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Abstract
Thefirst-order optimality condition of convexly constrained nonconvex nonconcavemin-max
optimization problems with box constraints formulates a nonmonotone variational inequal-
ity (VI), which is equivalent to a system of nonsmooth equations. In this paper, we propose
a quasi-Newton subspace trust region (QNSTR) algorithm for the least squares problems
defined by the smoothing approximation of nonsmooth equations. Based on the structure of
the nonmonotone VI, we use an adaptive quasi-Newton formula to approximate the Hessian
matrix and solve a low-dimensional strongly convex quadratic program with ellipse con-
straints in a subspace at each step of the QNSTR algorithm efficiently. We prove the global
convergence of theQNSTR algorithm to an ε-first-order stationary point of themin-max opti-
mization problem. Moreover, we present numerical results based on the QNSTR algorithm
with different subspaces for a mixed generative adversarial networks in eye image segmen-
tation using real data to show the efficiency and effectiveness of the QNSTR algorithm for
solving large-scale min-max optimization problems.

Keywords Nonmonotone variational inequality · Min-max optimization · Quasi-Newton
method · Least squares problem · Generative adversarial networks

Mathematics Subject Classification 90C47 · 90C15 · 90C33 · 65K15

1 Introduction

Min-max optimization problems have wild applications in games [29], distributional robust-
ness optimization [27], robust machine learning [26], generative adversarial networks
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(GANs) [14], reinforcement learning [7], distributed optimization [32], etc. Mathematically,
a convexly constrained min-max optimization problem can be written as

min
x∈X max

y∈Y f (x, y) := EP [�(x, y, ξ)] , (1)

where X ⊆ R
n and Y ⊆ R

m are nonempty, closed and convex sets, ξ is an s-dimensional
randomvector obeying a probability distribution P with support setΞ , � : Rn×R

m×R
s → R

is nonconvex-nonconcave for a fixed realization of ξ , i.e., �(x, y, ξ) is neither convex in x
nor concave in y. Hence the objective function f (x, y) is also nonconvex-nonconcave in
general.

In this paper, we are mainly interested in problem (1) arising from GANs [14], which
reads

min
x∈X max

y∈Y

(
EP1

[
log(D(y, ξ1))

] + EP2

[
log(1 − D(y,G(x, ξ2)))

])
, (2)

where ξi is an R
si -valued random vector with probability distribution Pi for i = 1, 2, D :

R
m × R

s1 → (0, 1) is a discriminator, G : Rn × R
s2 → R

s1 is a generator.
Generally, the generator G and the discriminator D are two feedforward neural networks.

For example, G can be a p-layer neural network and D can be a q-layer neural network, that
is

G(x, ξ2) = σ
p
G(W p

Gσ
p−1
G (· · · σ 1

G(W 1
Gξ2 + b1G) + · · · ) + bp

G),

D(y, ξ1) = σ
q
D(Wq

Dσ
q−1
D (· · · σ 1

D(W 1
Dξ1 + b1D) + · · · ) + bqD),

where W 1
G , · · · ,W p

G , b
1
G , · · · , bp

G and W 1
D, · · · ,Wq

D , b
1
D, · · · , bqD are the weight matrices,

biases vectors ofG and D with suitable dimensions, σ 1
G , · · · , σ

p
G and σ 1

D, · · · , σ
q
D are proper

activation functions, such as ReLU, GELU, Sigmoid, etc. Denote

x := (vec(W 1
G)�, · · · , vec(W p

G)�, (b1G)�, · · · , (bp
G)�)�,

y := (vec(W 1
D)�, · · · , vec(Wq

D)�, (b1D)�, · · · , (bqD)�)�,

where vec(·) denotes the vectorization operator. In this case, problem (2) reduces to problem
(1) if let ξ := (ξ1, ξ2) ∈ Ξ and

�(x, y, ξ) := log(D(y, ξ1)) + log(1 − D(y,G(x, ξ2))).

Due to the nonconvexity-nonconcavity of the objective function f , problem (1) may not
have a saddle point. Hence the concepts of global and local saddle points are untimely
to characterize the optimum of problem (1). Recently, motivated by practical applications,
the so-called global and local minimax points are proposed to describe the global and local
optima of nonconvex-nonconcavemin-max optimization problems in [19] from the viewpoint
of sequential games.Moreover, the optimality necessary conditions for a local minimax point
are studied in [19] for unconstrained min-max optimization problems. In [8, 18], the optimal-
ity conditions for a local minimax point are studied for constrained min-max optimization
problems.

Numerical methods for min-max optimization problems have been extensively studied.
These algorithms can be divided into four classes based on the convexity or concavity of
problems: the convex-concave cases (see, e.g., [28, 30, 31, 39]), the nonconvex-concave
cases (see, e.g., [22, 23, 33]), the convex-nonconcave cases (see, e.g., [22, 23, 33]) and the
nonconvex-nonconcave cases (see, e.g., [11, 42]).
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To solve problem (1) numerically, we first apply the sample average approximation (SAA)
approach to obtain a discrete form. We collect N independent identically distributed (i.i.d.)
samples of ξ (e.g., generated by theMonte Carlomethod), denoted by ξ1, · · · , ξ N , and obtain
a discrete counterpart of problem (1) as below:

min
x∈X max

y∈Y f̂N (x, y) := 1

N

N∑
i=1

�(x, y, ξ i ). (3)

To ease the discussion, we assume that �(·, ·, ξ) is twice continuously differentiable with
respect to (x, y) for an arbitrary ξ ∈ Ξ in what follows.

Let z := (x�, y�)� ∈ R
n+m , Z := X × Y ⊆ R

n+m and

HN (z) :=
( ∇x f̂N (x, y)

−∇y f̂N (x, y)

)
.

Then the first-order optimality condition of a local minimax point for problem (3) can be
presented as the following nonmonotone variational inequality (VI):

0 ∈ HN (z) + NZ (z), (4)

where NZ (z) is the normal cone to the convex set Z at z, which is defined by

NZ (z) := {v : 〈v, u − z〉 ≤ 0,∀u ∈ Z}.
We call z∗ a first-order stationary point of problem (3) if it satisfies (4). Due to the
nonconvexity-nonconcavity, seldom algorithms can ensure the convergence to a global or
local optimal point of problem (3). In the study of the convergence of algorithms for
nonconvex-nonconcave min-max problem (3), some strong assumptions, such as the Polyak-
Łojasiewicz (PL) condition [42], the existence of solutions for the correspondingMinty VI of
problem (4) [11] etc, are required. In fact, such assumptions are difficult to check in practice.
On the other hand, some algorithms need to estimate the Lipschitz constant of HN (z), but the
computation of the Lipschitz constant of HN (z) may be too costly or even intractable. In this
paper, without estimating the Lipschitz constant of HN (z) and assuming the PL condition
or the existence of solutions for Minty VI, we use a so-called quasi-Newton subspace trust
region (QNSTR, for short) algorithm for solving problem (4).

The VI (4) can be equivalently reformulated as the following system of nonsmooth
equations (see [12])

FN (z) := z − ProjZ (z − HN (z)) = 0, (5)

where ProjZ (·) denotes the projection operator onto Z .
Obviously, z∗ is a first-order stationary point of (3) (i.e., a solution of (4) or (5)) if it is an

optimal solution of the following least squares problem:

min
z∈Rn+m

rN (z) := 1

2
‖FN (z)‖2 (6)

and rN (z∗) = 0, where ‖ · ‖ denotes the Euclidean norm.
The main contributions of this paper are summarized as follows. (i) We develop the

QNSTR algorithm for solving the least squares problem (6) when X and Y are boxes. Based
on the structure of the VI (4), we use a smoothing function to approximate the nonsmooth
function FN , adopt an adaptive quasi-Newton formula to approximate the Hessianmatrix and
solve a quadratic program with ellipse constraints in a subspace at each step of the QNSTR
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algorithm with a relatively low computational cost. (ii) We prove the global convergence of
the QNSTR algorithm to a stationary point of a smoothing least squares problem of (6),
which is an ε-first-order stationary point of the min-max optimization problem (3) if every
element of the generalized Jacobian matrix of FN is nonsingular at it. (iii) We apply the
QNSTR algorithm to GANs in eye image segmentation with real data, which validates the
effectiveness and efficiency of our approach for large-scale min-max optimization problems.

This paper is organized as follows. In Sect. 2, we introduce concepts of local minimax
points and first-order optimality conditions. Moreover, we investigate the asymptotic con-
vergence between problems (1) and (3) to build the numerical foundation for the subsequent
discussion. In Sect. 3, we present the QNSTR algorithm and establish its global convergence.
In Sect. 4, we apply the QNSTR algorithm to solve problem (3) with examples from eye
image segmentation problems and digital handwriting image generation problems based on
two different real data sets. We compare the QNSTR algorithm with some existing methods
including alternating Adam. Finally, we give some concluding remarks in Sect. 5.

Notations N denotes the set of natural numbers. ‖ · ‖ denotes the Euclidean norm of a
vector or the norm of a matrix induced by the Euclidean norm. d(x, Y ) := inf y∈Y ‖x − y‖
and d(X , Y ) := supx∈X inf y∈Y ‖x − y‖, X , Y ⊆ R

n .

2 First-Order Stationarity and Asymptotic Convergence

In this section, we focus on the asymptotic convergence between problems (3) and (1) regard-
ing to the global minimax point and the first-order stationary point. To this end, we first give
some preliminaries on how to describe the optima of a min-max optimization problem.

Definition 1 (global and local minimax points, [19, Definitions 9 & 14])

(i) (x̂, ŷ) ∈ X × Y is called a global minimax point of problem (1), if

f (x̂, y) ≤ f (x̂, ŷ) ≤ max
y′∈Y

f (x, y′), ∀(x, y) ∈ X × Y .

(ii) (x̂, ŷ) ∈ X ×Y is called a local minimax point of problem (1), if there exist a δ0 > 0 and
a function τ : R+ → R+ satisfying τ(δ) → 0 as δ → 0, such that for any δ ∈ (0, δ0]
and any (x, y) ∈ X × Y satisfying

∥∥x − x̂
∥∥ ≤ δ and

∥∥y − ŷ
∥∥ ≤ δ, we have

f (x̂, y) ≤ f (x̂, ŷ) ≤ max
y′∈{y∈Y :‖y−ŷ‖≤τ(δ)}

f (x, y′).

Remark 1 The concept of saddle points has been commonly used to characterize the optima
of min-max problems. A point (x̂, ŷ) ∈ X × Y is called a saddle point of problem (1), if

f (x̂, y) ≤ f (x̂, ŷ) ≤ f (x, ŷ), ∀(x, y) ∈ X × Y , (7)

and (x̂, ŷ) ∈ X×Y is called a local saddle point of problem (1) if (7) holds in a neighborhood
of (x̂, ŷ). However, as pointed out in [19], saddle points and local saddle points may not
exist in many applications of machine learning, especially in the nonconvex-nonconcave
case. Also, (local) saddle points are solutions from the viewpoint of simultaneous game,
where theminimization operator and themaximization operator act simultaneously.However,
many applications, such as GANs and adversarial training, seek for solutions in the sense of
sequential game, where the minimization operator acts first and the maximization operator
acts latter. The global and local minimax points exist under some mild conditions (see [19,
Proposition 11 and Lemma 16]) and also describe the optima in the sense of sequential game.

123



Journal of Scientific Computing (2024) 101 :45 Page 5 of 30 45

The following lemma gives the first-order necessary optimality conditions of local
minimax points for problem (1).

Lemma 1 ( [18, Theorem 3.2 & Corollary 3.1]) If (x̂, ŷ) ∈ X × Y is a local minimax point
of problem (1), then we have

{
0 ∈ ∇x f (x̂, ŷ) + NX (x̂),

0 ∈ −∇y f (x̂, ŷ) + NY (ŷ).
(8)

Definition 2 (x̂, ŷ) ∈ X × Y is called a first-order stationary point of problem (1) if (8)
holds. (x̂, ŷ) ∈ X × Y is called a first-order stationary point of problem (3) if (8) holds with
replacing f by f̂N .

Hereafter, we will focus on finding a first-order stationary point of (3).
As for the exponential rate of convergence of the first-order and second-order stationary

points of SAA for a specific GAN, one can refer to [18, Proposition 4.3]. In what follows,
we mainly focus on the almost surely convergence analysis between problems (1) and (3)
as N tends to infinity. If the problem is well-behaved and the global minimax points are
achievable, we consider the convergence of global minimax points between problems (1)
and (3). Otherwise, the first-order stationary points (Definition 2) are getatable. Thus, we
need also consider the convergence of first-order stationary points between problems (1) and
(3) as N tends to infinity.

Denote the optimal value, the set of global minimax points and the set of first-order
stationary points of problem (1) by ϑg , Sg and S1st, respectively. Let ϑ̂N

g , ŜN
g and ŜN

1st denote
the optimal value, the set of global minimax points and the set of first-order stationary points
of problem (3), respectively.

Lemma 2 Suppose that: (a) X and Y are compact sets; (b) �(x, y, ξ) is dominated by an
integrable function for every (x, y) ∈ X × Y . Then

sup
(x,y)∈X×Y

∣∣∣ f̂N (x, y) − f (x, y)
∣∣∣ → 0

w.p.1 as N → ∞.
If, further, (c) ‖∇x�(x, y, ξ)‖ and ∥∥∇y�(x, y, ξ)

∥∥ are dominated by an integrable function
for every (x, y) ∈ X × Y , then

sup
(x,y)∈X×Y

∥∥∥∇ f̂N (x, y) − ∇ f (x, y)
∥∥∥ → 0

w.p.1 as N → ∞.

Proof Since the samples are i.i.d. and X and Y are compact, it is known from [36, Theorem
7.53] that the above uniform convergence results hold. ��

The following proposition gives the nonemptiness of ŜN
g , Sg , ŜN

1st and S1st.

Proposition 1 If conditions (a)–(c) in Lemma 2 hold, then Sg and S1st are nonempty and ŜN
g

and ŜN
1st are nonempty for any N ∈ N.

Proof Since the continuity of f (x, y) and f̂N (x, y) w.r.t. (x, y) and the boundedness of X
and Y , we know from [19, Proposition 11] the nonemptiness of Sg and ŜN

g . Note that both

S1st and ŜN
1st are solutions of variational inequalities. Thenwe have from [12, Corollary 2.2.5]

that S1st and ŜN
1st are nonempty. ��
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Based on the uniform laws of large numbers in Lemma 2, we have the following
convergence results.

Theorem 1 Let conditions (a)–(c) in Lemma 2 hold. Then

d
(
ŜN
g ,Sg

)
→ 0, (9)

d
(
ŜN
1st,S1st

)
→ 0, (10)

w.p.1 as N → ∞.

Proof (10) follows from [35, Proposition 19] directly. Thus, inwhat follows,we only consider
(9).

From Proposition 1, we know that ŜN
g and Sg are nonempty for any N ∈ N. Let zN =

(xN , yN ) ∈ ŜN
g and zN → z̄ = (x̄, ȳ) w.p.1 as N → ∞. Then we just verify that z̄ ∈

Sg w.p.1. If {zN } is not a convergent sequence, due to the boundedness of X and Y , we
can choose a convergent subsequence. Denote ϕ(x) := maxy∈Y f (x, y) and ϕ̂N (x) :=
maxy∈Y f̂N (x, y). Note that

max
x∈X

∣∣ϕ̂N (x) − ϕ(x)
∣∣ = max

x∈X

∣∣∣∣max
y∈Y f̂N (x, y) − max

y∈Y f (x, y)

∣∣∣∣
≤ max

(x,y)∈X×Y

∣∣∣ f̂N (x, y) − f (x, y)
∣∣∣

→ 0

(11)

w.p.1 as N → ∞, where the last convergence assertion follows from Lemma 2.
Next, we show

Projx ŜN
g = argmin

x∈X
ϕ̂N (x) and ProjxSg = argmin

x∈X
ϕ(x), (12)

where Projx denotes the projection onto the x’s space. Based on the definition of global
minimax points, we have, for any (x̂, ŷ) ∈ Sg , that

f (x̂, y) ≤ f (x̂, ŷ) ≤ max
y′∈Y

f (x, y′), ∀(x, y) ∈ X × Y ,

which implies

ϕ(x̂) = max
y∈Y f (x̂, y) ≤ max

y′∈Y
f (x, y′) = ϕ(x), ∀x ∈ X .

This means ProjxSg ⊆ argmin
x∈X

ϕ(x). On the other hand, for any x̂ ∈ argmin
x∈X

ϕ(x), we let

ŷ ∈ argmaxy∈Y f (x̂, y). Then it is not difficult to examine that (x̂, ŷ) is a global minimax
point, i.e., argmin

x∈X
ϕ(x) ⊆ ProjxSg . The Projx ŜN

g = argmin
x∈X

ϕ̂N (x) can be similarly verified.

Hence (12) holds.
Then (11) and (12) indicate, according to [41, Lemma 4.1], that

d
(
Projx ŜN

g ,ProjxSg

)
→ 0 (13)

w.p.1 as N → ∞. We know from (13) that x̄ ∈ ProjxSg .
Moreover, we know that

∣∣∣ϑ̂N
g − ϑg

∣∣∣ =
∣∣∣∣min
x∈X ϕ̂N (x) − min

x∈X ϕ(x)

∣∣∣∣
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≤ max
x∈X

∣∣ϕ̂N (x) − ϕ(x)
∣∣

→ 0

w.p.1 as N → ∞, where ϑg and ϑ̂N
g are optimal values of problems (1) and (3), respectively.

Due to Lemma 2 and the continuity of f , we know that

∣∣∣ f̂N (xN , yN ) − f (x̄, ȳ)
∣∣∣ ≤

∣∣∣ f̂N (xN , yN ) − f (xN , yN )

∣∣∣ +
∣∣∣ f (xN , yN ) − f (x̄, ȳ)

∣∣∣
→ 0.

Since ϑ̂N
g = f̂N (xN , yN ), we know that ϑg = f (x̄, ȳ), which, together with x̄ ∈ ProjxSg ,

implies that (x̄, ȳ) ∈ Sg . ��

Based on Theorem 1, it is well-founded for us to employ problem (3) to approximately
solve problem (1). In the sequel, we will focus on how to compute an ε-first-order stationary
point of problem (3).

3 The QNSTR Algorithm and its Convergence Analysis

In this section, we propose the QNSTR algorithm to compute an ε-first-order stationary point
of problem (3) with a fixed sample size N . In the remainder of this paper, let X = [a, b] and
Y = [c, d], where a, b ∈ R

n , c, d ∈ R
m with a < b and c < d in the componentwise sense.

In this case, the projection in (5) has a closed form and the function FN can be written as

FN (z) = z − mid(l, u, z − HN (z)), (14)

where l, u ∈ R
n+m with l = (a�, c�)� and u = (b�, d�)�, “mid” is the middle operator in

the componentwise sense, that is

mid(l, u, z − HN (z))i =
⎧⎨
⎩
li , if (z − HN (z))i < li ,
ui , if (z − HN (z))i > ui , i = 1, · · · , n + m,

(z − HN (z))i , otherwise.

Since X and Y are boxes, (14) can be divided into two parts separably and rewritten as

FN (z) =
(
F1
N (z)

F2
N (z)

)
=

(
x − mid(a, b, x − ∇x f̂N (x, y))
y − mid(c, d, y + ∇y f̂N (x, y))

)
. (15)

3.1 Smoothing Approximation

Letq(z) = z−HN (z).The function FN is not differentiable at zwhenqi (z) = li orqi (z) = ui
for some 1 ≤ i ≤ n+m. To overcome the difficulty in computation of the generalizedHessian
of the nonsmooth function FN (z), we consider its smoothing approximation
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(FN ,μ)i (z) =

⎧
⎪⎨
⎪⎩

1
2 ((HN )i (z) + zi ) + 1

2μ(ui − qi (z))2 + μ
8 − ui

2 , if |ui − qi (z)| ≤ μ
2 ,

1
2 ((HN )i (z) + zi ) − 1

2μ(li − qi (z))2 − μ
8 − li

2 , if |li − qi (z)| ≤ μ
2 ,

(FN )i (z), otherwise,

(16)

where 0 < μ ≤ μ̂ := min1≤i≤n+m(ui − li ).
From (15), the smoothing function FN ,μ(z) can also be represented as

FN ,μ(z) =
(
F1
N ,μ(z)

F2
N ,μ(z)

)
, (17)

where F1
N ,μ(z) and F2

N ,μ(z) are the smoothing approximations of F1
N (z) and F2

N (z),
respectively.

We summarize some useful properties of the smoothing function FN ,μ, which can be
found in [4] and [3, Section 6].

Lemma 3 Let FN ,μ be a smoothing function of FN defined in (16). Then for any μ ∈ (0, μ̂),
FN ,μ is continuously differentiable and has the following properties.

(i) There is a κ > 0 such that for any z ∈ R
m+n and μ > 0,

‖FN ,μ(z) − FN (z)‖ ≤ κμ.

(ii) For any z ∈ R
m+n, we have

lim
μ↓0 d(∇z FN ,μ(z), ∂C FN (z)) = 0,

where ∂C FN (z) = ∂(FN (z))1 × ∂(FN (z))2 × · · · × ∂(FN (z))n+m, and ∂(FN (z))i is the
Clarke generalized gradient of (FN (·))i at z for i = 1, . . . , n+m. Moreover, there exists
a μ̄ > 0 such that for any μ ∈ (0, μ̄), we have ∇FN ,μ(z) ∈ ∂C FN (z).

In Fig. 11 in Appendix A, we show the approximation error ‖FN ,μ(z) − FN (z)‖ over
X × Y as μ ↓ 0 with different N .

Definition 3 (ε-first-order stationary points) For given ε > 0, a point z is called an ε-first-
order stationary point of problem (3), if ‖FN (z)‖ ≤ ε.

Fig. 1 The convergence of resN as N grows (left: The range of resN with different N , right: The boxplot of
resN with different N )
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From (i) of Lemma 3, if z∗ is an ε-first-order stationary point of problem (3), i.e., ‖FN (z∗)‖ ≤
ε, then for any μ ∈ (0, ε

κ
), we have

‖FN ,μ(z∗)‖ − ‖FN (z∗)‖ ≤ ‖FN ,μ(z∗) − FN (z∗)‖ ≤ κμ ≤ ε, (18)

which implies ‖FN ,μ(z∗)‖ ≤ ‖FN (z∗)‖ + ε ≤ 2ε. On the other hand, if z∗ satisfies
‖FN ,μ(z∗)‖ ≤ ε

2 for some ε > 0 and μ ∈ (0, ε
2κ ), then we have

‖FN (z∗)‖ − ‖FN ,μ(z∗)‖ ≤ ‖FN ,μ(z∗) − FN (z∗)‖ ≤ κμ ≤ ε

2
,

which implies ‖FN (z∗)‖ ≤ ‖FN ,μ(z∗)‖ + ε
2 ≤ ε, that is, z∗ is an ε-first-order stationary

point of problem (3).
Now we consider the smoothing least squares problem with a fixed small smoothing

parameter μ > 0:

min
z∈Rn+m

rN ,μ(z) := 1

2
‖FN ,μ(z)‖2. (19)

Let JN ,μ(z) be the Jacobian matrix of FN ,μ(z). The gradient of the function rN ,μ is

∇rN ,μ(z) = JN ,μ(z)�FN ,μ(z).

A vector z∗ is called a first-order stationary point of problem (19) if ∇rN ,μ(z∗) = 0. If
JN ,μ(z∗) is nonsingular, then FN ,μ(z∗) = 0. From (i) of Lemma 3, ‖FN (z∗)‖ = ‖FN (z∗) −
FN ,μ(z∗)‖ ≤ κμ ≤ ε when μ ∈ (0, ε/κ). This means that a first-order stationary point
z∗ of problem (19) is an ε-first-order stationary point of problem (3) if μ ∈ (0, ε/κ) and
JN ,μ(z∗) is nonsingular. Note that ∂C FN (z) is a compact set for any z ∈ X × Y . From (ii)
of Lemma 3, if all matrices in ∂C FN (z∗) are nonsingular, then there is μ0 > 0 such that for
any μ ∈ (0, μ0), JN ,μ(z∗) is nonsingular.

If JN ,μ(z∗) is singular, the assumptions of local convergence theorems in [10, 15] for
Gauss-Newton methods to solve the least squares problem (19) fail. In the next subsection,
we prove the convergence of the QNSTR algorithm for the least squares problem (19) to a
stationary point of (19) without assuming the nonsigularity of JN ,μ(z∗).

3.2 The QNSTR Algorithm

In this subsection, we present the QNSTR algorithm with a fixed sample size N and a
fixed smoothing parameter μ. For simplicity, in this subsection, we use F(z), J (z) and r(z)
to denote FN ,μ(z), JN ,μ(z) and rN ,μ(z), respectively. Moreover, we use F1(z), F2(z) to
represent F1

N ,μ(z) and F2
N ,μ(z), respectively.

For an arbitrary point z0 ∈ X × Y and a positive number R0, we denote the level set S̄ :=
{z ∈ R

n+m | r(z) ≤ r(z0)} and define a set S(R0) := {z ∈ R
n+m | ‖z − z′‖ ≤ R0,∀z′ ∈ S̄}.

By the definition of F and the boundedness of X and Y , we have r(z) = 1
2‖F(z)‖2 → ∞ if

‖z‖ → ∞. Hence both S̄ and S(R0) are bounded.
Let J1(z) = ∇F1(z) and J2(z) = ∇F2(z). Then from

r(z) := 1

2
‖F1(z)‖2 + 1

2
‖F2(z)‖2,

if F1 and F2 are twice differentiable at z, the Hessian matrix

∇2r(z) = 1

2
∇2‖F1(z)‖2 + 1

2
∇2‖F2(z)‖2,
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can be written as

∇2‖F1(z)‖2 = J1(z)
� J1(z) +

n∑
i=1

(F1)i (z)∇2(F1)i (z), (20)

∇2‖F2(z)‖2 = J2(z)
� J2(z) +

m∑
i=1

(F2)i (z)∇2(F2)i (z). (21)

If F1 and F2 are not twice differentiable at z, the generalized Hessian of r at z, denote
∂(∇r(z)), is the convex hull of all (m + n) × (m + n) matrices obtained as the limit of a
sequence of the form ∇2r(zk), where zk → z and F1 and F2 are twice differentiable at zk

[5]. Hence from (20)–(21) and the twice continuous differentiability of f̂N , we know that
there is a positive number M1 such that ‖H‖ ≤ M1 for any H ∈ ∂(∇r(z)), z ∈ S(R0).
Moreover from [5, Proposition 2.6.5], there is a positive number M2 such that∥∥∇r(z) − ∇r(z′)

∥∥ ≤ M2
∥∥z − z′

∥∥ , ∀z, z′ ∈ S(R0). (22)

To give a globally convergent algorithm for problem (19) without using the second
derivatives, we keep the term J1(z)� J1(z) and J2(z)� J2(z) in (20)–(21), and approximate

n∑
i=1

(F1)i (z)∇2(F1)i (z) and
m∑
i=1

(F2)i (z)∇2(F2)i (z).

Specifically, the Hessian matrix at the k-th iteration point zk is approximated by Hk with

Hk = J1(zk)
� J1(zk) + J2(zk)

� J2(zk) + Ak, (23)

where

Ak =
(
Bk O
O Ck

)
.

Here the matrices Bk and Ck are computed by the truncated BFGS quasi-Newton formula as
follows.

Bk+1 =
⎧⎨
⎩
B̄k+1 if ‖B̄k+1‖ ≤ γ &

(s1k )�v1k
(s1k )�s1k

≥ ε̄

‖F1(zk+1)‖In otherwise,
(24)

Ck+1 =
⎧
⎨
⎩
C̄k+1 if ‖B̄k+1‖ ≤ γ &

(s2k )�v2k
(s2k )�s2k

≥ ε̄

‖F2(zk+1)‖Im otherwise,
(25)

where

B̄k+1 = Bk − Bks1k (s1k )�B�
k

(s1k )�Bks1k
+ v1k (v1k )�

(v1k )�s1k
(26)

and

C̄k+1 = Ck − Cks2k (s2k )�C�
k

(s2k )�Cks2k
+ v2k (v2k )�

(v2k )�s2k
. (27)
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Here ε̄ and γ are given positive parameters, s1k = xk+1 − xk , s2k = yk+1 − yk ,

v1k = (∇x F
1(zk+1) − ∇x F

1(zk))
�F1(zk+1)‖F1(zk+1)‖/‖F1(zk)‖,

v2k = (∇y F
2(zk+1) − ∇y F

2(zk))
�F2(zk+1)‖F2(zk+1)‖/‖F2(zk)‖.

Notice that the approximation form (23) is proposed in [47]. However, the matrix Ak in
[47] is defined by using F(z) and ∇F(z) at zk+1, zk . In this paper, we use F1(z), F2(z),
∇F1(z) and ∇F2(z) at zk+1, zk to define a two-block diagonal matrix Ak in (23), based on
the structure of VI in (17).

In [47], a back tracking line search is used to obtain a stationary point of the least squares
problem. In this paper, we use a subspace trust-region method to solve problem (19) with
global convergence guarantees. Comparingwith the quasi-Newtonmethodwith back tracking
line search in [47], the QNSTR algorithm solves a strongly convex quadratic subproblem in
a low dimension at each step, which is efficient to solve large-scale min-max optimization
problems with real data. See Sect. 4 for more details.

In what follows, for simplification, we use Jk and Fk to denote J (zk), F(zk), respectively.
Let gk = ∇r(zk). Choose {d1k , · · · , dL−1

k } such that Vk := [−gk d1k · · · dL−1
k

] ∈
R

(n+m)×L has L linearly independent column vectors. Let

ck := V�
k gk, Gk := V�

k Vk, Qk := V�
k HkVk .

Then, to obtain the stepsize αk at the iteration point zk , we solve the following strongly
convex quadratic program in an L-dimensional space:

αk = argmin
α∈RL

mk(α) := r(zk) + c�
k α + 1

2α
�Qkα

s.t. ‖Vkα‖ ≤ Δk,

(28)

where Δk > 0 is the trust-region radius.
A key question for solving problem (28) is how to compute Qk efficientlywhen Hk is huge.

In fact, Qk can be calculated efficiently without computing and storing the full information
Hk . From (23), we can write Qk as

Qk = V�
k J�

k JkVk + V�
k AkVk . (29)

For the term V�
k J�

k JkVk in (29), we compute JkVk in a columnwise way: For a sufficiently
small ε > 0,

Jkgk ≈ F(zk + εgk) − F(zk)

ε
, Jkd

i
k ≈ F(zk + εdik) − F(zk)

ε
, i = 1, · · · , L − 1.

On the other hand, AkVk in term V�
k AkVk can also be computed columnwisely by a series

of vector-vector products.
We give the QNSTR algorithm in Algorithm 1.
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Algorithm 1 The QNSTR Algorithm

Input: Δ̄ > 0, Δ0 ∈ (0, Δ̄), β1 < 1 < β2, 0 ≤ η < ζ1 < ζ2 ≤ 1, tolerance parameter δ > 0, ε > 0,
z0 ∈ R

n+m .

1: If ‖gk‖ ≤ δ or ‖F(zk )‖ ≤ ε, terminate. Otherwise solve (28) for αk .
2: Compute the reduction ratio at iterate k:

ρk = r(zk ) − r(zk + Vkαk )

mk (0) − mk (αk )
(30)

3: if ρk < ζ1 then
4: Δk+1 = β1Δk
5: else
6: if ρk ≥ ζ2 and ‖Vkαk‖ = Δk , then
7: Δk+1 = min{β2Δk , Δ̄}
8: else
9: Δk+1 = Δk
10: end if
11: end if
12: if ρk > η then
13: zk+1 = zk + Vkαk
14: else
15: zk+1 = zk
16: end if

Trust-region algorithms are a class of popular numerical methods for optimization prob-
lems [6, 43]. Our QNSTR algorithm uses the special structure of the VI in (15) and (17) to
construct the subproblem (28). The global convergence of the QNSTR algorithm is given in
the following theorem.

Theorem 2 Suppose that X and Y are nonempty and bounded boxes and f̂N is twice contin-
uously differentiable. Let {zk}∞k=0 be generated by Algorithm 1. Then there exists an M > 0
such that

∥∥∇r(z) − ∇r(z′)
∥∥ ≤ M

∥∥z − z′
∥∥ for any z, z′ ∈ S(R0) and ‖Hk‖ ≤ M for k ∈ N.

Moreover, we have limk→∞ ‖gk‖ = 0.

The proof is given in Appendix B.
To end this section, we give some remarks about Theorem 2.

Remark 2 From Corollary 2.2.5 in [12], the continuity of F and boundness of X and Y imply
that the solution set Z∗ of F(z) = 0 is nonempty and bounded. Hence the set of minimizers
of the least squares problem min r(z) with the optimal value zero is coincident with the
solution set of F(z) = 0. If all matrices in ∂C FN (z) for z ∈ Z∗ are nonsingular, we know
from the compactness of ∂C FN (z) and (ii) of Lemma 3 that there is a μ0 > 0 such that for
any μ ∈ (0, μ0), J (z) is nonsingular and supμ∈(0,μ0)

∥∥J (z)−1
∥∥ ≤ C for some C > 0. Thus,

‖F(z)‖ =
∥∥∥(J (z)�)−1∇r(z)

∥∥∥ ≤
∥∥∥(J (z)�)−1

∥∥∥ ‖∇r(z)‖ ≤ C ‖∇r(z)‖ .

We have from (i) of Lemma 3, i.e., ‖FN (z) − F(z)‖ ≤ κμ that

‖FN (z)‖ ≤ C ‖∇r(z)‖ + κμ.

Thus, for any ε > 0, we can properly select parameters δ and μ such that ‖∇r(z)‖ ≤ δ and
Cδ + κμ ≤ ε.

According to Theorem 2, we can find a point zk such that

‖gk‖ = ‖∇r(zk)‖ ≤ δ,
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with an given stopping criterion parameter δ. The numerical experiments in the next section
show that the QNSTR algorithm can result in an ε-first-order stationary point of problem (3).

4 Numerical Experiments

In this section, we report some numerical results via the QNSTR algorithm for finding an
ε-first-order stationary point of problem (3). Also, we compare the QNSTR algorithm with
some state-of-the-art algorithms for minimax problems. All of the numerical experiments in
this paper are implemented on TensorFlow 1.13.1, Python 3.6.9 and Cuda 10.0 on a server
with 1 Tesla P100-PCIE GPU with 16 GB memory at 1.3285 GHz and an operating system
of 64 bits in the University Research Facility in Big Data Analytics (UBDA) of The Hong
Kong Polytechnic University. (UBDA website: https://www.polyu.edu.hk/ubda/.)

We test our algorithm with two practical problems. One is a GAN based image generation
problem forMNIST hand-writing data. The other one is a mix model for image segmentation
on Digital Retinal Images for Vessel Extraction (DRIVE) data. In the first experiment, we use
notation QNSTR(L) to denote that the dimension of the subspace spanned by the columns of
Vk is L in the QNSTR algorithm and test the efficiency of QNSTR(L) under different choices
of L and directions {dik}L−1

i=1 . In the second experiment, we apply the QNSTR algorithm to a
medical image segmentation problem.

To ensure that HN is continuously differentiable, we choose Gaussian error Linear Units
(GELU) [16]

σ(x) = x
∫ x

−∞
e

−t2

2Σ2

√
2πΣ

dt

with Σ = 10−4 as the activation function in each hidden layer in D and G, and Sigmoid

σ(x) = e−x

1 + e−x

as the activation function of the output layers in D and G.
We test different choices of the subspace spanned by the columns of Vk . Specifically,

denote

V z
k = [−gk, (zk − zk−1), · · · , (zk−L+2 − zk−L+1)],

V F
k = [−gk, F(zk), · · · , F(zk−L+2)],

V g
k = −[gk, gk−1, · · · , gk−L+1]

for L ≥ 2.Among all the experiments in the sequel, the initial point z0 is the result for running
10,000 steps of the alternating Adam with step size 0.0005. The parameters in Algorithm
1 are set as Δ̄ = 100, Δ0 = 1, β1 = 0.5, β2 = 2, η = 0.01, ζ1 = 0.02, ζ2 = 0.05. The
parameters ε̄ and γ in (24) and (25) are chosen as ε̄ = 10−4 and γ = 103.
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Table 1 Means, variances and 95% CIs of resN with different N

N 500 1000 2000 5000

Mean 2.01 × 10−4 6.22 × 10−5 3.58 × 10−5 1.49 × 10−5

std 1.65 × 10−4 4.95 × 10−5 2.93 × 10−5 1.18 × 10−5

95% CI [1.65, 2.36]×10−4 [4.95, 7.49]×10−5 [2.93, 4.23]×10−5 [1.18, 1.79]×10−5

4.1 Numerical Performance onMNIST Data

In this subsection, we report some preliminary numerical results of the QNSTR algorithm
for solving the following SAA counterpart

min
x∈X max

y∈Y
1

N

N∑
i=1

(
log(D(y, ξ i1)) + log(1 − D(y,G(x, ξ i2)))

)
(30)

of problem (2) by using MNIST handwritting data. We consider a two-layer GAN, where

ξ i1 ∈ R
784, ξ i2 ∈ R

100,

W 1
G ∈ R

N1
G×100, W 2

G ∈ R
784×N1

G , W 1
D ∈ R

N1
D×784, W 2

D ∈ R
1×N1

D

with different choices of dimensions N 1
G and N 1

D for hidden outputs. Here {ξ i2} are generated
by an uniform distribution U(−1, 1)100. All initial weight matrices Wi

G and Wi
D for i = 1, 2

are randomly generated by using theGaussian distributionwithmean 0 and standard deviation
0.1, and all initial bias vectors biG and biD for i = 1, 2 are set to be zero. X and Y are set as
[−1, 1]n and [−1, 1]m , respectively.

4.1.1 Numerical Results for SAA Problems

We first study the performance of SAA problems under different sample sizes on a GAN
modelwith a two-layer generatorwith N 1

G = 64 and a two-layer discriminatorwith N 1
D = 64,

respectively. We set N̂ = 10000 as the benchmark to approximate the original problem (2)
and let N = 100, 500, 1000, 2000, 5000. For each N , we solve FN (z) = 0, 50 times with
different samples by using the QNSTR algorithm. We stop the iteration either

‖FN (zk)‖ ≤ 10−5 (31)

or the number of iterations exceeds 5000.
In these experiments, we set μ = 10−8. We use z∗N to denote the first point that satisfies

(31) in the iteration for N = 500, 1000, 2000, 5000, and we measure its optimality by the
residual

resN := ‖z∗N − mid
(
l, u, z∗N − HN̂ (z∗N

) ‖.
Figure1 shows the convergence of resN to zero as N grows. Table 1 presents the average

of mean, standard deviation (std) and the width of 95% CI of resN . It shows that all values
decrease as the sample size N increases. Both Fig. 1 and Table 1 validate the convergence
results in Sect. 2.
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Fig. 2 The convergence of resμ as μ decreases (left: The range of resμ with different μ; right: The boxplot
of resμ with different μ)

Fig. 3 The residual ‖FN ,μ(zk )‖ with V z
k (left: N1

G = N1
D = 64; right: N1

G = N1
D = 128)

4.1.2 Numerical Results for Smoothing Approximation

In this subsection, for a fixed sample size N = 2000, we study how the smoothing parameter
μ affects the residual ‖FN ,μ(z)‖. All numerical results in this part are based on a GANmodel
which is constituted of a two-layer generator with N 1

G = 64 and a two-layer discriminator
with N 1

D = 64. Specifically, forμ = 10−t , t = 1, 2, 4, 5, 6, 8, we generate 50 test problems,
respectively. For each μ, we solve problem FN ,μ(z) = 0 by the QNSTR algorithm. We stop
the iteration either condition ‖FN ,μ(zk)‖ ≤ 10−5 holds or the number of iterations exceeds
5000.

We use z∗μ to denote the first point that satisfies (31) in the iteration, and we measure the
residual of z∗μ by

resμ := ‖z∗μ − mid
(
l, u, z∗μ − HN (z∗μ)

) ‖.

Thenumerical results are presented inFig. 2,which shows that resμ decreases as smoothing
parameter μ decreases. In fact, the residual resμ becomes stable when μ ≤ 10−5. Note that

it is not difficult to obtain κ =
√
n+m
8 in (18). Also, when N 1

D = N 1
G = 64, we have

n +m = 107729. If ‖FN ,μ(z)‖ ≤ 10−5 and μ = 10−8, then we have ‖FN (z)‖ ≤ κμ + ε ≤√
107729
8 × 10−8 + 10−5 ≈ 1.041 × 10−5. This is consistent with the theoretical results in

Sect. 3.
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Fig. 4 The residual ‖FN ,μ(zk )‖ with V F
k (left: N1

G = N1
D = 64; right: N1

G = N1
D = 128)

Fig. 5 The residual ‖FN ,μ(zk )‖ with V g
k (left: N1

G = N1
D = 64; right: N1

G = N1
D = 128)

4.1.3 Comparison Experiments

In this subsection, we report some numerical results to compare the QNSTR algorithm
with some commonly-used methods. To this end, we set N = 2000 and μ = 10−8. We
use ‖FN ,μ(zk)‖ to measure performance of these algorithms and apply Frechet Inception
Distance (FID) score to measure the quality of image generated by the generator G trained
by different algorithms. We terminate all these algorithms when one of the three cases holds:
‖FN ,μ(zk)‖ ≤ 10−5, ‖∇FN ,μ(zk)�FN ,μ(zk)‖ ≤ 10−8, the number of iterations exceeds
5000.

We present the numerical results in Figs. 3, 4, 5. It is not difficult to observe from these
figures that the QNSTR algorithm outperforms.

We also compare the QNSTR algorithmwith some commonly-used algorithms in training
GANs including simultaneous and alternate gradient descent-ascent (GDA) [9, 45], simulta-
neous and alternate optimistic gradient descent-ascent (OGDA) [9, 45], γ -alternate Adam,
projected point algorithm (PPA) [11, 24]. The initial point z0 of all these methods are given
by alternating Adam with stepsize 0.0005 and 10000 iterations. We use the grid search for
the selection of hyper-parameters in these methods. For simultaneous and alternate GDA
and simultaneous and alternate OGDA, the stepsize is α = 0.5, 0.05, 0.005, 0.001, 0.0005.
For γ -alternate Adam, the ratio is γ = 1, 2, 3, 5, 10. For PPA, the proximal parameter is
L = 10, 100, 500, 1000, 5000 and stepsize is 0.1

2L
. Besides, the stopping criteria of the k-th

inner loop is 0.01
k2

or the number of iterations exceeds 100. The comparison results between
the QNSTR algorithm and the γ -alternate Adam, the QNSTR algorithm and PPA are given

123



Journal of Scientific Computing (2024) 101 :45 Page 17 of 30 45

Fig. 6 Comparison results between the QNSTR algorithm for V z
k , V

F
k , V g

k and γ -alternate Adam (left:

N1
G = N1

D = 64; right N1
G = N1

D = 128)

Fig. 7 Comparison results between the QNSTR algorithm for V z
k , V

F
k , V g

k and PPA (left: N1
G = N1

D = 64;

right N1
G = N1

D = 128)

Fig. 8 Comparison results between the QNSTR algorithm for V z
k , V

F
k , V g

k and simultaneous GDA, alternate

GDA, simultaneous OGDA, alternate OGDA (left: N1
G = N1

D = 64; right: N1
G = N1

D = 128)

in Figs. 6 and 7, respectively. According to the results, we can see the γ -alternate Adam
also shows a outstanding convergence tendency under a suitable hyper-parameter and the
QNSTR algorithm can even better than the γ -alternate Adam if a suitable searching space
Vk is selected. The PPA performs poorly in these comparisons.

The comparison results between the QNSTR algorithm and simultaneous and alternate
GDA, simultaneous and alternateOGDAare given in Fig. 8. To show these comparison results
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Fig. 9 Row 1. fundus image, Row 2. manual segmentation, Row 3. vessel map generated by GANs with
QNSTR algorithm, Row 4. yellow(correct); red(wrong); green(missing), Row 5. Error (Color figure online)

more clearly, we only give the results of eachmethodwith the optimal stepsize α in the search
range.

We can observe from these figures that theQNSTRalgorithmoutperforms,which validates
that the QNSTR algorithm is more efficient in finding an ε-first-order stationary point of
problem (30).
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Table 2 FID scores of different
algorithms with N1

D = N1
G = 64

QNSTR
L 2 3 4 5 6

V z
k 30.33 30.38 38.86 37.64 38.57

V F
k 30.98 31.86 32.26 32.47 32.00

V g
k 32.09 33.17 33.21 33.46 33.06

PPA

L 10 100 500 1000 5000

32.77 31.93 36.15 37.26 37.73

γ -alt adam

γ 1 2 3 5 10

28.30 32.02 32.37 32.31 32.22

sGDA, aGDA, sOGDA, aOGDA

α 0.5 0.05 0.01 0.005 0.0005

sGDA 34.11 30.87 31.56 32.97 34.57

aGDA 32.21 30.86 31.53 31.96 33.87

aOGDA 30.73 30.14 31.47 32.02 34.06

aOGDA 30.97 31.91 31.87 32.46 33.82

Table 3 FID scores of different
algorithms with
N1
D = N1

G = 128

QNSTR
L 2 3 4 5 6

V z
k 30.33 30.08 37.48 33.22 34.15

V F
k 33.20 31.33 30.27 32.43 31.83

V g
k 28.30 27.73 37.64 27.85 26.82

PPA

L 10 100 500 1000 5000

29.85 27.32 27.06 38.76 30.48

γ -alt adam

γ 1 2 3 5 10

26.13 27.73 29.64 30.98 30.70

sGDA, aGDA, sOGDA, aOGDA

α 0.5 0.05 0.01 0.005 0.0005

sGDA 31.43 30.18 30.85 32.64 34.57

aGDA 31.21 29.98 30.46 32.33 34.87

sOGDA 30.91 28.91 30.24 31.85 34.06

aOGDA 32.97 30.17 29.87 30.46 33.52

We also record the final FID score of each algorithm’s output. All results are given in
Tables 2 and 3. They show the generator of GANs trained by the QNSTR algorithm can
generate high quality images.

123



45 Page 20 of 30 Journal of Scientific Computing (2024) 101 :45

4.2 DRIVE Data

Image segmentation is an important component inmany visual understanding systems, which
is the process of partitioning a digital image into multiple image segments [38]. Image
segmentation plays a central role in a broad range of applications [13], including medical
image analysis, autonomous vehicles (e.g., navigable surface and pedestrian detection), video
surveillance and augmented reality. One of the well-known paradigm for image segmentation
is based on some kinds of manual designed loss functions. However, they usually lead to the
blurry segmentation boundary [17].

In 2016, Phillip et. al introduced a generative adversarial network framework into their
objective function to implement an image-to-image translation problem [17], and found the
blurry output given CNN under l1 norm can be reduced. At the same year, Pauline et. al
introduced a mix objective function combining by GAN and cross-entropy loss on semantic
image segmentation problem [25], also implemented a better performance. The similar idea
of mix GAN and traditional loss can also be found in [37, 46].

The mix model has the following form

min
x∈X max

y∈Y

{
f̂N (x, y) := 1

N

N∑
i=1

λ · ψ
(
ξ i1,G(x, ξ i2)

)

+
( 1

N

N∑
i=1

(
log(D(y, ξ i1)) + log(1 − D(y,G(x, ξ i2)))

)}
,

(32)

where X , Y are two bounded boxes, {(ξ i1, ξ i2)}Ni=1 is the finite collected data, ξ
i
2 is the original

data while the ξ i1 is the corresponding label. Problem (32) is a special case of problem (3),
which can be viewed as a discrete generative adversarial problem (30) with an extra classical
supervision term. The classical supervision part, i.e.,

min
x∈X

1

N

N∑
i=1

[
ψ

(
ξ i1,G(x, ξ i2)

)]
(33)

is to minimize the difference between the output of given ξ2 on G and its corresponding
label ξ1. The model can be regarded as a combination of a classical supervised learning
problem and a generative adversarial problem with a trade-off parameter λ ∈ [0,∞). When
λ = 0, problem (32) reduces to a classical supervised learning problem (33). When λ → ∞,
problem (32) tends to a vanilla GAN.

The fundoscopic exam is an important procedure to provide information to diagnose
different retinal degenerative diseases such as Diabetic Retinopathy, Macular Edema and
Cytomegalovirus Retinitis. A high accurate system to sketch out the blood vessel and find
abnormalities on fundoscopic images is necessary. Although the supervision deep learning
frameworks such as Unet are able to segment macro vessel accurately, they failed for seg-
menting microvessels with high certainty. In this part, we will train a Unet as a generator in
our framework on DRIVE data. We download the data includes 20 eye blood vessel images
with manual segmentation label from the open source website (https://drive.grand-challenge.
org/). We applied 16 images as training data while the other 4 as testing data. In this exper-
iment, the structure of segmentation model G is U-net [34] which includes 18 layers with
n = 121435 parameters, and the structure of discrimination model D is a deep convolu-
tional neural network which contains 5 convolutional layers and 1 fully connected layer with
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Table 4 The performance of QNSTR algorithm and alternating Adam for model (32), and other methods in
[1, 20, 21] for model (33)

Molds F1 score Sensitivity Specificity Accuracy AUC-ROC SSIM

Residual Unet [1] 0.8149 0.7726 0.9820 0.9553 0.9779 –

RecurrentUnet [1] 0.8155 0.7751 0.9816 0.9556 0.9782 –

R2Unet [1] 0.8171 0.7792 0.9813 0.9556 0.9784 –

DFUNet [20] 0.8190 0.7863 0.9805 0.9558 0.9779 0.8789

IterNet [21] 0.8205 0.7735 0.9838 0.9573 0.9816 0.9008

Alt Adam 0.7856 0.7830 0.9807 0.9551 0.9747 0.8908

QNSTR 0.7990 0.8327 0.9808 0.9648 0.9791 0.8936

m = 142625 parameters. The feasible sets X and Y are set as [−5, 5]n and [−5, 5]m , respec-
tively. We use activation function GELU except Sigmoid at the output layer of D and G. We
compare our results based on problem (32) with some existing models. In our experiment,
we use λ = 10 and V z

k with L = 4.
We compute traditional metrics such as F1-score, Sensitivity, Specificity and Accuracy.

The form of these metrics are given as follows:

Sensivity = 1

N

N∑
i=1

|GTi ∩ SRi |
|GTi ∩ SRi | + |GTi ∩ SRc

i |
,

Specificity = 1

N

N∑
i=1

|GTci ∩ SRc
i |

|GTci ∩ SRc
i | + |GTci ∩ SRi | ,

Accuracy = 1

N

N∑
i=1

|GTi ∩ SRi | + |GTci ∩ SRc
i |

Ω
,

Precision = 1

N

N∑
i=1

|GTi ∩ SRi |
|GTi ∩ SRi | + |GTci ∩ SRi | ,

F1 = 2Precision × Sensitivity

Precision + Sensitivity
,

whereΩ is theUniverse set for all indexof pixels in image,GTi is the grouth truth vessel index
for i-th image, SR is the index of pixel labelled as vessel in i-th image’s segmentation result.
Furthermore, we computeAreaUnder Curve-Receiver OperatingCharacteristic (AUC-ROC)
[2] and Structural Similarity Index Measure (SSIM) [40].

Table 4 shows that the QNSTR algorithm for solving problem (32) is more promising for
blood vessel segmentation. In Fig. 9, we visualize the error between vessel map generated
by problem (32) with the QNSTR algorithm and the manual segmentation. In Fig. 10, we
compare the segmentation results of problem (32) based on the QNSTR algorithm and the
alternating Adam approach, respectively.

5 Conclusion

In this paper, we propose a new QNSTR algorithm for solving the large-scale min-max
optimization problem (3) via the nonmonotone VI (4). Based on the structure of the problem,
weuse a smoothing function F(·, μ) to approximate the nonsmooth function FN , and consider
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Fig. 10 Comparison of Alternating Adam and QNSTR Algorithm. Columns from left to right are: 1. manual
segmentation, 2. vessel map generated by GANs with Alternating Adam, 3. yellow(correct); red(wrong);
green(missing) of Alternating Adam, 4. vessel map generated by GANs with proposed Algorithm, 5.
yellow(correct); red(wrong); green(missing) of QNSTR Algorithm (Color figure online)

Fig. 11 Smoothing approximation error of FN ,μ(z) to FN (z) for N = 1000, 2000, 10000

the smoothing least squares problem (19). We adopt an adaptive quasi-Newton formula in
[47] to approximate the Hessian matrix and solve a strongly convex quadratic program with
ellipse constraints in a low-dimensional subspace at each step of the QNSTR algorithm. We
prove the global convergence of theQNSTRalgorithm to a stationary point of the least squares
problem, which is an ε-first-order stationary point of the min-max optimization problem if
every element of the generalized Jacobian of FN is nonsingular at the point. In our numerical
experiments, we test the QNSTR algorithm by using two real data sets: MNIST data and
DRIVE data. Preliminary numerical results validate that the QNSTR algorithm outperforms
some existing algorithms.

Appendix A: Smoothing Approximation of FN(z)

We consider problem (30) with a two-layers discriminator and a two-layers generator using
MNIST handwritting data. All notations are the same as those in Sect. 4.1. Set X = [−5, 5],
Y = [−5, 5], N 1

G = N 1
D = 64, N 1

G = N 1
D = 128, μ = 10−t , t = 0, 1, . . . , 6 and N =
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1000, 2000, 10, 000, respectively. Based on the uniform distribution over [−10, 10]n+m , we
generate 1000 points zi ∈ [−10, 10]n+m , i = 1, · · · , 1000. Denote the “approximation
error" by

approximation error := 1

1000

1000∑
i=1

‖FN ,μ(zi ) − FN (zi )‖∞.

In Fig. 11, we plot the average of “approximation error" under different choices of μ and N
with 20 sets of 1000 points in [−10, 10]n+m . From the figure, we can observe that for each
N = 1000, 2000, 10000, the “approximation error" converges to zero as μ tends to zero.

Appendix B: Proof of Theorem 2

As we discussed in subsection 3.2, there is a positive number M1 such that ‖H‖ ≤ M1

for any H ∈ ∂(∇r(z)), z ∈ S(R0). Moreover there is a positive number M2 such that∥∥∇r(z) − ∇r(z′)
∥∥ ≤ M2

∥∥z − z′
∥∥ , ∀z, z′ ∈ S(R0).

Since zk is updated only when ρk > η in Algorithm 1, we have zk ∈ S(R0). From
the continuous differentiability of r over S(R0), there is a positive number M3 such that
‖Jk‖ ≤ M3 for k ∈ N.Moreover, from (23), ‖Ak‖ = max{‖Bk‖, ‖Ck‖} ≤ max{γ, ‖F(z0)‖}.
Hence ‖Hk‖ ≤ M3 +max{γ, ‖F(z0)‖}. Let M ≥ max{M2, M3 + γ, M3 + ‖F(z0)‖}. Then
we have

∥∥∇r(z) − ∇r(z′)
∥∥ ≤ M

∥∥z − z′
∥∥ for any z, z′ ∈ S(R0) and ‖Hk‖ ≤ M for k ∈ N.

In the rest of Appendix B, we prove limk→∞ ‖gk‖ = 0.
If gk = 0 for some k > 0, then Algorithm 1 terminates and Theorem 2 holds. In the

remainder, we only consider the case that gk �= 0.
We next consider the following one-dimensional problem:

min
τ

mk(ταs
k) s.t. ‖τVkαs

k‖ ≤ Δk, τ > 0, (34)

where αs
k is an optimal solution of

min
α

c�
k α s.t. ‖Vkα‖ ≤ Δk . (35)

Let τk denote an arbitrary optimal solution of problem (34). Then αC
k := τkα

s
k is a feasible

solution of problem (28).
In what follows, we give the closed form of αC

k step by step. For this purpose, we consider
the KKT condition of problem (35) as follows:

λGkα + ck = 0, 0 ≤ λ⊥Δ2
k − α�Gkα ≥ 0,

where λ is a multiplier. Since gk �= 0 and Vk is of full column rank, we have ck �= 0. Thus,
λ > 0, and the KKT system gives

α = −1

λ
G−1

k ck, Δ2
k = α�Gkα.
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Then we obtain 1
λ

=
√

Δ2
k

(G−1
k ck )�Gk (G

−1
k ck )

, and the solution of (35) can written as

αs
k = − Δk√

(G−1
k ck)�Gk(G

−1
k ck)

G−1
k ck

= − Δk√
c�
k G

−1
k ck

G−1
k ck

= − Δk√
g�
k Vk(V

�
k Vk)−1V�

k gk
G−1

k ck

= − Δk

‖gk‖G
−1
k ck .

Hence, the objective function of (34) has the following form

mk(ταs
k) = r(zk) + τc�

k αs
k + τ 2

2
(αs

k)
�Qkα

s
k

= r(zk) − τ
Δk

‖gk‖c
�
k G

−1
k ck + τ 2

2

(
Δk

‖gk‖
)2

(G−1
k ck)

�QkG
−1
k ck

= r(zk) − Δk‖gk‖τ + τ 2

2

(
Δk

‖gk‖
)2

g�
k Hkgk

and the constraint of (34) satisfies

‖ταs
k‖Gk = τ

Δk

‖gk‖
√
c�
k G

−1
k GkG

−1
k ck = τΔk ≤ Δk,

which is equivalent to 0 < τ ≤ 1.
Therefore, problem (34) can be equivalently rewritten as

min
τ

−Δk‖gk‖τ + τ 2

2

(
Δk‖gk‖

)2
g�
k Hkgk, s.t. 0 < τ ≤ 1. (36)

Since Hk is positive definite (see (23), (26) and (27)), problem (36) has the unique solution

τk = min
(
‖gk‖3/(Δkg

�
k Hkgk), 1

)
.

Finally, we obtain

αC
k = −min

(
‖gk‖3/(Δkg

�
k Hkgk), 1

) Δk

‖gk‖G
−1
k ck . (37)

Lemma 4 Let αk be the unique optimal solution of subproblem (28) in the k-th step. Then

mk(0) − mk(αk) ≥ 1

2
‖gk‖min

(
Δk,

‖gk‖
‖Hk‖

)
.

Proof Since αC
k is a feasible solution of problem (28), we have

mk(0) − mk(αk) ≥ mk(0) − mk(α
C
k ).

In what follows, we verify

mk(0) − mk(α
C
k ) ≥ 1

2
‖gk‖min

(
Δk,

‖gk‖
‖Hk‖

)
.
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If ‖gk‖3/(Δkg�
k Hkgk) < 1, substituting αC

k (see (37)) into (28), we have

mk(0) − mk(α
C
k ) = −c�

k αC
k − 1

2
(αC

k )�Qkα
C
k

= ‖gk‖2
g�
k Hkgk

c�
k G

−1
k ck − 1

2

‖gk‖4
(g�

k Hkgk)2
c�
k G

−1
k QkG

−1
k ck

= ‖gk‖4
g�
k Hkgk

− 1

2

‖gk‖4
(g�

k Hkgk)2
g�
k Hkgk

= 1

2

‖gk‖4
g�
k Hkgk

≥ 1

2

‖gk‖4
‖Hk‖‖gk‖2 = 1

2

‖gk‖2
‖Hk‖ .

(38)

If ‖gk‖3/(Δkg�
k Hkgk) ≥ 1 (i.e., g�

k Hkgk ≤ ‖gk‖3
Δk

), we have

mk(0) − mk(α
C
k ) = −c�

k αC
k − 1

2
(αC

k )�Qkα
C
k

= Δk

‖gk‖‖c�
k G

−1
k ck‖ − 1

2

Δ2
k

‖gk‖2 c
�
k G

−1
k QkG

−1
k ck

= Δk‖gk‖ − 1

2

Δ2
k

‖gk‖2 g
�
k Hkgk

≥ Δk‖gk‖ − 1

2

Δ2
k

‖gk‖2
‖gk‖3
Δk

= 1

2
‖gk‖Δk .

(39)

Combining (38) and (39), we complete the proof. ��
Lemma 5 Under assumptions of Theorem 2, for any index k, there exists a k̄ > k such that
‖gk̄‖ < ‖gk‖/2.
Proof We give the proof by contradiction. Suppose that there exists a k̂ with ‖gk̂‖ = 2ε for

some ε > 0, and ‖gk‖≥ε, ∀k ≥ k̂. Then we know from Lemma 4 that

mk(0) − mk(αk) ≥ 1

2
‖gk‖min

(
Δk,

‖gk‖
‖Hk‖

)
≥ 1

2
ε min

(
Δk,

ε

M

)
. (40)

According to the definition of ρk in (30), we have

|ρk − 1| =
∣∣∣∣
r(zk) − r(zk + Vkαk) − (mk(0) − mk(αk))

mk(0) − mk(αk)

∣∣∣∣

=
∣∣∣∣
mk(αk) − r(zk + Vkαk)

mk(0) − mk(αk)

∣∣∣∣ .
(41)

By Taylor expansion, we have

r(zk + Vkαk) = r(zk) + g�
k Vkαk +

∫ 1

0
(∇r(zk + tVkαk) − ∇r(zk))

�Vkαkdt .

Then

|mk (αk ) − r(zk + Vkαk )| =
∣∣∣∣∣
1

2
α�
k Qkαk −

∫ 1

0
(∇r(zk + tVkαk ) − ∇r(zk ))

�Vkαkdt

∣∣∣∣∣
≤ (M/2)‖Vkαk‖2 + M‖Vkαk‖2 ≤ 3Δ2

kM/2,

(42)
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where the first inequality follows from Qk = V�
k HkVk and the mean-value theorem, and the

second inequality follows from ‖Vkαk‖ ≤ Δk due to the constraint in problem (28).
Then, by (40), (41) and (42), we get

|ρk − 1| ≤ 3Δ2
kM/2

(ε/2)min(Δk, ε/M)
.

Denote

Δ̃ := min

(
(1 − ζ1)ε

3M
, R0

)
.

For any Δk ≤ Δ̃, we have

|ρk − 1| ≤ 3Δ2
kM/2

(ε/2)min(Δk, ε/M)
= 3MΔ2

k

εΔk
= 3MΔk

ε
≤ 3MΔ̃

ε
≤ 1 − ζ1,

which implies ρk ≥ ζ1, where the first equality follows from the fact that

Δk ≤ Δ̃ = min

(
(1 − ζ1)ε

3M
, R0

)
≤ ε

3M
<

ε

M
.

The above observation togetherwith update rules inAlgorithm1 indicates thatΔk+1 ≥ Δk

when Δk ≤ Δ̃ (and thus ρk ≥ ζ1). In other words, if Δk > Δ̃, ρk < ζ1 holds. In this case,
Δk+1 = β1Δk > β1Δ̃. To summarize the two cases, we then have

Δk ≥ min(Δk−1, β1Δ̃) ≥ · · · ≥ min(Δk̂, β1Δ̃), ∀k ≥ k̂. (43)

Thenwe proved sequence {Δk}∞k≥k̂
is bounded frombelow.Note that there exists an infinite

subsequence, denoted by K, of {k̂, k̂ + 1, · · · } such that, for any k ∈ K, one of the following
two cases holds.

Case 1: Δk+1 = β1Δk . It is easy to obtain Δk → 0 as k
K→ ∞ since β1 < 1, which is

contradicted to the fact that Δk is bounded from below (see (43)).
Case 2: ρk ≥ ζ1. We have from the definition of ρk (see (30)) and ρk ≥ ζ1 that

r(zk) − r(zk+1) ≥ ζ1(mk(0) − mk(αk)) ≥ ζ1
1

2
ε min(Δk, ε/M) > 0,

where the second inequality follows from Lemma 4 and ‖gk‖ ≥ ε for k ∈ K.
Therefore, {r(zk)}k∈K is strictly decreasing. Since {r(zk)}k∈K is bounded from below

(note that r(z) ≥ 0 for any z), we know that the sequence {r(zk)}k∈K is convergent and

r(zk) − r(zk+1) ↓ 0 as k
K→ ∞. Thus, Δk → 0 as k

K→ ∞, which is also contradicted with
(43). ��

Now we are ready to prove limk→∞ ‖gk‖ = 0.

Proof (of limk→∞ ‖gk‖ = 0) Let

ε := 1

2
‖gk‖ and R := min

( ε

M
, R0

)
. (44)

Note that B(zk, R) = {z : ‖z − zk‖ ≤ R} ⊆ S(R0), and thus ∇r(·) is Lipschitz continuous
on B(zk, R) with Lipschitz modulus M . Thus, for ∀z ∈ B(zk, R), we have

‖∇r(z) − ∇r(zk)‖ ≤ M ‖z − zk‖ ≤ MR = M min
( ε

M
, R0

)
≤ ε.
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For ∀z ∈ B(zk, R), we have by the triangle inequality that

‖∇r(z)‖ ≥ ‖gk‖ − ‖∇r(z) − ∇r(zk)‖ = 2ε − ‖∇r(z) − ∇r(zk)‖ ≥ 2ε − ε = ε.

According to Lemma 5, we know that there exists an index l ≥ k satisfying ‖gl+1‖ < ε.
Moreover, we assume that zl+1 is the first point that iterates out of the ball B(zk, R) after zk
as well as satisfying ‖gl+1‖ < ε. Thus, ‖gi‖ ≥ ε for i = k, k + 1, · · · , l. Then we have

r(zk) − r(zl+1) =
l∑

i=k

r(zi ) − r(zi+1) =
l∑

i=k,
zi �=zi+1

ρi (mi (0) − mi (αi ))

≥
l∑

i=k,
zi �=zi+1

η(mi (0) − mi (αi )) ≥ η

2
ε

l∑
i=k,

zi �=zi+1

min
(
Δi ,

ε

M

)
,

(45)

where the second equality follows from (30), the first inequality follows from ρi < η when
zi �= zi+1. Since ‖gk‖ = 2ε and ‖gl+1‖ < ε, we have zl+1 �= zk , which implies that
{k, · · · , l} ∩ { j : z j �= z j+1} �= ∅.

If Δi ≤ ε/M for all i ∈ {k, · · · , l} ∩ { j : z j �= z j+1}, we continue (45) as follows:

r(zk) − r(zl+1) ≥ η

2
ε

l∑
i=k,

zi �=zi+1

Δi ≥ η

2
ε

l∑
i=k

‖zi+1 − zi‖

≥ η

2
ε ‖zk − zl+1‖ ≥ η

2
εR = η

2
ε min

( ε

M
, R0

)
,

where the second inequality follows from ‖zi+1 − zi‖ ≤ Δi , the third inequality follows
from the triangle inequality, the last inequality follows from the fact that zl+1 is the first point
that iterates out of the ball B(zk, R) after zk .

If Δi > ε/M for some i ∈ {k, · · · , l} ∩ { j : z j �= z j+1}, we continue (45) as follows:

r(zk) − r(zl+1) ≥ η

2
ε

l∑
i=k,

zi �=zi+1

ε

M
≥ η

2
ε

ε

M
,

where the last inequality follows from {k, · · · , l} ∩ { j : z j �= z j+1} �= ∅. To summarize, we
obtain

r(zk) − r(zl+1) ≥ η

2
ε min

( ε

M
, R0

)
. (46)

Since the sequence {r(zi )}∞i=0 is a decreasing and bounded sequence from below, there
exists r∗ ≥ 0 such that limi→∞ r(zi ) = r∗. Hence

r(zk) − r∗ ≥ r(zk) − r(zl+1) ≥ η

2
ε min

( ε

M
, R0

)
= η

4
‖gk‖min

(‖gk‖
2M

, R0

)
,

where the second inequality follows from (46), the last equality follows from (44).
Due to the arbitrariness of k, by letting k → ∞, we know

η

4
‖gk‖min

(‖gk‖
2M

, R0

)
→ 0,

which implies limk→∞ ‖gk‖ = 0. Then the proof is complete. ��
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