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Abstract

Label assignment (LA), which aims to assign each train-
ing sample a positive (pos) and a negative (neg) loss weight,
plays an important role in object detection. Existing LA
methods mostly focus on the design of pos weighting func-
tion, while the neg weight is directly derived from the pos
weight. Such a mechanism limits the learning capacity
of detectors. In this paper, we explore a new weighting
paradigm, termed dual weighting (DW), to specify pos and
neg weights separately. We first identify the key influential
factors of pos/neg weights by analyzing the evaluation met-
rics in object detection, and then design the pos and neg
weighting functions based on them. Specifically, the pos
weight of a sample is determined by the consistency degree
between its classification and localization scores, while the
neg weight is decomposed into two terms: the probabil-
ity that it is a neg sample and its importance conditioned
on being a neg sample. Such a weighting strategy offers
greater flexibility to distinguish between important and less
important samples, resulting in a more effective object de-
tector. Equipped with the proposed DW method, a single
FCOS-ResNet-50 detector can reach 41.5% mAP on COCO
under 1× schedule, outperforming other existing LA meth-
ods. It consistently improves the baselines on COCO by
a large margin under various backbones without bells and
whistles. Code is available at https://github.com/
strongwolf/DW .

1. Introduction
As a fundamental vision task, object detection has been

drawing significant attention from researchers for decades.
The community has recently witnessed a fast evolution
of detectors with the development of convolutional neural
networks (CNNs) [13–15, 34–37] and visual transformers
(ViTs) [4,6,8,10,27,39,40,42,50]. Current state-of-the-art
detectors [1, 22, 24, 29–31, 38, 46, 48, 49] mostly perform
dense detection by predicting class labels and regression
offsets with a set of pre-defined anchors. As the basic unit in
detector training, anchors need to be assigned with proper
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Figure 1. An illustration of the difference between the proposed
DW method and existing label assignment methods, e.g., GFL [21]
and VFL [43]. For ambiguous anchors B, C and D, GFL and VFL
will assign nearly the same pos and neg weights to {B, D} and {C,
D}, respectively. In contrast, our DW assigns a distinct (pos, neg)
pair for each anchor.

classification (cls) and regression (reg) labels to supervise
the training process. Such a label assignment (LA) process
can be regarded as a task of assigning loss weight to each
anchor. The cls loss (reg loss can be similarly defined) for
an anchor can be generally expressed as:

Lcls = −wpos × ln (s)− wneg × ln (1− s), (1)

where wpos and wneg are the positive (pos) and negative
(neg) weights, respectively, and s is the predicted classifi-
cation score. Depending on the design of wpos and wneg ,
the LA methods can be roughly divided into two categories:
hard LA and soft LA.

Hard LA assumes that each anchor is either pos or neg,
which means that wpos, wneg ∈ {0, 1} and wneg + wpos =
1. The core idea of this strategy is to find a proper divi-
sion boundary to split the anchors into a positive set and a
negative set. The division rule along this line of research
can be further categorized into static and dynamic ones.
Static rules [18, 24, 32, 38] adopt pre-defined metrics such
as the IoU or the distance from the anchor center to the
ground truth (GT) center to match objects or background
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to each anchor. Such static assignment rules ignore the
fact that the division boundaries of objects with different
sizes and shapes may vary. Recently, many dynamic as-
signment rules [12, 26] have been proposed. For instance,
ATSS [44] splits the training anchors of an object based on
their IoU distributions. Prediction-aware assignment strate-
gies [4, 17, 19] regard the predicted confidence score as a
reliable indicator for estimating an anchor’s quality. Both
static and dynamic assignment methods ignore the fact that
samples are not equally important. The evaluation metric in
object detection suggests that an optimal prediction should
have not only a high classification score but also an accurate
localization, which implies that anchors with higher con-
sistencies between the cls head and reg head should have
greater importance during training.

With the above motivation, researchers have opted to as-
sign soft weights to anchors. GFL [21] and VFL [43] are
two typical methods which define soft label targets based on
IoUs and then translate them into loss weights by multiply-
ing a modulation factor. Some other works [9, 11] compute
sample weights by jointly considering the reg score and cls
score. Existing methods mainly focus on the design of pos
weighting function while the neg weight is simply derived
from the pos weight, which may limit the learning capacity
of detectors due to little new supervision information pro-
vided by neg weights. We argue that such coupled weight-
ing mechanism cannot distinguish each training sample at
a finer level. Fig. 1 shows an example. Four anchors have
different prediction results. However, GFL and VFL assign
nearly the same (pos, neg) weight pair to (B, D) and (C, D),
respectively. GFL also assigns both zero pos and neg weight
to anchor A and C since each one has the same cls score and
IoU. As the neg weighting function is highly correlated with
the pos one in existing soft LA methods, anchors with dif-
ferent attributes can sometimes be assigned nearly the same
(pos, neg) weights, which may impair the effectiveness of
the trained detector.

To provide more discriminative supervision signals to
the detector, we propose a new LA scheme, termed dual
weighting (DW), to specify pos and neg weights from dif-
ferent perspectives and make them complementary to each
other. Specifically, the pos weights are dynamically deter-
mined by the combination of confidence scores (obtained
from the cls head) and the reg scores (obtained from the
reg head). The neg weight for each anchor is decomposed
into two terms: the probability that it is a neg sample and
its importance conditioned on being a neg sample. The pos
weight reflects the consistency degree between the cls head
and reg head, and it will push anchors with higher consis-
tencies to move forward in the anchor list, while the neg
weight reflects the inconsistency degree and pushes the in-
consistent anchors to the rear of the list. By this means,
at inference the bounding boxes with higher cls scores and

more precise locations will have better chances to survive
after NMS, and those bounding boxes with imprecise loca-
tions will fall behind and be filtered out. Referring to Fig. 1,
DW distinguishes four different anchors by assigning them
distinct (pos, neg) weight pairs, which can provide the de-
tector with more fine-grained supervision training signals.

In order to provide our weighing functions with more ac-
curate reg scores, we further propose a box refinement op-
eration. Specifically, we devise a learned prediction module
to generate four boundary locations based on the coarse re-
gression map, and then aggregate the prediction results of
them to get the updated bounding box for the current an-
chor. This light-weight module enables us to provide more
accurate reg scores to DW by only introducing moderate
computational overhead.

The advantage of our proposed DW method is demon-
strated by comprehensive experiments on MS COCO [23].
In particular, it boosts the FCOS [38] detector with ResNet-
50 [13] backbone to a 41.5/42.2 AP w/wo box refinement
on the COCO validation set under the common 1× training
scheme, surpassing other LA methods.

2. Related Work
Hard Label Assignment. Labeling each anchor to be

a pos or neg sample is a key procedure to train a detector.
Classical anchor-based object detectors [24, 32] set an an-
chor’s label by measuring its IoU with the GT objects. Re-
cently, anchor-free detectors have attracted much attention
due to their concise design and comparable performance.
FCOS [38] and Foveabox [18] both select pos samples by a
center sampling strategy: anchors that are close to the GT
centers are sampled as positives and others are negatives or
ignored during training. The above mentioned LA meth-
ods adopt a fixed rule for GT boxes with diverse shapes and
sizes, which is sub-optimal.

Some advanced LA strategies [12,16,17,25,28,44] have
been proposed to dynamically choose pos samples for each
GT. ATSS [44] selects top-k anchors from each level of the
feature pyramid and adopts the mean+std IoU of these
top anchors as the pos/neg division threshold. PAA [17]
adaptively separates anchors into pos/neg ones based on the
joint status of cls and reg losses in a probabilistic man-
ner. OTA [12] handles the LA problem from a global
perspective by formulating the assignment process as an
optimal transportation problem. Transformer-based detec-
tors [4, 6, 27, 50] adopt a one-to-one assignment scheme by
finding the best pos sample for each GT. Hard LA treats all
samples equally, which however is less compatible with the
evaluation metric in object detection.

Soft Label Assignment. Since the predicted boxes
have different qualities in evaluation, the samples should
be treated differently during training. Many works [3, 20–
22, 43] have been proposed to address the inequality issue
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of training samples. Focal Loss [22] adds a modulated fac-
tor on the cross entropy loss to down-weight the loss as-
signed to well-classified samples, which pushes the detec-
tor to focus on hard samples. Generalized focal loss [21]
assigns each anchor a soft weight by jointly considering the
cls score and localization quality. Varifocal loss [43] utilizes
an IoU-aware cls label to train the cls head. Most methods
mentioned above focus on computing the pos weight and
simply define the neg weight as a function of 1 - wpos. In
this paper, we decouple this procedure and separately as-
sign pos and neg loss weights for each anchor. Most soft
LA methods assign weights to loss. There is a special case
that weights are assigned to score, which can be formulated
as Lcls = − ln (wpos × s)− ln (1− wneg × s). Typical
methods include FreeAnchor [45] and Autoassign [47]. It
should be noted that our method is distinct from them. To
match anchors in a fully differential manner, wpos and wneg

in Autoassign still receive gradients. In our method, how-
ever, the loss weights are carefully designed and entirely
detached from the network, which is a common practice for
weighting loss.

3. Proposed Method
3.1. Motivation and Framework

To be compatible with NMS, a good dense detector
should be able to predict consistent bounding boxes that
have both high classification scores and precise locations.
However, if all the training samples are equally treated,
there will be a misalignment between the two heads: the lo-
cation with the highest category score is usually not the best
position for regressing the object boundary. This misalign-
ment can degrade the performance of detectors, especially
under high IoU metrics. Soft LA, which treats the training
samples in a soft manner by weighting loss, is an attempt
to enhance the consistency between the cls and reg heads.
With soft LA, the loss of an anchor can be expressed as:

Lcls = −wpos × ln(s)− wneg × ln(1− s),

Lreg = wreg × ℓreg (b, b
′) ,

(2)

where s is the predicted cls score, b and b′ are the locations
of the predicted bounding box and the GT object, respec-
tively, and ℓreg is the regression loss such as Smooth L1

Loss [32], IoU Loss [41] and GIoU Loss [33]. The inconsis-
tency problem between cls and reg heads can be mitigated
by assigning larger wpos and wreg to anchors with higher
consistencies. These well-trained anchors are thus able to
predict high cls scores and precise locations simultaneously
at inference.

Existing works commonly set wreg equal to wpos and
mainly focus on how to define the consistency and integrate
it into loss weights. Table 1 summarizes the formulations
of wpos and wneg for a pos anchor in recent representative

Table 1. Comparison of different weighting functions.

Method wpos wneg t

GFL [21] (s− t)2 × t (s− t)2 × (1− t) IoU
VFL [43] t× t t× (1− t) IoU
TOOD [9] (s− t)2 × t (s− t)2 × (1− t) f(IoU, s)
MuSu [11] (s− t)2 × t s2 × (1− t)4 f(IoU, s)
Ours (DW) fpos(IoU, s) Pneg × Ineg -

methods. One can see that current methods commonly de-
fine a metric t to indicate the consistency degree between
the two heads at the anchor level, and then design the in-
consistency metric as a function of 1 − t. The consistent
and inconsistent metrics are finally integrated into the pos
and neg loss weights by adding a scaling factor ((s− t)2, s2

or t), respectively.
Different from above methods where wpos and wneg are

highly correlated, we propose to set pos and neg weights
separately in a prediction-aware manner. Specifically, the
pos weighting function takes the predicted cls score s and
the IoU between the predicted box and the GT object as in-
puts, and set the pos weight by estimating the consistency
degree between the cls and reg heads. The neg weighting
function takes the same inputs as the pos weighting func-
tion but formulates the neg weight as the multiplication of
two terms: the probability that the anchor is a neg one, and
its importance conditioned on that it is neg. By this way,
the ambiguous anchors that have similar pos weights can
receive more fine-grained supervision signals with distinct
neg weights, which is not available in existing methods.

The pipeline of our DW framework is shown in Fig. 2.
As a common practice [9, 11, 12, 38], we first construct a
bag of candidate positives for each GT object by selecting
anchors near the GT center (center prior). Anchors outside
the candidate bag are considered as neg samples which will
not be involved in the design process of weighting functions
since their statistics (e.g., IoU, cls score) are very noisy at
the early training stage. Anchors inside the candidate bag
will be assigned to three weights including wpos, wneg and
wreg , to supervise the training process more effectively.

3.2. Positive Weighting Function

The pos weight of a sample should reflect its importance
for accurately detecting an object in both classification and
localization. We try to find out the factors affecting this
importance by analyzing the evaluation metric of object de-
tection. During testing on COCO, all the predictions for
one category should be properly ranked by a ranking met-
ric. Existing methods commonly use the cls score [32] or
the combination of cls score and predicted IoU [44] as the
ranking metric. The correctness of each bounding box will
be checked from the begin of the ranking list. A prediction
will be defined as a correct one if and only if:

a. The IoU between the predicted bounding box and its
nearest GT object is larger than a threshold θ;
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Figure 2. Pipeline of DW. The left part shows the overall detection model which consists of backbone, FPN and detection head. The
outputs from the classification branch (H × W × C) and the centerness branch (H × W × 1) are multiplied as the final cls score. The
box refinement module utilizes the four predicted boundary points (H × W × 8) to adjust the coarse prediction (H × W × 4) to finer
locations.The right part shows the weighting process. Given an object, a candidate anchor bag is first constructed by selecting the anchor
points near the object center. Each anchor will then be assigned a pos weight and neg weight from different aspects.

b. No box that satisfies the above condition ranks in front
of the current box.

In a word, only the first bounding box that has a larger
IoU than θ in the prediction list will be defined as a pos de-
tection, while all the other bounding boxes should be con-
sidered as false positives of the same GT. It can be seen
that high ranking score and high IoU are both sufficient and
necessary conditions for a pos prediction. This implies that
anchors that simultaneously satisfy the two conditions are
more likely to be defined as pos predictions during testing,
and thus they should have higher importance during train-
ing. From this perspective, the pos weight wpos should be
positively correlated with the IoU and ranking score, i.e.,
wpos ∝ IoU and wpos ∝ s. To specify the pos function, we
first define a consistency metric, denoted as t, to measure
the alignment degree between the two conditions:

t = s× IoUβ , (3)

where β is used to balance the two conditions. To encourage
a large variance of pos weights among different anchors, we
add an exponential modulation factor:

wpos = eµt × t, (4)

where µ is a hyper-parameter to control the relative gaps
of different pos weights. Finally, the pos weight of each
anchor for each instance is normalized by the sum of all pos
weights within the candidate bag.

3.3. Negative Weighting Function

Though pos weights can enforce consistent anchors to
have both high cls scores and large IoUs, the importance
of less consistent anchors cannot be distinguished by pos
weights. Referring to Fig. 1, anchor D has a finer location
(a larger IoU than θ ) but a lower cls score, while anchor B

has a coarser location (a smaller IoU than θ) but a higher
cls score. They may have the same consistency degree t
and thus will be pushed forward with the same pos strength
which can not reflect their differences. To provide more
discriminative supervision information for the detector, we
propose to indicate their importance faithfully by assigning
more distinct neg weights to them, which are defined as the
multiplication of the following two terms.

Probability of being a Negative Sample. According to
the evaluation metric of COCO, an IoU smaller than θ is a
sufficient condition for a false prediction. This means that a
predicted bounding box that does not satisfy the IoU metric
will be regarded as a neg detection, even if it has a high
cls score. That is, IoU is the only factor to determine the
probability of being a neg sample, denoted by Pneg . Since
COCO adopts an IoU interval ranging from 0.5 to 0.95 to
estimate AP, the probability Pneg for a bounding box should
satisfy the following rules:

Pneg =


1, if IoU < 0.5,
[0, 1], if IoU ∈ [0.5,0.95],
0, if IoU > 0.95,

(5)

Any monotonically decreasing function defined within
the interval [0.5,0.95] is qualified for Pneg . For simplicity,
we instantiate Pneg as the following function:

Pneg = −k × IoUγ1 + b, if IoU ∈ [0.5,0.95], (6)

which passes through the points (0.5, 1) and (0.95,0). Once
γ1 is determined, the parameters k and b can be obtained by
the method of undetermined coefficients. Fig. 3 plots the
curves of Pneg vs. IoU with different values of γ1.

Importance Conditioned on being a Negative Sample.
At inference, a neg prediction in the ranking list will not
affect the recall but decrease the precision. To delay this
process, the neg bounding boxes should rank as behind as
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Figure 3. Curves of Pneg in [0.5,0.95] vs. IoU with different γ1.

possible, i.e., their ranking scores should be as small as pos-
sible. Based on this point, the neg predictions with larger
ranking scores are more important than those with smaller
ranking scores as they are harder examples for network op-
timization. Thus, the importance of neg samples, denoted
by Ineg , should be a function of the ranking score. For sim-
plicity, we set it as

Ineg = sγ2 , (7)

where γ2 is a factor to indicate how much preference should
be given to important neg samples.

Finally, the neg weight wneg = Pneg × Ineg becomes

wneg =


sγ2 , if IoU < 0.5,
(−k × IoUγ1 + b)× sγ2 , if IoU ∈ [0.5,0.95],
0, if IoU > 0.95,

(8)
which is negatively correlated with IoU but positively cor-
related with s. It can be seen that for two anchors with the
same pos weight, the anchor with a smaller IoU will have a
larger neg weight. The definition of wneg is well compati-
ble with the inference process and it can further distinguish
ambiguous anchors having almost the same pos weights.
Please refer to Fig. 1 for examples.

3.4. Box Refinement

Since both the pos and neg weighting functions take IoU
as an input, more accurate IoUs can induce higher quality
samples, benefiting the learning of stronger features. We
propose a box refinement operation to refine the bounding
boxes based on the predicted offset map O ∈ RH×W×4,
where O(j, i) = {∆l,∆t,∆r,∆b} represents the predicted
distances from the center of current anchor to the leftmost
l, topmost t, rightmost r and bottommost b sides of the GT
object, respectively, as shown in Fig. 4. Motivated by the
fact that points near the object boundary are more likely to
predict accurate locations, we devise a learnable prediction
module to generate a boundary point for each side based on
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Figure 4. Illustration of the box refinement operation. A coarse
bounding box (orange box) of an anchor at location (j,i) is first
generated by predicting four distances = {∆l,∆t,∆r,∆b}. Four
boundary points (orange points) are then predicted with respect to
the four side points (green points). Finally, a finer bounding box
(green box) is generated by aggregating the prediction results of
the four boundary points.

the coarse bounding box. Referring to Fig. 4, the coordi-
nates of the four boundary points are defined as:
Bl =

(
j +∆y

l , i−∆l +∆x
l

)
, Bt =

(
j −∆t+∆y

t , i+∆x
t

)
,

Br = (j +∆y
r , i+∆r +∆x

r ) , Bb =
(
j +∆b+∆y

b , i+∆x
b

)
,

(9)

where {∆x
l ,∆

y
l ,∆

x
t ,∆

y
t ,∆

x
r ,∆

y
r ,∆

x
b ,∆

y
b} are the outputs

of the refinement module.
The refined offset map O′ is updated as:

O′(j, i) =

{
∆l +∆x

l +O(Bl, 0), ∆t+∆y
t +O(Bt, 1)

∆r +∆x
r +O(Br, 2), ∆b+∆y

b +O(Bb, 3)

}
(10)

3.5. Loss Function

The proposed DW scheme can be applied to most exist-
ing dense detectors. Here we adopt the representative dense
detector FCOS [38] to implement DW. As shown in Fig. 2,
the whole network structure comprises a backbone, FPN
and detection head. Following the conventions [11, 38, 47],
we multiply the outputs of centerness branch and classifi-
cation branch as the final cls score. The final loss of our
network is

Ldet = Lcls + βLreg, (11)

where β is a balancing factor which is the same as the one
in Eq. 3, and

Lcls =
∑N

n=1
−wn

pos × ln (sn)− wn
neg × ln (1− sn)

+
∑M

m=1
FL (sm, 0) ,

Lreg =
∑N

n=1
wn

pos ×GIoU
(
b, b′

)
,

(12)

where N and M are the total number of anchors inside
and outside the candidate bag, respectively, FL is the Fo-
cal Loss [22], GIoU is the regression loss [33], s is the pre-
dicted cls score, b and b

′
are the locations of the predicted

box and the GT object, respectively.
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Table 2. Detection performances by setting different hyper-
parameters in wpos.

β 5 3 4 6 7
µ 3 4 5 6 7 8 5

AP 40.8 41.2 41.5 41.5 41.4 41.2 40.8 41.3 41.4 41
AP50 59.1 59.7 59.8 60.1 59.8 59.6 59.9 59.9 59.6 59
AP75 43.9 44.2 45 44.6 45.1 44.5 43.6 44.5 44.9 44.4

Table 3. Detection performances by setting different values of γ1
and γ2 in wneg .

γ1 γ2 AP AP50 AP75
1 1 41. 59.2 44.1
1 2 41.3 59.7 44.6
2 2 41.5 59.8 45
3 2 41.3 59.7 44.4
4 2 41.2 59.4 44.4
5 2 41.1 59.5 44.5
2 3 41.3 59.6 44.5

4. Experiments
Dataset and Evaluation Metric. Extensive experiments

are conducted on the large-scale detection benchmark MS-
COCO [23] which contains 115K, 5K and 20K images for
train, val and test-dev sets, respectively. We report
the analysis and ablation studies on val set and compare
with other state-of-the-arts on the test-dev set. The per-
formance is measured by COCO Average Precision (AP).

Implementation Details. We use ResNet-50 pretrained
on ImageNet [7] with FPN [32] as our backbone for all ex-
periments unless otherwise specified. Following the com-
mon practice, most models are trained with 12 epochs
which is denoted as 1× in [5]. The initial learning rate is
0.01 and is decayed by a factor of 10 after the 8th and 11th

epoch. For all ablations, we use an image scale of 800 pix-
els for training and testing unless otherwise specified. All
experiments are trained with SGDM [2] on 8 GPUs with a
total batch size 16 (2 images per GPU). At inference, we fil-
ter out background boxes with a threshold 0.05 and remove
redundant boxes by NMS with a threshold 0.6 to get the fi-
nal predicted results. The hyper-parameters γ1, γ2, β and µ
are set to 2, 2, 5 and 5, respectively.

4.1. Ablation Studies

Hyper-parameters of Positive Weighting. There are
two hyper-parameters for pos weights: β and µ. β balances
the contributions between the cls score and the IoU in the
consistency metric t. As β increases, the contribution de-
gree of IoU also increases. µ controls the relative scales of
pos weights. A larger µ enables the most consistent sam-
ples to have relatively larger pos weights compared with
less consistent samples. We show the performance of DW
by varying β from 3 to 7 and µ from 3 to 8 in Table 2. One
can see that the best result is achieved when β is 5 and µ

Table 4. Comparisons of different ways to select candidate bag.

Center prior AP AP50 AP75

Threshold

1 41.2 59.7 44.7
1.3 41.3 59.6 44.4
1.7 41.4 59.5 44.6
2.0 41.3 59.6 44.4
2.5 41.1 59.1 44.3

Top-k
9 41.2 59.4 44.3

12 41.2 59.4 44.6
15 41.2 59.6 44.4

Soft center prior e−r2 41.5 59.8 45.0

Table 5. Comparisons of different ways to formulate wneg .

wpos
wneg AP AP50 AP75

Pneg Ineg√
× × 39.5 58.6 42.9√ √

× 40.5 58.7 43.9√
×

√
40.0 58.5 42.9√

1− wpos 40.7 59.5 44.1√ √ √
41.5 59.8 45.0

is 5. Other combinations of β and µ will degrade the AP
performance from 0.1 to 0.7. Therefore, we set β and µ to
5 in all the rest experiments.

Hyper-parameters of Negative Weighting. We also
conduct several experiments to investigate the robustness
of DW to hyper-parameters γ1 and γ2, which are used to
modulate the relative scales of neg weights. The AP results
by using different combinations of γ1 and γ2 range from 41
to 41.5, as shown in Table 3. This implies that the perfor-
mance of DW is not sensitive to the two hyper-parameters.
We adopt γ1 = 2, γ2 = 2 in all our experiments.

Construction of Candidate Bag. As a common prac-
tice in object detection, soft LA is only applied on anchors
inside the candidate bag. We test three ways of candidate
bag construction which are all based on the distance r (nor-
malized by the feature stride) from the anchor point to the
corresponding GT center. The first way is to select anchors
with a distance smaller than a threshold. The second is to
select the top-k nearest anchors from each level of FPN.
The third is to give each anchor a soft center weight e−r2

and multiply it with wpos. The results are shown in Table 4.
It can be seen that the AP performance fluctuates slightly
between 41.1 and 41.5, which demonstrates that our DW is
robust to the separation methods of candidate bag.

Design of Negative Weighting Function. We investi-
gate the influence of neg weighting functions by replacing
it with other alternatives, as shown in Table 5. We can see
that only using the pos weights degrades the performance
to 39.5, which indicates that for some low-quality anchors,
only assigning them small wpos is not enough to decrease
their ranking scores. They can be enforced to rank behind
with a larger wneg , leading to a higher AP during testing.
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Table 6. Comparison among different weighting strategies of LA.

Method AP AP50 AP75 Reference
FoveaBox [18] 36.4 55.8 38.8 -
FCOS [38] 38.6 57.4 41.4 ICCV19
ATSS [44] 39.2 57.4 42.2 CVPR20
PAA [17] 40.4 58.4 43.9 ECCV20
OTA [12] 40.7 58.4 44.3 CVPR21
Autoassign [47] 40.4 59.6 43.7 -
Autoassign(detach) 39.8 59.6 42.8 -
Autoassign(weight loss) 36.6 56.2 39.1 -
NoisyAnchor [19] 38.0 56.9 40.6 CVPR2020
MAL [16] 39.2 58.0 42.3 CVPR2020
GFL [21] 39.9 58.5 43.0 NeurIPS20
VFL [43] 40.2 58.2 44.0 CVPR21
FCOS+GFLv2 [20] 40.6 58.2 43.9 CVPR21
ATSS+GFLv2 [20] 41.1 58.8 44.9 CVPR21
MuSu [11] 40.6 58.9 44.3 ICCV21
TOOD [9] 40.3 58.5 43.8 ICCV21
DW 41.5 59.8 45.0
DW+box refine 42.2 60.4 45.3

Without using Ineg or Pneg , we obtain 40.5 AP and 40.0
AP, respectively, which verifies that both the two terms are
necessary. As done in existing methods, we attempt to re-
place wneg with 1−wpos, but achieve a performance of 40.7
AP, 0.8 points lower than our standard DW.

Box Refinement. Without box refinement, our DW
method reaches 41.5 AP, which to our best knowledge is
the first method to achieve a performance of more than 41
AP on COCO without increasing any parameters and train-
ing cost over FCOS-ResNet-50. With box refinement, DW
can reach 42.2 AP, as shown in Table 6. Table 7 also shows
that box refinement can consistently boost the performance
of DW with different backbones.

Weighting Strategies. To demonstrate the effectiveness
of our DW strategy, we compare it with other LA methods
using different weighting strategies. The results are shown
in Table 6. The first five rows are hard LA methods while
the others are soft LA.

The best performance for hard LA is achieved by OTA,
40.7 AP. Since OTA formulates LA as an Optimal Trans-
port problem, it will increase the training time by more than
20%. GFLv2 utilizes an extra sophisticated branch to esti-
mate the localization quality and achieves the second best
performance of 41.1 AP among soft LA methods.

Unlike the mainstream methods where weights are as-
signed to loss, Autoassign assigns weights to cls score and
updates them by their gradients during training. We tried to
detach the weights in Autoassign and assigned them to loss,
but only obtained 39.8 and 36.6 AP, respectively, 0.6 and
3.8 points lower than the original performance. This im-
plies that the weighting scheme in Autoassign cannot work

cls IoU ����(��) ����(��)

����(���) ����(���) ����(���) ����(���)

Figure 5. Visualization of cls score, IoU, pos and neg weights.

well when adapting it to the mainstream practice.

4.2. Comparison with State-of-the-Arts

We compare our DW with other one-stage detectors on
test-dev 2017 in Table 7. Following previous works [9,
21, 43], the multi-scale training strategy and 2× learning
schedule (24 epochs) are adopted during training. We re-
port the results of single-model single-scale testing for all
methods. Other settings are consistent with [9, 21, 43].

Apart from the LA strategy, some works [9, 20, 43] also
utilize additional feature learning modules to boost their
detectors. For fair comparisons, in Table 7 we compare
with them by reporting the performance w/wo this auxiliary
module. It can be seen that our DW method with ResNet-
101 achieves 46.2 AP, outperforming all other competitive
methods with the same backbone, including VFL (44.9 AP),
GFL (45.0 AP) and OTA (45.3 AP). When using more pow-
erful backbones like ResNet-101-DCN and ResNeXt-101-
64x4d, DW reaches 49.3 and 48.2 AP, surpassing GFL by
2 and 2.2 points, respectively. We can also see that the op-
eration of box refinement consistently improves DW with
different backbones. It is worth mentioning that when we
replace the detection head in FCOS by the one proposed
in TOOD [9], DW achieves 49.8 AP, 1.5 points better than
TOOD. This demonstrates the good generalization capacity
of our DW strategy to other detection heads.

4.3. Discussions

Visualization of DW. To further understand the differ-
ence between DW and existing methods, we show the visu-
alization maps of cls score, IoU, pos and neg weights of DW
and two representative methods, GFL [21] and VFL [43], in
Fig 5. It can be seen that pos and neg weights in DW are
mainly centralized on the central region of the GT, while
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Table 7. Performance comparison with state-of-the-art dense detectors on COCO 2017 test-dev set. All models listed below adopt
multi-scale training. ‘*’ indicates we use the same detection head proposed in TOOD [9]. ‘Aux.’ means the auxiliary learning module.

Method Backbone Aux. AP AP50 AP75 APS APM APL

FCOS [38] ResNet-101 × 41.5 60.7 45.0 24.4 44.8 51.6
ATSS [44] ResNet-101 × 43.6 62.1 47.4 26.1 47.0 53.6
PAA [17] ResNet-101 × 44.8 63.3 48.7 26.5 48.8 56.3
GFL [21] ResNet-101 × 45.0 63.7 48.9 27.2 48.8 54.5
OTA [12] ResNet-101 × 45.3 63.5 49.3 26.9 48.8 56.1
IQDet [26] ResNet-101 × 45.1 63.4 49.3 26.7 48.5 56.6
MuSu [11] ResNet-101 × 44.8 63.2 49.1 26.2 47.9 56.4
Autoassign [47] ResNet-101 × 44.5 64.3 48.4 25.9 47.4 55.0
VFL [43] ResNet-101 × 44.9 64.1 48.9 27.1 48.7 55.1
DW (ours) ResNet-101 × 46.2 64.8 50.0 27.1 49.4 58.5
GFLv2 [20] ResNet-101

√
46.2 64.3 50.5 27.8 49.9 57.0

DW+box refine (ours) ResNet-101
√

46.8 65.1 50.5 27.7 49.9 59.1
ATSS [44] ResNet-101-DCN × 46.3 64.7 50.4 27.7 49.8 58.4
PAA [44] ResNet-101-DCN × 47.4 65.7 51.6 27.9 51.3 60.6
GFL [21] ResNet-101-DCN × 47.3 66.3 51.4 28.0 51.1 59.2
MuSu [11] ResNet-101-DCN × 47.4 65.0 51.8 27.8 50.5 60.0
VFL [43] ResNet-101-DCN × 48.5 67.4 52.9 29.1 52.2 61.9
DW (ours) ResNet-101-DCN × 49.3 67.6 53.3 29.2 52.2 63.5
GFLv2 [20] ResNet-101-DCN

√
48.3 66.5 52.8 28.8 51.9 60.7

DW+box refine (ours) ResNet-101-DCN
√

49.5 67.7 53.4 28.9 52.2 63.7
ATSS [44] ResNeXt-101-64x4d × 45.6 64.6 49.7 28.5 48.9 55.6
PAA [17] ResNeXt-101-64x4d × 46.6 65.6 50.8 28.8 50.4 57.9
GFL [21] ResNeXt-101-64x4d × 46.0 65.1 50.1 28.2 49.6 56.0
OTA [12] ResNeXt-101-64x4d × 47.0 65.8 51.1 29.2 50.4 57.9
DW(ours) ResNeXt-101-64x4d × 48.2 67.1 52.2 29.6 51.2 60.8
VFL [43] ResNeXt-101-64x4d

√
48.5 67.0 52.6 30.1 51.7 59.7

TOOD [9] ResNeXt-101-64x4d
√

48.3 66.5 52.4 30.7 51.3 58.6
DW+box refine (ours) ResNeXt-101-64x4d

√
48.7 67.1 52.7 29.7 51.6 61.1

DW∗ (ours) ResNeXt-101-64x4d
√

49.8 67.7 53.8 30.4 52.3 63.0

GFL and VFL assign weights on a much wider region. This
difference implies that DW can focus more on important
samples and reduce the contribution of easy samples, such
as those near the boundary of the object. This is why DW is
more robust to the selection of candidate bag.

We can also see that anchors in the central region have
distinct (pos, neg) weight pairs in DW. In contrast, the neg
weights are highly correlated with pos weights in GFL and
VFL. Anchors highlighted by the orange circle have al-
most the same pos weight and neg weight in GFL and VFL,
while DW can distinguish them by assigning them different
weights, providing the network higher learning capacity.

Limitation of DW. Although DW can well distinguish
the importance of different anchors for an object, it will de-
crease the number of training samples at the same time, as
shown in Fig 5. This may affect the training efficacy on
small objects. As shown in Table 7, the improvement of
DW on small objects is not as high as that on large objects.
To mitigate this issue, we may dynamically set different
hyper-parameters of wpos based on object size to balance
the training samples between small and large objects.

5. Conclusion

We proposed an adaptive label assignment scheme,
named dual weighting (DW), to train accurate dense object
detectors. DW broke the convention of coupled weighting
in previous dense detectors, and it dynamically assigned in-
dividual pos and neg weights for each anchor by estimating
the consistency and inconsistency metrics from different as-
pects. A new box refinement operation was also developed
to directly refine boxes on the regression map. DW was
highly compatible with the evaluation metric. Experiments
on the MS COCO benchmark verified the effectiveness of
DW under various backbones. With and without box refine-
ment, DW with ResNet-50 achieved 41.5 AP and 42.2 AP,
respectively, recording new state-of-the-art. As a new label
assignment strategy, DW also demonstrated good general-
ization performance to different detection heads.

Negative societal impacts of object detection mainly
arise from the abuse on military applications and privacy is-
sues, which warrants careful consideration before applying
this technology to real life.
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