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Golden Gemini is All You Need: Finding the Sweet
Spots for Speaker Verification
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Abstract—The residual neural networks (ResNet) demonstrate
the impressive performance in automatic speaker verification
(ASV). They treat the time and frequency dimensions equally,
following the default stride configuration designed for image recog-
nition, where the horizontal and vertical axes exhibit similari-
ties. This approach ignores the fact that time and frequency are
asymmetric in speech representation. We address this issue and
postulate Golden-Gemini Hypothesis, which posits the prioritization
of temporal resolution over frequency resolution for ASV. The hy-
pothesis is verified by conducting a systematic study on the impact
of temporal and frequency resolutions on the performance, using a
trellis diagram to represent the stride space. We further identify two
optimal points, namely Golden Gemini, which serves as a guiding
principle for designing 2D ResNet-based ASV models. By following
the principle, a state-of-the-art ResNet baseline model gains a
significant performance improvement on VoxCeleb, SITW, and
CNCeleb datasets with 7.70%/11.76% average EER/minDCF re-
ductions, respectively, across different network depths (ResNet18,
34, 50, and 101), while reducing the number of parameters by
16.5% and FLOPs by 4.1%. We refer to it as Gemini ResNet.
Further investigation reveals the efficacy of the proposed Golden
Gemini operating points across various training conditions and
architectures. Furthermore, we present a new benchmark, namely
the Gemini DF-ResNet, using a cutting-edge model.

Index Terms—Speaker verification, speaker recognition, 2D
CNN, ResNet, stride configuration, temporal resolution.

Manuscript received 17 October 2023; revised 14 February 2024; accepted
17 March 2024. Date of publication 12 April 2024; date of current version
19 April 2024. This work was supported in part by the Agency for Science,
Technology and Research (A*STAR), Singapore, through its Council Research
Fund under Grant CR-2021-005, in part by the National Natural Science Foun-
dation of China under Grant 62271432, in part by the Shenzhen Science and
Technology Research Fund Fundamental Research Key Project under Grant
JCYJ20220818103001002, and in part by the Internal Project Fund from Shen-
zhen Research Institute of Big Data under Grant T00120220002. The associate
editor coordinating the review of this manuscript and approving it for publication
was Dr. Xiao-Lei Zhang. (Corresponding Author: Kong Aik Lee.)

Tianchi Liu is with the Institute for Infocomm Research (I2R), Agency for
Science, Technology and Research (A*STAR), Singapore 138632, and also with
the Department of Electrical and Computer Engineering, National University of
Singapore, Singapore 119077 (e-mail: liu_tianchi@i2r.a-star.edu.sg).

Kong Aik Lee is with the Department of Electrical and Electronic
Engineering, Hong Kong Polytechnic University, Hong Kong (e-mail:
kong-aik.lee@polyu.edu.hk).

Qiongqiong Wang is with the Institute for Infocomm Research (I2R), Agency
for Science, Technology and Research (A*STAR), Singapore 138632 (e-mail:
wang_qiongqiong@i2r.a-star.edu.sg).

Haizhou Li is with the Shenzhen Research Institute of Big Data, School of
Data Science, Chinese University of Hong Kong, Shenzhen 518172, China, and
also with the Department of Electrical and Computer Engineering, National
University of Singapore, Singapore 119077 (e-mail: haizhouli@cuhk.edu.cn).

Codes and pre-trained models are available at https://github.com/Tianchi-
Liu9/Golden-Gemini-for-Speaker-Verification.

Digital Object Identifier 10.1109/TASLP.2024.3385277

I. INTRODUCTION

AUTOMATIC speaker verification (ASV) aims to verify
the claimed identity of a speaker according to his/her

voice [1]. Currently, deep learning-based speaker embedding has
emerged as the predominant method [2]. In this approach, fixed-
dimensional representations are extracted from enrollment and
test speech utterances [3]. These representations, rich in voice
characteristics, are referred to as speaker embeddings [2]. The
neural networks responsible for extracting these embeddings are
known as the embedding extractors. The recognition procedure
is often done by measuring the similarity between embeddings,
using methods such as cosine similarity or probabilistic linear
discriminant analysis (PLDA) [4], [5], [6], [7], [8], [9].

Typical speaker-embedding neural networks consist of three
components [10]. First, an encoder is used to extract frame-level
features from an input utterance. It is followed by a temporal
aggregation layer that combines the frame-level features from
the encoder into a fixed-length condensed representation of the
entire input sequence. Commonly used temporal aggregation
techniques include average pooling [11], statistical pooling [12],
attentive pooling [13], [14], and posterior inference [15]. The
output stage of the neural network constitutes a decoder that clas-
sifies utterance-level representations into speaker classes [16],
[17], [18]. It utilizes a stack of fully-connected layers, including
a bottleneck layer specifically designed for extracting speaker
embeddings. Among these, the encoder is often the heaviest
part of the model. The efficacy and efficiency of its design are
instrumental to the performance of the model.

Many prior studies have investigated and designed numerous
powerful networks as encoders. These backbone networks can
be broadly categorized into four main types:
� 2D convolutional neural network (CNN) [18], [19], [20],

[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
� Time-delay neural network (TDNN) [31], [32], [33], [34],

[35], [36],
� Transformer [37], [38], and
� Combinations of the aforementioned three [39], [40], [41],

[42], [43], [44], [45], [46], [47].
Among these architectures, 2D CNN is the most widely used

for ASV. It is worth mentioning that in the VoxCeleb Speaker
Recognition Challenge (VoxSRC) 2021 [48] and 2022 [49],
the best-performing models are based on 2D CNNs, with
ResNet [50] being the preferred choice [51], [52], [53], [54].
ResNet is not only popular in ASV but also widely employed
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in other speech-related tasks, such as speaker extraction [55],
[56], [57], [58], [59], target-speaker voice activity detection [60],
[61], [62], speaker diarization [63], [64], and speech anti-
spoofing [65], [66], [67], [68]. Therefore, investigating the
ResNet architecture for speech-related tasks holds significant
importance.

The ResNet architecture was initially designed for image
recognition [50] where the horizontal and vertical dimensions of
images have similar implications [69], [70] and are often uniform
in size, typicallyN ×N pixels with commonly used values such
as 224 and 384. Consequently, it is intuitive to treat these two
dimensions equally with the default equal-stride configuration
in ResNet [50]. However, when dealing with speech represen-
tations, the time and frequency axes of speech spectrograms
possess distinct implications [71] and often vary in size (e.g.,
80 × 301 [40]). Therefore, the techniques that work for image
recognition may not be suitable for ASV, thus necessitating
appropriate modifications. Despite these notable differences in
feature properties between images and speech signals, existing
ASV systems based on the ResNet models [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [51],
[52], [53], [54] continue to treat the frequency and temporal
resolutions equally by adopting the default stride configuration
as the original ResNet. Doubts arise regarding the adequacy of
this equal-stride configuration for ASV.

The preservation of temporal resolution in various existing
ASV methods [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [47], [72], [73], [74] has led to the hypothesis
that ASV may be more sensitive to temporal resolution than
frequency resolution. TDNN-based models [31], [32], [33], [34],
[35], [36], [39], [40], [41], [42], [47] preserve the temporal
resolution across the stacked layers. Similarly, recurrent net-
works, such as the long short-term memory (LSTM), preserve
the number of frames [73], [74]. Recent studies [37], [38], [47]
adopt the Transformer architecture as the encoder, ensuring the
preservation of the temporal resolution across stacked Trans-
former blocks. Should temporal resolution prove to be of greater
significance, the equal-stride configuration may not be optimal
since it diminishes the temporal resolution. The current under-
standing of the impact of temporal and frequency resolutions on
the performance of ResNet-based ASV models remains limited,
leaving a research gap to be filled. Consequently, this motivates
us to explore the relative importance of temporal and frequency
resolution in the feature representation process of ASV. Building
upon this investigation, we identify the optimal stride configu-
rations that account for the inherent characteristics of speech
signals to better align with the requirements of ASV, leading to
improved performance. We also conduct a meticulous analysis
of the trade-offs between performance and model complexity to
ensure both efficacy and efficiency. The major contributions of
this work are summarized as follows:
� We postulate Golden-Gemini Hypothesis, which posits that

the preservation of temporal resolution is to be prioritized
over frequency resolution for the optimal extraction of
speaker characteristics.

� We systematically analyze the joint effects of temporal
and frequency resolutions through a carefully designed

TABLE I
COMPARISON BETWEEN THE ORIGINAL RESNET34 [50], MODIFIED

RESNET [19] AND THE PROPOSED GEMINI RESNET34

trellis diagram. Two optimal spots on the trellis diagram
are identified and named Golden Gemini.

� Based on the insights gained from the trellis diagram analy-
sis, we summarize a set of guiding principles for designing
ResNet-based models for ASV.

� The compatibility and efficacy of the proposed Golden
Gemini models are evaluated under various aspects, includ-
ing model sizes, structures (backbones, attention, pooling
layers and micro design), training strategies, and in/cross-
domain test sets.

� We introduce the Gemini DF-ResNet, as the new state-of-
the-art (SOTA) benchmark for ASV.

II. BACKGROUND

A. ResNet Architecture

ResNet is first proposed for image recognition [50]. A stan-
dard ResNet comprises five stages. The first stage is a 7×7
convolutional (conv) layer, followed by four stages. Each stage
contains multiple residual blocks, as shown in Table I. Residual
blocks are defined as:

y = F(x, {Wi}) +Wsx, (1)

where x and y are the input and output vectors of a residual
block. The function F(x, {Wi}) represents the residual map-
ping to be learned. The operationF + x is performed by a short-
cut connection and element-wise addition. Ws denotes a linear
projection used in the shortcut to match the dimensions of x to
F . The design of F is flexible and commonly categorized into
two types: basic block and bottleneck block. Basic blocks utilize
two (3×3) convolutional layers, whereas the bottleneck blocks
are composed of (1×1), (3×3), and (1×1) convolutions. The
weights of these layers are denoted as {Wi}, and the bias is
omitted for simplicity [50].

The depth of ResNet is determined by the number of layers
M , which is dictated by the types and number m of residual
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Fig. 1. Illustration of convolution operations in (a) TDNN, (b) 2D CNN with stride = (1, 1), and (c) stride = (2, 2). The blue and grey cuboids represent
time-frequency bins of feature maps and paddings, respectively.

blocks. It is formulated as:

M =

{
2×m+ k, if basic block
3×m+ k, if bottleneck block

, (2)

where k accounts for the convolution layer in the first conv1
stage and the bottleneck layer in the decoder, typically as-
signed a value of 2. ResNets with M = 18/34/50/101/152
layers are commonly adopted [50]. The depth can be further
extended, such as 233 [24] and 1202 [50] layers. In addition to
expanding the depth, previous studies explore various variations
of ResNet architecture from different perspectives to improve
the performance, including ResNeXt [75], ConvNeXt [70],
Res2Net [76], squeeze-and-excitation network (SENet) [77],
depth-first ResNet (DF-ResNet) [24], [25], separate downsam-
pling ResNet (SD-ResNet) [70], modified ResNet [19], [21],
thin-ResNet [20] and fast ResNet [18].

We observe that the five-stage structure remains intact, despite
the adjustments to network depth or modifications to the model
architecture [18], [19], [20], [21], [24], [25], [70], [75], [76],
[77]. Therefore, in this work, we validate our hypothesis by
adopting the five-stage design, while acknowledging that the
hypothesis itself is applicable to architectures with arbitrary
stages. The generality of our proposed method allows its ap-
plication to all 2D CNN models following the five-stage design,
including Res2Net [76], SENet [77], DF-ResNet [24], [25],
SD-ResNet [70], and modified ResNet [19], [21], as validated
through experiments.

B. Extensions of ResNet

The ResNet initially designed for an image recognition
task [50], exhibits inferior performance when directly applied
to speaker verification [20]. Our initial findings also suggest the
same, highlighting the inherent differences between image and
speech, and the necessity of customizing ResNet for speech-
related tasks.

Preserve Resolutions: By simply removing the stride oper-
ations (2, 2) in the first and second stages, a modified ResNet
gains a remarkable improvement [19], [21]. A comparison of the

original ResNet [50] and the modified structure [19] is shown
in Table I. We believe that removing the stride operations in the
first two stages preserves the time and frequency resolutions,
allowing for the extraction of low-level features. This assump-
tion emphasizes the significance of resolutions as an important
aspect of ASV. Nevertheless, it remains uncertain whether the
time resolution, frequency resolution, or both are significant to
the overall performance, which warrants further investigation.

Prioritize depth over width: Previous studies adopt a computa-
tionally efficient operation by reducing the width of ResNet [18],
[19], [28]. Recent work further investigates the trade-off between
the depth and width of networks, highlighting that depth plays
a more important role in ASV [24]. In this paper, we examine
ResNet-based networks from a different perspective, focusing
on investigating how time and frequency resolutions affect per-
formance, as well as considering the model size and FLOPs.
Our findings complement the depth-first rule [24] presented in
Section V-E.

C. Stride and Resolution

In this subsection, we provide an overview of how the stride
configuration influences the temporal and frequency resolutions
in the 1D TDNN and 2D CNN models. This forms the basis for
our subsequent exploration and investigation in the following
sections.

As illustrated in Fig. 1(a), a TDNN network implemented
with dilated 1D CNN layers [32] treats the input as 1D fea-
tures, while considering the frequency dimension as channels.
TDNN-based models are not included in this study due to
the absence of the frequency dimension, and existing TDNN
models generally maintain time resolution [31], [32], [33], [34],
[35], [36], [39], [40], [41], [42], [47]. Unlike TDNNs, a 2D
CNN considers the input feature as a 3-dimensional tensor
C × F × T , where C, F, and T represent the channel, frequency,
and time dimensions, respectively [24]. By employing multiple
2D CNN layers, the number of channels increases, while the
frequency and temporal resolutions decrease by downsampling
operations to reduce computational complexity [50]. The output
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dimension of the downsampling operation is mainly controlled
by the stride. Fig. 1(b) and (c) illustrate that by adjusting the
stride in each dimension, the temporal and frequency resolutions
can be controlled independently. For instance, setting the stride
to 2 on the time dimension and 1 for the frequency dimension
roughly halves the time resolution while keeping the frequency
resolution the same.

In addition to stride (S), the output resolution (Rout) is also
affected by the input resolution (Rin), padding (P ), dilation (D),
and the kernel size (K), as follows:

Rout =
Rin + 2× P −D × (K − 1)− 1

S
+ 1 � Rin

S
. (3)

In summary, the temporal and frequency resolutions are pri-
marily controlled by the stride configuration employed on each
dimension. In this paper, we investigate the impact of time
and frequency resolutions on ASV performance by comparing
different stride configurations. We aim to identify the optimal
stride configurations for ASV.

III. GOLDEN-GEMINI IS ALL YOU NEED

A. Golden-Gemini Hypothesis

Considering the distinct physical implications of the two
dimensions in speech representations, we raise doubts regarding
the appropriateness of employing the default equal-stride config-
uration, originally designed for image recognition. Furthermore,
given that existing studies show the benefit of preserving the
temporal resolution during the feature extraction stage [31], [32],
[33], [34], [35], [36], [37], [39], [40], [41], [42], [73], [74], we
postulate the following hypothesis:

Golden-Gemini Hypothesis: In the context of a ResNet ar-
chitecture, characterized by a sequence of multiple stages (typ-
ically 5), there exist operational states that yield optimal perfor-
mance. These states can be determined by following a temporal-
frequency stride configuration that prioritizes the preservation of
temporal resolution over frequency resolution. We refer to these
specific operational states as the Golden-Gemini configurations.

The Golden-Gemini Hypothesis posits that the preservation of
temporal resolution is to be prioritized over frequency resolution
for the optimal extraction of speaker characteristics.

The uniqueness of a person’s voice results from the combina-
tion of physiological characteristics inherent in the vocal tract
and the learned speaking habits of different individuals [78].
The vocal tract shape is an important physical distinguishing
factor [78], wherein the laryngeal features encompass pitch
and glottal pulse shape, while the supra-laryngeal features are
associated with the formant frequencies, bandwidths, and in-
tensities [79]. These features appear across various time scales,
underscoring the significance of maintaining adequate temporal
resolution for the convolution filters. By progressively covering
larger local regions as the network deepens, these filters extract
meaningful representations from neighboring frames. On the
other hand, the learned speaking habits, including speaking rate
and prosodic effects [78], vary along the time dimension. By
preserving temporal resolution, models can effectively capture
these time-dependent patterns. Conversely, downsampling in the

Fig. 2. Exemplar trellis diagram. Each node on the trellis diagram represents
the time and frequency downsampling factors, αn and βn, at the output of
each stage in a ResNet. Each path represents a stride configuration consisting
of five sequential stages, for n = 1, 2, . . ., 5. The node with a circular outer
ring � indicates that it remains at the same position by using a stride of (1, 1).
Dashed arrows represent two alternative options controlled by different stride
operations.

time domain leads to a loss of neighboring frame information and
diminishes its ability to capture fine-grained details necessary for
robust speaker discrimination.

B. Finding the Sweet Spots on the Trellis Diagram

To validate the Golden-Gemini Hypothesis and to determine
the optimal stride configuration for ASV, we carefully design a
search strategy in this subsection. As introduced in Section II-C,
the temporal and frequency resolutions are primarily controlled
by the stride configuration employed on each dimension during
the convolution operations. In order to visually represent the
various stride configurations, we utilize a trellis diagram as a
graphical tool to aid our study, as illustrated in Fig. 2. This
diagram effectively captures the essence of each stride config-
uration by illustrating a series of sequential stride operations
originating from the start point.

Consider the ResNet structure comprising five stages as de-
tailed in Section II-A and Table I. For each stride configuration
is represented by five sequential steps on the trellis diagram in
Fig. 2, with each step denoting a stride operation performed
in a ResNet stage. For the n-th stage, the stride operation is
denoted as Sn = (st,n, sf,n), indicating a reduction in time and
frequency resolutions by a pair of stride factor of st,n and sf,n,
respectively. When st,n or sf,n equals to 1, the corresponding
resolution remains unchanged. It’s important to highlight that
strides of 1 or 2 are the most commonly used and are also
the default choices in ResNet [50]. Therefore, in this work, we
exclusively focus on these two stride operations.

In Fig. 2,αn andβn are the downsampling factors at the output
of the n-th stage in a ResNet for the temporal and frequency
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resolutions, respectively. They are given by the products of the
stride factors, and are formulated as follows.

αn =

n∏
i=1

st,i, and βn =

n∏
i=1

sf,i. (4)

The output temporal resolution Rout,t,n and frequency resolu-
tion Rout,f,n of the n-th stage in a ResNet are derived as:

Rout,t,n � Rinit,t

αn
, and Rout,f,n � Rinit,f

βn
, (5)

where Rinit is the initial input resolution for the first stage in a
ResNet.

For the red path in Fig. 2, a stride of (2, 2) reduces both
time and frequency resolutions by half at stage n = 5 simulta-
neously. The two dashed arrows indicate the alternative stride
configurations for reducing the resolution by half in either the
frequency dimension alone with a stride of (1, 2), or the time
dimension alone with a stride of (2, 1). Additionally, it is allowed
to stay at the same node on the trellis diagram, thereby preserving
both time and frequency resolutions with a stride of (1, 1). This
option is denoted as� in Fig. 2, represented by the black node at
coordinates (1, 1). The early stages often employ this option to
retain sufficient information in low-level features. This design
aligns with that of the modified ResNet [19], [21], where the
first two stages use a stride of = (1, 1).

In the trellis diagram depicted in Fig. 2, the stride config-
urations that prioritize the preservation of either frequency or
time resolution are delineated. The endpoints located on the
black dotted line indicate stride configurations that treat time and
frequency resolutions equally. This black dotted line also divides
the diagram into two partitions. Within the upper-left partition,
the stride configurations give precedence to the preservation of
temporal resolution over frequency resolution. Conversely, the
lower-right partition represents configurations that accentuate
frequency resolution, while compromising temporal resolution.
In our experiments, we search all possible stride configurations
within this trellis diagram to identify the optimal stride config-
uration. The experimental results and analysis of this search are
presented in Section V-B.

In addition, there are multiple paths on the diagram that lead
to a single endpoint, each representing a specific stride configu-
ration. Fig. 2 shows an exemplar trellis diagram illustrating four
paths, each represented by a different color, converging to the
endpoint on (2, 16). The difference among stride configurations
that lead to the same endpoint lies in the specific stages within
the total of five stages where the downsampling operation with
a stride of (2, 2) is applied. Performing the downsampling
operation in an early stage reduces the resolution of the output
feature map, resulting in a smaller feature size that needs to
be convolved by 2D convolutions. Consequently, this reduction
in resolution contributes to a decrease in FLOPs. Therefore,
the stride configurations towards the same endpoint require
for different FLOPs while maintaining the same number of
parameters. To assess the impact of early or late downsampling,
we explored different paths towards the same point with various
FLOPs. The experimental results and analysis of the findings
are comprehensively presented in Section V-C.

TABLE II
DEVELOPMENT AND TEST SETS STATISTICS

IV. EXPERIMENTAL SETUPS

A. Dataset

The experiments are conducted on four large-scale datasets,
including the VoxCeleb1 [80], VoxCeleb2 [81], Speaker in the
Wild (SITW) [82] and CNCeleb [83] datasets.

Training set: During training, only the development parti-
tion of the VoxCeleb2 dataset is used, which consists of 5,994
speakers and 1,092,009 utterances. This protocol for training on
the VoxCeleb2 dataset is widely adopted [24], [25], [32], [39],
[40], [41], [42], [44], [47]. Additionally, a randomly selected 2%
portion of this development partition is reserved as the validation
set. This small validation set is used to identify the best model
for testing on the development and testing sets.

Development set: The VoxCeleb1-Original (Vox1-O) test set
is utilized as the development set in this work to conduct a per-
formance comparison of all stride configurations. The outcomes
of the tests on this development set are analyzed, leading to the
formulation of observations.

Test set: In order to verify the observations across various
scenarios, we comprehensively encompass testing scenarios that
include in-domain, out-domain, large-scale, and challenging
cases. Specifically, VoxCeleb1-Hard (Vox1-H) and VoxCeleb1-
Extended (Vox1-E) are used as in-domain large hard cases and
a large test set, respectively. The SITW core-core test set serves
the purpose of cross-domain testing, while the CNCeleb test set
is employed to assess challenging cases within a cross-domain
scenario. The statistics of these four test sets are shown in
Table II. It’s important to highlight that there is no overlap
between any of the test sets and the training set or development
set.

B. Training Strategy

The experiments are conducted using the Pytorch frame-
work.1 We adopted two training strategies as detailed below.

Training strategy 1: The SpeechBrain Toolkit2 [84] is used.
For fair comparisons, all systems are trained under the same
training strategy following that in [32], [40]. Specifically, the
loss function is the additive angular margin softmax (AAM-
softmax) [16] with a margin of 0.2 and a scale of 30. The
Adam optimizer [85] with cyclical learning rate [86] following
a triangular policy [86] is used for training all models. A weight
decay of 2×10−5 is used for all the weights in the model. The
maximum and minimum learning rates of the cyclical scheduler

1[Online]. Available: https://pytorch.org/
2[Online]. Available: https://speechbrain.github.io/
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are 2×10−3 and 2×10−8, and the batch size is 64 each with 5
types of augmented data. For Res2Net and ResNet101, learning
rates and batch size are reduced to half due to the large memory
occupation.

All training samples are cut into 3-second segments. We
employ five augmentation techniques to increase the diversity of
the training data. The first two follow the idea of random frame
dropout in the time domain [87] and speed perturbation [88].
The remaining three are a set of reverberate data, noisy data,
and a mixture of both, achieved by combining with the Room
Impulse Response (RIR) dataset [89]. The s-norm [90] is applied
to normalize the scores.

Training strategy 2: Wespeaker Toolkit3 [21] is used. This
training strategy follows that in [24] for the purpose of
re-implementing DF-ResNet [24] and is only applied to re-
implemented DF-ResNet and Gemini DF-ResNet reported
in Section V-E. Specifically, the loss function is an AAM-
softmax [16] with a margin of 0.2 and a scale of 32. The total
number of training epochs is set to 165. The AdamW [91]
optimizer with 0.05 weight decay is used. The base learn-
ing rate (lbase) decreases from 1.25× 10−4 to 1× 10−6 with
the exponential scheduler as the learning rate regulator. The
learning rate (l) for training is adjusted according to the
batch size (b) and formulated as l = lbase × b/64. All the
samples are cut into 200-frame segments with the augmen-
tations of reverberation, noise, and speed perturbation [88]
during training. The as-norm [92] is applied to normalize the
scores.

C. Evaluation Protocol

We report the performances in terms of the equal error rate
(EER) and the minimum detection cost function (minDCF) with
Ptarget = 0.01 and CFA = CMiss = 1. The scores are produced by
calculating the cosine distance between embeddings.

V. RESULTS AND ANALYSIS

It is worth noting that the FLOPs calculation is correlated
with the duration of the sample. We select the most commonly
used options of 2 seconds [21], [24], [25], [32], [39], [42] and 3
seconds [30], [37], [40], [41], [46], [84], [93] to calculate FLOPs.
The results are labeled as ‘2 s/3s’.

A. Original ResNet vs. Modified ResNet (Baseline)

We first compare the modified ResNet [19] and original
ResNet [50]. The results are presented in Table III. It is obvious
that the modified ResNet outperforms the original ResNet. The
improved performance of the modified ResNet is attributed
to the adequate preservation of frequency-time resolution by
changing the stride configurations from (2, 2) to (1, 1) in the
first two layers. However, these changes also lead to an increase
in FLOPs.

3[Online]. Available: https://github.com/wenet-e2e/wespeaker

TABLE III
PERFORMANCE IN EER(%) AND MINDCF OF ORIGINAL RESNET [50] AND

MODIFIED RESNET [19], [21]

In addition, as this modified ResNet [19] achieves SOTA
performance using the equal-stride configuration, we adopt it
as the baseline model in this work.

B. Finding the Sweet Spots on the Trellis Diagram

We perform a strategic search on the trellis diagram for
optimal stride configuration, as shown in Fig. 3(a). All stride
configurations are evaluated on the development set, and the
results are reported in the left sub-table of Table IV. These results
yield the following observations:

Observation 1: Models that prioritize preservation of tempo-
ral resolution over frequency resolution (indexed starting with
‘T’) tend to outperform the default equal-stride configuration
(indexed as MOD). Conversely, configurations that emphasize
frequency resolution (indexed starting with ‘F’) generally result
in poorer performance. Fig. 3(a) provides clear evidence that
models utilizing stride configurations located in the upper-left
partition of the trellis diagram prioritize the preservation of
temporal resolution, resulting in a considerable advantage as
indicated by the presence of a large bubble. In contrast, models
positioned in the lower-right partition demonstrate an opposite
trend. These observations strongly support the Golden-Gemini
Hypothesis, which posits that temporal resolution plays a more
important role than frequency resolution in capturing the speaker
characteristics of speech signals.

Observation 2: The performance of models with endpoints
located on the boundary will significantly deteriorate. As shown
in Table IV, models indexed as T05, T15, T25, F52, F51,
and F50 exhibit notable performance degradation compared to
neighboring models on the trellis diagram. Unlike a TDNN that
utilizes large channel numbers (e.g., 512, 1024, or 2048) [32],
[39], [40], ResNet employs a smaller channel number (such
as 32 or 64) at early stages for low-dimensional information
representations [19], [21], [24], [25]. This aligns with the design
principle discussed in Section II-B that emphasizes the impor-
tance of depth over width. Consequently, when the temporal or
frequency resolution is rapidly compressed, and constrained by
a limited number of filters, it leads to the loss of information in
that specific dimension. This results in a notable degradation of
performance. Therefore, when designing a narrow ResNet with
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Fig. 3. Trellis diagrams of (a) the strategic search for optimal stride configurations and (b) different paths towards Golden Gemini. in (a) indicates proposed
Golden-Gemini stride configurations. In the rectangle box, from top to bottom are: the downsampling factors (α5, β5), performance in EER (%) on VoxCeleb-E
test set, number of parameters, and FLOPs. The size of the endpoint bubble indicates the performance, and the larger the bubble, the better the performance. The
node with a circular outer ring forming as � indicates that it remains at the same position by using a stride of (1, 1). The solid line represents a stride configuration
that prioritizes temporal resolution over frequency resolution, while the dashed line configuration reflects the opposite.

TABLE IV
PERFORMANCE IN EER(%) AND MINDCF OF THE ORIGINAL RESNET34 (ORI) [50] AND THE MODIFIED RESNET34 (MOD) [19], [21] WITH DIFFERENT STRIDE

CONFIGURATIONS DEMONSTRATED IN FIG. 3(A)
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TABLE V
PERFORMANCE IN EER(%) AND MINDCF OF THE MODIFIED RESNET34 [19], [50] AND GOLDEN GEMINI MODELS WITH DIFFERENT PATHS DEMONSTRATED IN

FIG. 3(B)

a smaller width, it is advisable to avoid the stride configurations
located on the boundary.

Observation 3: Leveraging an optimal stride configuration
effectively utilizes the computational resources of model size
and FLOPs. The trellis diagram in Fig 3(a) clearly shows that
models in the lower right region with large FLOPs and model
size perform poorly. Even the largest model (indexed as F50),
which employs an unfavorable stride configuration, performs
the worst. On the contrary, models that preserve temporal reso-
lution achieve good performance with less complexity than the
baseline.

Observation 4: Models indexed as T14 and T23 show the best
performance among all the models. This supports the Golden-
Gemini Hypothesisthat there exist operational states that yield
optimal performance for ASV. We refer to these two endpoints
on the trellis diagram representing a pair of optimal operational
states as the Golden Gemini.

Points closer to the start points are not explored for two
reasons. Firstly, T13 shows inferior performance compared to
Golden Gemini. Secondly, points closer to the start points would
significantly increase computational complexity, resulting in
decreased efficiency compared to utilizing a deeper model with
the proposed Golden-Gemini stride configuration.

In the right sub-table of Table IV, the testing results for all
stride configurations are presented. It is evident that across all
four testing sets, covering in-domain, out-domain, large-scale,
and hard-case scenarios, the testing results exhibit a consistent
trend similar to that observed in the development set. This
consistency strongly supports the above observations.

C. Evaluation on Different Paths Towards Golden Gemini

There are multiple paths leading to the Golden Gemini, as
shown in Fig. 3(b), each representing a stride configuration. As
discussed in Section III-B, we further investigate these paths to

assess the impact of early or late downsampling. The experi-
mental results of the development set are presented in the left
sub-table of Table V. Following are the two observations:

Observation 5: All paths towards the Golden Gemini points
outperform the baseline (indexed as MOD) that uses an equal-
stride configuration. This observation supports Golden-Gemini
Hypothesisthat the pair of operational states engage in competi-
tion and yield optimal performance.

Observation 6: Different path options offer the flexibility
to trade off between FLOPs and performance, with increased
FLOPs generally resulting in improved results. This flexibility in
model design allows for better adaptation to specific application
scenarios. In addition, previous work demonstrates superiority
by comparing FLOPs as a metric [24], [25], [40], [41], [50],
[70], [76], [94], [95]. This practice is based on the common
understanding that bigger FLOPs often correlate with better
performance. However, rather than simply increasing FLOPs,
experimental results show that an optimal stride configuration
utilizes FLOPs more efficiently.

The testing results reported in the right sub-table of Table V
demonstrate a consistent trend similar to that observed on the
development set. This further verifies the two observations men-
tioned above. In addition, all the stride configurations depicted
in both trellis diagrams in Fig. 3 are visualized in Fig. 4,
comparing their performance, model size, and FLOPs. Among
these configurations, the Golden-Gemini T14c achieves average
EER/minDCF reductions of 5.78%/14.37% over the modified
ResNet baseline (indexed as MOD) across all four test sets
while reducing the model size by 9.8% and the computational
complexity by 4.2%. Considering the efficacy and efficiency,
we designate the T14c stride configuration as the principal
stride configuration in this work. Networks that adopt the pro-
posed Golden-Gemini stride configurations are referred to as
the Gemini networks, such as the Gemini ResNet. The structure
comparison of the proposed Gemini ResNet with T14c stride
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TABLE VI
PERFORMANCE IN EER(%) AND MINDCF OF DIFFERENT SIZES OF RESNET MODELS WITH EQUAL-STRIDE CONFIGURATION OR THE PROPOSED GOLDEN-GEMINI

STRIDE CONFIGURATION (T14C) ON VOXCELEB1, SITW AND CNCELEB TEST SETS

Fig. 4. Performance versus FLOPs and the number of parameters for different
stride configurations in Fig. 3. The color is consistent with Fig. 3(a). The size
of the bubble indicates the performance in EER (%) on the VoxCeleb-E test set,
and the larger the bubble, the better the performance.

configuration, original ResNet [50], and modified ResNet [19],
[21] is presented in Table I.

D. Evaluation on Compatibility

The changes in time and frequency resolutions occur once
per stage in both ResNet and its variant networks, such as DF-
ResNet [24], Res2Net [76], and SD-ResNet [70]. Given that the
Golden Gemini is concluded from investigating the significance
of time and frequency resolution for speaker verification, it is
expected to apply to all ResNet series networks that still adhere
to the original ResNet’s five-stage structural design. This sub-
section aims to confirm the consistently superior performance of
the proposed Golden-Gemini stride configuration across various
conditions and its compatibility with different techniques. We
exemplify with the Golden Gemini T14c stride configuration,
conducting experiments to compare the models using the Golden
Gemini T14c and the default equal-stride configuration under the
following conditions:

Different model sizes: The ResNet models have different
depths, resulting in different model sizes and computational
resource requirements. For any proposed new method, adapting
to ResNet models of various sizes is important as it allows
for trade-offs between performance and complexity, enabling

better adaptation to different application scenarios. We further
extend the application of the proposed Golden-Gemini stride
configuration from ResNet34 to a smaller model (ResNet18)
and the larger models (ResNet50 and ResNet101). The experi-
mental results are presented in Table VI and Fig. 5. The results
demonstrate that the proposed Golden-Gemini stride configu-
ration consistently improves the performance by an average of
7.70%/11.76% EER/minDCF reduction across the entire range
of model sizes, while reducing parameters and FLOPs by 16.5%
and 4.1%, respectively.

Data augmentations: The training of neural networks ben-
efits from data augmentations [87]. All previous experiments
are trained with augmented data as described in Section IV-B.
We conduct training without data augmentation to assess the
compatibility of Golden Gemini, and the results are shown in
Table VII. It is observed that the Golden-Gemini stride configu-
ration achieves an average relative reduction of 8.30%/.88% in
EER/minDCF across five sets, and reduces complexity.

Squeeze-and-excitation (SE) attention module [77]: SE is one
of the most widely used attention modules. We validate the com-
patibility of the proposed Golden-Gemini stride configuration
with SE (reduction ratio r = 4), and the results are shown in
Table VII. We can observe that the proposed Golden Gemini
outperforms the equal-stride configuration on most of the test
sets, with an average EER/minDCF reduction of 8.00%/10.75%.
However, the SE block does not improve the performance, which
may require further investigation.

A different backbone network – Res2Net [76]: The proposed
Golden-Gemini stride configuration is not limited to ResNet
models and can be applied to other 2D CNN-based models
as well. Res2Net [76] is a well-known 2D CNN-based ar-
chitecture recognized for its ability to extract multi-scale fea-
tures. In the design of multi-scale frequency-channel attention
TDNN (MFA-TDNN) [40] and multi-scale feature aggregation
convolution-augmented transformer (MFA-Conformer) [46],
multi-scale features have been proven to benefit ASV. Previous
studies have explored the application of Res2Net in ASV [23],
[27], [63]. We compare the Res2Net34 model using the default
equal-stride configuration with that using the proposed Golden-
Gemini stride configuration. The scale (s) of Res2Net is set
to 4. The results in Table VII show that the Golden-Gemini
stride configuration improves performance while reducing
complexity compared to the equal-stride configuration.
Additionally, Res2Net34 shows better performance in ASV
compared to ResNet34.
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Fig. 5. Performance and complexity comparison of proposed Gemini ResNet and modified ResNet [19], [21] with different model sizes on Vox1-E test set.

TABLE VII
PERFORMANCE IN EER(%) AND MINDCF OF THE NETWORKS WITH EQUAL-STRIDE CONFIGURATION AND PROPOSED GOLDEN-GEMINI T14C STRIDE

CONFIGURATION UNDER DIFFERENT CONDITIONS ON VOXCELEB1, SITW, AND CNCELEB TEST SETS

TABLE VIII
STRUCTURE COMPARISON BETWEEN DF-RESNET [24] WITH DEFAULT

EQUAL-STRIDE CONFIGURATION AND THE PROPOSED GOLDEN-GEMINI

STRIDE CONFIGURATION

A different temporal aggregation layer – xi posterior inference
(xi) [15]: As introduced in Section I, an embedding extractor
network consists of three components – an encoder, a temporal
aggregation layer, and a decoder. The previous experiments
focus on the encoder component, and for a fair comparison,
a default temporal statistics pooling [12] is applied across
all experiments. We further validate the compatibility of the

TABLE IX
PERFORMANCE IN EER(%) AND MINDCF OF THE PROPOSED GOLDEN GEMINI

DF-RESNET AND SOTA SYSTEMS ON VOXCELEB1 TEST SETS
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proposed Golden Gemini with another temporal aggregation
method – xi posterior inference, which is designed to estimate
uncertainty [15]. The experimental results shown in Table VII
demonstrate the consistently superior performance of Golden
Gemini over the equal-stride configuration while reducing the
model size by 13.6% and FLOPs by 4.1%.

A micro design – separate downsampling (SD) [70]: Unlike
ResNet [50], which performs downsampling at the first 2D CNN
layer in each stage, Swin Transformer [94] introduces a separate
downsampling layer between stages. This micro design is also
extended to ResNet, resulting in notable improvements [70].
In this work, we explore this micro design for ASV by imple-
menting four 3 × 3 2D CNN layers between the five stages and
name SD-ResNet. It is worth noting that this modification adds
four additional 2D CNN layers, resulting in the expansion of the
ResNet34 [19], [21] architecture to SD-ResNet38. The results in
Table VII demonstrate that SD-ResNet outperforms the modified
ResNet [21] (indexed as MOD in Table IV). Moreover, the
integration of Golden Gemini leads to additional improvements
in terms of EER/minDCF, with averaged reductions of 5.32%
and 12.60%, respectively.

In summary, the experimental results validate the compati-
bility of the proposed Golden-Gemini stride configuration with
various existing techniques and training conditions. Golden
Gemini consistently improves performance while reducing com-
plexity. Its superiority can be attributed to the importance of tem-
poral resolution. By maintaining temporal resolution, Golden
Gemini ensures adequate representations of both vocal tract
features and learned speaker characteristics across various scales
of local time regions and is expected to further benefit the
temporal aggregation layer, leading to significant performance
improvements.

E. New SOTA Benchmark

DF-ResNet [24], [25] is a series of powerful SOTA mod-
els introduced in Section II-B. We first re-implement a small
venison, namely DF-ResNet59. The results reported in Table IX
demonstrate that the re-implemented DF-ResNet model slightly
outperforms the one reported in [24], [25]. Notably, we do not
apply SpecAugment [87] which is used in [24], [25]. SpecAug-
ment has been proven effective in automatic speech recognition
(ASR) [87]. However, it can have adverse effects on the funda-
mental frequency of the audio, which is a critical characteristic
for speaker discrimination [96]. Prior work [21] shows that com-
bining SpecAugment with other augmentation methods in ASV
can pose compatibility challenges. Our experiments demonstrate
a similar trend.

4For the re-implemented DF-ResNet and proposed Gemini DF-ResNet mod-
els, we count the separate downsampling layers as part of the total layer count.
This differs from the counting method used in the original DF-ResNet [24], [25].
As an example, the DF-ResNet179 in [24], [25] is referred to as DF-ResNet182
in this work. However, for the experimental results cited in Table IX, we follow
the original work [24], [25].

5Pre-trained models and codes of the proposed Gemini DF-ResNet
are available at https://github.com/Tianchi-Liu9/Golden-Gemini-for-Speaker-
Verification and https://github.com/wenet-e2e/wespeaker.

Similar to other ResNet models, DF-ResNet adopts the default
equal-stride configuration, treating temporal and frequency di-
mensions equally. By replacing the stride configuration with
our proposed Golden-Gemini T14c, we see a notable 4.9%
average performance boost and a 7.6% reduction in model size,
as detailed in Table IX. Also, Table VIII shows a 4.5% decrease
in FLOPs. It’s important to note that DF-ResNet, our chosen
baseline, achieves SOTA performance with a relatively small
model size, emphasizing its meticulous design and efficiency.
In this context, achieving further performance gains becomes
challenging given the already very low EER and minDCF.
Further analysis indicates that, as the model size increases
from the smallest to largest, relative performance improvements
decrease from 7.4% to 5.8%, and then to 1.7%. This trend aligns
with the inherent difficulty of achieving significant performance
improvements over a robust baseline and low EER/minDCF.
Nevertheless, our proposed Golden-Gemini stride configuration
still brings improvements, securing the best performance among
all systems. This outcome supports the remarkable capabilities
of the Golden-Gemini stride configuration and Golden-Gemini
Hypothesis, which emphasizes the critical significance of tem-
poral resolution in attaining superior results in ASV.

F. Golden-Gemini Guiding Principles

The experiments conducted above consistently demonstrate
the superiority of the proposed Golden Gemini over the default
equal-stride configuration from various perspectives. The un-
derlying logic behind the Golden Gemini is the utilization of a
series of guiding principles that align with the natural properties
of speech signals for designing 2D CNN-based networks for
ASV. Based on the aforementioned observations, we summarize
the Golden-Gemini guiding principles as follows:
� Preserve sufficient temporal resolutions during the feature

representation instead of preserving the frequency resolu-
tion.

� Avoid frequently diminishing any dimension at the early
stage when using a narrow network.

� A correct stride configuration surpasses mere FLOP in-
crements. Prioritize the adoption of the optimal stride
configuration followed by the trade-off between FLOPs
and performance according to computation resources.

VI. CONCLUSION

We investigate efficient stride configurations for speaker ver-
ification. Through a strategic search on a trellis diagram, we
analyze the impact of temporal and frequency resolution on
the ASV performance. Experimental results on the VoxCeleb,
SITW, and CNCeleb test sets highlight the significance of the
temporal resolution. This leads us to identify two points, named
Golden Gemini, representing two series of optimal stride con-
figurations for ASV. We also present a set of guiding prin-
ciples that comprehensively describe the Golden Gemini for
designing 2D ResNet for ASV. Further experiments demonstrate
the consistent superiority and excellent compatibility of the
proposed Golden Gemini with various structures across different
conditions. Moreover, our approach is simple yet effective and

https://github.com/Tianchi-Liu9/Golden-Gemini-for-Speaker-Verification
https://github.com/Tianchi-Liu9/Golden-Gemini-for-Speaker-Verification
https://github.com/wenet-e2e/wespeaker
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can be easily applied to any 2D ResNet architecture style, of-
fering improved performance while reducing model complexity.
Based on the Golden-Gemini guiding principles, we introduce a
powerful benchmark for ASV, namely the Gemini DF-ResNet.
These findings indicate the promising value of our method in
real-world applications. Additionally, the significance of time
and frequency resolutions may extend beyond speaker verifi-
cation, holding great potential for related tasks such as speaker
diarization, speaker extraction, emotion recognition, and speech
anti-spoofing.
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