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including wind, rainfall, tides, river flow, and underground 
flow (Benavidez et al. 2018; Fleshman and Rice 2014; 
Muchena et al. 2005; Prăvălie 2021; Shen et al. 2016; Wu et 
al. 2017). Among them, rainfall-induced erosion plays a sig-
nificant role in inland soil loss (Duan et al. 2020; Liu et al. 
2019), leading to numerous environmental and geotechnical 
challenges, such as land deterioration, water contamination, 
landslide, and collapsing (Cemiloglu et al. 2023; Mao et 
al. 2023; Nanehkaran et al. 2021, 2023a, b). Consequently, 
controlling soil erosion is a challenge faced by countries 
worldwide. Various methods have been developed to miti-
gate soil erosion, including biological approaches (such as 
vegetation and biofilm), as well as physical and chemical 
methods (Jiang and Soga 2017; Liu et al. 2022; Liu and Hou 
2023; Wei et al. 2022; Yan et al. 2021). However, various 
challenges arise during the application of these techniques 
(Jiang et al. 2019; Sun et al. 2021c; Wang et al. 2020, 2023), 
highlighting the need for the development of an effective 
and eco-friendly approach to improve soil erosion control.

Microbially induced carbonate precipitation (MICP) 
is a promising method recently proposed for soil stabi-
lization (Chu et al. 2012; DeJong et al. 2006; Gao et al. 
2018; Liu et al. 2024; van Paassen et al. 2010; Zhang et 

Introduction

Soil loss is a critical environmental issue that can negatively 
impact water quality, food production, ecosystem, and prop-
erty security. In China, approximately 37% of the land area 
(3.6 × 106 km2) is affected by soil loss (Panagos et al. 2015; 
Yang et al. 2018). Several factors can lead to soil erosion, 
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Abstract
Rainfall-induced erosion on slopes is a prevalent natural process leading to soil loss. One promising application of micro-
bially induced carbonate precipitation (MICP) is to mitigate rainfall-induced erosion. Conducting field tests is an essential 
step to verify and improve its performance. In the current work, field tests were conducted to assess the feasibility of using 
MICP to mitigate rainfall-induced erosion on a gravelly clay slope in Longyan, Fujian, China. A temporary laboratory was 
set up to cultivate bacteria, and a non-sterilizing method was employed to prepare large volumes of bacterial suspensions 
in a single batch. Slopes were treated by spraying solutions onto their surfaces. The amount of discharged soils and 3D 
surface scanning results were used for evaluating the erosion intensity of the slopes. The results demonstrated that the 
method could effectively mitigate the surface erosion caused by natural rainfall and prevent erosion-induced collapse. 
Notably, approximately one year after the treatment, the grass had started to grow on the heavily cemented slope, indicat-
ing that the MICP method is both effective and eco-friendly for soil stabilization method. However, further improvements 
are needed to enhance the uniformity and long-term durability of the MICP treatment.
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al. 2024; Zhao et al. 2023). The method utilizes harmless 
microbes to induce the precipitation of inorganic miner-
als, such as calcium carbonate (CaCO3) (He et al. 2020; 
Lv et al. 2022; Qabany and Soga 2013). One of the most 
commonly used methods involves the hydrolysis of urea, 
i.e., CO(NH2)2 + H2O bacteria−−−−−−−−→ 2 NH4

+ + CO3
2− , by 

which CaCO3 precipitates with the presence of Ca2+, i.e., 
Ca2++CO2-

3 → CaCO3 (Gomez et al. 2017; Peng and Liu 
2019). The precipitated CaCO3 in soil pores can bond soil 
particles together, forming rock-like structures that can help 
soils resist external loadings, such as those from buildings, 
machinery, rainfall, runoff, and wind (Ma et al. 2022). As a 
result, the MCIP method has broad application prospects, 
including foundation stabilization, seepage control, crack 
repair, and erosion control (Cheng and Shahin 2017; Cui 
et al. 2020; Fattahi et al. 2020; Han et al. 2022; Sun et al. 
2021b; Wu et al. 2019; Xiao et al. 2021; Yang et al. 2022). 
Among these, erosion control is one of the most important 
applications of MICP, as even a small amount of precipitate 
can substantially improve soil resistance to erosion caused 
by rain, wind, seepage, and waves (Almajed et al. 2020; Fat-
tahi et al. 2020; Haouzi et al. 2019; Jiang and Soga 2017; Li 
et al. 2019; Shahin et al. 2020; Sun et al. 2021a; Wang et al. 
2018; Xiao et al. 2022b).

Although numerous studies have investigated the feasi-
bility of MICP for protecting slope surfaces composed of 
various soil types and gradations through model tests, little 
research has been conducted on actual field slopes. However, 

field tests are a necessary step to verify and enhance the 
performance of MICP in protecting slope surfaces from ero-
sion. On the one hand, real slopes are significantly larger 
than slope models; on the other hand, the slope surfaces are 
typically treated by spraying methods, often manually. Fur-
thermore, previous studies have mainly characterized slope 
erosion under artificial rainfall conditions, in which the rain-
fall was typically intensified and the tests were completed 
over short periods, neglecting the long-time durability of the 
MICP treatment (Jiang et al. 2019; Liu et al. 2021b; Xiao et 
al. 2022a). However, under natural conditions, the MICP-
treated slopes are subjected to physical (e.g., temperature 
fluctuations, variations in saturation degree, and salt trans-
port and crystallization), chemical (e.g., acid rain), and 
biological (e.g., plant growth) weathering (Ji et al. 2024). 
Consequently, these model tests may not accurately repre-
sent the real erosion characteristics of slopes treated with 
MICP.

The aim of the current work was to evaluate the feasibil-
ity of using MICP to mitigate rainfall-induced erosion on 
slopes composed of gravelly clay under natural conditions 
through field tests. The work allows for a comprehensive 
assessment of the influences of real rainfall conditions, 
weather changes, and the durability of the MICP treat-
ment. The test was conducted at a construction site located 
in Longyan, Fujian, China, as shown in Fig. 1a, as part of 
a slope protection project by the Fujian Geological Engi-
neering Survey Institute. The area is characterized by hilly 

Fig. 1 Field test site and the rain-
fall intensity during the field tests
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terrain with elevations ranging from 431.42 m to 489.67 m, 
resulting in an altitude difference of 58.25 m. The region 
experiences a subtropical oceanic monsoon climate, with 
an average annual temperature of 20.5 ℃ and annual pre-
cipitation of approximately 1479 mm. The soils at the site 
primarily consist of silty clay, gravelly silty clay, and arti-
ficial backfill. Due to the large size of the construction site, 
numerous excavated slopes are present (Fig. 1b). Many of 
these slopes will remain exposed for an extended period due 
to the lengthy construction timeline. During this time, the 
rainfall-induced erosion of the slopes in the construction 
sites cannot be overlooked. As shown in Fig. 1c, numer-
ous gullies have already formed on the slopes, indicating 
significant erosion, which not only contaminates the site, 
adversely affecting the overall working environment, but 
also poses a risk to slope stability. Therefore, it is essen-
tial to develop a convenient, eco-friendly, and cost-effective 
method to mitigate rainfall-induced erosion on these tem-
porary slopes.

Details for the field tests

Characteristics of the test slope

The slope of the tested area was approximately 45°. The 
surface soils were backfilled after the excavation of the 
construction site. The backfilled soil was mainly com-
posed of gravel and clay Fig. 1e. The gravel sizes ranged 
mostly between 10 mm and 50 mm, accounting for approxi-
mately 50% by weight of the backfilled soil. The particle 
size distribution curve of the slope soil is shown in Fig. 2. 
The average compaction degree of the backfilled soils was 
92%. The cohesive strength and inner friction angle were 
31 kPa and 39.7°, respectively. The permeability of the soil 
was measured at 5 × 10− 5 cm/s. Beneath the surface soils, 
the underlying rock consisted mainly of strongly to mod-
erately weathered mudstone and siltstone. There was no 
underground water present on the slope. The field tests were 
carried out from 01/09/2021 to 31/01/2022, with additional 
visual observations extending to 01/09/2022. Precipitation 
during the research period is shown in Fig. 1d.

Preparation of bacterial suspensions and 
cementation solutions

The cultivation of bacteria was conducted in a temporary 
laboratory established in a prefabricated house near the 
slope, as marked in Fig. 1b. The equipment used included 
the benchtop, autoclave, shaking tables, refrigerator, water 
purifier, oven, pH meter, electrical conductivity meter (EC 
meter), buckets, and aerating pumps, as shown in Fig. 3. 
The temperature in the laboratory was controlled to 25 
℃ using an air conditioner. The bacteria used was Sporo-
sarcina pasteurii (CGMCC 1.683). The culture medium 
consisted of 20 g/L yeast extract/soybean peptone, 10 g/L 
NH4Cl, 12 mg/L MnSO4·H2O, 24 mg/L NiCl2·6H2O, and 
1.5 g/L agar (for solid culture medium only). The pH of the 
culture medium was adjusted to 9.0 using 1 mol/L NaOH 
solutions.

Fig. 3 Test equipment in the 
temporary laboratory and the 
prepared bacterial suspension

 

Fig. 2 Particle size distribution curve
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were placed in the bucket, and the mouth of the bucket 
was sealed with a sealing film. Air was continuously 
pumped into the culture medium during cultivation. The 
bacteria were cultivated at room temperature, controlled 
by an air conditioner, for approximately 24 h. After har-
vesting, the bacteria were stored at 4 ℃ before use.

The urease activity of the bacteria was tested using the elec-
tric conductivity method before each treatment, which was 
approximately 1.5 mmol urea/min (Ma et al. 2021a). The 
cementation solutions contained 1 mol/L CaCl2 and 1 mol/L 
urea (Yu and Rong 2022; Yu et al. 2022).

Test design and characterization

To investigate the effect of MICP cementation levels on the 
anti-erosion behavior of the slope, the slope was divided into 
three test areas, as shown in Fig. 4a. Each test area measured 
5.6 m in length, 2 m in width, 4 m in height, with a slope 
angle of 45°. The areas were enclosed with PVC sheets, and 
an eave was installed at the bottom of each test area to col-
lect surface runoff and eroded soil into a 100 L bucket, as 
shown in Fig. 4b. From left to right, the areas were designed 
as untreated, highly cemented, and weakly cemented. The 
highly cemented area received 12 treatment cycles, while 
the weakly cemented area received 6 treatment cycles.

The stabilization of the slope surface was achieved 
using a spraying method, where specially designed equip-
ment was employed to spray both bacterial and cementation 
solutions, as detailed in Xiao et al. (2022b). During each 
treatment cycle, approximately 0.75 L/m2 of bacterial solu-
tion and 2.25 L/m2 cementation solution were sprayed on 
the slope surface aiming for a target stabilization depth of 

The specific steps for the cultivation of bacteria were as 
follows:

1) Activation of the bacterial strain: Autoclave the yeast 
extract culture medium at 121 ℃ for 30 min, and then 
cool the culture medium to room temperature under 
ultraviolet light on the benchtop. The purchased solid 
bacterial strain was inoculated into the sterile culture 
medium and incubated at 30 ℃ with shaking at 200 rpm 
for 24 h.

2) Culturing and storage: After harvesting, a portion of the 
bacteria was inoculated onto a solid culture medium, 
which was further incubated at 30 ℃ for approximately 
two days. Another portion of the bacteria was stored in 
glycerin at -20 ℃, which was used for preparing solid 
culture mediums for future cultivation.

3) Cultivation of precursor bacterial suspension. 100 mL 
of yeast extract culture medium was prepared in an 
Erlenmeyer flask. The bacteria from the solid culture 
medium were used for inoculation, following the same 
procedure as for the initial activation.

4) Non-sterilizing cultivation of large-volume bacterial 
suspension. Due to the challenges of sterilizing large 
volumes of culture medium in the field, sterile cultiva-
tion was not feasible. Instead, a non-sterilizing method 
was employed during the field tests. However, to 
minimize contamination, ultraviolet light was used to 
sterilize the laboratory environment for 30 min before 
preparing the culture medium. Approximately 10 L of 
soybean peptone culture medium was then prepared 
in a 20 L bucket (Fig. 3), and the previously harvested 
100 mL bacterial suspension was directly added. Porous 
stones connected to an aerating pump via soft tubes 

Fig. 4 Photographs showing (a) 
the envelopment of slopes, (b) 
the collection of surface runoff 
and eroded soils, (c) the covering 
of the slope surface during MICP 
treatment, and (d) 3D scanning of 
the slope surface
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surface BIM models was less than 2 mm. The laser scanning 
was performed on 04/09/2021 (after treatment), 23/09/2021, 
22/10/2021, 05/11/2021, and 07/01/2022.

Test results and discussion

Variations of surface strength and water content

Surface strength is a common indicator used to assess the 
effectiveness of MICP in mitigating slope erosion (Chung 
et al. 2021; Lu et al. 2021; Sun et al. 2021c; Xiao et al. 
2022b). The variations in surface strength with accumulated 
rainfall are presented in Fig. 5. Although surface strength 
varied with accumulated rainfall, the surface strength of the 
highly cemented slope consistently remained higher than 
that of the weakly cemented slope, which in turn was higher 
than that of the untreated slope. These variations in sur-
face strength were closely linked to climate conditions. For 
instance, surface strength decreased following rainfall but 
increased after prolonged exposure to sunlight. The corre-
sponding water content results are also displayed in Fig. 5, 
clearly showing that surface strength was inversely related 
to the water content of slope soils, which was also previ-
ously demonstrated through UCS tests by Ma et al. (2021b).

Evolution of eroded soils

Although surface runoff was collected during rainfall, the 
volume of water varied significantly due to factors, such as 
water infiltration into the soil and direct collection of rain-
fall. As a result, the collected water did not accurately reflect 
the erosion characteristics of the soil slopes. Therefore, 
only the mass of the eroded soils is presented in Fig. 6. As 

about 1 cm. The interval between successive treatments was 
about 6 h to ensure full reaction of the cementation solutions 
during daylight hours. Due to the difficulty of conducting 
treatments at night, the intervals between treatments were 
relatively long. After the MICP treatment, the slopes were 
covered with a layer of film to prevent evaporation during 
curing and to protect against rainfall-induced erosion before 
data collection, as shown in Fig. 4c.

To characterize the performance of MICP in mitigating 
slope erosion, the surface strength, the weight of eroded 
soils, and the geometries of the slope surface were mea-
sured. The surface strength was assessed using a miniature 
penetrometer after treatment and following heavy rain-
fall on the dates of 16/09/2021, 23/09/2021, 24/09/2021, 
01/10/2021, 22/10/2021, and 05/11/2021. Since surface 
strength can vary with soil moisture content, sensors were 
installed in the slope before MICP treatment to monitor soil 
water content.

After heavy rainfall on the aforementioned dates, the 
weight of the eroded soils was determined by collect-
ing surface runoff into 100 L buckets, directed by several 
PVC plates as shown in Fig. 4b. As there was sufficient 
time, the collected runoff was allowed to settle so that the 
eroded soils could precipitate. The clear top water was then 
removed, and the remaining sediments were oven-dried and 
weighed. However, the mass of the eroded soils provides 
only a general indication of overall erosion. To obtain more 
detailed information on erosion intensity across the slope 
surface, the slopes were scanned using a 3D laser scanner 
(FARO Focus S), which is a high-speed, pulse-type, high-
precision device. The laser scanner has an accuracy of less 
than 4 mm for distance measurement and less than 12″ for 
angle measurement. The scanned data were then trans-
formed into a BIM model, allowing for a quantitative analy-
sis of slope erosion. The error margin for the established 

Fig. 6 Variations of the mass of eroded soil with the accumulated 
rainfall

 

Fig. 5 Variations of surface strength with accumulated rainfall
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The erosion intensity was quantitatively analyzed by sub-
tracting the data collected from the original slope, as shown 
in Fig. 8a − 8d. In the figures, red areas indicate sediment 
accumulation, while blue areas represent slope surface ero-
sion. It is clear that both the extent and intensity of the blue 
areas increased with increasing precipitation, indicating that 
erosion intensified with more rainfall in all three test areas. 
Furthermore, the untreated slope exhibited the most severe 
erosion, followed by the weakly treated slope, with the 
least erosion observed on the heavily treated slope. These 
results are consistent with the data on accumulated eroded 
soils. It appears that the performance of biocementation in 
mitigating rainfall-induced erosion of fine-grained soil was 
not particularly effective. This finding aligns with previous 
research. For example, Sun et al. (2021c) applied enzyme-
induced carbonate precipitation (EICP) on slopes with soil 
particle sizes ranging between 5 and 50 μm. The accumu-
lated mass of eroded soils exceeded 750 g after 40 min of 
rainfall, and the model slope began to collapse during the 
rain.

Long-term visual observation

Although no further quantitative analysis was conducted 
after 07/01/2022, the slope was left undisturbed, and 
additional photos were taken on 01/03/2022, 08/04/2022, 
and 28/09/2022. To further analyze the influence of rain-
fall on the long-term anti-erosion properties, precipitation 
data during this period were also collected, as shown in 
Fig. 7a. First of all, the morphology of the slope did not 
change significantly during the quantitative analysis period 
from 01/09/2021 to 07/01/2022, as shown in Fig. 7b and 
c. However, after a small amount of rain from 07/01/2022 
to 01/03/2022, the untreated slope began to fail, as shown 
in Fig. 7d. The slope collapsed from the toe after approxi-
mately six months from the start of the test due to rainfall-
induced erosion. From 01/03/2022 to 08/04/2022, the slopes 
did not undergo substantial changes, as seen in Fig. 7e. How-
ever, during the period from 08/04/2022 to 28/09/2022, the 
weakly cemented slope also failed from the toe, as shown 
in Fig. 7f. Notably, the precipitation during this period was 
particularly heavy, with approximately 447.9 mm of rain-
fall recorded from 24/05/2022 to 15/06/2022, breaking the 
record since 1961 (https://fjrb.fjdaily.com). Fortunately, the 
heavily cemented slope remained intact even after a total of 
approximately 2500 mm of rainfall, with the slope surface 
geometry showing no significant changes compared to the 
photo taken on 07/01/2022. This phenomenon indicates that 
MICP is indeed an effective method for mitigating rainfall-
induced erosion and preventing the collapse of gravelly 
clayey slopes.

expected, the eroded soils from the MICP stabilized slopes 
were less than those from the untreated slope, with erosion 
decreasing as cementation levels increased. Specifically, 
the mass of the accumulated eroded soil from the weakly 
cemented slope ranged from approximately 60–88% of that 
from the untreated slope, while the mass from the heavily 
cemented slope ranged from approximately 38–73% of the 
untreated slope. It is evident that soil erosion was still rela-
tively significant even for the heavily treated slope. This 
could be attributed to the non-uniform distribution of pre-
cipitates, which led to uneven erosion on the slope surfaces, 
as illustrated by 3D scanning results presented later. In 
addition, it is noteworthy that erosion on the MICP-treated 
slopes was initially less severe compared to the untreated 
slopes. However, after 250 mm of rainfall, the erosion on 
the treated slopes appeared to be more pronounced than on 
the untreated slopes, as evidenced by the steeper slope of the 
erosion curves. The results indicated that the performance 
of the method at a long duration was not as effective as that 
observed in model tests when used to protect slopes com-
posed of fine soils in a short period (Cheng et al. 2021; Liu 
et al. 2021b; Lu et al. 2021; Sun et al. 2022). The reason can 
be attributed to variations in water content and temperature, 
which can lead to cracking in the crust formed on the slope 
surfaces (Ji et al. 2024).

Details of the surface erosion

Photos of the slope after MICP treatment and after four 
months of erosion are shown in Fig. 7b and c, respec-
tively. The natural rainfall-induced erosion tests began on 
04/09/2021, and continued until the end of January 2022. 
As seen in the photos, erosion was relatively severe in all 
three test areas. The gullies formed prior to erosion had dis-
appeared, leaving the slopes more flattened. In addition, the 
sediment collected in the bucket beneath the untreated slope 
was the greatest, while that beneath the heavily stabilized 
slope was the least. Beyond these observations, the photos 
provide limited information.

To obtain more detailed insights into the erosion of the 
slopes, the slope surfaces were scanned using a 3D scan-
ner. The first 3D scan was conducted on 04/09/2021 and 
served as the reference. The second scan was performed 
on 23/09/2021, following three heavy rains on 08/09/2021, 
09/09/2021, and 22/09/2021 before scanning. The third 
scan was conducted on 22/10/2021, after four intense rains 
on 08/10/2021, 12/10/2021, 14/10/2021, and 21/10/2021. 
The fourth scan was conducted on 05/11/2021, following 
five heavy rains on 23/10/2021, 30/10/2021, 02/11/2021, 
03/11/2021, and 07/11/2021. The fifth scan was performed 
on 07/01/2022, after two strong rains on 20/12/2021 and 
21/12/2021.
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al. 2021b; Saracho et al. 2021; Wang et al. 2020; Xiao et 
al. 2022b). This crust enhances the resistance of the slope 
to external loading, with its effectiveness depending on the 
thickness and uniformity of the crust. Second, the protective 
crust reduces water infiltration, as observed by Xiao et al. 
(2022a), which significantly delays slope collapse (Liu et al. 
2023; Wang et al. 2022). However, the long-term stability of 
the MICP treated surface was not that good. As reported by 
Ji et al. (2024), the surface will suffer wet-dry and tempera-
ture change cycles, the integrity of MICP treated slope sur-
face would be gradually degraded with time. In addition, the 
infiltrated water would also increase with the deterioration 

Similar observations have been made in model tests 
by Wang et al. (2020) and Phanvongsa et al. (2023), who 
reported the effectiveness of MICP in delaying the failure 
of sand embankment slopes and preventing the collapse of 
cut sandy slopes caused by rainfall-induced erosion, respec-
tively. However, in the current work, this is the first time 
that the efficacy of MICP for delaying the failure of in-situ 
clayey slopes due to natural rainfall has been observed. The 
ability of MICP to delay slope failure can be attributed to 
two factors. First, a crust layer was formed on the slope 
surface after MICP treatment, including a CaCO3 crust 
and cemented surficial soils (Buikema et al. 2018; Liu et 

Fig. 7 (a) The variations of the 
cumulative precipitation with 
time, and photos taken at (b) 
04/09/2021, (c) 07/01/2022, (d) 
01/03/2022, (e) 08/04/2022, and 
(f) 28/09/2022
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cause long-term environmental damage. The ecosystem can 
recover naturally after slope stabilization, demonstrating 
that the MICP method is both effective and eco-friendly for 
soil stabilization.

Although vegetation growth may disrupt the protection 
crust created by MICP, the grass itself can offer additional 
protection. As reviewed by Wang et al. (2021), vegetation 
can shield soil from raindrops and block runoff, thereby 
protecting soil particles from raindrop-induced splashes and 
runoff-induced transport. In addition, plant roots can consol-
idate the soil and reduce water infiltration, thereby improv-
ing slope stability and preventing soil erosion (Römkens 
et al. 2002). The results of the current work also suggest 
that combining temporary MICP treatment with long-term 
plant protection can be a more effective strategy for slope 
protection.

Implications

Effectiveness of biotreatment on slopes with 
varying soil types

The effectiveness of MICP in mitigating rainfall-induced 
erosion on slopes composed of different soil types and gra-
dations has been demonstrated through model tests. First of 
all, MICP has proven to be particularly suitable for stabi-
lizing sandy soils, making it highly effective in mitigating 

of surficial crust. As a result, the erosion of soil surface 
increased and the slope collapsed after a certain period, as 
shown in Figs. 6 and 7.

In addition to long-term performance in resisting rain-
fall-induced erosion, ecological compatibility is another 
critical consideration when applying MICP for slope surface 
protection (Xiao et al. 2023). However, limited field tests 
have been conducted to assess ecological compatibility. 
For example, Zhan et al. (2016) examined the growth (bud 
rate and appearance) of soybeans in MICP-treated soils 
and compared it with that in water-treated soils.  Sun et al. 
(2021a) observed the growth of seeds on MICP-treated soils 
and untreated soils in the Tengri Desert area. Both stud-
ies reported better seed growth after artificial seeding on 
MICP-treated soils compared to untreated soils. This could 
be attributed to the residual urea, which serves as a fertil-
izer, and the enhanced water retention properties of MICP-
treated soils (Chen et al. 2021; Liu et al. 2021a; Saffari et al. 
2019). However, artificially seeding after MICP treatment 
is not always feasible, as it can compromise the integrity 
of the surface crust, leading to a reduction in erosion resis-
tance. Therefore, the natural growth of wild plants becomes 
a crucial factor in evaluating the ecological compatibility of 
MICP. Meng et al. (2021) observed the growth of wild sand 
vegetation on the treated sites without any artificial seed-
ing and irrigation. In this work, it is noteworthy that grass 
naturally grew on the heavily cemented slope as well. This 
is an encouraging result, as it suggests that MICP does not 

Fig. 8 (a) - (d) The erosion 
depth on the slope surfaces after 
strong rain taken on 09/23/2021, 
22/10/2021, 05/11/2021, and 
07/01/2022, respectively
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of cementation. In fact, the slope treated with 12 cycles of 
MICP showed more serious erosion than the slope treated 
with 6 cycles, based on visual observations. Gullies formed 
on the slope surface, likely due to enhanced surface runoff 
and non-uniform cementation (Xiao et al. 2022a). Follow-
ing the work by Xiao et al. (2022b), we further investigated 
the erosion characteristics caused by natural rainfall at 
the same location. It appears that the erosion resistance of 
MICP-treated slopes under natural rainfall was better than 
that under artificial rainfall. In Xiao et al. (2022b), with a 
total accumulated precipitation of about 525 mm, all slopes 
showed significant erosion, whereas even the untreated 
slope in our study did not exhibit obvious erosion after simi-
lar accumulated precipitation. The difference is likely due 
to the much stronger artificial rainfall intensity used in the 
earlier study, which generated higher shear forces that are 
rarely encountered under natural conditions (Cheng et al. 
2021). Therefore, we can conclude that the erosion charac-
teristics observed under artificial rainfall conditions may not 
fully represent those under real-world conditions. However, 
similar to the findings of Xiao et al. (2022b), erosion on the 
slope surface was not uniform, as evidenced by the 3D scan-
ning results for all three slopes (Fig. 8), with uneroded and 
eroded areas randomly distributed across the slope surfaces.

Durability of biotreatment on field slopes

As erosion control in the field involves a long period, the 
durability of MICP is another key concern. However, there 
have been only a few studies focused on the long-term dura-
bility of MICP for surface protection. For example, Li et al. 
(2019) conducted a long-term field test in the Ulan Buh Des-
ert to manage wind-induced erosion of sand particles using 
MICP. They observed that after a whole freeze-thaw cycle, 
i.e., 210 days of exposure to the natural environment, part of 
the surficial crust was broken. Later, Meng et al. (2021) also 
conducted field tests in the Ulan Buh Desert to examine the 
effectiveness of MICP in mitigating wind erosion. In these 
tests, the performance of the MICP treatment was assessed 
by measuring erosion depth and bearing capacity. They 
found that the bearing capacity of the treated sand decreased 
and the erosion depth increased over time, indicating that 
the cementation deteriorated with time. More recently, Ji 
et al. (2024) conducted field tests to evaluate the long-term 
performance of MICP in drought mitigation. They found 
that calcium carbonate content decreased significantly after 
16 months of exposure due to the deterioration of the sur-
face crust caused by wet-dry and freeze-thaw cycles in natu-
ral environments. Similarly, the current work showed that 
the long-term durability of MICP-treated slope surfaces was 
not particularly strong, as the erosion rate increased and the 

erosion on sandy slopes (Liu et al. 2022; Shih et al. 2019; 
Wang et al. 2020). However, the performance of MICP in 
erosion control is significantly affected by the gradation 
and composition of the sandy soils. For example, Xiao et 
al. (2022a) found that MICP was effective in mitigating 
erosion on well-graded sand slopes, while negative results 
were observed on poorly graded coarse sand slopes due to 
enhanced surface runoff. Chung et al. (2021) showed that 
MICP could be applied to mitigate rainfall-induced ero-
sion on sandy and sandy loam slopes, while the presence 
of organic matter, even in limited amounts, weakened its 
performance. While MICP is generally less effective for 
stabilizing clay and silty soils due to the challenges in the 
transport of bacteria cells (Behzadipour et al. 2020; Hataf 
and Jamali 2018; Islam Md et al. 2020; Soon et al. 2014), 
it can still mitigate rainfall-induced erosion on these types 
of slopes. Successful applications include collapsing gully 
slopes (Lu et al. 2021), loess slopes (Cheng et al. 2021; Sun 
et al. 2022), granite residual soil slopes (Wang et al. 2023), 
and clayey slopes with varying sand contents (Cheng et al. 
2021). However, as the particle size of slope soils decreased, 
the performance of MICP reduced significantly. For exam-
ple, compared to the results of Sun et al. (2021c) as stated 
previously, when MICP was applied to granite residual soil 
with a mean particle size of 96 μm, the efficiency in miti-
gating rainfall-induced erosion was markedly better, with 
the erosion rate decreasing by more than 90% (Wang et al. 
2023).

Uniformity of biotreatment on field slopes

However, it is important to note that the studies mentioned 
earlier were primarily conducted using model tests. In the 
field, erosion mitigation typically involves large areas. In 
addition, the artificial spraying method is commonly used for 
treating slope surfaces (Liu et al. 2021b; Meng et al. 2021; 
Sun et al. 2021a; Xiao et al. 2022b). The arbitrary nature 
of artificial spraying makes the uniformity of the treatment 
a crucial concern. To date, only a few in-situ works have 
been conducted to assess the performance of biocementa-
tion in protecting slope soils from rainfall-induced erosion. 
For example, Sun et al. (2021c) evaluated the effectiveness 
of EICP in protecting dust soil slopes from rainfall-induced 
erosion in a quarry. Although positive results were obtained, 
the information from these in-situ tests was limited. A more 
detailed field-scale study was later conducted by Xiao et al. 
(2022b), which involved the design of a bio-spray system, 
an artificial rainfall system, and an effluent slurry collection 
system. These systems allowed for a quantitative investiga-
tion of erosion caused by artificial rainfall on clayey slopes. 
Although MICP treatment reduced erosion intensity, the 
erosion of the slope was not consistently related to the levels 
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