 0.074 0.022 0.001 >12h 0.273 0.009 0.000 0.000 12.8
GNMF 0570 0526 0347 0.353 OOM OOM 9.6
AGCGCN 0.672 0.624 0416 0.420 OOM OOM 8.3
FGC 0.684 0.635 0436 0444 >12h >12h 6.5
ACMin 0.677 0.633 0420 0.433 0.399 0.109 0.004 0.012 0318 0.182 0342 0.126 5.6
GRACE 0.684 0.638 0424 0.440 0292 0.119 0.026 —0.009 0.271 0.154 0340 0.118 4.0
ANCKA 0.696 0.651 0444 0.460 0433 0129 0.023 0.019 0494 0.191 0441 0.545 13

The best is in bold and the runner-up is underlined

9, the cluster quality increases from 2 to 50, and then declines
on datasets such as Citeseer-UG, Wiki, and ACM. On large
datasets TWeibo and Amazon2M in Fig. 8e and f, a turning
point appears around K = 10. Therefore, we set K to be 50
and 10 on these small and large datasets, respectively.

Varying B. Recall that in the generalized («, 8, y)-random
walk model, the parameter S is used to balance the combi-
nation of topological proximities from graph topology No
and the attribute similarities from KNN graph Gg . Figure 10
displays the AHC performance of ANCKA on 8§ attributed
hypergraph datasets when § varies from O to 1. When 8 = 0,
ANCKA degrades to a hypergraph clustering method with-
out the consideration of any attribute information, whereas
ANCKA only clusters the KNN graph Gg regardless of the
topology structure in H if § = 1. From Fig. 10, we can see
a large B (e.g., 0.7-0.8) on small/medium datasets (Query,
Cora-CA, Cora-CC, Citeseer, 20News, and DBLP) bring
more performance enhancements, meaning that attribute
information plays more important roles on those datasets.
This is because they have limited amounts of connections
(or are too dense to be informative, e.g., on Query) in the
original hypergraph structure as listed in Table 1 and rely on
attribute similarities from the augmented KNN graph Gk for
improved clustering. By contrast, on Amazon and MAG-PM,
ANCKA achieves the best clustering quality with small g in
[0.1, 0.4], indicating graph topology has higher weights on
Amazon and MAG-PM. Figures 11 and 12 report the Acc,
F1, and NMI scores on AGC and AMGC tasks respectively.
Similarly, when § increases from 0, the cluster quality gen-

@ Springer

erally improves, then becomes stable around 0.4 and 0.5, and
decreases when f is large and close to 1. On DBLP-MG in
Fig. 12, the highest clustering quality can be acquired with
a small 8 around 0.1. We infer that node attributes in this
dataset are of limited significance for clustering, while on
ACM and IMDB, the best quality is achieved when § appro-
priately balances graph topology and attributes.

Varying y. We evaluate ANCKA in terms of AHC quality and
running time when varying y . Figure 13 displays the Acc, F1,
NMI, and time on two representative datasets when y varies
from 1 to 5. The results on other datasets are similar and thus
are omitted for space. Observe that in practice the Acc, F1,
and NMI scores obtained by ANCKA first increase and then
remain stable when y is beyond 3 and 2 on Cora-CC and
Citeseer, respectively. By contrast, the running time goes up
as y increases. Therefore, we set y = 3 in experiments.

Effectiveness Evaluation of InitBCM and Discretize.
On attributed hypergraphs, to verify the effectiveness of
InitBCM for the BCM initialization, we compare ANCKA
with the ablated version ANCKA-random-init, where the
BCM matrix Y© is initialized at random. In Table 14,
ANCKA obtains remarkable improvements over ANCKA-
random-init in Acc, F1, and NMI in comparable processing
time. For instance, on Amazon, ANCKA outperforms ANCKA-
random-init by a large margin of 3.7% Acc, 19.5% F1, and
6.8% NMI with 24 s less to process. On MAG-PM, ANCKA
needs additional time compared to ANCKA-random-init. The
reason is that ANCKA-random-init starts with a low-quality
BCM and converges to local optimum solutions with subop-

A versatile framework for attributed network clustering via K-nearest neighbor... 1933
Table 6 Attributed multiplex graph clustering (AMGC) quality
Algorithm ACM IMDB DBLP-MG Quality
Acc F1 NMI ARI Acc F1 NMI ARI Acc Fl1 NMI ARI rank
Metis 0.648 0.651 0389 0369 0376 0374 0.004 0.004 0864 0.860 0.660 0.688 11.6
NCut 0350 0.174 0.003 0.000 0378 0.18 0.002 0000 0299 0.125 0.012 —0.001 15.3
k-means 0.679 0.681 0320 0312 0525 0.531 0.146 0.139 0.368 0.285 0.083 0.060 10.1
HAC 0576 0.557 0.234 0222 0483 0462 0.100 0.101 0.381 0.304 0.131 0.070 114
ATMetis 0.755 0.757 0510 0490 0.546 0.551 0.161 0.152 0.868 0.864 0.669 0.697 6.5
ATNCut 0778 0.775 0462 0465 0499 0466 0.154 0.165 0360 0.285 0.104 0.023 8.8
k-MQI 0.351 0.174 0.001 0.000 0.377 0.183 0.001 0.000 0295 0.115 0.002 0.000 15.8
k-Nibble 0.343 0.221 0.018 0.001 0370 0.251 0.022 0.005 0.295 0.115 0.002 0.000 15.2
Infomap 0.653 0.665 0418 0353 0412 0362 0.027 0.025 029 0.116 0.002 0.000 12.6
Louvain 0.659 0.670 0422 0364 0452 0392 0.057 0.065 0909 0900 0.731 0.788 8.1
CESNA 0.624 0593 0405 0330 0377 0329 0.006 0.007 0.827 0.820 0.583 0.603 12.0
02MAC 0895 0.897 0.667 0.716 0547 0550 0.135 0.139 0873 0.865 0.669 0.705 55
HDMI 0900 0.899 0.695 0.732 0541 0547 0.162 0.142 0.895 0.885 0.706 0.761 4.7
MCGC 0915 0916 0.709 0.763 0.567 0.545 0.164 0.186 0902 0.895 0.716 0.771 35
MAGC 0.872 0.872 0597 0.659 0484 0424 0.057 0.062 0928 0923 0.771 0.827 6.0
GRACE 0.889 0.891 0.651 0.698 0.629 0.629 0185 0205 0923 0918 0.767 0.817 3.0
ANCKA 0928 0928 0.739 0796 0.576 0.544 0.176 0.195 0933 0929 0.785 0.839 1.7

The best is in bold and the runner-up is underlined

timal MHC, whereas ANCKA can bypass such pitfalls with
a good initial BCM from InitBCM and continue searching
for the optimal solution with more iterations, which in turn
results in a considerable gap in clustering quality. In addi-
tion, we validate the effectiveness of Discretize used in
ANCKA to transform k leading eigenvectors Q to BCM matrix
Y. Table 14 reports the accuracy of ANCKA and a variant
ANCKA-k-means obtained by replacing Discretize in
ANCKA with k-means on all datasets. It can be observed that
compared with ANCKA-k-means, ANCKA is able to output
high-quality BCM matrices Y with substantially higher clus-
tering accuracy scores while being up to 3.2x faster. The
ablation results on AGC and AMGC are in Tables 15 and 16,
respectively. Regarding clustering quality (Acc, F1, NMI),
Table 15 shows that for AGC, ANCKA surpasses its ablated
counterparts on all datasets across most effectiveness metrics,
except for the Citeseer datasets. For example, ANCKA with
InitBCM achieves an Acc that is 4.2% higher than ANCKA-
random-init on Amazon2M. In Table 16 for AMGC, ANCKA
performs the best on all the three datasets. For efficiency in
Tables 15 and 16, ANCKA is similar to ANCKA-random-init,
while ANCKA-k-means is slower. These results confirm
the effectiveness of the proposed techniques for AGC and
AMGC.

8.4 Convergence analysis

We provide an empirical analysis pertinent to the conver-
gence of ANCKA for attributed hypergraph clustering. To do

so, we first disable the early termination strategies at Line
10 in Algorithm 1. We also set T = 1 so as to evaluate the
MHC (denoted as ¢,) of the BCM matrix Y® generated in
each r-th iteration of ANCKA and ANCKA-random-init, where
t starts from O till convergence. Furthermore, we calculate
the Acc, F1, and NMI scores with the ground truth for each
BCM matrix Y® generated throughout the iterative proce-
dures of ANCKA. Figure 14 shows the MHC ¢;, Acc, F1, and
NMI scores based on the BCM matrix of each iteration in
ANCKA, as well as the MHC of ANCKA-random-init over
all datasets. Notably, MHC ¢, experiences a sharp decline
when ¢ increases from 0 to 50 on most hypergraphs, while the
Acc, F1, and NMI results have significant growth. Moreover,
compared to MHC with random init, MHC curves of ANCKA
are mostly lower (better) on all datasets under the same 7-th
iteration. These phenomena demonstrate the effectiveness of
InitBCM in facilitating fast convergence of ANCKA. How-
ever, when we keep increasing ¢, these scores either remain
stable or deteriorate. For instance, MHC scores grow signifi-
cantly after 10 iterations on Amazon, while there is a big drop
in Acc and F1 scores when ¢t > 45 on DBLP. This indicates
that adding more iterations does not necessarily ensure better
solutions. Hence, the early termination proposed in ANCKA
can serve as an effective approach to remedy this issue.

8.5 Runtime analysis

Figure 15 reports time breakdown of ANCKA and ANCKA-GPU
into four parts: KNN construction, orthogonal iterations, dis-

@ Springer

Y.Lietal

1934

paurpzopun st dn-Iouuni 9y} pue ‘p[oq ur ST 3saq Y],
SMOI {7 ISB[AU} UI SPOYIoW DHYV dANRU [[e Suowy *¢ 9[qe], WOoIj ST uwn[od yuey Aifend) ayJ,

€1 §T6S ILET IL9S 9871 866°0 0S'1Iv €8¢°0 9L1"8 LI€0 S€9°0 w€To 9IIT'0 1€2°0 w0ro 191°0 weo YONY
€¢ 69°T6 $0S€ TSLT 2991 00L'T 116 SLTO 89¢€°€ 12944 crel L8TO 969°¢ 88C°0 199°L wro T0LT OVED
(RN INOO OO LTEe LYCE ELTY £¢es¢ 6vS0 9 L1€0 99°CC 69¢°0 YeL'L Y610 99¢°¢ AANL
901 INOO OO LTEE £7CI9 ELTY 9L9¢ 2960 96'CL 91¢€0 ¢soc 69¢°0 ¢6°S1 Y610 168°C AAND
¢l Yci< yci< L19°0 ¥0°C6 LSTO EVYoL ¥91°0 IsTe LETO 9186 yel’o 00t'C 611°0 0290 ¥YNSHO
€8 INOO OO elee SI'oL LL'T1C L9S1 €1eo 116’1 o ceLo c€eTo cle’l S61°0 Lo uteaAno]
S6 6'00C 9GLT1 OO £€9C°¢ 0ser eV Ie 1'9¢s¢ £9¢°0 61L0 £6C0 119°0 1620 Lo 161°0 1cC0 dewozur
evl 9°18¢C 868¢ OO LL'TS 8¢eel SL6'8 SSvy G880 £8°1¢ L99°0 888°¢ $69°0 LT8'S ¥cco 1S1°0 STAITN-3
I'LT ¥$'09 L9C1 OO L6E'E 86'8C 998°¢ eCll LTr'0 8170 £9¢°0 9LE0 e 19¢°0 €veo ¥01°0 I0W-
LS Iv'LS 60S1T 8TYS 6CSS 9¢Te oS 00v'C LY'T1L 70€°0 eeL’l aa 132! §CC0 0191 8CI°0 899°1 TedAHRNLY
6t 0T¥9 6'LSS OO 80¢°¢ $8°9¢ 996'C Soel L0€0 68¢°0 €870 6£C0 80 8¢C0 SCro 180°0 STISNLY
801 9¢'LS £'68L 1{9%Y 6'689 685°¢ 89°6G¢ ¥91°¢C Seo'v 1€0'1 ce8’0 6210 LSS0 8¢r'0 0590 8LT°0 £6£°0 ANONHLY
601 L8Y'6 6'9¢¢ vI'LE LOLE 9090 SoL'e 611°0 9IS’ 6S1°0 620 6C1°0 80 ¢elo SLEO NNV 9¢¢°1 TedAHeys
8¢l 9sTY 8999 le6ce I'LLy §29°'0 (414 YEr'0 9110 CLTO 8¢SO 8S1°0 ¥59°0 1o 8670 6¢1°0 LSOO ANONH
quel VY QL VY wly VY wLy VY QL] VY uiy VY uiLy VY uiy VY wly
Airend) INd-OVIN uozewy d19d SMIN(OT 10951D) DD-eI10) VD-t10D) K1ond w03y

(sgD ur]NVY ‘spuodes ur own) (QHY) Suudsnyo ydesSrodAy paynqune jo Aoudroyyyg £ ajqel

pringer

Qs

A versatile framework for attributed network clustering via K-nearest neighbor... 1935
Table 8 Efficiency of attributed graph clustering (AGC) algorithms (time in seconds, RAM in GBs)
Algorithm Cora Citeseer-UG Wiki Citeseer-DG Tweibo Amazon2M Quality
Time RAM Time RAM Time RAM Time RAM Time RAM Time RAM rank
Metis 0.006 0.203 0.009 0.347 0242 0489 0.006 0.316 121.6 4.688 46.40 8.150 10.0
NCut 0.072 0.198 0.350 0.326 0.087 0475 0321 0.347 409.3 4.662 874.8 8.132 13.8
ATMetis 0.688 0352 0.571 0.533 0.807 0.591 0398 0.275 360.0 13.58 1304 16.63 6.8
ATNCut 0469 0351 0589 0.501 0902 0560 0.548 0.258 334.6 13.66 5025 16.58 10.2
k-MQI 0382 0438 0488 0.585 0.721 0502 0.348 0.447 2442 2990 1453 19.65 143
k-Nibble 4.656 0495 1921 0.626 1386 0.550 18.99 0.685 3826 102.3 3587 89.14 120
Infomap 1265 0398 1.668 0.544 1499 0.739 1556 0.310 6701 97.48 4155 4575 6.6
Louvain 6.773 0371 7.319 0.503 4527 0.669 6584 0.572 10,010 8450 21,696 7280 4.0
CESNA 1281 0144 3521 0.167 3549 0162 28.12 0.178 >12h 1931 7.701 12.8
GNMF 13.18 0269 37.01 0.397 2238 0579 4281 0.438 OOM OOM 9.6
AGCGCN 5842 0960 3334 2120 5965 1.003 3418 2326 OOM OOM 8.3
FGC 29.68 1.998 2257 3.273 5093 3.080 4493 3.571 >12h >12h 6.5
ACMin 0368 0.164 0400 0.177 3.646 0380 0556 0.234 1098 18.61 5300 2021 5.6
GRACE 5589 0651 21.82 1.793 16.78 1.740 1523 1.960 2317 60.44 3162 39.71 4.0
ANCKA 1.251 0369 1.587 0.517 0907 0.706 0.838 0.280 1318 19.89 1708 17.01 13
The Quality Rank column is from Table 5. Among all native AGC methods in the last 7 rows,
The best is in bold, and the runner-up is underlined
Table9 Efficiency of attributed 1 iyhpy ACM IMDB DBLP-MG Quality
multiplex graph clustering
(AMGC) algorithms (time in Time RAM Time RAM Time RAM rank
seconds, RAM in GBs)
Metis 0.477 0.382 0.037 0.375 1.798 0.602 11.6
NCut 0.761 0.392 0.123 0.384 2.218 0.611 15.3
ATMetis 1.418 1.034 1.181 1.134 2.441 0.672 6.5
ATNCut 1.324 1.037 1.236 1.141 2.587 0.675 8.8
k-MQI 1.033 1.143 1.064 1.319 1.048 0.957 15.8
k-Nibble 7.230 0.696 10.32 0.766 3.999 1.109 15.2
Infomap 17.78 1.547 3.624 1.260 48.45 3.883 12.6
Louvain 4391 1.300 9.537 1.151 158.0 3.948 8.1
CESNA 68.85 0.309 32.28 0.372 819.2 0.534 12.0
O2MAC 115.0 1.691 679.1 2.109 684.1 2.638 5.5
HDMI 161.2 2.902 245.9 2.980 537.8 3.162 4.7
MCGC 748.2 1.697 1552 2414 2245 3.283 35
MAGC 26.10 1.301 33.69 1.908 35.98 2.665 6.0
GRACE 110.1 1.173 21.81 1.341 49.33 0.672 3.0
ANCKA 1.738 1.062 1.574 1.485 3.766 0.691 1.7

The Quality Rank column is from Table 6. Among all native AMGC methods in the last 6 rows,
The best is in bold, and the runner-up is underlined

cretization, and greedy initialization and MHC evaluation
on all attributed hypergraphs. We first explain the results of
ANCKA on CPUs. On all datasets, the four parts in ANCKA
all take considerable time to process, except 20News and
DBLP, where KNN construction dominates, since 20News
and DBLP contain many nodes but relatively few edges.
Then, we compare the time breakdown of ANCKA-GPU with
ANCKA. On small attributed hypergraphs (Query, Cora-CA,
Cora-CC, and Citeseer) in Figs. 15a, b, ¢, and d, observe that

ANCKA-GPU significantly reduces the time for KNN, while
the other time costs are on par with that of ANCKA, which
is consistent with the results in Sect.8.2.3. On medium-
sized/large attributed hypergraphs in Fig. 15e, f, g, and h,
ANCKA-GPU significantly improves the efficiency on all
of KNN construction, orthogonal iterations, discretization,
greedy initialization and MHC evaluation. From the results
on Amazon and MAG-PM, we observe that the scalability of
ANCKA-GPU is primarily constrained by KNN construction,

@ Springer

1936 Y.Lietal
Table 10 Evaluation between ANCKA and ANCKA-GPU
Task Dataset Acc F1 NMI ARI Mem Time
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU (Speedup)
AHC Query 0.715 0.719 0.662 0.664 0.645 0.666 0.571 0.578 0.161 1.083 0.342 0.230 (1.49x%)
Cora-CA 0.651 0.653 0.608 0.610 0462 0469 0406 0411 0.231 1.096 0.402 0.265 (1.52x%)
Cora-CC 0.592 0.580 0.520 0.535 0412 0.395 0338 0311 0.232 1.098 0.416 0.296 (1.41x)
Citeseer 0.662 0.668 0.615 0.620 0392 0387 0397 0410 0317 1.128 0.635 0.575(1.10x)
20News 0712 0.712 0.658 0.666 0.409 0407 0469 0465 0383 1.094 8.176 0.268 (30.5x)
DBLP 0.797 0.808 0.774 0.787 0.632 0.643 0.632 0.646 0998 1.321 41.50 0.591 (70.2x)
Amazon 0.660 0.648 0.492 0487 0.630 0.636 0.524 0.509 56,71 11.16 1286 152.3(8.44x)
MAG-PM 0.566 0.559 0405 0.393 0561 0.545 0471 0454 5925 11.35 1371 120.2 (11.4x)
AGC Cora 0.723 0.683 0.686 0.621 0.556 0.533 0.484 0470 0.369 1.120 1.251 0.213(5.87x)
Citeseer-UG 0.691 0.690 0.651 0.649 0438 0437 0450 0451 0.517 1.153 1.587 0.507 (3.13x)
Wiki 0.551 0.560 0.467 0487 0543 0.547 0353 0.368 0.706 1.151 0.907 0.357 (2.57x)
Citeseer-DG 0.696 0.694 0.651 0.652 0444 0441 0460 0454 0.280 1.159 0.838 0.508 (1.65%)
TWeibo 0433 0434 0.129 0.126 0.023 0.022 0.019 0.016 19.89 16.73 1318 105.0 (12.6x)
Amazon2M 0.494 0496 0.191 0.194 0441 0437 0545 0544 17.01 18.08 1708 158.9 (10.8x)
AMGC ACM 0.928 0924 0928 0924 0.739 0.730 0.796 0.786 1.062 1.267 1.738 0.190 (9.15x%)
IMDB 0.576 0553 0.544 0510 0.176 0.166 0.195 0.184 1485 1.136 1.574 0.236 (6.67x)
DBLP-MG 0.933 0935 0929 0931 0.78 0.791 0.839 0.842 0.691 1.787 3.766 0.587 (6.42x)
=== Acc ssrsr Fl = NMI s time
os time (j))l . time (j))5 07 time (%?5 0 time (536
Loos 087 Lo 007 F04 064 Los
Lo.og 0-6 Loz 057 “to3 054 o 0.4
Loos 04 o2 044~ (02 04 :8;
F0.02 0.24 0.1 0.34 F0.1 0.39 Lo.1
T 3 b m om0 35 hm o mmesomm 035 o2 % moawsomm o 2 5 1o 2 5 1020 %000
(a) Query (b) Cora-CA (c) Cora-CC (d) Citeseer
o time (s])5 oss time (s) o time (s) . time (s)
074 0.8 —— 40 :ika ol L Tk
R 0.75+ R A L30 1k
0.6 074 N (800 057 et 800
0.5 0654 === N S 600 045 | 600
5] o T oss] [
03— osr—r—r—+—rr—+—"mr0 03 r—F—"r—"T—"T"T"T"T70 034+ +————1—1—1—110
2 5 10 20 50 100 200 500 1000 2 5 10 20 50 100 200 500 1000 2 5 10 20 50 100 200 500 1000 2 5 10 20 50 100 200 500 1000

(e) 20News (f) DBLP

Fig.7 Varying K for AHC (best viewed in color)

while the overhead of the CPU-based ANCKA is more evenly
distributed across the four parts.

9 Related work

Hypergraph Clustering. Motivated by the applications in
circuit manufacturing, partitioning algorithms have been
developed to divide hypergraphs into partitions/clusters, such
as hMetis [65] and KaHyPar [14]. These methods typi-

@ Springer

(g) Amazon (h) MAG-PM

cally adopt a three-stage framework consisting of coarsening,
initial clustering, and refinement stages. These algorithms
directly perform clustering on a coarsened hypergraph with
a relatively small size. In addition, they run a portfolio of
clustering algorithms and select the best outcome. These
algorithms rely on a set of clustering heuristics and lack
the extensibility for exploiting node attribute information.
Hypergraph Normalized Cut (HNCut) [52] is a conductance
measure for hypergraph clusters from which the normalized
hypergraph Laplacian A = I — ® is derived for spectral

A versatile framework for attributed network clustering via K-nearest neighbor...

1937

Acc s NM [e

F1
038 time (s) 038 time (s) 06

o2 I

time
time (s)

0.64+* ;
0.44,
04

0.2

0
5 10 20 50 100200500 1
(c) Wiki

0
5 10 20 50 100200500 1k
(b) Citeseer-UG

time (s)
1.

0
5 10 20 50 100200500 1
(a) Cora

time (s)

time (s)
4 0.5]

800

“.+21400

)
5 10 20 50 100200500 Tk
(f) Amazon2M

0
510 20 50 100200500 Tk
(e) Tweibo

0
5 10 20 50 100200500 1
(d) Citeseer-DG

Fig.8 Varying 8 for AHC (best viewed in color)

1 time (s) 06 time (s) . time (%)
2 [09< ------------------------ 76

O-S‘M%

0.7 2

T 10 20 30 100200500 1k T 0 20 30 020050 1C 03 5 10 20 30 190730500 T

(a) ACM (b) IMDB (c) DBLP-MG

Fig.9 Varying K for AGC (best viewed in color)

clustering, where ® = D‘_,l/zHTDngD_,l/z. Alterna-

tively, hGraclus [5] optimizes the HNCut objective using a
multi-level kernel K-means algorithm. Non-negative matrix
factorization has also been applied to hypergraph clustering
[15]. Despite the theoretical soundness, these algorithms are
less efficient than the aforementioned partitioning algorithms
and they do not utilize node attributes either. For the problem
of hypergraph local clustering, which is to find a high-quality
cluster containing a specified node, a sweep cut method is
proposed [66] to find the cluster based on hypergraph Per-
sonalized PageRank (PPR) values. In this paper, we focus on
global clustering, a different problem from local clustering.

Attributed Hypergraph Clustering. There exist stud-
ies designing dedicated clustering algorithms on attributed
hypergraphs. JNMF [1] is an AHC algorithm based on
non-negative matrix factorization (NMF). With normalized
hypergraph Laplacian [52] matrix A = I — @ and attribute
matrix X, JNMF optimizes the following joint objective that
includes a basic NMF part as well as a symmetric NMF part:
miny v piso X — WMIIZ + «l|© — MTM||7 + BIIM —
M||%. With optimization using block coordinate descent

mmm AcCc ssssi Fl s NMI

0.8 0.8
074 ... 0.74
0.6{ 0.67

s 0.5
0.54 : 0l é
0.417 031
0.34 0.2

0.2

0 02040608 1
(¢) Wiki

0 02040608 1
(b) Citeseer-UG

0 02040608 1
(a) Cora

0.1

o
0 02040608 1
(f) Amazon2M

0 T T T T T
0 02040608 1
(e) Tweibo

0 02040608 1
(d) Citeseer-DG

Fig. 11 Varying g for AGC (best viewed in color)

0 ; = 0.6 5 1

91 ST 0.5 Pnsgartgganer | 0.9 0T

0.8 ,,.-" 0.4 ere 0.84 R T
0.7 =223 0.3 0.7

0.6 021" 0.61

0.5 0.11 _/\"‘— 0.5]

0.4 0.

ft————————
0 02040608 1
(c) DBLP-MG

Ot
0 02040608 1
(b) IMDB

0 02040608 1
(a) ACM

Fig.12 Varying B for AMGC (best viewed in color)

mmm Acc ssssi F]l s NM] s time
time (s) 0.67 time (%}466

0.6 r0.48 -
0.551 046 0.661 064
0.5 - toa4sa H0.62
0.451 H0.42 0611 0.6
0.41 04 0.4 L0.58
oasbr— 08 gl © lose

1 2 3 4 5 1 2 3 4 5

(a) Cora-CC (b) Citeseer
Fig. 13 Varying y on Attributed Hypergraphs

(BCD) scheme, the matrix M is expected to encode cluster
memberships. MEGA [5] extends the formulation of JNMF
clustering objective for semi-supervised clustering of multi-
view data containing hypergraph, node attributes as well as
pair-wise similarity graph. MEGA’s clustering performance
is further enhanced by initialization with hGraclus algo-
rithm. GNMF [60] algorithm is originally proposed for high
dimensional data clustering, while the authors of [11] extend
its objective with the hypergraph normalized Laplacian [52]
so that it spawns baseline methods for AHC. Although

mmm AcC sesst Fl e NMI

0.8 R 0.7 A A 0.8 0.8
0.6 H 0.5} 1 o. 1 05t 0.6[
0.4 H & /""’\ e |
0.2 .-.-.-.-.=..c" 0‘3/-/\ . 03 0.4 _/_

’ 0.1 0.1¢ 0.1 02 0.2

0 0.20.40.60.8 0.20.40.60.8 020.40.60.8 020.40.60.8 70 020.40.60.8 020.40.60.8 0.1 0.20.40.60.8 0.20.40.60.8

(a) Query (b) Cora-CA (c) Cora-CC (d) Citeseer (e) 20News (f) DBLP (g) Amazon (h) MAG-PM

Fig. 10 Varying K for AMGC (best viewed in color)

@ Springer

1938 Y. Lietal
0.7 0.7 0.8
—— MHC ¢, —— MHC ¢,)
0.654 —— MHC with random init 0.65 —— MHC with random init | (.64 : it DT e SN
----Acc 0.6 0.4+ / ----Acc
Fl 0.2 Fl
—NMI | 0.554 — NMI
O-SJ T T T T T O T T T T T T T T T T T 0 T T T T T T T
0 100 200 300 400 0 100 200 300 400 0 20 40 60 80 100 120 0 20 40 60 80 100 120
(a) Query (b) Cora-CA
0.7 0.8 0.7 0.8
——MHC ¢, —MHCo, |
0.654 —— MHC with random init | 0.69 . _.~*-~-___ oo 0.651 —— MHC with random init | (.6 '
0.6 041 Tfm\————‘m 061 047 4 ----Acc
0.2 F1 0.551 0.2 Fl
0.554 — NMI —— NMI
T T T T 0- T T T 0.5 T T T 0 T T T
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
(c) Cora-CC (d) Citeseer
0.7 0.8 — 0.7 084
—— MHC ¢, BT P ittt —— MHC ¢, . i
0.65- —— MHC with random init | 0.6 ’,4—‘ ¥ ou 0.65 —— MHC with random init 0.6
044 0.6 Ny
0.6 ----Acc Ry
0.2 /\ﬂ[ﬁim 0.55 0.4
0.554 —NMI 0.54
T T T T 0 T T T T T T T 0.2- T T T T
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
(e) 20News (f) DBLP
0.6
0.75- ——MHC ¢ ——MHC ¢, ’
— MHC with random init 0.74 —— MHC with random init 044/ o)
0.2/
T T T T T O T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 100 200 300 0 100 200 300
(g) Amazon (h) MAG-PM

Fig. 14 Convergence Analysis (best viewed in color)

0o KNN Construction 0O Orthogonal Iterations U0 Discretization BB Greedy Init and MHC evaluation

0.2 0.2
0.3
1 6 400 400
0. o 2 00
0.1 0.1 : 3] 200
o1 I 10 200+
0 T 0 T T T T 0 T T T T 0 T T 0 T ™ 0
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU
(a) Query (b) Cora-CA (c) Cora-CC (d) Citeseer (e) 20News (f) DBLP (g) Amazon (h) MAG-PM

Fig. 15 Runtime breakdown of CPU-based ANCKA and ANCKA-GPU in seconds

NMF-based algorithms sometimes produce clusters with
good quality, their scalability is underwhelming as shown
in our experiments. As the state-of-the-art algorithm for
attributed hypergraph clustering, GRAC [11] performs hyper-
graph convolution [46] on node attributes, which resembles
the hypergraph diffusion process with mediators [67]. Then
clusters are predicted from the propagated features via a spec-
tral algorithm.

Attributed Graph Clustering. There exists a collection of
studies on attributed graph clustering. Some studies perform
attributed graph clustering by adopting probabilistic models
to combine graph structure with attributes, including discrim-
inative models such as PCL-DC [68] and generative models
such as BAGC [2]. Nevertheless, these methods are typically
limited to handling categorical attributes. Moreover, infer-
ence over the probability distribution of O(2") hyperedges

@ Springer

poses a significant challenge against their generalization to
hypergraph. GNMF [60] is an NMF-based algorithm that
enhances performance by modifying the Laplacian regular-
izer used in traditional NMF to utilize the Laplacian matrix
constructed from the graph structure. Within the random
walk framework, SA-Cluster [12] algorithm augments
the original graph with virtual nodes representing each pos-
sible attribute-value pair and performs k-Medroids clustering
using a random walk distance measure. ACMin [13] defines
attributed random walk by adding virtual attribute nodes as
bridges and combines it with graph random walk into a
joint transition matrix. In a fashion similar to GCN [17],
AGCGCN [50] performs graph convolution on node attributes
to produce smooth feature representations that incorpo-
rate network structure information and subsequently applies
spectral clustering. For their spectral algorithm, the authors

1939

A versatile framework for attributed network clustering via K-nearest neighbor...

paurpropun st dn-1ouuni oY) pue p[oq U sI 3saq Y,

6851 8081 PPSO LEFO H6TO 96V0 0SOI €L9T 9100 TI00 9TI'0 PEPO S0SO 6STT ¥SP0 IPb0 TS9O $690 NID-VAONY
€6cS 80TC 0TI'0 TSEO IL1'0 T8TO OO SPL'E T9T'T IvP0 LTFO 9€90 $89°0 NdD-HOVED
SST9 L8T6 €00 T600 TSO0 90TO 88TE 8S€T €100— TIOO 8600 68€0 T80 PLLT 90TO 9TTO SLED SEFO NdD-TWS
Jwll, Wl v IAN 14 oy owill, W vV IAN 14 0y dwil W vV IAN 14 oy
Nguozewry oqromg, DJ-199sA1) wy)LIo3 [y
LSE0 ISTT 89€0 LVPSO LSVO 09SO0 €0SO €STT TISKO LEVO 6¥90 0690 €IT0 OTIT OLb0 €€S0 1290 €890 NID-VMONY
P6¥'8 9L6'T 98T0 00S0 6T€0 LTSO YI99 681T SEF0 ITH0 9€9°0 1890 SETE €L6'T 6TH0 86V0 $690 8690 NdD-HOVID
09€°0 €LLT SPEO €0S0 €EF0 €650 SOPO TSL'T YOTO €CTO €LE0 LEYO €6T0 S8ST 1910 LTTO STEOD 8O0 NdD-WHS
swl, WIN vV IAN 14 0y ewll WA Ny IAN 14 0y dwll WO KV IAN 14 20y
DM DN-13sAID) ©I0D wpLos [y
DDV 10 sauraseq 1O [BUONIPPY 1 3|qe]
paurpopun st dn-1auuni) pue p[oq ur s 3saq Ay,
TOIL SETT $SHO SPSO €6£0 6550 €TST 9TTL OISO 9€9°0 L8O SP90 T6S0 IZET 9¥90 €490 LSL'O 8080 S9TO0 $60'T S0 LOPO 9990 TIL0 NID-VAONY
OO INOO 06'Ly OLI'E €PF0 €4S0 S$69°0 1890 80V'T 0T6'T TZOO 6L0°0 910 190 NdD-HOVED
INOO NOO €0L°0 €/ST 0000 €100 9v0°0 0910 9I8T 0TI'E SST'0 TEI'0 0St'0 Oby'0 NID-WWS
Jwi, WO ¥V AN [d 0V dwil W [V AN [d 0V Qwll WO ¥V IAN @ [d 90V QWi WO ¥V AN @ [d 0V
INdDOVIN uozewry d1da SMONQOZ WyiLo3[y
SLS0 STI'T OIF0 LSS0 0T9°0 8990 96T0 8601 TIE0D S6E0 SES0 0850 S9TO 960°T TIH0 6940 0190 €590 0£T0 €30°T SLS0 9990 $99°0 6IL'0 NID-TAONY
96€'S ¥90°T ILTO 08T0 SOF0 TISO 99¥'T ¥06'T €STO 9YE0 €0S0 0SS0 OL8Y 9S6'T 9670 89€0 €850 6850 9TET €781 9L00 ¥OTO SEF0 0TH0 NAD-HOVID
§97°0 62€1 TO00 SSO'0 6S0°0 TITO ISTO 880°T 9100 S80°0 6£0°0 SSI'0 0ZZ0 680°L TIOO TTZOO 6£0°0 SSI'0 I8€0 €L0T $000 TIOO 161°0 LETO OdD-WHS
owr, WRN TYV IAN 14 00V QWi WA [V IAN @ [d 90V QWi WO 4V AN 4 00V SwWIL WAW [V IAN [d 0V
REENCINig) DD-eIoD VvD-eI0) Sclite} WLy

OHYV 10J sauljaseq NdD [2UONIPPY L1 3|qeL

pringer

As

Y.Lietal

1940

paurropun st dn-1ouuni oY) pue pjoq ur s 3saq ayJ,

ILel 195°0 SO0 9950 98¢1 0€9°0 wr0 0990 0S'Ivy €90 PYLLO L6L0 9ILT'8 60¥°0 859°0 8TIL0 YHONV

LevY ¥0S°0 9LT0 9¢5°0 (434! 86S°0 LTT0 L9S°0 ey S09°0 L19°0 590 8786 101°0 09¢€°0 86¢°0 SUBSW-3-YAONV

L'188 8150 96¢°0 CIso oret 2950 L6T0 €290 00°1¥ 6850 €090 L€90 £evsol 19€°0 6090 §79°0 JIUI-WOPURI-YIDNY
owriy, IAN 14 NV Quiy, TAN 1d NV QwIly, TAN 14 NV owriy, TAN 14 NV

Wd-DVIN uozewy d14d SMINOT wyLos Y

$€9°0 °6¢£°0 S19°0 799°0 9IIY'0 o 02€°0 650 w0ro w9ro 809°0 1590 weo S$$9°0 799°0 SIL0 YONY

o1l 8¢€€°0 69¥°0 0LS°0 £€6°0 00%°0 19%°0 ILS°0 8L0 8170 8LY'0 LSO ¥66°0 871°0 €6¢°0 86¢€°0 SueSW-3{-VAONV

¥69°0 0Ce0 S8%°0 L9S°0 S6v'0 LLEO €610 6£S°0 Svr'0 8¢Y'0 6¢S°0 119°0 €6¢€°0 66S°0 7990 8L9°0 JIUI-WOPURI-YDNY
owiy, IAN 1d NV owiy, TAN 14 NV QW] TAN 1d NV QW] AN Id NV

hetiellig) DD-e10D) VD-eIoD K1onQ) wyLIoy

(Spu02ag ur dawWiy) JHV UO SIsA[euy UONRIQY 1 djqel

paurpiopun st dn-Iouuni 9y} pue p[oq ul sI3saq Y[,

L8S0 L8LT T80 T6L0 I€60 S€60 9€T0 9€I'T ¥S8I'0 9910 OISO €SS0 0610 LITT 98L0 0€L0 ¥T60 $C60 NIO-VONV

696°¢ Iv9Cc SI80 S9L0 LI6O CTC6'0 LETI e TIro SIT0 Tes'0 ces’0 CTo8L LSI'T 690 8¥9'0 0680 8880 - NdD-HOVAD

£€9°0 [STe €8¢€0 Lev'0 9S€0 LSS0 ¥SE0 L6LC L6I'0 b6l'0 O¥VPO ¥PS0 €6C0 €06 [€€°0 Le€0 0850 SI90 NdD-WRS

oLy, W v NN 1d NV Sy, W v AN 1d NV oy, W v AN 1d NV
DIN-dT1dd ddNI DV wyLos[y

DDAV 10 saul[aseq NdD [BUONIPPY €1 3|qeL

pringer

Qs

1941

A versatile framework for attributed network clustering via K-nearest neighbor...

paurpropun st dn-1ouuni oY) pue p[oq U s 3saq Y,

99L°€ S8L'0 6260 €€6°0 YLS'T 9ILT'0 Preo 9LS'0 8€EL'1 6€L°0 876°0 876'0 YAONY

6ILY YLLO 0260 926°0 €0L'1 S00°0 €0C0 £8¢°0 8181 8€L0 LT6°0 976'0 SURSUI--VADNY

l6cy €8L°0 8760 60 IET't So1°0 (4340 9¢6°0 IWwe'l 8CL0 ¥26°0 €060 JUI-WOPUBI-DNY
QwIL] IAN 1 NV QWIL], IAN Id NV QWIL], IAN Id NV

DIN-dT14dd qddNI WOV wyILos[y

(Spu0o2dg U dUWIL]) DDAV UO SIsA[euy Uone[qy 91 djqey

paurpzopun st dn-Iouuni 9y} pue poq ur s 3saq oy,

80LI o 161°0 ({34 8IEl €200 6C1°0 €Er'0 8¢8°0 Yry0 159°0 9690 YHONV

0cre 90¥'0 LOT°0 6C¥°0 LESI 0000 L90°0 8¢r'0 S00°C S 4] 9¢9°0 689°0 SUeSUI-3{-VAIDNY

6971 SO¥°0 881°0 4S540 8901 €000 ¥60°0 ¥9¢°0 €890 evyo 6¥9°0 689°0 JUT-WOPURI-FMONY
SuiL IAN Id NV QwIiy, TAN 1d NV QwIiy, IAN Id NV

JNZUOZBWY oqromJ, D-1998A1) wpLosy

L06°0 €vs0 L9Y'0 1SS0 L8S'T 8E¥°0 190 169°0 ISl 95S°0 989°0 €°L0 YONY

0€0°¢ 9050 ¢8¢0 6510 Sle’l ory'o 1€9°0 ¥89°0 254! 1160 9¢+°0 L6S°0 SUesU-3-VIDONY

280°1 6¢S0 9et’0 L0S0 IEV'1 cero 189°0 189°0 6980 14294 6190 9L9°0 JIUI-WOPURI-VIDNY
owriy, TAN 14 NV Qwiy, TAN Id NV QwIly, IAN Id NV

HIM DN-1998A) Bl0) wyios[y

(spuod9s ur awiny) DOV Uo sisA[eue uoneqy S| aqel

pringer

As

1942

Y.Lietal

also design heuristics to prevent propagated features from
over-smoothing that undermines cluster quality. GRACE [27]
adopts graph convolution on node attributes to fuse all avail-
able information and perform a spectral algorithm based on
GRAC [11]. FGC [62] exploits both node features and struc-
ture information via graph convolution and applies spectral
clustering on a fine-grained graph that encodes higher-order
relations.

Attributed Multiplex Graph Clustering. Via unsupervised
learning on attributed multiplex graphs, neural network mod-
els can learn node embeddings for clustering, e.g., O2MAC
[25] and HDMI [24]. GRACE [27] constructs a multiplex
graph Laplacian and uses this matrix for graph convolution.
Other methods find a single graph that encodes the node prox-
imity relations in all graph layers and attributes. MCGC [22]
performs graph filtering on attributes and learns a consensus
graph leveraging contrastive regularization, while MAGC [23]
exploits higher-order proximity to learn consensus graphs
without deep neural networks.

10 Conclusion

This paper presents ANCKA, a versatile, effective, and effi-
cient attributed network clustering method for AHC, AGC,
and AMGC computation. The improvements of ANCKA over
existing solutions in terms of efficiency and effectiveness
is attributed to: (i) an effective KNN augmentation strategy
to exploit useful attribute information, (ii) a novel problem
formulation based on a random walk model, and (iii) an
efficient iterative optimization framework with speedup tech-
niques. To further boost the efficiency, we leverage GPUs
and develop ANCKA-GPU that is faster than its CPU-parallel
counterpart ANCKA on large datasets, while retaining high
cluster quality. We conduct extensive experiments over real-
world data to validate the outstanding performance of our
methods. In the future, we plan to extend ANCKA to cope
with evolving attributed networks and enhance its scalability
via distributed KNN construction and matrix computation.

Acknowledgements The work described in this paper was fully sup-
ported by grants from the Research Grants Council of the Hong Kong
Special Administrative Region, China (No. PolyU 25201221, PolyU
15205224, PolyU 15200023). Jieming Shi is supported by NSFC
No. 62202404. Renchi Yang is supported by the NSFC YSF grant
(No. 62302414) and Hong Kong RGC ECS grant (No. 22202623).
Jun Luo is supported by The Innovation and Technology Fund (Ref.
ITP/067/23LP). This work is supported by Tencent Technology Co.,
Ltd. PO048511.

Funding Open access funding provided by The Hong Kong Polytechnic
University

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

@ Springer

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Du, R., Drake, B., Park, H.: Hybrid clustering based on content and
connection structure using joint nonnegative matrix factorization.
J. Glob. Optim. 74(4), 861-877 (2019)

2. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based
approach to attributed graph clustering. In: SIGMOD, pp. 505-516
(2012)

3. Yang, J., McAuley, J., Leskovec, J.: Community detection in net-
works with node attributes. In: ICDM, pp. 1151-1156 (2013)

4. Shi, J., Mamoulis, N., Wu, D., Cheung, DW.: Density-based place
clustering in geo-social networks. In: SIGMOD Conference, ACM,
pp- 99-110 (2014)

5. Whang, J.J., Du, R., Jung, S., Lee, G., Drake, B., Liu, Q., Kang, S.,
Park, H.: MEGA: multi-view semi-supervised clustering of hyper-
graphs. VLDB 13(5), 698-711 (2020)

6. Li, Y, Yang,R., Shi, J.: Efficient and effective attributed hypergraph
clustering via k-nearest neighbor augmentation. PACMMOD 1, 1-
23 (2023)

7. Gaudelet, T., Malod-Dognin, N., Przulj, N.: Higher-order molecu-
lar organization as a source of biological function. Bioinformatics
34(17), 1944-1953 (2018)

8. Wu, L., Hu, Y., Zhou, Y., Wang, H., Luo, X., Wang, Z., Zhang, F.,
Ren, K.: Towards understanding and demystifying bitcoin mixing
services. Int WWW, pp. 33-44 (2021)

9. Huang, L., Wang, C.D., Yu, P.S.: Higher order connection enhanced
community detection in adversarial multiview networks. IEEE
Trans. Cybern. 53(5), 3060-3074 (2021)

10. Wu, MJ., Gao, Y.L., Liu, J.X., Zheng, C.H., Wang, J.: Integra-
tive hypergraph regularization principal component analysis for
sample clustering and co-expression genes network analysis on
multi-omics data. IEEE JBHI 24(6), 1823-1834 (2020)

11. Fanseu Kamhoua, B., Zhang, L., Ma, K., Cheng, J., Li, B., Han, B.:
HyperGraph convolution based attributed hypergraph clustering.
In: CIKM, pp. 453-463 (2021)

12. Zhou, Y., Cheng, H., Yu, JX.: Clustering large attributed graphs:
an efficient incremental approach. In: ICDM, pp. 689-698 (2010)

13. Yang,R.,Shi,J., Yang, Y., Huang, K., Zhang, S., Xiao, X.: Effective
and scalable clustering on massive attributed graphs. In: WWW, pp.
3675-3687 (2021)

14. Schlag, S., Heuer, T., Gottesbiiren, L., Akhremtsev, Y., Schulz, C.,
Sanders, P.: High-quality hypergraph partitioning. J. Exp. Algo-
rithmics (2022). https://doi.org/10.1145/3529090

15. Hayashi, K., Aksoy, SG., Park, CH., Park, H.: Hypergraph random
walks, Laplacians, and clustering. In: CIKM, pp. 495-504 (2020)

16. Kumar, T., Vaidyanathan, S., Ananthapadmanabhan, H.,
Parthasarathy, S., Ravindran, B.: Hypergraph clustering: a
modularity maximization approach. arXiv:1812.10869 (2018)

17. Kipf, TN., Welling, M.: Semi-supervised classification with graph
convolutional networks. In: ICLR (2017)

18. Peng, L., Wang, X., Zhu, X.: Unsupervised multiplex graph learn-
ing with complementary and consistent information. In: ACM MM,
pp. 454-462 (2023)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3529090
http://arxiv.org/abs/1812.10869

A versatile framework for attributed network clustering via K-nearest neighbor...

1943

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Pensky, M., Wang, Y.: Clustering of diverse multiplex networks.
arXiv:2110.05308 (2021)

Fortunato, S.: Community detection in graphs. arXiv:0906.0612
(2009)

Guimera, R., Amaral, L.A.N.: Functional cartography of complex
metabolic networks. Nature 433, 895-900 (2005)

Pan, E., Kang, Z.: (2021). Multi-view contrastive graph clustering.
In: NeurIPS

Lin, Z., Kang, Z., Zhang, L., Tian, L.: Multi-view attributed graph
clustering. TKDE 35, 1872-1880 (2021)

Jing, B., Park, C., Tong, H.: Hdmi: high-order deep multiplex info-
max. In: WWW, pp. 2414-2424 (2021)

Fan, S., Wang, X., Shi, C., Lu, E., Lin, K., Wang, B.: One2multi
graph autoencoder for multi-view graph clustering. In: WWW, pp.
3070-3076 (2020)

DeFord, DR., Pauls, SD.: Spectral clustering methods for multiplex
networks. arXiv:1703.05355 (2017)

Kamhoua, B.F., Zhang, L., Ma, K., Cheng, J., Li, B., Han, B.:
Grace: a general graph convolution framework for attributed graph
clustering. ACM TKDD 17, 1-31 (2022)

Cheng, H., Zhou, Y., Yu, J.X.: Clustering large attributed graphs: a
balance between structural and attribute similarities. ACM TKDD
5(2), 1-33 (2011)

Guo, R., Sun, P, Lindgren, E., Geng, Q., Simcha, D., Chern, F.,
Kumar, S.: Accelerating large-scale inference with anisotropic vec-
tor quantization. In: ICML (2020)

Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search
with GPUs. IEEE TBD 7(3), 535-547 (2019)

Tong, H., Faloutsos, C., Pan, Jy.: Fast random walk with restart and
its applications. In: ICDM, pp. 613-622 (2006)

Jung,J.,Park,N., Lee, S., Kang, U.: Bepi: fast and memory-efficient
method for billion-scale random walk with restart. In: SIGMOD,
pp. 789-804 (2017)

Shi, J., Yang, R., Jin, T., Xiao, X., Yang, Y.: Realtime top-k per-
sonalized pagerank over large graphs on gpus. VLDB 13(1), 15-28
(2019)

Park, H., Jung, J., Kang, U.: A comparative study of matrix factor-
ization and random walk with restart in recommender systems. In:
IEEE BigData, pp. 756765 (2017)

Allen Zhu, Z., Lattanzi, S., Mirrokni, V.: A local algorithm for
finding well-connected clusters. In: ICML (2013)

Jeh, G., Widom, J.: Scaling personalized web search. In: WWW,
pp- 271-279 (2003)

Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI
22(8), 888-905 (2000)

Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28(2), 129-137 (1982)

Won, J.H., Zhou, H., Lange, K.: Orthogonal trace-sum maximiza-
tion: applications, local algorithms, and global optimality. SIAM
J. Matrix Anal. Appl. 42(2), 859-882 (2021)

(2024) Technical report. https:/sites.google.com/view/ancka-
technical-report/

Yu, SX., Shi, J.: Multiclass spectral clustering. In: ICCV, p. 313
(2003)

Saad, Y.: Numerical Methods for Large Eigenvalue Problems,
revised SIAM, New Delhi (2011)

Rattigan, MJ., Maier, M., Jensen, D.: Graph clustering with net-
work structure indices. In: ICML, pp. 783-790 (2007)

Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM
TALG 1(1), 2-13 (2005)

Cook, S.: CUDA programming: a developer’s guide to parallel
computing with GPUs (2012)

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Taluk-
dar, P.: HyperGCN: a new method of training graph convolutional
networks on hypergraphs. NeurIPS 135, 1511-1522 (2019)

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Hein, M., Setzer, S., Jost, L., Rangapuram, SS.: The total variation
on hypergraphs—Iearning on hypergraphs revisited. In: NeurIPS,
vol. 26 (2013)

Ni, J., Li, J., McAuley, J.: Justifying recommendations using
distantly-labeled reviews and fine-grained aspects. In: EMNLP-
IJCNLP, pp. 188-197 (2019)

Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, BP., Wang,
K.: An overview of Microsoft academic service (MAS) and appli-
cations. In: WWW, pp. 243-246 (2015)

Zhang, X., Liu, H., Li, Q., Wu, XM.: Attributed graph clustering
via adaptive graph convolution. In: IJCAI (2019)

Chiang, WL., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, CJ.:
Cluster-gen: an efficient algorithm for training deep and large graph
convolutional networks. In: KDD (2019)

Zhou, D., Huang, J., Scholkopf, B.: Learning with Hypergraphs:
clustering, classification, and embedding. In: NeurIPS, vol. 19
(2007)

Rodri, J.: On the Laplacian eigenvalues and metric parameters of
hypergraphs. Linear Multilinear Algebra 50(1), 1-14 (2002)
Gottesbiiren, L., Heuer, T., Sanders, P.: Parallel flow-based hyper-
graph partitioning. In: SEA, vol. 233 (2022)

Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for
irregular graphs. J. Parallel Distrib. Comput. 48(1), 96129 (1998)
Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation.
Eur. Phys. J. Spec. Top. 178(1), 13-23 (2009)

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast
unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008(10), P10008 (2008)

Lang, K., Rao, S.: A flow-based method for improving the expan-
sion or conductance of graph cuts. In: International Conference on
Integer Programming and Combinatorial Optimization, pp. 325—
337 (2004)

Andersen, R., Chung, F., Lang, K.: Local graph partitioning using
Pagerank vectors. In: FOCS, pp. 475-486 (2006)

Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonneg-
ative matrix factorization for data representation. TPAMI 33(8),
1548-1560 (2010)

Ward, J.H., Jr.: Hierarchical grouping to optimize an objective func-
tion. J. Am. Stat. Assoc. 58(301), 236-244 (1963)

Kang, Z., Liu, Z., Pan, S., Tian, L.: Fine-grained attributed graph
clustering. In: SDM (2022)

An, J., Wang, D.: Efficient one-sided Jacobi SVD computation on
AMD GPU using OpenCL. In: ICSP (2016)

Newman, M.E.J.: Spectral methods for community detection and
graph partitioning. Phys. Rev. E (2013). https://doi.org/10.1103/
PhysRevE.88.042822

Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel
hypergraph partitioning: applications in VLSI domain. IEEE
TVLSI 7(1), 69-79 (1999)

Takai, Y., Miyauchi, A., Ikeda, M., Yoshida, Y.: Hypergraph clus-
tering based on Pagerank. In: KDD (2020)

Chan, THH., Liang, Z.: Generalizing the hypergraph Laplacian via
a diffusion process with mediators. arXiv:1804.11128 (2018)
Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content
for community detection: a discriminative approach. In: KDD, pp.
927-936 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/2110.05308
http://arxiv.org/abs/0906.0612
http://arxiv.org/abs/1703.05355
https://sites.google.com/view/ancka-technical-report/
https://sites.google.com/view/ancka-technical-report/
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1103/PhysRevE.88.042822
http://arxiv.org/abs/1804.11128

	A versatile framework for attributed network clustering via K-nearest neighbor augmentation
	Abstract
	1 Introduction
	2 Preliminaries
	3 Attributed hypergraph clustering
	3.1 KNN augmentation
	3.2 (α,β,γ)-random walk
	3.3 Objective function

	4 Theoretical analysis for AHCKA
	5 The AHCKA algorithm
	5.1 Main algorithm
	5.2 Greedy initialization of BCM
	5.3 Complexity

	6 The ANCKA framework
	6.1 Generalized (α,β,γ)-random walk
	6.2 ANCKA algorithm

	7 GPU-accelerated ANCKA-GPU
	8 Experiments
	8.1 Experimental setup
	8.1.1 Datasets
	8.1.2 Competitors and parameter settings

	8.2 Performance evaluation
	8.2.1 Quality evaluation
	8.2.2 Efficiency evaluation
	8.2.3 Evaluation on ANCKA-GPU

	8.3 Experimental analysis
	8.4 Convergence analysis
	8.5 Runtime analysis

	9 Related work
	10 Conclusion
	Acknowledgements
	References

