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Abstract: The problem of unbalanced and small samples is main challenge to the application of deep learning in fault 

detection of complex systems. To address this issue, this paper introduces an intelligent detection approach for multi-

part cover (MPC) based on auto-encoder Wasserstein generative adversarial networks (AEWGAN) and structure 

adaptive adjustment convolution neural network (SAACNN). The proposed approach incorporates data augmentation 

techniques and a detection algorithm to enhance the accuracy of MPC detection. For the data enhancement, a novel 

AEGWAN model is proposed to enhance the correlation and reduce the difference between the generated samples and 

real samples, achieved by replacing the random noise vector in the traditional generative adversarial network (GAN) 

with hidden variables auto-encoded by real samples. In addition, the Wasserstein distance is utilized to substitute for 

the Kullback Leibler (KL) divergence or Euclidean Distance (ED) in traditional GAN as the objective function. This 

substitution helps eases the gradient disappearance and training instability in the training process. For the detection 

algorithm, although AEWGAN can expand the samples, there are still differences between the generated and real 

samples due to the limitations of the model. To further ease the effect of the difference for detection accuracy, a novel 

comprehensive loss function is designed for CNN. On the basis of the new loss function, a novel SAACNN is created 

to adaptively select the optimal network structure, which speeds up network training progress and improves the 

detection accuracy. The effectiveness of the proposed approach is verified by experiments with other models, 

showcasing its superior capabilities in terms of data enhancement, denoising and generalization. 
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1 Introduction 

Urban road covers play a vital role in providing convenient access for maintenance and repairs, while also 

ensuring cleanliness and safety, as the demand for underground infrastructure, including power cables and gas pipes, 

continues to grow alongside expanding urban areas. With the constant growth and complexity of urban infrastructure, 

manhole covers have gained more widespread application[1]-[2]. The multi-part cover (MPC), a special form of 

manhole cover, offers the advantages of cost-efficiency and large coverage area, making it the optimal choice on the 

road in many countries and regions such as United States, Canada, United Kingdom, Hong Kong, Japan. The structure 

of MPC is shown in Fig.1. 
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Fig.1 The structure of MPC 

Unlike the ordinary manhole cover, MPCs are constructed using concrete and steel strips, forming a component 

that resembles in a grid pattern. These covers are not a single, solid unit but rather a composite structure, making them 

both heavy and more intricate in design. Nevertheless, due to  the heavy weight and rolling by vehicles for a long time, 

the cover and the supporting beam under the cover are prone  serious damage. In severe  cases, the MPC may collapse, 

posing a hidden risk to vehicle safety. In Hong Kong alone, there are already thousands of MPCs installed on the main 

roads. Hence, the timely detection of faults in MPCs is both urgent and significant importance. 

Currently, manual inspection is the primary method used to assess the health of MPCs. However, this approach 

suffers from low efficiency. Moreover, manually detecting internal damage in MPCs, such as the supporting beam 

damage, is challenging, which increases the risk of mis-detection. It is urgent to develop an intelligent approach to 

detect the MPC health. However, the researches of MPC intelligent detection are rare. Current manhole cover health 

detection researches could provide references for MPC. Yu et al [3] and Yadav et al [4] proposed a detection approach 

for manhole covers suing mobile laser scanning (MLS). They designed a corresponding model to extract the state 

features from the scanning images. Pasquet et al [5] and Liu et al [6] put forward a detection approach for manhole 

using satellite images. By extracting the features from the satellite images, fault detection could be accomplished. 

These approaches above have some shortcomings, such as, images are greatly impacted by the external environment, 

which is not fit in cloudy or rainy days. In addition, unlike the manhole cover, MPCs are bigger and have the same 

material as the road, making it difficult to obtain clear and complete images for detection. What’s more, this approach 

is only suitable for the detection of MPCs with severe surface damage and not internal damage. Some researches 

adopted radio frequency identification (RFID)[7]-[8] or ground penetrating radar (GPR)[9]-[10]. Although the 

technologies of RFID and GPR can detect the manhole cover health states, deployment of a large volume of devices 

is needed, which gives rise to high maintenance costs. With the expansion of urban areas, abundant MPCs are adopted 

in urban roads. Hence, fast, convenient, efficient and low-cost detection is vital. Vibration signals, which contain many 

internal health information of the system, are extensively being applied in fault detection and identification[11]-[13] 

The advantage of vibration lies not only in its convenient acquisition, but also in its low cost. Besides, the entire 

detection process will create little impact on pedestrians and vehicles. Therefore, this paper adopts the vibrational 

signals to realize the fault detection of MPC. 

Machine learning, especially deep learning, has been widely utilized in fault detection. Compared with traditional 

machine learning methods that rely on manual extraction of fault features, deep learning implements the fault feature 

extraction and classification in an end-to-end manner, avoiding the cumbersome operations of manual feature 
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extraction and enhance feature characterization[13]-[16]. However, the quality and quantity of training samples largely 

determine the performance of fault detection based on deep learning. At present, most research on deep learning is 

conducted with a balanced and large number of training samples. However, practical engineering applications often 

yield skewed dataset that contains a greater proportion of normal data and fewer fault data. This results in data 

imbalance between different states and subsequently increases the risk of over-fitting in the deep learning network. In 

addition, this scenario causes the network model to focus on the training of abundant samples, with decision-making 

ability towards the minority samples. As a result, the imbalance hinders the network’s ability to make correct 

judgments. In response, Goodfellow et al [17] proposed the GAN, through the confrontation between the generator 

and the discriminator to achieve the 'Nash equilibrium'. Ultimately, the generator produces synthetic data that closely 

adheres to the real data distribution. In recent years, the GAN network has proven to be an emerging and effective 

data enhancement network, applied in many fields, such as visual enhancement, natural language processing and fault 

detection. Its advantages include sample generation, data enhancement, feature completion, etc. Liu et al [18] proposed 

a cycle-generative adversarial network (Cycle-GAN) to realize the image enhancement under unsupervised training. 

Natarajan et al [19] introduced the dynamic GAN model for the generation of high-quality videos. Gao et al [20] 

developed a GAN-based approach for fault diagnosis of bearings for data augmentation under small samples. Luo et 

al [21] proposed a two-stage GAN method for fault diagnosis in mechanical systems. Guo et al [22] introduced the 

GAN based on local weights-shared multi-generator for data enhancement and construct a fault diagnosis model. Liu 

et al [23] developed the latent optimized stable GAN for small samples enhancement without prior knowledge. 

Although the aforementioned GAN-based data augmentation studies have yielded positive results certain limitations 

exist. For example, GAN training is difficult, and the generator and concurrent convergence of generators and 

discriminators often proves difficult, which causes issues such as training instability, gradient disappearance, and 

model collapse. To solve such problems, some researches proposed improvements based on the traditional GAN. Fan 

et al [24] introduced the Wasserstein distance into GAN to create WGAN to perform the fault diagnosis of rolling 

bearing under imbalanced data. Meng et al [25]adopted the auxiliary classification generative adversarial network 

(ACGAN) to add the label information to input and introduced the Wasserstein distance into the loss function of 

ACGAN to mitigate gradient disappearance. To solve the mode collapse and gradient vanishing, Li et al [26] 

introduced the Wasserstein distance into GAN to design a new framework called modified auxiliary classifier GAN 

(MACGAN), successfully applied to the fault diagnosis of rotating machinery. Chen et al [27] introduced the pre-

training mechanism and Wasserstein into GAN with gradient penalty to proposed the PT-WGAN-GP to achieve the 

fault diagnosis of rolling bearing. Although these enhanced GAN approaches have greatly improved the resolution of 

model gradient disappearance and model collapse by integrating Wasserstein distance, the input of generators 

comprises random noise signals. The correlation between random noise vectors and real samples is relatively weak. 

This weak correlation hinders the generation of accurate samples. Therefore, there is a pressing need for further 

improvement in this regard. 

In terms of classification, the current research based on GAN model focuses on how to design generators with 

label information to achieve data enhancement and classification. Examples include the auxiliary classification 

generative confrontation network (AC-GAN)[28]-[29],conditional adversarial network (C-GAN)[30]-[32], and 
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CWGAN-GP[33]-[34]. Although these improved GANs can learn image information based on labels, they struggle to 

capture the distribution characteristics of images when sample features are subtle, and they do not account for the 

interpretability of the generator's input to the generated samples. Therefore, despite the early-stage expansion of 

samples through GANs (or improved GANs) at the data level, it only belongs to the data level processing, and 

differences still exist between the generated samples and the real samples due to the limitations of the generative 

model. To further mitigate the impact of these differences on the classification results, it is necessary to design a 

specialized network for mixed data diagnosis. CNN serves as an advanced neural network with characteristics like 

local link and weight sharing, rendering it excellent for feature extraction and classification. However, CNN still faces 

some challenges in fault detection. Firstly, most researches remain entrenched in the mode of "data-driven and result-

oriented", which simply pursues accuracy enhancement and ignores the research on the network structure. Secondly, 

certain parameters in the network, such as layer count and node quantity, are selected blindly, with network structure 

determined through trial and error. At present, studies on the adaptive adjustment of the network structure are scant. 

Therefore, designing a CNN that can adaptively adjust the network structure (layer and node count) according to input 

characteristics is of great significance in improving the speed and accuracy of network. 

For the problems of data expansion and fault classification, this paper proposes an intelligent detection approach 

based on AEWGAN and SAACNN for MPC from the aspects of data enhancement and detection algorithms. The 

AEGAN model is proposed to perform data enhancement on small size samples to obtain the sufficient samples to be 

detected. The SAACNN model is proposed to accurately classify the mixed samples. The detail contributions are as 

follows. 

(1) The AEWGAN model improves GANs by using hidden variables encoded from real samples to learn the 

distribution of real data faster and reduce the differences between the generated and the real samples. 

(2) A new comprehensive loss function and CNN with structure adaptive adjustment (SAACNN) are developed 

to minimize the differences between generated and real samples, improving training speed and accuracy. 

(3) The proposed approach outperforms other methods when testing on the MPCs. 

The rest of this paper is divided into the following sections. Section 2 describes the history and relevant work of 

CWT, AEGAN, and SAACNN. Section 3 explains the proposed method for MPC detection. Section 4 presents the 

implementation of experiment verifications and discusses the findings. Section 5 concludes with final thoughts and 

proposed directions for further research. 

2 Methodology  

2.1 Continuous wavelet transform (CWT) 

Frequency information is important for signal analysis. Time-frequency domain information contains both the 

time-domain information and frequency-domain information, which yields a more comprehensive understanding of 

the internal characteristics of the signal. Among many time-frequency analysis methods, CWT can extract the fault 

features more through the use of suitable wavelet functions, which avoids complex window method selection. 

Therefore, CWT is proved more suitable for feature extraction of non-stationary signals, such as the vibrational 

signal[35]-[36].The CWT can be described by Eqs.(1)-(2). 
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                                                                (2) 

is the wavelet basis's shifted and dilated forms, which resemble a group of variable window functions. The signal to 

be converted is denote by 𝑥(𝑡), the scale factor and the translation factors are denoted by a(a>0)and b respectively. 

𝜓() is the mother wavelet function and 𝜓∗(
𝑡−𝑏

𝑎
) is the complex conjugate of 𝜓(

𝑡−𝑏

𝑎
). The operation of the CWT can 

concentrate on any part of the signal by altering parameters a and b.  

2.2 Autoencoder Wasserstein Generative adversarial network (AEWGAN) 

2.2.1 Wasserstein Generative adversarial network (WGAN) 

       GAN, an unsupervised generation network, consists of two key components: Generator and Discriminator. The 

function of the generator is to learn the distribution characteristics of real samples to generate new samples that closely 

match the distribution of real samples, typically taking a random noise vector as input. The discriminator is used to 

compare the difference between the real samples and the generated samples. In the process of network training, the 

generator and the discriminator undergo alternating training phases and engage in competitive and adversarial 

interaction until they attain the Nash equilibrium. At this point, the samples generated by the generator are close to the 

real samples. 

        GAN can be abstracted as a maximum and minimum problem which is shown as Eq.(3). 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥−𝑃𝑑𝑎𝑡𝑎 (𝑥)[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑧−𝑃(𝑧)[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑧)))] 

                    （3） 

Where, 𝐸  represents the expectation.𝐷(𝑥)  represents the probability of determining the real sample to the real. 

𝐷(𝐺(𝑧)) represents the probability of the generated sample to the real. 𝑃𝑑𝑎𝑡𝑎(𝑥) represents the distribution of the real 

sample. 𝑃𝑧 represents the distribution of the noise, which is a Gaussian distribution. 𝑉(𝐷, 𝐺) represents the difference 

between the real sample and the generated sample. 

        The objective function of GAN can be decomposed into two optimization functions, which are shown as Eqs.(4)-

(5). 

                                          

𝐿𝐺 = min
𝐺

𝑉(𝐷, 𝐺) = 𝐸𝑧−𝑃(𝑧)[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑧)))] 

                                            （4） 
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𝐿𝐷 = max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥−𝑃𝑑𝑎𝑡𝑎 (𝑥)[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑧−𝑃(𝑧)[𝑙𝑜𝑔( 1 − 𝐷(𝐺(𝑧)))] 

                         （5） 

Where, 𝐿𝐺 is the loss function of generator. 𝐿𝐷 is the loss function of discriminator.  

        During network training, the objective is to minimize the loss function of the generator 𝐿𝐺 and maximize the loss 

function of the discriminator 𝐿𝐷 . The distribution of real samples will be obtained by the generator causing the 

discriminator to struggle in differentiating between real and generated samples. The optimal solution of the 

discriminator can be described as Eq.(6). 

𝐷∗(𝑥) =
𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
 

                                                                  （6） 

Where, 𝑃𝑔(𝑥)  is the distribution of samples generated by the generator. When 𝑃𝑔(𝑥) = 𝑃𝑑𝑎𝑡𝑎(𝑥) , 𝐷∗(𝑥)  =0.5, it 

indicates that the state reaches to Nash balance and the global optimal solution is obtained. 

       However, the adoption of KL or JS distance to optimize Eq.(3) will inevitably lead to gradient disappearance and 

training instability[37]. Based on GAN, the WGAN model is proposed by many researchers, in which Wasserstein 

distance is adopted to quantify the difference between the generated and real samples. Its structure is shown in Fig.1. 

Random 

noise signal

Fine-tuning by loss function using 

Wasserstein distance

Loss 

function

New sample

True sample

Discriminator

Generator

 

Fig.1 WGAN structure 

       Adopting the model of Wasserstein distance function can alleviate the problems of gradient disappearance and 

training instability in the training process. The function of Wasserstein distance can be expressed as Eq.(7). 

𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑔) = 𝑖𝑛𝑓
𝛾∈𝛱(𝑃𝑑𝑎𝑡𝑎 ,𝑃𝑔)

𝐸(𝑥,𝑥) ~ 𝛾[‖𝑥 − �̃�‖] 

                                                （7） 

Where, 𝛱(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑔)  represents the joint probability distribution 𝛾  between 𝑃𝑑𝑎𝑡𝑎  and 𝑃𝑔 . ‖𝑥 − �̃�‖  represents the 

distance between the real sample and the generated sample. The smaller the value of 𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑔), the higher the 

similarity between the real sample and the generated sample. 
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2.2.2 Auto-encoder (AE) 

AE is a single-layer neural network composed of an encoder and a decoder, and the entire calculation includes 

two processes: encoding and decoding. The specific structure is shown in Fig.2. 
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Fig.2 .AE network 

       The process of encoding can be expressed as Eq.(8). 

{
ℎ𝑛 = 𝑓𝜃(𝑥𝑛) = 𝑆𝑓(𝑊 ⋅ 𝑥𝑛 + 𝑏)

𝜃 = {𝑊，𝑏}
 

                                          （8） 

Where, 𝑥𝑛 is input. 𝜃 is the parameter sets. 𝑊 is the weight matrix; 𝑏 is the offset.𝑆𝑓 is the activation function. 

      The process of encoding can be expressed as Eq.(9). 

{
�̂�𝑛 = 𝑔𝜃′(ℎ𝑛) = 𝑆g(𝑊 ′ ⋅ ℎ𝑛 + 𝑑  )

𝜃′ = {𝑊 ′，𝑑}
 

                                      （9） 

Where, ˆ
n

x is input. 𝜃′ is the parameter sets. 𝑊 ′ is the weight matrix; 𝑑 is the offset.𝑆g is the activation function. 

        By continuously training the parameters set {𝜃, 𝜃′} , making the loss function 𝐿(𝑥, �̂�)  minimization, which is 

shown in Eq.(10). 

𝐿(𝑥, �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃,𝜃′

1

𝑚
∑‖𝑥 − �̂�‖2

𝑚

𝑖=1

 

(10) 

2.2.3 Design of AEWGAN  

This paper utilizes the encoding capacity of AE and the adversarial learning mechanism of WGAN to propose 

the AEWGAN for sample enhancement. In the model of AEWGAN, the random noise vector is replaced with the 

encoded hidden variable. This replacement enhances the correlation between the generated and real samples and 

improves the accuracy of generated samples. AEWGAN includes an auto-encoder network, a generation network, and 

a discrimination network, as shown in Fig.3. 
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Fig.3 AEWGAN structure 

(1) AE: Its function is to obtain the hidden variables associated with real samples through encoding operations, and 

adopt the hidden variables as input for the generator. 

(2) Generation network: This network is composed of several layers of deconvolution transformed convolutions, 

which increases the dimensionality of low dimensional hidden variables layer by layer, and then generates the new 

samples that are consistent with the real samples. Its task is to adopt Eq.(4) to generate fake samples  to deceive the 

discriminator. 

(3) Discrimination network: This network consists of several convolutional modules and a full connection layer. It 

performs simultaneous feature extraction and dimensionality reduction for both generated and real samples, and maps 

these samples to true or false probability values using a nonlinear activation function. 

The AEWGAN model designed in this paper combines the encoder from AE with the generator of WGAN, which 

not only improves the quality of generated samples, but also addresses training instability and gradient disappearance 

issues. 

2.3 Convolution neural network with structure adaptive adjustment (SAACNN) 

CNN, an advanced neural network, is composed of convolutional layers, pooling layers, and full connection 

layers. It is equipped with strong feature extraction capabilities and finds widespread application in pattern recognition. 

CNN operations mainly include two phases: forward propagation and reverse fine-tuning. Forward propagation is 

adopted to pre-calculate the sample categories, while reverse fine-tuning continuously corrects and adjusts the network 

parameters by comparing the error between the pre-calculation results and the real results, which makes the calculation 

in the direction of error reduction. The loss function in traditional CNN is shown in Eq.(11). 

𝐽(𝜔, 𝑏) =
1

2𝑚
∑‖𝑔𝜔,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
𝑚

𝑖=1

 

                                                  (11) 

Where, 𝑚is the samples size.𝑔𝜔,𝑏(𝑥(𝑖)) and 𝑦(𝑖)are the predicted value and real value of the sample 𝑥(𝑖), respectively. 

Although the loss function shown in Eq.(11) can guide network training, it overlooks the differences between 

samples of different types, which leads to defects in convergence speed and accuracy. Therefore, the novel loss 

function is proposed to optimize network parameters to aggregate samples of the same type and diverge samples of 

varying types, which enhances the accurate identification of the classifier. 
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 The error function between same type samples is shown in Eq.(12). 

𝐽1(𝜔, 𝑏) =
1

2
∑ ∑‖𝑔𝜔,𝑏(𝑥(𝑖,𝑗)) − 𝑀(𝑗)‖

2

𝑚𝑗

𝑖=1

𝑛

𝑗=1

 

                          (12) 

Where, n is the size of the sample type. 𝑚𝑗  and 𝑔𝜔,𝑏(𝑥(𝑖,𝑗)) are the sample size and the sample predicted value of j-

th type respectively. The samples mean value of j-th type is denoted by 𝑀(𝑗), and calculated using Eq.(13). 

𝑀(𝑗) =
∑ 𝑔𝜔,𝑏(𝑥(𝑖,𝑗))

𝑚𝑗

𝑖=1

𝑚𝑗
 

                                                        (13) 

The error function between vary type samples is shown in Eq.(14). 

𝐽2(𝜔, 𝑏) =
1

2
∑ ∑ ‖𝑀(𝑖) − 𝑀(𝑗)‖

2
𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 

                                           (14) 

Where, 𝑀(𝑖) is the samples mean value of i-th type and 𝑀(𝑗) is the samples mean value of j-th type. 

        The novel comprehensive loss function is shown in Eq.(15). 

 

𝐽𝑛𝑒𝑤(𝜔, 𝑏) = 𝐽(𝜔, 𝑏) + 𝛾𝐽1(𝜔, 𝑏) − 𝛽𝐽2(𝜔, 𝑏) 
              (15) 

Where,𝐽(𝜔, 𝑏) is the traditional error function. 𝐽1(𝜔, 𝑏)and  𝐽2(𝜔, 𝑏) are the errors between same types and different 

types of samples respectively. 𝛾 and 𝛽 are weight coefficients obtained by prior knowledge. 

Iterative optimization of the gradient descent method is used to determine the minimum value of 𝐽𝑛𝑒𝑤(𝜔, 𝑏), 

which is shown in Eq.(16). 

                 𝜔𝑖𝑗
𝑙 = 𝜔𝑖𝑗

𝑙 − 𝜂
𝜕

𝜕𝜔𝑖𝑗
𝑙 𝐽𝑛𝑒𝑤(𝜔, 𝑏) 

𝑏𝑗
𝑙 = 𝑏𝑗

𝑙 − 𝜂
𝜕

𝜕𝑏𝑗
𝑙 𝐽𝑛𝑒𝑤(𝜔, 𝑏)                                                        (16) 

Where,𝜂 is the learning rate. 

         The selection of network layers and nodes in traditional CNN relies on empirical experience, which can be a 

blind process. To overcome the blindness of network structure selection, this paper proposes a network structure 

adaptive adjustment algorithm based on Eq.(15). The procedure is outlined as follows. 

(1) Establish a CNN model with a single convolution layer, one pooling layer and one full connection layer and 

initialize the network parameters, with a node increasing stride set to 2 and the layer increasing stride set to 1. 

(2) Feed training samples into the CNN model and calculate the loss function 𝐽𝑛𝑒𝑤(𝜔, 𝑏). Analyze the change trend 

of 𝐽𝑛𝑒𝑤(𝜔, 𝑏).  If the loss function decreases smoothly and quickly to a predefined threshold as iterations increase, 

retain the network structure. If the loss function exhibits instability with increasing iterations, augment the nodes 

in each layer and continue training. In cases where the loss function decreases rapidly and smoothly to the threshold 

with the iterations increasing, but until the training task quit, the loss function still surpasses the threshold, 
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increasing the network layers. 

(3) Repeat step (2) several times until the termination condition is reached, then adopt the optimal structure obtained 

from step (2) for testing.  

The network structure adaptive adjustment algorithm can be shown in Fig.4. 
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Fig. 4.  The structure adaptive adjustment algorithm 

2.4 AEWGAN-SAACNN proposed in this paper 

        The AEWGAN-SAACNN designed in this paper includes two parts: sample enhancement network and 

classification network, illustrated in Fig.5.The AEWGAN model serves to implement the sample enhancement, while 

the SAACNN model serves to classify the mixed samples. The two models are connected in series, where the output 

of the previous network serves as is the input for the next network. 

Unlike the traditional GAN, the input of AEWGAN proposed in this paper is the hidden variables generated 

through encoding real samples rather than the random noise, which enhances the correlation and similarity between 

the real and generated samples. The generator and discriminator within AEWGAN are composed of a sequence of 

transposed convolution layers and convolutional layers, and the two modules interact to generate the optimal samples 

by loss function gradient updates. SAACNN, on the other hand, is constructed with convolution layers, pooling layers, 

and one full connection layer. Through a series of convolution and pooling operations, fault features hidden in the 

mixed samples can be deeply extracted. Meanwhile, the SAACNN employs a structure adaptive adjustment algorithm 

to accelerate the network training process and enhance feature extraction accuracy by adaptively optimizing the 

network structure. The parameters of two models are shown in Section 4.3. 



11 
 

AE network

Hidden 

vector

Fine-tuning by loss function using 

Wasserstein distance

Loss 

function

New sample

True sample

P1 C2 P2 FC Softmax

Classification

Results

Structure adaptive adjustment based on novel loss function

AEWGAN SAACNN

Generator

TC-Transposed Convolution

TC1 TC2 TC3

C-Convolution P-Pooling 

Discriminator

C1 C2
C3

C1FC-Full Connection 

CWT image 

Coding Decoding

New balanced  

samples

 

Fig.5 The structure of AEWGAN-SAACNN designed in this paper 

3 The overall process of fault detection for MPC 

For the MPC fault detection under imbalanced and small size samples, in this paper, AEWGAN is designed for 

sample enhancement, and SAACNN is proposed for state classification. The overall process of fault detection can be 

shown in Fig.6. 

 

Fig.6 Overall process of MPC health detection 
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The details are as follows. 

（1）Data collection and processing. Build an experimental platform to collect the vibrations in the X, Y, and Z 

directions of MPC under normal and fault conditions (500 normal samples and 500 fault samples), then the correlation 

function weight method is adopted to fuse the vibrations in three directions. Finally, CWT is adopted to process the 

fused data to obtain 2D gray images. 80% of images are randomly selected as the training set, and the remaining are 

taken as the testing set. Remove the fault samples by a random proportion to construct the multiple unbalanced training 

sets. 

（2）Samples enhancement. Put the unbalanced samples with vary degrees into AEWGAN model for training. When 

it reaches to the maximum times of training, reserved the optimal model. The generated samples could be obtained by 

the optimal model. Finally, mix the generated samples into the real samples to achieve the small size samples 

enhancement. 

 (3) Healthy state classification. Put the mixed training set into the SAACNN model, and adopted the novel 

comprehensive loss function to guide the network training. The network adaptively adjusts the number of network 

layers and nodes based on the changes trend of the loss function. After the optimal network is obtained, put the testing 

set into the network model to achieve the classification of various samples. The training and testing process can be 

shown in Fig.7. 

Vibration collection

Start

CWT gray imageData conversion: 

CWT

Training set Testing set

AEWGAN model

Input true samples

Reach the max-

training times

Reserve the optimal model

Generate new samples

Data fusion:

SAACNN model

Satisfy the ending 

conditions

No

Yes

Reserve the optimal model

Output the diagnosis results

Input the testing samples

Yes

No

Data processing

Small sample enhancement Fault classification
 

Fig.7 The flow of training and testing 

4 Experiment verifications and discussions 

To verify the effectiveness of proposed approach, MPCs in HongKong are taken for fault detection, several 

groups of experiments are implemented and the results are discussed. 



13 
 

4.1 Data acquisition 

The data acquisition instrument mainly includes a scope and a vibration sensor, which is shown in Fig.8. The 

three-directional accelerometer sensor (CT1020LS, CHENGTEC, CHINA) is connected to an oscilloscope (Tektronix 

MSO24, 4 Analogue Channels, 200 MHz, CHINA) to observe the signal in real-time, where the frequency sampling 

rate is set as 100 KHz. Besides, the sensor is mounted on the aluminum piece using bolts to fix the sensor. Prior to 

attaching the sensor, the aluminum piece was set up near the testing site with an adhesive glue (Devcon 22045, USA). 

When the vehicle passing through the MPC, the vibration data could be recorded by the scope.500 groups of data in 

each state are collected and the sampling time for each group data is 2s. 

MPC

Vibration sensor

Vibration sensor

X

Y Z

Data Acquisition 

Scope

Power supply

Amplifier

USB

 

Fig.8 The data acquisition platform 

MPCs in vary locations are adopted for research in this paper, normal and fault MPC are shown in Fig.9. For the 

fault, the fault occurs in the supporting beam under the cover, and the fault type is supporting beam deformation. The 

vibration of two states is shown in Fig.10. 

(a) (b)

Beam 

deformation

 

Fig.9 MPC: (a) normal; (b) fault  
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(a) (b)  

Fig.10 The vibration of MPC: (a)normal;(b) fault 

From Fig.10, it can be concluded that the vibration signal in good state is weak and the vibration in bad state is 

strong. The reason is that when the supporting beam is bent, the MPC is in unbalanced state, when the vehicle rolls 

the MPC, it will collide the beam. 

4.2 Data fusion and conversion 

        Due to the fact that data in multi-directions contain richer state information than data in single direction[38], The 

sensor adopted in this paper can simultaneously collect vibrations in the X, Y, and Z, then, the cross-correlation 

function method in [39] is adopted to fuse the vibration in three directions. Assuming that 

𝑥1(𝑛), 𝑥2(𝑛), 𝑥3(𝑛), ⋯ , 𝑥𝑚(𝑛) is the measured signal，the cross-correlation function for any two signals is as follows. 

  

𝑅𝑥𝑖,𝑥𝑗
(𝑚) =

1

𝑁 − 𝑚
∑ 𝑥𝑖(𝑛)𝑥𝑗(𝑛 + 𝑚)

𝑁−𝑚

𝑖=1

, 𝑚 = 0,1,2, ⋯ , 𝑘 

                        (17) 

The energy of signal can be expressed as follows 

   

𝐸𝑖𝑗 = ∑ [𝑅𝑥𝑖,𝑥𝑗
(𝑘)]

2
𝑛

𝑘=1

 

                                               (18) 

Where, 𝐸𝑖𝑗 is the correlation energy of signal by cross-correlation operation. The energy of signal by the i-th sensor 

can be expressed as follows 

𝐸𝑖 = ∑ 𝐸𝑖𝑗

𝑛

𝑗=1,𝑗=𝑖

 

                                                   (19) 

Because the weighted 𝑝𝑖 is proportional to the energy, therefore 

𝑝1 : 𝑝2 : ⋯ : 𝑝𝑛 = 𝐸1 : 𝐸2 : ⋯ : 𝐸𝑛 

                                (20) 

𝑝1 + 𝑝2 + ⋯ + 𝑝𝑛 = 1 

Hence, the fused signal can be expressed as follows 
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�̄� = 𝑝1𝑋1 + 𝑝2𝑋2 + ⋯ + 𝑝𝑛𝑋𝑛                                                        (21) 

Adopting the cross-correlation function method to fuse the vibration of MPC as Fig.10, the result can be shown 

in Fig.11. 

 

Fig.11 Data fusion by cross correlation function in two states: (a)normal;(b) fault 

To meet with the requirement of the model in this paper for input, it is necessary to convert the original 1D 

vibration into 2D image. In this paper, CWT is adopted to process the vibration, and some of the CWT images are 

randomly selected, which are shown in Fig.12. 

 
 

  
(a) 

  

   
(b) 

  

Fig.12 CWT gray images of two states:(a) normal (b) fault 

From Fig.12, it can be seen that the CWT gray images under different states have significant differences. 

Therefore, CWT images can be adopted as the fault information for detection. Select 500 fusion samples under normal 

and fault states to obtain 500 CWT images for each state. To construct the unbalanced samples that meets the 

experiment requirements, fault samples are randomly removed by a certain proportion, which is shown in Table 1. 

Table 1 Unbalance samples of MPC 

Sample sets Normal Fault Unbalance ratio (normal:fault) 

Training set A 400 samples 200 samples 2:1 

Training set B 400 samples 100 samples 4:1 

Training set C 400 samples 50 samples 8:1 

Training set D 400 samples 40 samples 10:1 

Testing set 100 samples 100 samples 1:1 
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4.3 Comparative experiments 

The software development environment of following experiments is based on Python programming language, 

and the operation system of computer is Window10. The computer configuration is Intel (R) core (TM) i7-4790 CPU 

@ 3.6GHz with a memory (RAM) size of 32GB. The configuration of network parameter is shown in Table 2 and 

Table 3. 

Table 2 The structure of AEWGAN 

Model Layer Variables Training parameters 

 

AE 

Input 200 neurons  

 

 

The batch size is 32. 

ReLu is adopted as the 

activation function. The 

learning rate is set to 

0.002. The training 

times is set to 500 

Hidden 100 neurons 

Output  200 neurons 

 

Generator 

Deconv1 the kernel size is 3×3, the stride is 2, and the padding is 1 

Deconv2 the kernel size is 3×3, the stride is 2, and the padding is 1 

Deconv3 the kernel size is 3×3, the stride is 2, and the padding is 1 

Deconv4 the kernel size is 3×3, the stride is 1, and the padding is 1 

 

Discriminator 

Conv1 the kernel size is 5×5, the stride is 2, and the padding is 1 

Conv2 the kernel size is 5×5, the stride is 2, and the padding is 1 

Conv3 the kernel size is 5×5, the stride is 2, and the padding is 1 

Conv4 the kernel size is 5×5, the stride is 2, and the padding is 1 

Table 3 The initialization parameters of SAACNN 

Input Layer Variables  Training 

parameters 

  A

Activation 

function 

Convolut

ion 

kernels  

Size (Stride) pooling 

operation 

pooli

ng 

kerne

l 

(Strid

e) 

 

 

 

 

 

 

CWT images 

with size of 

200×200 

 

Conv1

+BN+P

ooling 

1 

ReLu 8 3×3 (2) Max 2×2 

(2) 

 

 

 

 

The batch size is 

set to 64, and 

the initial 

learning rate is 

0.001. The 

learning rate is 

reduced to half 

of its previous 

value every 20 

epochs. The 

maximum 

number of 

epochs is set to 

 

Conv2

+BN+P

ooling 

2 

ReLu 16 3×3 (2) Max 2×2 

(2) 

 

Conv3

+BN+P

ooling 

3 

ReLu 16 3×3 (2) Max 2×2 

(2) 
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Conv4

+BN+P

ooling 

4 

ReLu 32 3×3 (2) Max 2×2 

(2) 

200, and the 

training 

iterations are set 

to 500. In new 

loss function,
0.6 0.4， = =  

Full 

connect

ion 

2 nodes 

with the 

ReLu  

/ / / / 

Softma

x 

/ / / / / 

4.3.1 The quality comparisons of generated samples 

The purpose of the sample augmentation network is not only to expand the sample size but more importantly, to 

generate convincing samples in terms of quality. This emphasis on sample quality is crucial as it directly influences 

the accuracy of detection network. To verify the effectiveness of generated samples by AEWGAN, the imbalanced 

ratio 10:1 is considered, as shown in Table 1 for an example (training set D). In this context, this paper utilizes 

AEWGAN, GAN, WGAN, infoGAN [40], and CWGAN [33] respectively to enhance the fault samples. Four images 

generated by different approaches are randomly selected, as shown in Fig.13. 

(a) (b) (c) (d) (e) (f)  

Fig.13 The comparison of real samples and generated samples: (a) real (b) by AEWGAN (c) by infoGAN (d) by 

CWGAN (e) by WGAN (f) by GAN 

From Fig.13, it can be observed that the images generated by AEWGAN bear the closest resemblance to real 

images. Although not exact replicas, this similarity signifies that the proposed network not only learns feature 

distributions from the real samples, but also maintains diversity among generated samples, which is beneficial to 

improve the robustness and generalization capacity of the classification network. In contrast, the samples generated 

by GAN are different from the real samples both in the key and edge features, indicating GAN’s limitations in learning 

features and generating high-quality samples. To quantify the difference between the generated and the real samples, 

Kullback Leibler (KL) divergence [41] and Euclidean Distance (ED) [42] are adopted, respectively, to evaluate the 

samples generated by different sample enhancement networks. The results are detailed in Table 4. 
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Table 4 The KL and ED values of the generated samples by vary models 

Model KL ED 

GAN 2.4173 10.5847 

CWGAN 1.9152 7.2963 

WGAN 2.0017 8.6391 

infoGAN 1.1532 3.7295 

AEWGAN 1.5786 1.7082 

From Table 4, it can be seen that among many GAN methods, AEWGAN performs the best in KL and ED 

indicators, while the traditional GAN performs the worst. The reason may be that the input of traditional GAN is the 

random noise, which makes it difficult for the generator to learn the feature distribution in real samples. What’s more, 

the traditional GAN adopted KL distance or JS distance to describe the loss function, rather than the Wasserstein 

distance function, it is easy to encounter the gradients disappearance, resulting in the network parameters stop updating, 

which makes it difficult to learn useful knowledge. However, AEWGAN avoids the occurrence of the aforementioned 

problems, resulting in the higher similarity between the generated and the real. 

To further demonstrate the effectiveness of AEWGAN, taking the unbalance degree 10:1 as an example, principal 

component analysis (PCA) is utilized to perform the visualization of dimensional reduction on the unbalanced samples 

of original and the balanced samples by enhancement, extracting the first three features for visualization. The results 

are shown in Fig.14. 

 

Fig.14 Data feature distribution: (a) unbalanced samples of original (b) balanced samples by enhancement 

As illustrated in Fig.14, through the mixture of the generated samples, the number of fault samples is consistent 

with that of normal samples. In addition, the fault samples generated are clustered around the real fault samples, 

indicating that the AEWAGN model has learned the feature distribution from the real fault samples. Hence, the 

distribution of the generated data more closely resembles that of real samples.  

4.3.2 Comparisons with single direction vibration 

       To illustrate the effectiveness of data fusion on MPC fault detection, taking the unbalanced ratio 8:1 as an example, 

for fairness, this paper adopts the same data enhancement network (AEWGAN) and the same detection network 

(SAACNN) to test the data in X, Y, Z and the fused data respectively. Each experiment is repeated 10 times, and 

average accuracies are shown in Fig.15. 
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Fig.15 The comparisons with vibration :(a) in X;(b) in Y;(c) in Z;(d) data-fusion 

As depicted in Fig.15, compared with the methods using vibration in X, Y, and Z for detection, the average 

accuracy of approach by data fusion is 96.0%, which is improved by 13.2%, 7.05%, and 10.4%, respectively. 

Obviously, data fusion method has more advantages. The reason may be that the cross-correlation function fusion can 

adjust the size of correlation coefficients by the energy of signal, which ensures both the information diversity and the 

allocation rationality. Compared with the information in single direction, information fusion is advantageous for the 

classifier to make accurate recognition. 

4.3.3 The effectiveness verification of AEWGAN-SAACNN 

To verify the performance of AEWGAN-SAACNN with unbalanced samples, CNN, SMOTE-CNN and 

AEWGAN-CNN are adopted with different unbalanced degrees (2:1,4:1,8:1,10:1) in Table 1 for comparisons. The 

SMOTE realizes the data expansion by random interpolation in real samples. Each approach is repeat 10 times with 

different balance degrees, and the results are shown in Fig.16. 

 

Fig.16 The accuracies of different networks with different unbalance degrees 

  2:1 4:1 8:1 10:1

CNN 82.30% 80.80% 74.90% 71.20%

SMOTE-CNN 86.10% 83.50% 80.90% 76.60%

AEWGAN-CNN 94.80% 92.70% 90.50% 89.30%

AEWGAN-SAACNN 98.60% 97.80% 96.00% 94.50%
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As can be seen from Fig.16, firstly, when unbalanced samples are directly fed into CNN for detection, the 

accuracy notably lags behind other methods using data enhancement, which verifies the conclusion that unbalanced 

samples can substantially hamper detection accuracy. Secondly, the extent of imbalance has a considerable impact on 

the classification result. With increasing imbalance, the detection performance of the four approaches decreases, but 

the AEWGAN proposed in this paper maintains the highest accuracy (above 90%), which further proves its 

effectiveness in samples enhancement for MPC detection. It is worth noting that SMOTE is a common data 

enhancement method, but its accuracy in MPC is relatively lower since SMOTE adopts the simple interpolation 

mechanism to increase samples size, which fails to enhance the diversity of sample features, not conducive to 

improving the generalization ability of the model.Thirdly, compared with CNN, SAACNN can automatically adjust 

the network structure to optimize performance according to input characteristics, instead of blindly selecting the 

network structure based on experience. Hence, the highest accuracy can be achieved under varying degrees of sample 

imbalance. To further illustrate the feature extraction capabilities of the four models, take the unbalanced ratio 8:1 

(Training set C) in Table 1 as an example for detection. Visualizations of feature extraction results in each network 

are illustrated in Fig.17. 

 

Fig.17 The visualization of various models:(a) CNN;(b) SMOTE-CNN;(c) AEWGAN-CNN;(d) AEWGAN-

SAACNN 

From Fig.17, it can be seen that the four models have significant differences in feature extraction capabilities. In 

Fig.17 (a), the fault  features are more divergent, resulting in a larger overlap area with the normal  features. Compared 

with Fig.17 (a), the fault  features in Fig.17 (b) and Fig.17 (c) are relatively clustered, but overlaps with normal features 

are still exsited. In Fig17(d), the fault features are the most clustered and have clear boundaries with the normal, which 

indicates that the proposed approach has strong feature extraction and differentiation capabilities.  

4.3.4 Anti-noise performance analysis 

Since MPC located in a noisy environment, the vibration collected is easily polluted by the noise, therefore, the 

anti-noise ability of the designed network is an important indicator to evaluate its superiority. To verify the anti-noise 

performance of the network designed in this paper. Gaussian white noise with different signal-to-noise ratio (SNR) is 
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added to the original vibration  to simulate the noise-interference environment, which is defined as Eq.(22). 

𝑆𝑁𝑅 = 10𝑙𝑔

𝑃𝑠𝑖𝑔𝑛𝑎𝑙
𝑃𝑛𝑜𝑖𝑠𝑒                                                                  (22) 

Where, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  represents the energy of the clean signal. 𝑃𝑛𝑜𝑖𝑠𝑒 represents the energy of noise. 

After the data enhancement by AEGWAN, the noise convolution neural network(NOSCNN)[43], multireceptive 

field denoising residual convolution neural networks(MFDRCNN) [44], Gramian time frequency enhancement 

Network (GTFEN)[45] and  collaborative fusion convolutional neural network (CFCNN)[46] are adopted as the 

comparisons. Taking the samples with unbalanced ratio 2:1 in Table 1 as an example for diagnois, 10 experiments are 

conducted and the average results are shown in Fig.18. 

 

Fig.18 The accuracies of various models with noise 

From Fig.18, it can be seen that with the increase in noise intensity, the performance of the five models mentioned 

above experiences a decline. However, SAACNN consistently maintains the highest average accuracy compared to 

the other four models. For example, under the strongest noise (SNR=-6dB), SAACNN achieves an average accuracy 

of 93.5%, surpassing NOSCNN, MFDRCNN, GTFEN, and CFCNN by 23.1%, 7.8%, 9.6%, and 3.3% respectively. 

This outcome can be attributed to the enhanced loss function model in SAACNN, which optimizes the network 

parameters in a manner conducive to classification. Meanwhile, SAACNN can adaptively adjust the network structure 

according to the characteristics of the input to maintain optimal performance even in the noisy environment. Therefore, 

regardless of fluctuations in noise intensity, SAACNN maintains an accuracy of over 93%. Although the other four 

models have anti-noise capabilities, their network structures selection has relied on blind and uncertain experience. 

When the noise intensity changes (the input characteristics are changed), these models lack the adaptability to achieve 

optimal performance under varying noise conditions. Therefore, the SAACNN proposed in this paper is demonstrated 

to have strong anti-noise interference ability and robustness. 

4.3.5 Comparisons of generalization with other networks  

Since there are thousands of MPCs in the city that differ in size and weight.To demonstrate the proposed network 

  -6dB -4dB -2dB 0dB 1dB 2dB

NOSCNN 70.40% 72.50% 76.80% 81.40% 83.70% 84.90%

MFDRCNN 85.70% 87.30% 89.20% 90.70% 91.30% 92.50%

GTFEN 83.90% 85.40% 88.30% 90.10% 91.80% 93.20%

CFCNN 90.20% 92.90% 93.10% 94.30% 94.50% 95.70%

SAACNN 93.50% 94.60% 95.90% 96.70% 96.30% 97.80%
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adapts to various types of MPCs, vibrations of MPCs at different positions as shown in Fig.19 are collected.Adopting 

AEWGAN model for samples enhancement to generate the balanced samples. Then dividing the training and testing 

sets according to Table 5, Finally, different networks are adopted for detection. Taking the samples with unbalanced 

ratio 4:1 in Table 1 as an example, each method is tested 10 times and the average accuracy is recorded, which is 

shown in Fig.20. 

NL1

NL2

NL3

NL4

FL1

FL2
FL3

FL4

(a) (b)

NL1:Normal in Tuen Fu Road;NL2:Normal  in TaiPo Tau Drive;

NL3:Normal  in Chui Yu Road;NL4:Normal in Shung Shun Street

FL1:Fault in Ting Tai Road;FL2:Fault in Dai Fuk Street;

FL3:Fault in Dai Fat Road;FL4:Fault in Ting Kok Road

 
Fig.19 MPCs in different locations: (a) normal MPC;(b) fault MPC 

Table 5 The training samples and testing samples setting in different situations 

Training samples Testing samples 

Label Normal Number Fault Number Label Normal Number Fault Number 

T1 NL1+NL2+NL3 400 FL1+FL4 100 C1 NL4 100 FL2 100 

T2 NL1+NL2+NL4 400 FL2+FL3 100 C2 NL3 100 FL1 100 

T3 NL1+NL3+NL4 400 FL3+FL1 100 C3 NL2 100 FL4 100 

T4 NL2+NL3+NL4 400 FL4+FL2 100 C4 NL1 100 FL3 100 



23 
 

 

Fig.19 The generalization comparisons of different networks:(a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4 

It can be seen from Fig.20 that when both the training and testing sets change, the accuracy of each network also 

undergoes alterations. The specific performances are as follows: In Case1, as shown in Fig.20(a), as the testing samples 

changes, the accuracy of SAACNN remains within the range of 93.60%~96.30%. In Case 2, as shown in Fig.20(b), 

with changes in testing samples, the accuracy of SAACNN remains stable between 94.40%~97.10%. In Case 3, as 

shown in Fig.20(c), when the testing samples changes, the accuracy of SAACNN ranges from 92.20%~97.40%. In 

Case 4, as shown in Fig.20(d), when the testing samples changes, the accuracy of SAACNN maintains at 

92.90%~98.80%. Therefore, it can be concluded that there is an inconsistency between the testing set and the training 

set, the SAACNN model manages to uphold a high accuracy and is less affected by samples variations. The accuracies 

of the other three networks are lower than that of SAACNN, and the accuracy varies greatly with the change of the 

samples, possibly because changes in the training set lead to alterations in the optimal structure of each network, 

resulting in different results. What’s more, during the training process , the structure selections of CFCNN, GTFEN 

and MFDRCNN is manual with an element of subjectivity. Within the limited experience, the network's performance 

may not reach the optimal level. In contrast, the SAACNN proposed in this paper with the novel loss function model 

and optimization criteria can adjust the network structure to the optimal level according to the characteristics of the 

samples set. Therefore, SAACNN exhibits a robust generalization ability. 

5 Conclusions  

This paper proposes the AEWGAN model for the unbalanced and small size samples enhancement. Compared 

with the traditional GAN model, it can enhance the correlation with real samples, which improves the quality of the 

generated samples. For detection, the SAACNN model is developed with a structure adaptive adjustment function, 

which greatly improves the diagnosis accuracy and generalization ability.The application of this model in MPC fault 
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detection yields specific conclusions as outlined below. 

(1) In terms of sample enhancement capabilities, the AEWGAN model outperforms various other types of GANs, 

including GAN, WGAN, infoGAN, and CWGAN. The samples generated by AEWGAN proposed are closer to the 

real samples; 

(2) Compared with the vibration in a single direction, the cross-correlation function method is adopted to fuse the data 

in three directions, which can synthesize the data in different directions to enrich the state information, and has the 

highest accuracy.  

(3) In terms of detection accuracy, compared with CNN, SMOTE-CNN, and AEWGAN-CNN, no matter how the 

unbalance degree of the dataset changes, the AEWGAN-SAACNN model proposed exhibits the highest accuracy and 

the excellent stability. 

(4) In terms of anti-noise performance, the network model proposed has strong noise resistance, even in the 

environment with the strongest noise (SNR=-6dB), the average accuracy of proposed approach is 93.5%, which is 

improved by 23.1 %, 7.8%, 9.6% and 3.3% than that of NOSCNN, MFDRCNN, GTFEN and CFCNN respectively. 

(5) In terms of generalization ability, compared with other networks, even the testing set has changed, the network 

proposed still maintains a high accuracy rate (over 92%), which proves that the network has a strong generalization 

and feature transfer learning capability. 

         What’s different from the laboratory environment is that the fault type can be set freely in the laboratory, but in 

the actual environment, the faults of MPC on the road are random, and the health status of most MPCs are unknown 

(need to be confirmed by the government department). In addition, due to Hong Kong laws, traffic and security 

restrictions, more data are difficult to be collected, which results in that the current fault types of MPC are not enough. 

In future, more focus should be put on testing the proposed approaches under the circumstance of more fault types 

and more MPC, which can further confirm the effectiveness of the proposed approach and guide us to find more 

reliable conclusions. 
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