
Vol.:(0123456789)

Structural and Multidisciplinary Optimization (2024) 67:171
https://doi.org/10.1007/s00158-024-03891-y

EDUCATIONAL PAPER

A 262‑line Matlab code for the level set topology optimization based
on the estimated gradient field in the body‑fitted mesh

Zicheng Zhuang1,3 · Fengming Xu1 · Junhong Ye1 · Wei Tong1 · Zeyao Chen2 · Yiwei Weng1 

Received: 17 March 2024 / Revised: 8 September 2024 / Accepted: 11 September 2024
© The Author(s) 2024

Abstract
Topology optimization is an influential technique engineers and designers employ to achieve desirable material distribution
within a designated domain. This educational article introduces a concise and efficient Matlab code, comprising only 262
lines, developed explicitly for the Level Set topology optimization based on the estimated Gradient Field (GFLS) in the
body-fitted mesh. Unlike conventional level set methods that rely on the upwind scheme employed in the structured meshes,
the proposed algorithm adopts the per-cell linear estimation of the discrete gradient vectors in the body-fitted mesh frame-
work to obtain the velocity field and update the level set function. The Matlab code, named GFLS262, consists of a 62-line
main program, 41-line finite element analysis function, and 48-line sub-functions, enabling the implementation of the GFLS
method in 2D scenarios. Additionally, a 111-line function describes an improved mesh generator incorporated in the code to
facilitate the generation of body-fitted meshes. The superiority of this innovative approach over the previous optimization
methods with invariant meshes is demonstrated through various benchmark examples. For ease of access and further learn-
ing, the educational Matlab code is available on the website and can also be found in the Appendix section of this article.

Keywords  Topology optimization · Level set method · Gradient field estimation · Body-fitted mesh · Educational Matlab
code

1  Introduction

Topology optimization, a mathematical method for achiev-
ing optimized material distribution within design domains,
has gained increasing popularity in the engineering and
architecture communities (Dorn et al. 1964; Glowinski
1984; Goodman et al. 1986; Kikuchi et al. 1986; Lurie et al.
1982; Svanberg 1987). It aims to achieve better structural
performance while satisfying various design constraints by
redistributing prescribed material. Over the years, several
methods have been developed to tackle this challenging

problem, including the well-known homogenization method
proposed by Bendsoe and Kikuchi (1988). The homog-
enization method leverages the concept of homogenization
theory (Bendsoe 1989; Suzuki and Kikuchi 1991), which
allows for the representation of heterogeneous materials as
an equivalent homogeneous material with effective proper-
ties. These methods seek to find the desirable distribution
of material phases within a design domain discretized by
finite elements, considering the macroscopic behavior and
performance of the structure. However, the homogenization
optimization method can be computationally demanding due
to the requirement of solving multiple microscale problems
in each iteration. The accuracy of the method is also depend-
ent on the fidelity of the homogenization model used and the
appropriate representation of material behavior. Nowadays,
three popular methods in topology optimization that have
shown remarkable efficacy are the Solid Isotropic Material
with Penalization (SIMP) method, the Bi-directional Evo-
lutionary Structural Optimization (BESO) method, and the
level set method.

The SIMP method (Bendsoe and Sigmund 2004; Sigmund
2001; Sigmund and Maute 2013), widely recognized for its

Responsible editor: Gregoire Allaire.

 *	 Yiwei Weng
	 yiwei.weng@polyu.edu.hk

1	 Department of Building and Real Estate, The Hong Kong
Polytechnic University, Hong Kong, China

2	 School of Electro‑Mechanical Engineering, Guangdong
University of Technology, Guangzhou 510006, China

3	 Centre for Innovative Structures and Materials, School
of Engineering, RMIT University, Melbourne 3001, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-024-03891-y&domain=pdf
http://orcid.org/0000-0001-5637-1415

	 Z. Zhuang et al. 171   Page 2 of 23

simplicity and effectiveness, penalizes intermediate densities
of material to encourage either full inclusion or complete
exclusion of material in each element of the design domain.
By assigning a high penalty to intermediate densities, the
method drives the optimization process toward achieving
either fully solid or void regions. The SIMP method has
gained widespread popularity due to its ability to generate
structurally efficient designs efficiently. Several versions of
Matlab programs employing the SIMP method in the fixed
structured mesh have been published over the past decades
(Andreassen et al. 2011; Ferrari and Sigmund 2020; Liu and
Tovar 2014; Sigmund 2001). The SIMP method provides a
simple and intuitive framework, making it suitable for quick
design iterations and preliminary studies.

The BESO method (Xie and Steven 1992; 1993; 1996),
drawing inspiration from evolutionary processes, utilizes
bi-directional optimization wherein both the inclusion
and exclusion of material are considered simultaneously.
Through an iterative procedure, the BESO method progres-
sively removes the least significant material elements while
introducing new elements to enhance the structural perfor-
mance (Huang et al. 2006; Huang and Xie 2009; 2010). It
has been implemented using Python code (Zuo and Xie
2015) and Matlab codes (Huang and Xie 2010; Zhuang
et al. 2022a, b). The BESO method, with its evolutionary
nature, excels in generating innovative designs and exploring
unconventional solutions (He et al. 2023; Xiong et al. 2023).

The level set method (Osher and Sethian 1988; Sethian
1999; Sethian and Wiegmann 2000) represents the evolv-
ing geometry implicitly using a higher-dimensional level set
function, widely applied in numerical analysis and image
processing. In this century, the level set method has been
employed in topology optimization (Allaire et al. 2002,
2004; Wang et al. 2003), where the boundaries between
solid and void regions are represented by a level set func-
tion. This formulation provides a versatile framework for
handling complex shape variations, including topological
changes (Allaire et al. 2011; Yamada et al. 2010). The level
set method enables the evolution and optimization of the
level set function to obtain the desired material distribution
(Li et al. 2021; Wang et al. 2022; Zhuang et al. 2021). The
published Matlab codes (Challis 2010; Otomori et al. 2014;
Wei et al. 2018) demonstrate level set optimization meth-
ods by solving the Hamilton–Jacobi, radial-basis, and reac-
tion–diffusion equations, respectively. The level set method
has gained significant attention in the field of structural opti-
mization due to its ability to capture and represent complex
geometries implicitly.

The level set optimization method offers a highly appeal-
ing advantage with its smooth and distinct material bounda-
ries depicted by the zero-level contour. However, conven-
tional practices commonly interpolate the level set function
into a structured rectangular/hexahedral mesh, resulting

in zig-zag boundaries that compromise accuracy. Thus,
researchers leveraged the body-fitted mesh to accurately
represent the material boundaries provided by the level set
optimization method (Allaire et al. 2011; 2013; 2014) and
the Deformable Simplicial Complex (DSC) method (Chris-
tiansen et al. 2014). Body-fitted meshing involves creating
a computational grid that conforms to the geometry of the
physical system being analyzed in the last decade (Dapogny
and Frey 2012; Dapogny et al. 2014; Talischi et al. 2012).
This technique is particularly useful for solving problems
where the geometry is complex or changing, and the solu-
tion requires a high degree of accuracy around the bounda-
ries. Body-fitted meshes typically consist of structured or
unstructured grids overlaid onto the physical domain (Baiges
et al. 2019; Salazar de Troya and Tortorelli 2018; Zhang
et al. 2020). The grid points are distributed across the physi-
cal domain such that they align with the boundaries, ensur-
ing an accurate representation of features such as flow sepa-
ration, boundary layer development, or material interfaces.
This work generates the body-fitted mesh according to the
smooth boundaries using the Delaunay triangulation and
force–displacement equilibrium (Persson and Strang 2004;
Zhuang et al. 2021; Zhuang et al. 2022a, b). The node posi-
tions are iteratively changed to produce the body-fitted mesh
with high quality, which can be employed in level set opti-
mization methods to solve complex problems in structural
mechanics and materials science. The body-fitted meshing
ensures an accurate representation of physical boundaries,
while the level set topology optimization provides a flex-
ible framework for exploring complex material layouts. This
combined approach can lead to the creation of innovative
and efficient structures and materials, helping to solve real-
world engineering problems.

The utilization of body-fitted meshing is essential within
the finite element analysis and level set optimization pro-
cesses rather than merely serving as a post-processing tool
for generating optimized results. This study aims to integrate
body-fitted meshing with finite element analysis, sensitiv-
ity analysis, and the design variable updating procedures
in level set topology optimization. However, it is crucial
to acknowledge the specific limitations associated with the
commonly employed upwind scheme in level set topology
optimization. Primarily, the upwind scheme is limited to
uniform sampling and tends to be sensitive to mesh irregu-
larities (Museth et al. 2005). The upwind scheme and level
set optimization presented in previously published Matlab
code are exclusively compatible with structured rectangular
meshes (Challis 2010; Wei et al. 2018). Generally, imple-
menting the conventional upwind scheme can lead to inac-
curacies and impact the smoothness of the level set function
when interpolating from a structured mesh to a body-fitted
mesh (van Dijk et al. 2010). The level set function may
develop steep gradients in the body-fitted mesh, leading to

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 3 of 23  171

problems in numerical approximations using the upwind
schemes (Wang et al. 2007). Meanwhile, this study adopts
the bi-section method rather than the augmented method to
compute the Lagrangian multiplier, ensuring quicker con-
vergence and volume accuracy. In this context, the iterative
calculation process within the upwind scheme may signifi-
cantly escalate the computational costs during the optimiza-
tion phase (Zhuang et al. 2024).

Thus, this paper presents an educational Matlab code
that performs level set topology optimization utilizing the
estimated gradient field (GFLS) within the framework of
a body-fitted mesh. Building upon the 172-line code Tri-
TOP172 (Zhuang et al. 2022a, b), the code GFLS262 uti-
lizes the gradient field-based level set method rather than the
BESO sensitivity ranking scheme to update design variables,
maximizing the benefits of smooth boundaries. The GFLS
method employs per-cell linear estimation of discrete gra-
dient vectors, instead of the traditional upwind method, to
update the level set function and design variable. It is well-
known that time-dependent partial differential equations
(PDEs) govern the evolution of the level set function and
material densities. Through discretizing the design domain
into a finite element mesh, the time-dependent issue can be
transformed into a series of steady-state problems that are
solvable in iterative procedures. Then, this approach allows
for the step-by-step computation of the solution over a speci-
fied time interval based on the gradient field of the level set
function (Azari Nejat et al. 2022; Jiang and Zhao 2020). The
proposed method offers an effective means to solve time-
dependent PDEs in topology optimization, which facilitates
the exploration of intricate material layouts and topological
changes. The level set function is updated at prescribed time
intervals, enabling the material distribution to evolve toward
an optimized configuration that aligns with the design objec-
tives. This iterative process converges toward a material dis-
tribution that minimizes or maximizes a specific objective
function while adhering to designated design constraints.
The primary advantages of this method encompass superior
mesh adaptivity, reduced computational cost, and enhanced
compatibility with the bi-section Lagrangian method.

Researchers and practitioners face the hurdle of writ-
ing efficient and robust computer codes. Developing such
codes demands expertise in both numerical techniques and
programming skills. To enhance usability, the proposed
GFLS262 code is equipped with user-friendly interfaces,
allowing users to customize input parameters, including
design domain dimensions, boundary conditions, and vol-
ume constraints. The code consists of 262 lines, making it
easily understandable and modifiable for users. The provided
Matlab program includes the main optimization loop (Lines
2–62), body-fitted mesh generator (Lines 64–173), and finite
element analysis (Lines 174–214). In the main loop, the
program provides visualization capabilities to display the

progressive evolution of the optimized designs. The code
discretizes the governing equations and calculates the sensi-
tivity information necessary for optimization iterations. The
derivations of curvature and gradient field are displayed in
Lines 215–262, together with the level set reinitiating sub-
function. The code facilitates the generation of optimized
structures by minimizing or maximizing the objective func-
tion subject to various constraints. This educational article
will serve as a valuable tool for researchers and engineers
working on topology optimization, providing fast and effi-
cient implementation of body-fitted level set methods based
on the estimated gradient field.

The following sections provide an outline of the con-
tents of this paper. In Sect. 2, we introduce the optimization
problem and the algorithms of the proposed GFLS method,
which includes a definition of the level set function, the
body-fitted mesh generator, and the derivation of the gradi-
ent field. The provided Matlab script is further explained and
implemented to solve the compliance minimization prob-
lem in Sect. 3. The presented code is thoroughly validated
against benchmark problems, demonstrating its reliability
and accuracy. Finally, in Sect. 4, we summarize the contribu-
tions of this work. An educational Matlab program named
GFLS262 is provided in the Appendix section of this paper
for practical implementation. (https://​github.​com/​zhuan​
ginho​ngkong/​GFLS2​62)

2 � Methodology

2.1 � GFLS topology optimization

Topology optimization is a design process that optimizes
the distribution of material within a given design space
Ω ⊂ ℝ2 while simultaneously minimizing an objective
function and considering specific constraints, such as
volume and stress constraints. The optimization problem
often involves solid and void materials within the design
domain Ω = Ωs ∪ Ωv under the linear elasticity setting.
A typical configuration for the Messerschmitt-Bölkow-
Blohm (MBB) beam optimization problem is depicted in
Fig. 1, where the material boundary Γ consists of three
components: Γ = ΓN ∪ ΓB ∪ ΓD. The Dirichlet boundary
condition is imposed on ΓD, while the Neumann boundary
condition is applied on ΓN ∪ ΓB. The Dirichlet boundary
portion marked as ΓD remains fixed with no displacement.
The concentrated load, represented by F (50 N), is applied
on the inhomogeneous Neumann boundary labeled as ΓN.
The homogeneous Neumann boundary ΓB bears no load
and is not subject to displacement constraints. Assum-
ing zero body force is applied within the design domain,
the surface traction g represents the external loads on
the boundary ΓN. In this article, the objective function

https://github.com/zhuanginhongkong/GFLS262
https://github.com/zhuanginhongkong/GFLS262

	 Z. Zhuang et al. 171   Page 4 of 23

represents the strain energy, where J characterizes the
functional aspect of topology optimization for compliance
minimization in linear elasticity.

The displacement field u represents the unique solution
of the linearized elasticity system. The strain tensor ε(u) is
defined as (∇u + (∇u)T)/2, while D pertains to the elasticity
tensor governed by Hooke’s law. The common choice for
the optimization constraint is the maximum volume frac-
tion Vmax of the solid material.

The level set method is a powerful approach for solv-
ing shape and topology optimization problems, which can
achieve topological changes such as merging, splitting, and
erosion of material regions. This method represents the
interface between different material phases using a level
set function, which can be evolved using time-dependent
PDEs. This work introduces a level set model as an iso-
surface of a scalar function φ: ℝ2 → ℝ, which directly
controls the exterior and interior boundary shapes of the
structure. The design variable of the GFLS optimization is
the boundary Γ determined by the level set function. The
level set function value φ can be expressed as:

The variable x represents a space location in the design
domain. The proposed method optimizes the design pat-
tern by iteratively updating the level set function according

(1)

Min ∶ J(u) = �Ω

D�(u) ⋅ �(u)dΩ = �ΓN

g ⋅ udΓN

s.t. ∶

⎧⎪⎨⎪⎩

(D�(u))n�ΓN
= g

u�ΓD
= 0

∫
Ω
dΩ − Vmax ≤ 0

(2)

⎧⎪⎨⎪⎩

𝜑(x) < 0∀ x ∈ Ωs�Γ

𝜑(x) = 0∀ x ∈ Γ

𝜑(x) > 0∀ x ∈ Ωv�Γ

to the shape derivative. At the beginning of each iteration,
the level set function φ is reinitialized as a signed distance
function to the material boundaries. Using the pre-estab-
lished level set function φ, we can depict the optimization
problem in the following manner using the Heaviside func-
tion H(φ) and Dirac function δ(φ).

This equation holds for any displacement field w in the
space of kinematically admissible fields W. In previous
level set works (Wang et al. 2003, 2007), the smoothed
Dirac delta function and the Heaviside function are typi-
cally used to avoid regenerating the element mesh when
the boundary is modified or updated during the iterative
process. Conversely, the Dirac delta function with a near-
theoretical profile has the potential to be integrated into
the proposed GFLS method, as the regenerated body-fitted
mesh can continuously describe the moving boundaries in
the design domain. However, the final objective function
values and optimized structures are similar when using
the smoothed and near theoretical delta function, since the
shape derivative only considers solid elements (φ(x) < 0).
Elements in the void region are excluded from the finite
element analysis and sensitivity computation in this work.

The shape derivative of the compliance objective can be
derived as the sensitivity according to previous level set works
(Allaire et al. 2002, 2004; Wang et al. 2003). For a reference
domain Ω0, we consider domains of the type Ω = Ω0 + ψ. The
continuous function ψ belongs to the Hilbert functional space
Ψ of order one, which is restricted on the Dirichlet boundary
and inhomogeneous Neumann boundary.

(3)

Min ∶ J(�) = �ΓN

g ⋅ u�(�)�∇��dΓN

s.t. ∶

⎧⎪⎨⎪⎩

∫
Ω
D�(u) ⋅ �(w)H(�)dΩ = ∫

ΓN
(g ⋅ w)�(�)�∇��dΓN ∀w ∈ �

u�ΓD
= 0

∫
Ω
dΩ − Vmax ≤ 0

Fig. 1   A half MBB beam
optimization problem with the
design domain Ω and bound-
ary Γ 

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 5 of 23  171

In this case, the shape derivative of the objective function
J(Ω) at Ω0 can be defined as the Fréchet derivative in Ψ at 0.

where n0 represents the normal vector to variable boundary
ΓB. The curvature κ is part of the expression of the obtained
Fréchet derivative, which can be computed according to the
positions of boundary nodes in the body-fitted mesh.

The dynamic level set model specifies a surface S in an
implicit form as an iso-surface that takes into account the loca-
tion x and time t.

Subsequently, the Hamilton–Jacobi equation can be derived
by differentiating each side of the equation with respect to the
time variable t while applying the chain rule.

The shape derivative of the objective function delivers
a vector field vc throughout the design domain. This time-
dependent PDE can be expressed using the magnitude of the
velocity field vc and gradient field of the level set function
∇φ(x,t) as follows:

The discrete solution of the Hamilton–Jacobi equation is
employed in the level set optimization to approximate the
system variables of a continuous level set function. A robust
computational method to obtain the discrete solution was
developed based on the notion of weak solutions and entropy
limits (Osher and Sethian 1988). To solve the Hamilton–Jacobi
equation, the equation can be replaced with an approximation
based on the forward difference derivative by introducing a
virtual time interval Δt.

The time step Δt for the finite difference scheme must
satisfy the Courant–Friedrichs–Lewy (CFL) stability
condition.

where α is a user-defined parameter to control the length
of the time step. A larger time step accelerates topologi-
cal changes in each iteration, thereby achieving faster con-
vergence in optimization. However, the time step must not

(4)Ψ =
{
�
|||� ∈ W1,∞(ℝ2,ℝ2)with� = 0 onΓN&ΓD

}

(5)

⟨
�J

�Ω
(Ω0),�

⟩
= ∫ΓB

(2

[
�(g ⋅ u)

�n0
+ �(g ⋅ u)

]
− D�(u) ⋅ �(u))� ⋅ n0dΓ

(6)S(t) = {x(t) ∶ �(x(t), t) = 0}

(7)
��(x, t)

�t
+ ∇�(x, t)

dx

dt
= 0

(8)
��(x, t)

�t
+ vc|∇�(x, t)| = 0

(9)�(x, t + Δt) − �(x, t) ≈ −vc|∇�(x, t)|Δt

(10)Δt = �∕max ||vc||

exceed a specific upper limit due to the CFL condition,
which is essential for ensuring convergence when solving
PDEs.

The time-dependent PDE can be transformed into a
series of steady-state problems solved in iterative proce-
dures. The solution of the updated level set function φn+1
can be calculated in each iteration as follows.

The magnitude of the velocity vc for the compliance
minimization problem can be obtained using the shape
derivative (Allaire et al. 2002; Simon 1980; Sokolowski
and Zolesio 1992). In 2D scenarios, the design domain
is discretized using a body-fitted triangular mesh. As a
result, the value vc(e)of the element e in the finite element
framework can be expressed as:

The solid material stiffness matrix kse can be determined
by the vertices’ coordinates of the body-fitted element e.
The ρe represents the relative density of the mesh e, where
it is either one or zero, eliminating the greyscale problem,
while the volume of the mesh e is denoted as Ve. The cur-
vature term is incorporated into the sensitivity analysis
to enhance the stability of advection, whose derivation in
the body-fitted mesh is included in Sect. 3.4. Meanwhile,
the element displacement vector ue and stiffness matrix ke
are determined during the finite element analysis proce-
dure. The element sensitivity number is interpolated to the
nodes to obtain vc values using a weighted average method.

The Hamilton–Jacobi equation shown in Eq. (11) can
be solved by a standard upwind scheme on a Cartesian
grid (Allaire et al. 2004; Sethian 1999; Wang et al. 2003).
Assuming fields φn

x+1, φn
x−1, φn

y+1, φn
y−1 represent the level

set functions in the rectangular design domain with small
offsets in x- and y- directions. The finite difference in various
directions Tn

+x, Tn
−x, Tn

+y, Tn
−y can be calculated as:

(11)�n+1(x, t) = �n(x, t) − vc
||∇�n(x, t)

||Δt

(12)

vc(e) = 2

�
�(g ⋅ u)

�n0
+ �(g ⋅ u)

�
− D�(u) ⋅ �(u) = uT

e
keue + 2�eu

T
e
keue

s.t. ∶

⎧⎪⎨⎪⎩

ke = �ekse
�e = 0 or 1

N∑
e=1

�eVe − Vmax ≤ 0

(13)T+x
n

=
�x+1
n

− �n

Δx

(14)T−x
n

=
�n − �x−1

n

Δx

	 Z. Zhuang et al. 171   Page 6 of 23

The effectiveness of the upwind scheme in the level set
method has been demonstrated in the formwork of a fixed
structured mesh. The level set function can be updated by:

However, this well-established method proves to be less
accurate and efficient when applied to an unstructured mesh.
Unlike the structured mesh, the individual nodes of a body-
fitted triangular mesh have ambiguous neighboring nodes,
and therefore, the previous upwind method becomes invalid
to obtain fields φn

x+1, φn
x−1, φn

y+1, φn
y−1, which are neces-

sary to update the level set function. In this work, the GFLS
method utilizes per-cell linear estimation of discrete gradient
vectors, instead of the traditional upwind method (Osher and
Sethian 1988), as a finite difference scheme to efficiently
update the level set function in the body-fitted mesh. Let us
consider a triangular element e in the body-fitted mesh with
three vertices va, vb, vc, and three edges (va − vc), (vc − vb),
(vb − va). The gradient vector of the triangular element
∇φe for the scalar field of the level set function φ can be
expressed by:

where the φa, φb, and φc are the level set function values
on the vertices va, vb, and vc. The (vc − vb)┴ means that the
edge (vc − vb) is rotated by 90 degrees. Thus, the per-vertex
gradient estimation ∇φp can be obtained using the weighted
average approach as follows.

where N(p) denotes all the triangles that include the node p
as a vertex, and Vsum is the area sum of these elements. Thus,
the level set function value at each node p in the body-fitted
mesh can be expressed as:

(15)T+y
n

=
�
y+1
n − �n

Δy

(16)T−y
n

=
�n − �

y−1
n

Δy

(17)
�n+1(x, t) = �n(x, t) − [max(vc, 0)∇

+ +min(vc, 0)∇
−]Δt

(18)
∇+ = max(T−x

n
, 0)2 +min(T+x

n
, 0)2 +max(T−y

n
, 0)2 +min(T+y

n
, 0)2

(19)
∇− = max(T+x

n
, 0)2 +min(T−x

n
, 0)2 +max(T+y

n
, 0)2 +min(T−y

n
, 0)2

(20)∇𝜑e =
(𝜑a − 𝜑c)(�c − �b)

⊥

2Ve

+
(𝜑b − 𝜑c)(�a − �c)

⊥

2Ve

(21)∇�p =
1

Vsum

N(p)∑
e=1

∇�eVe

(22)�p(new) = �p − vc
|||∇�p

|||Δt

As illustrated in Fig. 2, the level set function and
optimized structure can be iteratively updated by solv-
ing Eq. (11) until it meets the convergence criteria. This
study adopts the bi-section Lagrangian method to ensure
precise control of the volume fraction ratio and accelerate
convergence.

2.2 � Body‑fitted meshing

This section presents the body-fitted meshing based on the
Delaunay triangulation, improving the mesh generation
scheme in the existing studies (Persson and Strang 2004).
Firstly, a Matlab function ContourPoints1 is designed to
find the points on the zero iso-surface of the level set func-
tion. In this work, the structure array data type in Matlab is
employed to save the required information by groups using
data containers called fields. Figure 3 consists of four parts
illustrating different stages in the process of identifying and
adjusting boundary nodes. Firstly, the zero-level contours
of the level set function are plotted in Fig. 3a. Then, Fig. 3b
displays the boundary nodes initially identified by MAT-
LAB along the zero-level contours determined in Fig. 3a.
The nodes on the zero-level contour of the level set function
are grouped based on their belongings to an open/closed

Fig. 2   Overview of the GFLS topology optimization processes

1  Names in type-writer font refer to Matlab variables, commands,
and functions.

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 7 of 23  171

curve using the contour operator, where the repeated nodes
in the closed groups must be removed. For example, Con-
tour 1 shown in Fig. 3a is an open curve, while Contours
2, 3, 4, 5, and 6 are closed curves. However, these bound-
ary nodes need to be adjusted from the initial positions to
improve accuracy in describing the boundary geometries. As
illustrated in Fig. 3c, the distances between the neighboring
points are adjusted to ensure the effective control of the node
distribution. Figure 3d provides a closer view of the adjusted
boundary nodes in three groups, labeled as Groups 1, 2, and
6. The magnification highlights the detailed positioning and
adjustments made to the boundary nodes.

The resulting information is stored as structure array
variables, which include node numbers, coordinates, open/
closed group designations, and curvature values. The
adjusted boundary nodes and loaded nodes are interspersed
among unfixed points that are uniformly distributed across
the structure. Figure 4a illustrates the body-fitted meshes
generated by these nodes using Delaunay triangulation.
Subsequently, the positions of these nodes undergo iterative
adjustments to accurately delineate the boundaries by solv-
ing for force–displacement equilibrium. The spareness of the

body-fitted mesh can be manually controlled by specifying a
target edge length (L0) for each element. This work aims to
create a denser mesh around the boundaries to improve the
analysis accuracy. A coarser mesh is generated in the low-
sensitivity area to decrease the computational cost. Thus,
the L0 value is defined as proportional to the distance from
the material boundaries, as illustrated in Fig. 4b. The edge
length (L) of the body-fitted mesh generated by Delaunay tri-
angulation can be calculated for each unstructured element.
The difference between current L and desired bar length
L0 causes the repulsive forces within the bars according to
Hooke’s law. Suppose ps and pe represent the coordinates
of the starting and ending points of bar b. In that case, the
force vector Fb can be obtained using a scaling factor (fs) as
follows:

The fixed scaling factor fs ensures that repulsive forces
exist in most bars (Fb > 0) (Persson and Strang 2004). Now,
we consider a node connected to several bars (total number:

(23)�b = (max(fsL0

√
L2∕L2

0
− L, 0)∕L)(�e − �s)

Fig. 3   a The zero-level contours
of the level set function; b the
boundary nodes identified by
Matlab; c the adjusted boundary
nodes; d the magnified section
of the adjusted nodes in Groups
1, 2, and 6

	 Z. Zhuang et al. 171   Page 8 of 23

bm) in the body-fitted mesh framework. The force vector
on the node is evaluated by the vector summation of all the
connected bars. The node position p changes according to a
positive parameter β after applying the repulsive forces. The
parameter β is defined as 0.2 to ensure numerical stability.

Subsequently, the mesh generator iteratively performs
Delaunay triangulation and adjusts node positions until the
current and desired edge lengths are sufficiently close. After
several iterations, high-quality body-fitted meshes can be
generated, as depicted in Fig. 4b. In summary, the body-fit-
ted technique ensures that the computational grid conforms
to the material boundaries, providing accurate representation
and minimizing numerical errors.

3 � Matlab implementation

The main objective of this educational article is to provide
a user-friendly and accessible codebase that allows engi-
neers and researchers to experiment and explore body-fitted
level set topology optimization techniques. The compact and
well-documented code enables users to grasp the underly-
ing concepts and incorporate them into their specific design
problems. The numerical implementation of the GFLS opti-
mization approach is introduced by explaining the proposed
262-line Matlab code GFLS262 line-by-line. The Matlab
program can be called using the following command:

GFLS262(lx,ly,Vr,volReq,maxedge,minedge,E,nu,tau,s
igma,alpha).

In this context, lx and ly specify the dimensions of
the 2D design domain along the x and y-axis directions

(24)

� = � + �

bm∑
b=1

((max(fsL0

√
L2∕L2

0
− L, 0)∕L)(�e − �s))

correspondingly. Vr is utilized as the solid material removal
ratio to regulate the volume decrease rate and adapt the num-
ber of iterations required for convergence. volReq denotes
the maximum volume fraction that needs to be achieved. The
parameters maxedge and minedge are employed to limit the
range of edge lengths for the body-fitted mesh, thereby con-
trolling the mesh sparseness throughout the design domain.
E and nu represent Young’s modulus and Poisson’s ratio of
the linearly elastic solid material. tau denotes a positive coef-
ficient that contributes to the curvature term when calculat-
ing the sensitivity. A Gaussian filter is employed to smooth
the material boundaries controlled by a positive parameter
sigma. The step length Δt for the finite difference scheme
is determined by the value of alpha. If this coefficient is too
small, the topology evolution speed will decrease, poten-
tially converging to a suboptimal local minimum (Challis
2010).

This code generates a visual representation of the distri-
bution of design variables in each iteration. Deep pink and
indigo blue are employed to depict solid and void materials,
respectively, while the material boundaries are captured with
purple curves. Figure 5 showcases the optimized configura-
tion of a 2D MBB beam using the proposed Matlab code,
executed with the specified input line.

GFLS262(120,40,0.05,0.5,10,2,2e5,0.3,4.8e-5,1.0,260)
Building upon prior research (Sigmund 2001), this

approach leverages symmetry to diminish the computational
expenses involved in optimization. Specifically, this example
focuses solely on the right half of the MBB beam. During
optimization, the smooth boundaries continuously evolve
with the body-fitted mesh to improve the analysis accu-
racy. After 22 iterations, the optimized structure is achieved
with an objective function value of 1.128 using the GFLS
method. The volume fraction ratio closely matches the pre-
scribed value of 50%, measuring at 50.01%. The Matlab
program was executed using 12th Gen Intel(R) Core(TM)
i7-12700H@2.30-GHz CPUs in this work.

Fig. 4   a Initial regularly-dis-
tributed nodes and the meshes
generated by the first Delauney
triangulation; b Optimized node
positions and the meshes gener-
ated by the last triangulation

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 9 of 23  171

In the subsequent sections, we present a detailed descrip-
tion of the code architecture, along with explanations of the
numerical methods employed. The 262-line code consists
of four main parts, namely the GFLS main loop, body-fitted
mesh generator, finite element analysis, and gradient field
derivation, each explained individually in Sects. 3.1–3.4.
Section 3.5 discusses the parameter definitions, differences
from previous code, and possible extensions. Additionally,
Sect. 3.6 provides extra numerical examples to demonstrate
the effectiveness and robustness of the proposed method.

3.1 � GFLS main loop (Lines 2–62)

The code provided in the appendix implements a structural
optimization algorithm based on the finite element method
and the level set method. The main function of the GFLS
method only contains 61 lines. First, the parameters and the
initial mesh in the design domain are defined in Lines 3–9.
In Line 3, a two-dimensional rectangular domain BDY is
defined to represent the range of the optimization area. The
coordinates of the regularly distributed points across the
optimization area are obtained using the operator meshgrid
in Line 4. Line 6 creates a level set function phi to describe
the initial material distribution, which is further adjusted
in Line 8 to obtain a usable boundary curve c. The maxi-
mum and minimum distances d1 and d2 balance the distance
between neighboring nodes on the zero contour of the level
set function phi. In Line 9, the GenerateMesh function is
called to establish a body-fitted mesh using the obtained
boundary curve c, generating a data structure that includes
finite element information. The variables p, t, t1, t2, Ve, and
pmid denote node coordinates, element connectivity, void
element connectivity, solid element connectivity, element
volume, and element centroid coordinates, respectively.

Lines 11–62 form the main loop of the GFLS optimiza-
tion program, which iterates multiple times, and each itera-
tion consists of the following steps. Line 13 performs finite
element analysis for the body-fitted mesh to calculate strain
energy J, volume fraction of the solid material vol, and sen-
sitivity numbers Ce, which is saved for each iteration. In

Line 18, the element sensitivity numbers are interpolated
to each node in the design domain. The scalar curvature
values on the current boundary node are calculated in Line
15, stored in Curvfull and integrated into the node sensitivity
field. Line 19 calculates the velocity vector Vc, which repre-
sents the direction to transition from the current state to the
optimized state. Lines 20–21 calculate the time step dt and
the target volume V of the current iteration. Inspired by the
evolutionary ratio in the conventional BESO method (Huang
and Xie 2010), the target volume in each iteration is deter-
mined by a solid material removal ratio Vr and the allowable
maximum volume volReq. Then, the objective function and
volume fraction of the optimization are output, and the opti-
mized configuration is plotted using deep pink and indigo
blue using the patch function (Lines 24–26). The smooth
and elegant material boundaries are drawn using the con-
tour operator in Line 27. Lines 30–32 check for convergence
criteria, including the minimum iteration to convergence,
volume requirement, and objective function requirement.
The objective function differences between the current and
previous five iterations should be less than 0.5 percent to
meet the criteria and exit the Matlab program.

Then, Lines 34–37 reinitialize the level set function in
each iteration and interpolate to each node. The variables
x, phiE, and phiN store the relative density, level set values
for elements, and level set values for nodes. For numerical
stability, the level set values for each element are defined as
a signed distance function to the nearest material bounda-
ries (Challis 2010). In Line 38, the discrete gradient field
of the level set function phiN is obtained as Gradx and
Grady in x- and y-directions, which is used for subsequent
design updates. Next, Lines 40–58 perform an optimization
process using the bi-section method to update the level set
function based on given constraints and target volume. It
utilizes interpolation, contour extraction, and one-iteration
meshing functions to estimate the current volume, adjust
the Lagrange multiplier, and generate an updated mesh rep-
resentation. The variables l1 and l2 are initialized as 0 and
1 × 109 (Line 40), representing the lower and upper bounds
of the Lagrange multiplier. A while loop is initiated, which
continues until the absolute difference between l2 and l1
divided by the absolute value of l2 is smaller than 1 × 10−9.
In Line 42, the sensitivity number for the bi-section algo-
rithm Vbs is calculated as the difference between Vc and the
average of l1 and l2. Line 43 updates the level set function
by solving the time-dependent PDE according to the sensi-
tivity and gradient values, as shown in Eq. (11). In Line 45,
the function ContourPoints is called to extract the contour
points of the updated level set function phinew. Next, an
if-else condition checks if any contour points are found. If
contour points exist, a mesh is generated to calculate the
volume fraction of the solid materials in the current design.
Note that the re-meshing process only operates for one

Fig. 5   The optimized configurations of the half and full MBB beam
designs obtained by the proposed Matlab program GFLS262

	 Z. Zhuang et al. 171   Page 10 of 23

iteration (maxiter defined as 1) to save computational cost.
If no contour points are found, the volume of the void space
inside the design is calculated based on the mean value of
the level set function evaluated at the nodes of the triangles.
The level set function is then convolved with a Gaussian ker-
nel (Zhuang et al. 2022a, b) and interpolated to the regularly
distributed nodes to plot contours in Lines 44–45. Another
if-else condition is used to update the Lagrange multiplier
value based on the volCurr (volume fraction of the current
structure) being greater or smaller than the target volume
V. Line 61 is employed to generate a new body-fitted mesh
based on the updated level set function. The resulting mesh
data, including coordinates, connectivity, element volumes,
and midpoints, are stored in the respective variables.

In conclusion, this part of the code implements an opti-
mization-based structural design process by combining the
finite element method and the GFLS algorithm to optimize
the distribution of structural materials. In each iteration, the
target volume of the current iteration is prescribed, and the
material distribution is continuously evolved based on this
value. The convergence of the system is checked during the
iteration, and the optimization is terminated when the con-
vergence criteria are met, aiming to achieve a decent design
objective.

3.2 � Body‑fitted mesh generator (Lines 64–173)

The body-fitted mesh generator iteratively creates the mesh
to capture the material boundaries (zero contours of the level
set function), which mainly contains three functions: Con-
tourPoints (Lines 65–113), GenerateMesh (Lines 115–161),
and Uniquenode (Lines 163–173). The Matlab function
ContourPoints is utilized to find the nodes on the contour
and adjust the distance between neighboring nodes. The
boundary curve c is a two-dimensional array that records
the coordinates of the contour nodes, and d1 and d2 are two
threshold parameters for distance. Lines 67–74 contain a
while loop that divides the contour node set c into several
segments, each containing several nodes. As illustrated in
Fig. 3b, the points of each segment are saved in a struc-
ture array, and whether each segment is an open curve is
recorded. Meanwhile, the numbering columns obtained by
the Matlab function contour are removed from the contour
node-set. Next, the for loop in Lines 76–112 iterates through
each segment of the contour and adjusts the node spacing for
further processing. Line 75 clears the variable c and Curv to
store new contour points and their curvature values. Lines
77–80 retrieve the coordinate points of the current segment
and calculate the distances between neighboring nodes in
the current segment, saving in ndist. The for loop in lines
81–86 is designed to remove all nodes that are too close to
their neighboring points. Lines 88–90 check if the distance
between the first and last points of a contour is less than

d1, and if so, the last point is removed. Then, Lines 91–96
calculate the distances between neighboring nodes in the
updated node set and store them in ndist. Lines 97–103 aim
to insert midpoints between the nodes that are larger than
d2 in distance for the current segment. Lastly, the processed
nodes with balanced distance are added to the variable c, and
the corresponding curvature values are stored in the variable
Curv (Lines 104–110).

The Matlab function ContourPoints is a novel function
proposed by this paper, which significantly improves the
quality of the body-fitted mesh generated by the function
GenerateMesh. Lines 116–122 generate the regularly distrib-
uted nodes pi in the design domain and calculate the mini-
mum distances from each node to the contour points, stored
in variable d. The contour points and loaded nodes are fixed
in pfix, and the rejection method deletes points using a prob-
ability proportional to 1/d2 (Lines 123–127). After removing
duplicate points, the for loop in Lines 131–151 iteratively
updates the node coordinates p until the maximum iteration
count is reached. First, the if statement in Lines 132–136 is
used to determine whether to conduct Delaunay triangula-
tion according to the amplitude of node movement in the
last iteration. In this work, the edge length of the body-fitted
mesh is defined as proportional to this distance, which is
also limited by the prescribed values maxedge and minedge.
The parameter fscale influences the relation between dis-
placement and force in the body-fitted mesh generator. Lines
138–144 aim to obtain the current L and desired length L0
for each edge using the user-defined parameter fscale. Next,
the repulsive forces within the bars are calculated using
Hooke’s law, explained in Eq. (24), which is employed to
update the positions of the non-fixed nodes accordingly. The
node coordinates are determined by solving linear force–dis-
placement equilibrium in a truss structure, and the Delaunay
triangulation iteratively updates the topology (Persson and
Strang 2004; Zhuang et al. 2021). Lines 149–150 restrict
the node coordinates within the prescribed boundary range.
Then, the function Uniquenode is called in Line 152 to pro-
cess the obtained node coordinates p and triangular mesh
t, removing duplicate nodes and updating the connectivity
information. The variable pmid is calculated as the average
coordinates of the three vertices for each element, which
represents the midpoints of the elements. The level set val-
ues of elements dE are obtained in Line 154 by interpolating
the level set values of nodes dN at the positions pmid using
cubic interpolation. Elements are classified into two groups
based on the sign of their corresponding dE values. Elements
with positive dE values are stored in t1 as the void domain,
while elements with non-positive dE values are stored in
t2 as the solid domain (Line 155–156). Lastly, a for loop
iterates in Lines 159–161 over each element to calculate the
volume Ve of each element using a determinant formula.

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 11 of 23  171

The third function, Uniquenode, removes duplicate nodes
and recomputes the node indices in the triangular mesh.
Lines 164–168 eliminate the elements whose volume is
zero and delete repeated/vacant nodes from p, while Lines
169–173 update the connectivity information in t according
to the updated node matrix p. Overall, this part of the code
appears to be performing mesh regeneration by comparing
current and desired edge length, moving node positions,
updating connectivity information, and calculating curva-
ture values of the boundary nodes.

3.3 � Finite element analysis (Lines 174–214)

Collectively, this section contributes a valuable finite ele-
ment analysis (FEA) tool for researchers and practitioners
engaged in topology optimization using the body-fitted
mesh. This section also contains three Matlab functions:
E2N (Lines 174–180), FEA (Lines 181–208), and Getma-
trixKe (Lines 209–214). The objective of the function E2N
is to estimate the node sensitivity number dN using the ele-
ment sensitivity x. It iterates over each node in p, calculates
the dot product between the element volume and sensitivity,
and then divides it by the sum of all elements. Line 178 finds
all elements that contain the specific node, which determines
the nodal sensitivity using the weighted average method.

Subsequently, the FEA program incorporates finite ele-
ment analysis within the body-fitted mesh framework. Lines
183–186 form a loop to compute the stiffness matrix of the
solid elements and combine them into a larger stiffness
matrix. We only consider the solid elements in the FEA pro-
cedure to save remarkable computational costs, especially
for structures with a low-volume fraction. Within the loop,
the function GetmatrixKe is called to calculate the stiffness
matrix for each element using the vertex coordinates, elas-
tic modulus E, and Poisson’s ratio nu. The detailed deri-
vations of the element stiffness matrix for the body-fitted
mesh using symbol calculation are provided by Zhuang
et al. (2021). The results are then stored in the correspond-
ing positions of the matrix KK. Line 159 defines an array
elemDof to store the degree of freedom indices for each
element. Based on the node indices t, the degrees of free-
dom in the x- and y-directions are assigned to each element.
Inspired by published SIMP codes (Andreassen et al. 2011;
Ferrari and Sigmund 2020), Lines 190–194 reconstruct KK
into a one-dimensional array sK and create a symmetrized
sparse matrix NK using the matrices iK, jK, and sK. After
assembling the global stiffness matrix, the program defines
the loads and boundary conditions across the design domain.
Lines 195–197 find the indices of the fixed nodes on the
boundary and store the fixed degree of freedom in fixed-
Dof. Line 198 finds the indices of force nodes and stores
them in forceNodes. Next, the displacement vector U and the
force vector F are initialized in Lines 201 and 202, where the

degrees of freedom corresponding to the loaded position are
subjected to a vertical force of − 50. Thus, the displacement
vector U, the strain energy J, sensitivity numbers Ce, and
solid material volume vol can be obtained in Lines 201–208.

While the element stiffness matrix remains constant
across all elements in the structured rectangular mesh, it
varies in the body-fitted triangular mesh based on the node
coordinates. Lines 210 to 214 define the GetmatrixKe func-
tion, which is employed to calculate the stiffness matrix Ke
for each element. The function inputs the vertex coordinates
X and Y of a triangular element, as well as the material
parameters to generate the elasticity matrix D. It first calcu-
lates the Jacobian matrix J, then computes the strain matrix
Be, and finally obtains the stiffness matrix Ke of the ele-
ment based on Be and the material parameters. Overall, this
part of the code implements the functionality of calculating
the element stiffness matrix, assembling the global stiffness
matrix, solving for displacements, and computing strain
energy/sensitivity in finite element analysis.

3.4 � Derivation of curvature and gradient field
(Lines 215–262)

The last part of the code involves three functions for level
set function reinitialization, discrete gradient derivation, and
curvature calculation. These functions are broken down and
explained as follows. The function pdist is designed to reini-
tialize the level set function using the signed distance func-
tion at the beginning of each optimization iteration (Line
36). The node coordinates xinds and yinds are obtained for
void and solid domains. Then, Lines 224–226 calculate the
minimum Euclidean distance between the centroid point of
each element to the material boundaries and output the val-
ues in the dist array. The Mshdist library (Dapogny and Frey
2012), an open-source tool, is highly recommended for reini-
tializing level set functions due to its numerical efficiency. It
computes the exact distance only in the neighborhood of the
boundary and then propagates inside the domain.

The function GradDeri (Lines 228–252) computes the dis-
crete gradient of the level set function on a body-fitted triangu-
lar mesh. A per-cell linear estimation of the discrete gradient
inspired by the previous works (Mancinelli et al. 2018; Zhuang
et al. 2024) is adopted in this section. The program takes the
level set function values (f), nodal coordinates (p), element
connectivity matrix (t), element areas (Ve), and a node-set (c)
as input parameters. First, Lines 229 and 230 initialize gradi-
ent components Gradx and Grady as zero arrays. The function
then iterates over the nodes and finds all the elements ts that
include the specific node (Line 233). Then, the gradient vec-
tor for the elements included in ts can be estimated. Within
the for loop, it calculates the difference vectors D1 and D2
based on the nodal coordinates p1, p2, and p3 and computes
the gradient vector (Gradu) using the nodal level set function

	 Z. Zhuang et al. 171   Page 12 of 23

values phi1, phi2, and phi3. Thus, the per-vertex discrete gra-
dient components Gradx and Grady for node A0 can be calcu-
lated using the weighted average approach in Lines 250–251.
The curvature number for a boundary node can be estimated
according to the coordinates of its adjacent two points on the
contour. A circumscribed circle of the triangle is created by
the three points i − 1, i, i + 1 to determine the scalar curvature
values. The curvature radius R of this circle can be calculated
as follows.

where the Xi−1, Xi, and Xi+1 represent the coordinates of the
three nodes. The symbol “ × ” returns the cross product of
vectors. The scalar curvature κi is the reciprocal of the cur-
vature radius, which is computed as follows:

CalculateCurv (Lines 254–262) computes the curvature
C of a curve defined by a set of contour points (X). Line 255
initializes N as the number of points in X and appends an
additional column of zeros to X. It then iterates over each
point in X except the first and last points and calculates the
curvature radius R according to Eq. (25). Next, the curvature
C can be computed as the reciprocal of R (Line 262).

(25)Ri =
||Xi−1 − Xi+1

||||Xi − Xi+1
||||Xi − Xi−1

||
||(Xi−1 − Xi) × (Xi+1 − Xi)

||

(26)�i =
||(Xi−1 − Xi) × (Xi+1 − Xi)

||
||Xi−1 − Xi+1

||||Xi − Xi+1
||||Xi − Xi−1

||

In summary, this part of the code provides functions for
calculating distances between points, computing the discrete
gradient of the level set function on a body-fitted mesh, and
evaluating the curvature values. The accessibility and ease of
implementation of the code contribute to ongoing advance-
ments in structural optimization.

3.5 � Discussions

This section explores how to select appropriate values for
the parameters used in the Matlab implementation of the
proposed algorithm. It also outlines potential extensions
that could enhance the approach to address more complex
optimization problems. Table 1 presents the recommended
value ranges for the nine input parameters established by
testing the stiffness optimization problems. Users have
the flexibility to define these parameters based on specific
requirements. Input values within the recommended ranges
typically yield optimization results with objective values that
closely approach the optimal value. Selecting various param-
eters can produce a range of competitive designs, which
allows architects and engineers to achieve more architectural
innovation (He et al. 2023).

Furthermore, Table 2 includes definitions for other
parameters within the Matlab code. The Young’s modulus
and Poisson’s ratio of the solid material can be manually
specified as input parameters. The remaining parameters are
hardcoded in the script to streamline operations, as these

Table 1   Suggested parameter values for nine input parameters in program GFLS262

Parameter Meaning Suggested value range Inappropriate values will cause:

lx & ly Dimensions of the design domain
along the x and y-axis directions

Integer values
The value of lx × ly should range from

400 to 40,000

Too small: Poor mesh quality
Too large: Significant computational

costs
Vr Solid material removal ratio between

iterations
The value of Vr should range from 0.01

to 0.2
Too small: Very slow convergence
Too large: Local optimality problem

volReq Maximum allowable volume fraction
of solid material

The value of volReq should range from
0 to 1

Too small: No solid materials in the
domain

Too large: No void materials in the
domain

maxedge & minedge Range of edge lengths for the body-
fitted mesh

The ratio of maxedge/minedge should
range from 2 to 10

Too small: Uniform mesh distribution
Too large: Poor mesh quality

tau Positive coefficient contributing to the
curvature term

The value of tau should range from
1 × 10–5 to 1 × 10–3

Too small: The effect of the curvature
term is unnoticeable

Too large: The curvature term domi-
nates the level set evolution

sigma Gaussian filtering coefficient The value of sigma should range from
0.8 to 2

Too small: Unsmooth material
boundaries

Too large: Large volume fraction
changes

alpha Step length coefficient Integer value
The value of alpha should range from

200 to 300

Too small: The design changes slowly
and converges to a poor solution

Too large: The design changes steeply
and affects accuracy

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 13 of 23  171

values have been found suitable for stiffness optimization
problems.

The key differences between the proposed 262-line
code GFLS262 and the previous 172-line code TriTOP172
(Zhuang et al. 2022a, b) are outlined below.

(1)	 The proposed GFLS method employs the gradient field-
based level set method instead of the BESO sensitivity
ranking scheme to update the design variables, which
takes advantage of the smooth boundaries to the maxi-
mum extent;

(2)	 Matlab function ContourPoints is provided in this work
to find the points on the zero iso-surface of the level
set function. The points on each contour are found,
adjusted, and stored as structure array variables, which
significantly increases the mesh generator efficiency;

(3)	 The mean curvature values of the boundary nodes are
included in the sensitivity analysis rather than the non-
linear diffusion term;

(4)	 Gradient field derivation and level set function reini-
tialization are involved in updating the design variables
during the optimization;

(5)	 As shown in Table 3, the newly introduced 262-line
code improves the optimization efficiency and objec-
tive function value (mean compliance) of the optimized
configuration.

The proposed method is capable of addressing optimi-
zation problems featuring various objective functions and
constraints. For instance, compliant mechanisms achieve
mobility via elastic deformation rather than relying on
rigid-body connections. In the optimal design of compliant

Table 2   The definitions of
material property parameters
and parameters hard-coded in
program GFLS262

Parameter Meaning

E (Input) The Young’s modulus of the solid material
nu (Input) The Poisson’s ratio of the solid material
BYD (Line 3) The ranges of the design domain
d1 & d2 (Line 7) Maximum and minimum allowable distances between boundary nodes
Fscale = 1.2 (Lines 9, 47, 61) A positive scaling factor to ensure that most bars give repulsive forces
maxiter = 80 (Lines 9, 61) Maximum iteration number during the re-meshing process
0.005 (Line 30) Relative tolerance on the volume fraction and objective values for

termination of the program
l1 = 0 & l2 = 1 × 109 (Line 40) Lower and upper bounds of the Lagrange multiplier
num & col (Line 66) Group index and node index
rv = 0.5 (Line 125) Rejection value
beta = 0.2 (Line 129) Force–displacement parameter

Table 3   Optimization objectives and computational efficiency comparison of the GFLS, BESO, BFLS-UPWIND, and HJLS methods

Optimization Method GFLS262
(GFLS)

TriTOP172
(BESO)

BFLS with Upwind HJLS

Mean Compliance 1.799 1.802 1.867 1.882
Objective Function
Difference

N/A 0.17% 3.64% 4.41%

Iterations to Convergence 24 22 27 74
Total Run Time (second) 89.800 142.349 122.652 100.488
Total Element Number 7,859 9,783 6,088 4,000
Total DOF 8,060 10,036 6,232 8,262
Run Time per DOF (second) 1.114 × 10–2 1.418 × 10–2 1.968 × 10–2 1.216 × 10–2

Efficiency Difference N/A 21.44% 43.39% 8.39%
Algorithm Category Boundary-based

method
Density-based method Boundary-based method Boundary-

based
method

Using Upwind Scheme? × × ✔ ✔
Using Body-fitted Mesh? ✔ ✔ ✔ ×

	 Z. Zhuang et al. 171   Page 14 of 23

mechanisms, the objective function focuses on displacement
in a specified direction, denoted as uout at the specific output
port.

The sensitivity analysis of the compliant mechanism
problem utilizes an adjoint load approach, where a virtual
force is applied to the specified output port. A gripper opti-
mization example demonstrating the design of a compliant
mechanism using the proposed GFLS method is presented
in the following section.

Stress constraints can be incorporated with topology opti-
mization (Bruggi and Duysinx 2012; Chen et al. 2021; Fan
et al. 2019; Holmberg et al. 2013; Xia et al. 2018) to address
issues related to excessive structural stress. The compliance
optimization problem, which concurrently considers volume
and stress constraints, can be formulated as follows:

where �max

vM
 denotes the maximum von Mises stress for all

body-fitted elements in the design domain. �∗
vM

 represents
the maximum allowable von Mises stress value. When deal-
ing with multiple constraints in the optimization problem,
the proposed approach can integrate the augmented Lagran-
gian technique (Luo et al. 2008) or incorporate an isotropy
constraint (Challis et al. 2008). A T-Pier column example
illustrating the multi-constraint optimization is presented
in the subsequent section to showcase the advantage of the
proposed GFLS method.

3.6 � More numerical examples

The numerical examples presented in this section showcase
the reliability and effectiveness of the proposed program in
achieving outcomes within a reasonable number of itera-
tions. The Matlab program can solve user-defined optimiza-
tion problems by changing a few command lines. Different
load and boundary conditions can be applied by making
changes to Lines 195–202 in the finite element analysis
function. The initial pattern within the design domain can
be defined manually in Line 6. The two threshold parameters
(d1 and d2) for the distance between adjacent nodes on the
boundary curve are prescribed in Line 6. Furthermore, the
parameters fscale (Lines 9, 47, 61), maxiter (Lines 9, 61), rv

(27)

Max ∶ J = uout

s.t. ∶

{
u|ΓD

= 0

∫
Ω
dΩ − Vmax ≤ 0

(28)

Min ∶ J(𝜑) = �ΓN

g ⋅ u𝛿(𝜑)�∇𝜑�dΓN

s.t. ∶

⎧⎪⎨⎪⎩

u�ΓD
= 0

∫
Ω
dΩ − Vmax ≤ 0

0 < 𝜎max

vM
≤ 𝜎∗

vM

(Line 125), and beta (Line 129) can also be adjusted accord-
ing to the specific optimization problem. The following com-
mand is added in Line 28 to save the plotted figures during
each iteration in the folder.

saveas(gcf,[‘./fig’, int2str(iterNum) ‘.png’]);
As illustrated in Fig. 6, a vertical downward external load

F with a magnitude of 100 N is applied at the midpoint of the
right edge of the rectangular design domain. The entire left
edge of the 80 × 50 design domain is fixed on both the x- and
y-directions. The boundary condition of the cantilever beam
can be defined using the following command to replace the
command in Lines 195–198:

fixedNodes = find(p(:,1) =  = BDY(1,1));
forceNodes = find(p(:,1) =  = BDY(2,1) & p(:,2) =  = 0);
fixedDof = [2*fixedNodes-1; 2*fixedNodes];
Similarly, the load condition of the cantilever beam can

be defined using the following command to replace the com-
mand in Line 202:

F = sparse(2*forceNodes,1,-100,2*length(p),1);
The initial pattern is also changed in Line 6 to expedite

convergence.
p h i  =  - (s i n (x n / B D Y (2 , 1) * 5 * p i) . * c o s (y n /

BDY(2,1)*5*pi) + 0.5);
Figure 6 displays the optimized configuration of a 2D

cantilever beam using the provided Matlab code, executed
with the designated input line:

GFLS262(80,50,0.1,0.5,10,2,1e5,0.3,4.3e-5,1.1,265).
The GFLS method effectively produces a highly opti-

mized structure with an objective function value of 1.799
converged in 24 iterations. The volume fraction ratio of
the solid materials is measured as 49.99%, which closely
matches the desired value of 50%. The body-fitted mesh gen-
erated in each iteration precisely captures the smooth mate-
rial boundaries without zig-zag shapes to take advantage of
the level set method.

This work compares three alternative topology optimiza-
tion methods, BESO, BFLS-UPWIND, and HJLS, with the

Fig. 6   The optimized configuration of the cantilever beam designs
obtained by the proposed Matlab program GFLS262

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 15 of 23  171

optimized result shown in Fig. 7a obtained using the GFLS
method. The comparison utilizes the same design domain
dimensions, boundary conditions, and a similar number of
nodes. Table 3 presents a comparison of the objective func-
tion values, iteration numbers, and computational efficiency
of the GFLS method alongside the other methods. Regard-
ing computational efficiency, it is important to consider
the total run time required for each algorithm rather than
focusing solely on iteration counts. Computational time per
degree of freedom (DOF) for the Matlab programs GFLS262
and the other methods are evaluated using profile viewer
commands. Additionally, iteration numbers to convergence
are detailed in Table 3 to assess the performance of each
algorithm. While parameter settings, initial patterns, and
algorithmic enhancements influence iteration counts, this
number remains crucial in evaluating the convergence speed,
stability, and effectiveness of an optimization approach.

The Matlab program TriTOP172 integrates a body-fitted
mesh and nonlinear diffusion regularization in the BESO
method to eliminate zig-zag boundaries (Zhuang et al.
2022a, b). Figure 7b displays the optimized configuration
of a cantilever beam using the TriTOP172 code. As indi-
cated in Tables 3 and 4, the similar compliance values of the
optimized structures achieved by GFLS262 and TriTOP172
are notably better than those obtained by other methods.
This similarity suggests that the primary enhancement in
performance stems from the capability of body-fitted mesh
algorithms to adapt the mesh to the solution rather than from
the specific choice between GFLS or BESO approaches.
This observation underscores the significance of employing
body-fitted meshes to achieve favorable outcomes in topol-
ogy optimization. Moreover, the CPU computational time

per DOF of the proposed GFLS262 code is 21.44% lower
than that of the TriTOP172 code.

Fig. 7   The optimized configu-
rations of the cantilever beam
designs using the a GFLS
method; b BESO method
(Zhuang et al. 2022a, b); c
BFLS-UPWIND method; and d
HJLS method

Table 4   Optimization result comparison between the proposed
GFLS, SIMP, BESO, and RDLS methods

Numerical Examples Cantilever
Beam MBB Beam L-

bracket

GFLS
262

Iterations to
convergence 24 22 21

Objective
function value 1.799 1.128 11.673

Optimized
Design

BESO
101

Iterations to
convergence

79 71 41

Objective
function value

1.864 1.187 11.905

Improvement
Ratio

3.49% 4.97% 1.95%

Optimized
Design

SIMP
99

Iterations to
convergence

71 53 41

Objective
function value

1.917 1.250 12.223

Improvement
Ratio

6.16% 9.76% 4.50%

Optimized
Design

RDLS
88

Iterations to
convergence

104 108 108

Objective
function value

1.896 1.186 11.867

Improvement
Ratio

5.12% 4.89% 1.63%

Optimized
Design

	 Z. Zhuang et al. 171   Page 16 of 23

Based on prior research (Allaire et al. 2014), this study
adapts the conventional Level Set method into the Body-
Fitted mesh framework (BFLS-UPWIND), incorporating
upwind schemes and numerical interpolation. This approach
involves interpolating level set function values to a virtual
structured mesh to ensure compatibility between the tradi-
tional upwind scheme and the body-fitted mesh used in level
set optimization. However, the iterative upwind schemes and
excessive interpolation processes impact the algorithm accu-
racy and computational efficiency of the BFLS-UPWIND
method during the level set function updating procedure.
Figure 7c illustrates the optimized configuration achieved
by the BFLS-UPWIND method, converging to an objec-
tive function value of 1.867 after 27 iterations. According
to Table 3, compared to the GFLS method, the BFLS-
UPWIND method achieves an objective function value
3.64% higher, with computational time being 43.39% longer
for optimizing the cantilever beam.

The upwind scheme proves effective and efficient in level
set topology optimization within fixed structured meshes
(Allaire et al. 2004; Wang et al. 2003). Figure 7d provides
the optimized structure of the Level Set method by solv-
ing the Hamilton–Jacobi equation (HJLS) under identical
load and boundary conditions. The optimization adapts the
129-line Matlab code from Challis (2010) with fixed rec-
tangular meshes. However, the resulting zig-zag bounda-
ries do not conform well to the actual geometry, resulting
in a 4.41% higher compliance value compared to the GFLS
method. Despite additional tasks such as re-meshing and
re-distancing that may extend total run times, the proposed
GFLS method offers a computational cost savings of 8.39%
over the HJLS method.

For clarity, we utilized Matlab commands to profile the
execution time for the GFLS method. Figure 8 visually
represents the cost distribution across different parts of
the proposed Matlab program GFLS262. In the cantile-
ver beam case study, the costs associated with remeshing,
encompassing the discovery of contour nodes and Delau-
nay triangulation, constitute approximately 31% of the
overall computational expenses during optimization. Iden-
tifying contour nodes comprises 7% of the computational
costs, which is crucial for subsequent mesh generators to
accurately capture material boundaries. Iterative Delaunay
triangulation, accounting for 24% of the costs, transforms
these nodes into a body-fitted mesh with user-defined mesh
density. An efficient FEA procedure consumes 4% of the
computational resources to assess structural responses
under specific conditions. In the proposed GFLS method,
we excluded low-sensitivity void regions from the time-
consuming FEA, which means that FEA is only applied to
the DOFs within the solid domain represented by Solid-
Dof in the code, rather than the entire design space. In
more complex optimization scenarios, especially those

involving extensive or non-linear FEA models, the com-
putational cost of FEA would be considerably higher. The
derivation of the gradient field represents another 4% of
computational expenses, offering an efficient alternative
to traditional upwind schemes. Interpolating sensitivities
consume 16.8% of computational resources to obtain the
sensitivity numbers on the nodes in the design domain.
Updating the level set function using bi-section methods
accounts for 27% of the computational costs, ensuring pre-
cise control over solid material volume and accelerating
convergence. Finally, 12% of computational costs are dedi-
cated to storing essential information such as node coordi-
nates, element connectivity, and updated level set values in
each iteration. This step is vital for analyzing optimization
progress and visualizing optimized structures.

The following paragraph describes an optimization
design for an L-bracket in a 100 × 100 rectangular design
domain. The model is fixed on the top edge, and the down-
ward loads are imposed at the bottom right corner of the pas-
sive regions. A passive region is located in a 60 × 60 square
in the upper right corner of the design domain, where all
elements should be defined as the void element. Based on
the GFLS262 program, the nodes on the boundaries of the
passive region can be found by adding the following com-
mand after Line 118.

px = 0.2 * BDY(1,1); py = 0.2 * BDY(1,2);
[xp,yp] = meshgrid(px,py:BDY(2,2));
[xp2,yp2] = meshgrid(px:BDY(2,1),py);
P = [xp(:),yp(:); xp2(:),yp2(:)];
Forcepts = [BDY(2,1) py; BDY(2,1)-1 py;BDY(2,1)-2

py;BDY(2,1)-3 py;BDY(2,1)-4 py; BDY(2,1)-5 py];

Fig. 8   The cost allocation pie chart for the proposed Matlab program
GFLS262

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 17 of 23  171

These nodes are fixed in the mesh generator by replac-
ing the codes in Line 124.

pfix = [c; P; Forcepts; BDY(2,1) BDY(1,2); BDY(1,1)
BDY(2,2); BDY(1,1) BDY(1,2); BDY(2,1) BDY(2,2)];

The edge length L should be limited to a specific range
using the following command after Line 142:

L = min(max(0.1,L),8);
The passive elements tp, non-passive void elements tv,

void elements t1, and solid elements t2 are defined using
the following command to replace Lines 155–157.

tnp = t(~ (pmid(:,1) > px & pmid(:,2) > py),:);
tp = t((pmid(:,1) > px & pmid(:,2) > py),:);
Passive = length(tp);
dEnp = dE(~ (pmid(:,1) > px & pmid(:,2) > py),:);
tv = tnp(dEnp > 0,:);
t1 = [tp; tnp(dEnp > 0,:)]; t2 = tnp(dEnp < 0,:);
t = [t1;t2];
In addition, Lines 9, 24, 61, and 115 are replaced to

define passive elements tp and non-passive void elements
tv as the output of the function GenerateMesh. Line 9 is
replaced by:

[p,t,t1,t2,Ve,pmid,tv,tp] = GenerateMesh(xn,yn,c,phi,ma
xedge,minedge,1.2,BDY,80);

Line 24 is replaced by:
patch(‘Faces’,tv, ‘Vertices’,p,‘EdgeColor’,[250 250

250]/255, ‘FaceColor’,[92 158 173]/255);
Line 61 is replaced by:
[p,t,t1,t2,Ve,pmid,tv,tp] = GenerateMesh(xn,yn,c,phi,ma

xedge,minedge,1.2,BDY,80);
Line 115 is replaced by:
function [p,t,t1,t2,Ve,pmid,tv,tp] = GenerateMesh(xn,yn,

c,dN,maxedge,minedge,fscale,BDY,maxiter).
Next, Lines 184–185 in the finite element analysis are

replaced by:
for i = 1:NT.
if i <  = length(t1) x = 1e-5; else x = 1; end.
KK(:,6*i-5:6*i) = x* GetmatrixKe(p(t(i,:),1),p(t(i,:),2),

E,nu);
The following command is required to replace Line 50

during the bi-section procedure of the GFLS algorithm.
xnew = max(0,sign(mean(phiNnew(t),2)));
xnew(1:length(tp)) = 0;
volVoid = dot(xnew,Ve’);
The load and boundary condition of the L-bracket design

replaces Lines 195–202 as:
fixedNodes = find(p(:,2) =  = BDY(2,1));
fixedDof = [2*fixedNodes-1; 2*fixedNodes];
SolidDof = 1:2*length(p);
fo r c e N o d e s  =  f i n d (p (: , 1)  <   =  B DY (2 , 1) &

p(:,1) >  = BDY(2,1)-5 & p(:,2) =  = 0.2*BDY(1,2));
freeDofs = setdiff(SolidDof,fixedDof);
U = zeros(2*length(p),1);
F = sparse(2*forceNodes,1,-0.1,2*length(p),1);

Lastly, the initial pattern of the L-bracket is defined in
Line 6 as follows.

p h i  =  - (s i n (x n / B D Y (2 , 1) * 5 * p i) . * c o s (y n /
BDY(2,1)*5*pi) + 0.5);

The threshold parameters for the distance between adja-
cent nodes on the boundary curve are changed in Line 7 as
follows:

d1 = 0.6; d2 = 1.2;
The optimized configuration of an L-bracket design is

illustrated in Fig. 9, obtained through the execution of the
Matlab code GFLS262 with the specified input line:

GFLS262(100,100,0.05,0.4,10,2.5,2,0.3,6e-4,1,250).
The optimized design of the L-bracket is achieved within

21 iterations using the GFLS method, resulting in a compli-
ance value of 11.673 and a solid volume fraction ratio of
40.02%. The body-fitted mesh precisely captures the smooth
and refined boundaries, significantly improving the objec-
tive function value and increasing the analysis accuracy.
Compared to the previous SIMP 99-line code (Sigmund
2001), BESO 101-line code (Huang and Xie 2010), and
reaction–diffusion level set (RDLS) 88-line code (Otomori
et al. 2014), the proposed GFLS methodology can gener-
ate a 1.63–9.76% better compliance value for the identical
numerical example, as illustrated in Table 4. Meanwhile,
the iteration number required before convergence is signifi-
cantly reduced, saving computational cost. The improvement
is primarily attributed to the superior mesh adaptivity, high
computational efficiency, and enhanced compatibility of
the proposed GFLS method. The proposed GFLS method is
demonstrated to be effective and robust in achieving decent

Fig. 9   The optimized configuration of the L-bracket designs obtained
by the proposed Matlab program GFLS262

	 Z. Zhuang et al. 171   Page 18 of 23

objective function values and smooth boundaries through
the provided numerical examples. Figure 10 illustrates the
convergence history of the optimization problems. The com-
mand can be added after Line 30 to store the body-fitted
mesh and optimization history information for plotting
figures.

save(‘History.mat’, ‘Obj’, ‘volt’, ‘p', ‘t’, ‘t1’, ‘t2’);
The compliance values of structures optimized with

body-fitted meshes are typically better due to improved
mesh quality. Sharp corner details presented in conven-
tional approaches utilizing fixed rectangular meshes can
introduce numerical issues, particularly in simulations
involving boundary-dependent quantities like traction loads
(Andreasen et al. 2020; Soares da Costa Azevêdo et al.
2024). Body-fitted meshes are designed to conform closely
to material boundaries, resulting in a more precise represen-
tation of complex shapes and smoother transitions between
elements. Thus, the finite element model built on a body-
fitted mesh tends to capture structural behavior more accu-
rately during optimization processes, generating improved
compliance compared to designs on the square grid. The
result obtained by the SIMP method is post-processed to
ensure volume-preserving thresholding, ensuring a fair
comparison based on thresholded 0–1 solutions (Sigmund
2022). The proposed body-fitted meshing approach can be
extended to 3D scenarios using the unstructured tetrahedral
mesh (Zhuang et al. 2022a, b). Meanwhile, the open-source
Mmg library, freely available on http://​www.​mmgto​ols.​org/,
addresses mesh evolution challenges in the context of free
and moving boundary problems across 2D and 3D dimen-
sions (Dapogny et al. 2014; Dobrzynski and Frey 2008).

In another instance, the focus is on achieving an optimal
design of a compliant mechanism, which functions as an

efficient gripper. As shown in Fig. 11a, a predefined non-
design region measuring 25 × 26 × 1 is allocated within a
100 × 100 × 1 design domain for workpiece gripping. This
section leverages the GFLS algorithm to achieve the desired
objective function of displacement at the corners of the pas-
sive region under volume constraints. An external force of
magnitude g is applied horizontally at the midpoint of the
left edge, with the top and bottom corners of this edge being
immovably fixed. The input parameters are defined as fol-
lows: material removal ratio Vr = 0.05; maximum volume
fraction volReq = 0.25; Young’s modulus E = 0.1; Poisson’s
ratio nu = 0.3; and curvature term coefficient tau = 4 × 10–3.
As illustrated in Fig. 11b, an optimized gripper is achieved
with a volume fraction of 25.16% after 39 iterations. Well-
defined material boundaries between solid and void domains
ensure smooth transitions, resulting in a higher displace-
ment value at the output port, specifically 1.009 × 10–2. Fig-
ure 11c, d illustrate the optimization results using the BESO
method with a fixed mesh and the RDLS method with a
body-fitted mesh. The displacement values obtained by the
RDLS and BESO methods are 9.833 × 10–3 and 9.180 × 10–3,
respectively, demonstrating reduction ratios of 2.55% and
9.02% compared to the GFLS method.

Furthermore, the proposed GFLS method demonstrates
promising capabilities in representing smooth boundaries,
which is particularly beneficial for addressing stress-con-
strained optimization challenges. This paper illustrates an
optimization example involving a T-Pier column, where a
50% volume constraint and a maximum allowable von Mises
stress ( �∗

vM
 ) of 0.5 for all elements are enforced. Details

regarding the design domain dimensions and boundary con-
ditions are depicted in Fig. 12a. The T-Pier structure is fixed
at the bottom of the design domain, subjected to uniform

Fig. 10   Convergence history of the numerical examples using the GFLS method: a objective function value and b volume fraction of the solid
materials

http://www.mmgtools.org/

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 19 of 23  171

loads on its top surface, with a 240 × 15 rectangular non-
design domain near the surface.

Figure 12b depicts the optimized configuration achieved
with the proposed GFLS method employing body-fitted
meshes, facilitating the precise application of boundary
conditions at structural interfaces. Compared to the opti-
mized structure using a fixed rectangular mesh displayed
in Fig. 12c, there is a 2.42% improvement in the objective
function value, decreasing from 629.648 to 614.439. Fixed
rectangular meshes, especially when dealing with irregu-
lar or highly curved geometries, may not align well with
the actual shape, leading to inaccurate representations of
stress and strain distributions. As shown in Fig. 12c, the
non-optimal stress concentration areas highlighted in red
circles contribute to an increase in the maximum von Mises
stress. Body-fitted meshes ensure accurate transmission of
forces and constraints throughout the model by aligning
mesh elements with the geometric contours. This alignment
results in more realistic von Mises stress distributions, as
demonstrated in Fig. 12c, d, where colored von Mises stress
fields are compared between optimized structures using fixed
rectangular and body-fitted triangular meshes with the same
color map. Notably, the maximum von Mises stress within

the body-fitted elements shows an 8.55% reduction from
0.351 to 0.321.

4 � Conclusions

This educational article presents an efficient Matlab program
comprising 262 lines, specifically designed for the level set
topology optimization. The level set method, known for
its ability to represent complex geometries implicitly, has
proven to be a valuable approach in structural optimization.
The proposed GFLS method has great potential to solve
complex problems of fluid–structure interaction, aerody-
namics, and additive manufacturing with the body-fitted
mesh. This approach incorporates several key improvements,
including updated body-fitted meshing, the integration of the
gradient field derivation for design variable updates, and the
inclusion of mean curvature values in sensitivity analysis.
The capability of the proposed code is showcased through
illustrative examples, highlighting its efficacy in optimiz-
ing structures while adhering to various objective functions,
boundary conditions, and design constraints. The simplic-
ity and compactness of this program ensure that users can

Fig. 11   aThe boundary condi-
tions and the optimization
results of the gripper mecha-
nism using the b proposed
GFLS method with a body-fit-
ted mesh; c BESO method with
a fixed mesh (Li 2014); d RDLS
method with a body-fitted mesh
(Zhuang et al. 2021)

	 Z. Zhuang et al. 171   Page 20 of 23

readily integrate it into their existing workflows, thereby
promoting further advancements in structural optimization.

Appendix–Matlab Code GFLS262

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00158-​024-​03891-y.

Acknowledgements  This work was supported by the Hong Kong Poly-
technic University (P0044299).

Funding  Open access funding provided by The Hong Kong Polytech-
nic University. Hong Kong Polytechnic University,P0044299,Zicheng
Zhuang

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author
states that there are no competing interests to declare that are relevant
to the content of this article.

Replication of results  All numeric examples within this paper were
conducted using the provided Matlab program in the appendix. The
information required to replicate the results has been provided in
the supplementary materials.

Open Access  This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

Fig. 12   a The design domain dimension and boundary conditions of
a T-Pier column example; b the optimization results using the pro-
posed GFLS method with a body-fitted mesh; c colored von Mises

stress field for the optimized structure using a fixed rectangular mesh;
d colored von Mises stress field for the GFLS optimization result

https://doi.org/10.1007/s00158-024-03891-y

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 21 of 23  171

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Allaire G, Jouve F, Toader A-M (2002) A level set method for shape
optimization. CR Math 334:1125–1130. https://​doi.​org/​10.​1016/​
S1631-​073X(02)​02412-3

Allaire G, Jouve F, Toader A-M (2004) Structural optimization
using sensitivity analysis and a level-set method. J Comput
Phys 194(1):363–393. https://​doi.​org/​10.​1016/j.​jcp.​2003.​09.​032

Allaire G, Dapogny C, Frey P (2011) Topology and geometry opti-
mization of elastic structures by exact deformation of simplicial
mesh. CR Math 349:999–1003. https://​doi.​org/​10.​1016/j.​crma.​
2011.​08.​012

Allaire G, Dapogny C, Frey P (2013) A mesh evolution algorithm
based on the level set method for geometry and topology opti-
mization. Struct Multidisc Optim 48(4):711–715. https://​doi.​
org/​10.​1007/​s00158-​013-​0929-2

Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level
set based mesh evolution method. Comput Methods Appl Mech
Eng 282:22–53. https://​doi.​org/​10.​1016/j.​cma.​2014.​08.​028

Andreasen CS, Elingaard MO, Aage N (2020) Level set topology and
shape optimization by density methods using cut elements with
length scale control. Struct Multidisc Optim 62(2):685–707.
https://​doi.​org/​10.​1007/​s00158-​020-​02527-1

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O
(2011) Efficient topology optimization in MATLAB using 88
lines of code. Struct Multidisc Optim 43(1):1–16. https://​doi.​
org/​10.​1007/​s00158-​010-​0594-7

Azari Nejat A, Held A, Trekel N, Seifried R (2022) A modified
level set method for topology optimization of sparsely-filled and
slender structures. Struct Multidisc Optim 65(3):85. https://​doi.​
org/​10.​1007/​s00158-​022-​03184-2

Baiges J, Martínez-Frutos J, Herrero-Pérez D, Otero F, Ferrer A
(2019) Large-scale stochastic topology optimization using adap-
tive mesh refinement and coarsening through a two-level paral-
lelization scheme. Comput Methods Appl Mech Eng 343:186–
206. https://​doi.​org/​10.​1016/j.​cma.​2018.​08.​028

Bendsoe MP (1989) Optimal shape design as a material distribution
problem. Structural Optimization 1(4):193–202. https://​doi.​org/​
10.​1007/​BF016​50949

Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in
structural design using a homogenization method. Comput
Methods Appl Mech Eng 71(2):197–224. https://​doi.​org/​10.​
1016/​0045-​7825(88)​90086-2

Bendsoe MP and Sigmund O (2004) Topology optimization:
Theory, methods, and applications. https://​doi.​org/​10.​1007/​
978-3-​662-​05086-6

Bruggi M, Duysinx P (2012) Topology optimization for mini-
mum weight with compliance and stress constraints. Struct
Multidisc Optim 46(3):369–384. https://​doi.​org/​10.​1007/​
s00158-​012-​0759-7

Challis VJ (2010) A discrete level-set topology optimization code
written in Matlab. Struct Multidisc Optim 41(3):453–464.
https://​doi.​org/​10.​1007/​s00158-​009-​0430-0

Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimen-
sional isotropic microstructures for maximized stiffness and
conductivity. Int J Solids Struct 45(14):4130–4146. https://​doi.​
org/​10.​1016/j.​ijsol​str.​2008.​02.​025

Chen A, Cai K, Zhao Z-L, Zhou Y, Xia L, Xie M (2021) Controlling
the maximum first principal stress in topology optimization.
Struct Multidisc Optim 63(1):327–339. https://​doi.​org/​10.​1007/​
s00158-​020-​02701-5

Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O,
Bærentzen JA (2014) Topology optimization using an explicit
interface representation. Struct Multidisc Optim 49(3):387–399.
https://​doi.​org/​10.​1007/​s00158-​013-​0983-9

da Costa S, Azevêdo A, Li H, Ishida N, Siqueira LO, Cortez RL,
Nelli Silva EC, Nishiwaki S, Picelli R (2024) Body-fitted topol-
ogy optimization via integer linear programming using surface
capturing techniques. Int J Numer Meth Eng 125(13):e7480.
https://​doi.​org/​10.​1002/​nme.​7480

Dapogny C, Frey P (2012) Computation of the signed distance
function to a discrete contour on adapted triangulation. Calcol
49(3):193–219. https://​doi.​org/​10.​1007/​s10092-​011-​0051-z

Dapogny C, Dobrzynski C, Frey P (2014) Three-dimensional adap-
tive domain remeshing, implicit domain meshing, and applica-
tions to free and moving boundary problems. J Comput Phys
262:358–378. https://​doi.​org/​10.​1016/j.​jcp.​2014.​01.​005

Dobrzynski C and Frey P (2008) Anisotropic delaunay mesh adapta-
tion for unsteady simulations. Proceedings of the 17th Interna-
tional Meshing Roundtable:177–194.

Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of
optimal structures. J De Mecanique 3(1):25–52

Fan Z, Xia L, Lai W, Xia Q, Shi T (2019) Evolutionary topology
optimization of continuum structures with stress constraints.
Struct Multidisc Optim 59(2):647–658. https://​doi.​org/​10.​1007/​
s00158-​018-​2090-4

Ferrari F, Sigmund O (2020) A new generation 99 line Matlab code
for compliance topology optimization and its extension to 3D.
Struct Multidisc Optim 62(4):2211–2228. https://​doi.​org/​10.​
1007/​s00158-​020-​02629-w

Glowinski R (1984) Numerical simulation for some applied problems
originating from continuum mechanics, in trends in applications
of pure mathematics to mechanics. symp., Palaiseau/France
1983. Lect Notes Phys 195:96–145

Goodman J, Kohn RV, Reyna L (1986) Numerical study of a relaxed
variational problem from optimal design. Comput Methods
Appl Mech Eng 57(1):107–127. https://​doi.​org/​10.​1016/​0045-​
7825(86)​90073-3

He Y, Zhao Z-L, Lin X, Xie YM (2023) A hole-filling based
approach to controlling structural complexity in topology
optimization. Comput Methods Appl Mech Eng 416:116391.
https://​doi.​org/​10.​1016/j.​cma.​2023.​116391

Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained
topology optimization. Struct Multidisc Optim 48(1):33–47.
https://​doi.​org/​10.​1007/​s00158-​012-​0880-7

Huang X, Xie YM (2009) Bidirectional evolutionary topology
optimization of continuum structures with one or multiple
materials. Comput Mech 43:393–401. https://​doi.​org/​10.​1007/​
s00466-​008-​0312-0

Huang X, Xie YM, Burry MC (2006) A new algorithm for bi-direc-
tional evolutionary structural optimization. JSME Int j, Ser C
49(4):1091–1099. https://​doi.​org/​10.​1299/​jsmec.​49.​1091

Huang X and Xie YM (2010) Evolutionary topology optimization
of continuum structures: methods and applications. https://​doi.​
org/​10.​1002/​97804​70689​486.​ch2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S1631-073X(02)02412-3
https://doi.org/10.1016/S1631-073X(02)02412-3
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1016/j.crma.2011.08.012
https://doi.org/10.1016/j.crma.2011.08.012
https://doi.org/10.1007/s00158-013-0929-2
https://doi.org/10.1007/s00158-013-0929-2
https://doi.org/10.1016/j.cma.2014.08.028
https://doi.org/10.1007/s00158-020-02527-1
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s00158-022-03184-2
https://doi.org/10.1007/s00158-022-03184-2
https://doi.org/10.1016/j.cma.2018.08.028
https://doi.org/10.1007/BF01650949
https://doi.org/10.1007/BF01650949
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/s00158-012-0759-7
https://doi.org/10.1007/s00158-012-0759-7
https://doi.org/10.1007/s00158-009-0430-0
https://doi.org/10.1016/j.ijsolstr.2008.02.025
https://doi.org/10.1016/j.ijsolstr.2008.02.025
https://doi.org/10.1007/s00158-020-02701-5
https://doi.org/10.1007/s00158-020-02701-5
https://doi.org/10.1007/s00158-013-0983-9
https://doi.org/10.1002/nme.7480
https://doi.org/10.1007/s10092-011-0051-z
https://doi.org/10.1016/j.jcp.2014.01.005
https://doi.org/10.1007/s00158-018-2090-4
https://doi.org/10.1007/s00158-018-2090-4
https://doi.org/10.1007/s00158-020-02629-w
https://doi.org/10.1007/s00158-020-02629-w
https://doi.org/10.1016/0045-7825(86)90073-3
https://doi.org/10.1016/0045-7825(86)90073-3
https://doi.org/10.1016/j.cma.2023.116391
https://doi.org/10.1007/s00158-012-0880-7
https://doi.org/10.1007/s00466-008-0312-0
https://doi.org/10.1007/s00466-008-0312-0
https://doi.org/10.1299/jsmec.49.1091
https://doi.org/10.1002/9780470689486.ch2
https://doi.org/10.1002/9780470689486.ch2

	 Z. Zhuang et al. 171   Page 22 of 23

Jiang Y, Zhao M (2020) Topology optimization under design-
dependent loads with the parameterized level-set method based
on radial-basis functions. Comput Methods Appl Mech Eng
369:113235. https://​doi.​org/​10.​1016/j.​cma.​2020.​113235

Kikuchi N, Chung KY, Torigaki T, Taylor JE (1986) Adaptive finite
element methods for shape optimization of linearly elastic
structures. Comput Methods Appl Mech Eng. https://​doi.​org/​
10.​1007/​978-1-​4615-​9483-3_6

Li H, Yamada T, Jolivet P, Furuta K, Kondoh T, Izui K, Nishiwaki
S (2021) Full-scale 3D structural topology optimization using
adaptive mesh refinement based on the level-set method. Finite
Elem Anal Des 194:103561. https://​doi.​org/​10.​1016/j.​finel.​
2021.​103561

Li Y (2014) Topology optimization of compliant mechanisms based
on the BESO method.

Liu K, Tovar A (2014) An efficient 3D topology optimization code
written in Matlab. Struct Multidisc Optim 50(6):1175–1196.
https://​doi.​org/​10.​1007/​s00158-​014-​1107-x

Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set
method for systematic design of hinge-free compliant mecha-
nisms. Comput Methods Appl Mech Eng 198(2):318–331. https://​
doi.​org/​10.​1016/j.​cma.​2008.​08.​003

Lurie KA, Cherkaev AV, Fedorov AV (1982) Regularization of optimal
design problems for bars and plates, part 2. J Optim Theory Appl
37(4):523–543. https://​doi.​org/​10.​1007/​BF009​34954

Mancinelli C, Livesu M, Puppo E (2018) Gradient field estimation on
triangle meshes. Smart Tools Apps Graphics. https://​doi.​org/​10.​
2312/​stag.​20181​301

Museth K, Breen DE, Whitaker RT, Mauch S, Johnson D (2005) Algo-
rithms for interactive editing of level set models. Comput Graph-
ics Forum 24(4):821–841. https://​doi.​org/​10.​1111/j.​1467-​8659.​
2005.​00904.x

Osher S, Sethian JA (1988) Fronts propagating with curvature-depend-
ent speed: algorithms based on Hamilton-Jacobi formulations. J
Comput Phys 79(1):12–49. https://​doi.​org/​10.​1016/​0021-​9991(88)​
90002-2

Otomori M, Yamada T, Izui K, Nishiwaki S (2014) Matlab code for
a level set-based topology optimization method using a reaction
diffusion equation. Struct Multidisc Optim 51:1159–1172. https://​
doi.​org/​10.​1007/​s00158-​014-​1190-z

Persson P-O, Strang G (2004) A simple mesh generator in MATLAB.
SIAM Rev 46:329–345. https://​doi.​org/​10.​1137/​S0036​14450​
34291​21

Salazar de Troya MA, Tortorelli DA (2018) Adaptive mesh refine-
ment in stress-constrained topology optimization. Struct
Multidisc Optim 58(6):2369–2386. https://​doi.​org/​10.​1007/​
s00158-​018-​2084-2

Sethian JA, Wiegmann A (2000) Structural boundary design via level
set and immersed interface methods. J Comput Phys 163(2):489–
528. https://​doi.​org/​10.​1006/​jcph.​2000.​6581

Sethian JA (1999) Level set methods and fast marching methods:
Evolving interfaces in computational geometry, fluid mechanics,
computer vision, and materials science.

Sigmund O (2001) A 99 line topology optimization code written in
Matlab. Struct Multidiscip Optim 21(2):120–127. https://​doi.​org/​
10.​1007/​s0015​80050​176

Sigmund O (2022) On benchmarking and good scientific practise in
topology optimization. Struct Multidisc Optim 65(11):315. https://​
doi.​org/​10.​1007/​s00158-​022-​03427-2

Sigmund O, Maute K (2013) Topology optimization approaches.
Struct Multidisc Optim 48(6):1031–1055. https://​doi.​org/​10.​1007/​
s00158-​013-​0978-6

Simon J (1980) Differentiation with respect to the domain in bound-
ary value problems. Numer Funct Anal Optim 2(7–8):649–687.
https://​doi.​org/​10.​1080/​01630​563.​1980.​10120​631

Sokolowski J and Zolesio J-P (1992) Introduction to shape optimiza-
tion. 10(https://​doi.​org/​10.​1137/1.​97808​98718​690

Suzuki K, Kikuchi N (1991) A homogenization method for shape
and topology optimization. Comput Methods Appl Mech Eng
93(3):291–318. https://​doi.​org/​10.​1016/​0045-​7825(91)​90245-2

Svanberg K (1987) The method of moving asymptotes—a new method
for structural optimization. Int J Numer Meth Eng 24:359–373

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyMesher:
a general-purpose mesh generator for polygonal elements written
in Matlab. Struct Multidisc Optim 45(3):309–328. https://​doi.​org/​
10.​1007/​s00158-​011-​0706-z

van Dijk NP, Yoon GH, van Keulen F, Langelaar M (2010) A level-
set based topology optimization using the element connectivity
parameterization method. Struct Multidisc Optim 42(2):269–282.
https://​doi.​org/​10.​1007/​s00158-​010-​0485-y

Wang MY, Wang X, Guo D (2003) A level set method for struc-
tural topology optimization. Comput Methods Appl Mech Eng
192:227–246. https://​doi.​org/​10.​1016/​S0045-​7825(02)​00559-5

Wang SY, Lim KM, Khoo BC, Wang MY (2007) An extended level
set method for shape and topology optimization. J Comput Phys
221(1):395–421. https://​doi.​org/​10.​1016/j.​jcp.​2006.​06.​029

Wang C, Xie YM, Lin X, Zhou S (2022) A reaction diffusion-based
B-spline level set (RDBLS) method for structural topology opti-
mization. Comput Methods Appl Mech Eng 398:115252. https://​
doi.​org/​10.​1016/j.​cma.​2022.​115252

Wei P, Li Z, Li X, Wang MY (2018) An 88-line MATLAB code for the
parameterized level set method based topology optimization using
radial basis functions. Struct Multidisc Optim 58(2):831–849.
https://​doi.​org/​10.​1007/​s00158-​018-​1904-8

Xia L, Zhang L, Xia Q, Shi T (2018) Stress-based topology optimi-
zation using bi-directional evolutionary structural optimization
method. Comput Methods Appl Mech Eng 333:356–370. https://​
doi.​org/​10.​1016/j.​cma.​2018.​01.​035

Xie YM and Steven GP (1992) Shape and layout optimization via an
evolutionary procedure. Proceedings of the International Confer-
ence on Computational Engineering Science.

Xie YM, Steven GP (1993) A simple evolutionary procedure for struc-
tural optimization. Comput Struct 49(5):885–896. https://​doi.​org/​
10.​1016/​0045-​7949(93)​90035-C

Xie YM, Steven GP (1996) Evolutionary structural optimization for
dynamic problems. Comput Struct 58(6):1067–1073. https://​doi.​
org/​10.​1016/​0045-​7949(95)​00235-9

Xiong Y, Zhao Z-L, Lu H, Shen W, Xie YM (2023) Parallel BESO
framework for solving high-resolution topology optimisation
problems. Adv Eng Softw 176:103389. https://​doi.​org/​10.​1016/j.​
adven​gsoft.​2022.​103389

Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology opti-
mization method based on the level set method incorporating
a fictitious interface energy. Comput Methods Appl Mech Eng
199(45–48):2876–2891. https://​doi.​org/​10.​1016/j.​cma.​2010.​05.​
013

Zhang S, Gain AL, Norato JA (2020) Adaptive mesh refinement for
topology optimization with discrete geometric components.
Comput Methods Appl Mech Eng 364:112930. https://​doi.​org/​
10.​1016/j.​cma.​2020.​112930

Zhuang Z, Xie YM, Zhou S (2021) A reaction diffusion-based level set
method using body-fitted mesh for structural topology optimiza-
tion. Comput Methods Appl Mech Eng 381:113829. https://​doi.​
org/​10.​1016/j.​cma.​2021.​113829

Zhuang Z, Xie YM, Li Q, Zhou S (2022a) A 172-line Matlab code
for structural topology optimization in the body-fitted mesh.
Struct Multidisc Optim 66(1):11. https://​doi.​org/​10.​1007/​
s00158-​022-​03464-x

Zhuang Z, Xie YM, Li Q, Zhou S (2022b) Body-fitted bi-directional
evolutionary structural optimization using nonlinear diffusion

https://doi.org/10.1016/j.cma.2020.113235
https://doi.org/10.1007/978-1-4615-9483-3_6
https://doi.org/10.1007/978-1-4615-9483-3_6
https://doi.org/10.1016/j.finel.2021.103561
https://doi.org/10.1016/j.finel.2021.103561
https://doi.org/10.1007/s00158-014-1107-x
https://doi.org/10.1016/j.cma.2008.08.003
https://doi.org/10.1016/j.cma.2008.08.003
https://doi.org/10.1007/BF00934954
https://doi.org/10.2312/stag.20181301
https://doi.org/10.2312/stag.20181301
https://doi.org/10.1111/j.1467-8659.2005.00904.x
https://doi.org/10.1111/j.1467-8659.2005.00904.x
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1007/s00158-014-1190-z
https://doi.org/10.1007/s00158-014-1190-z
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.1007/s00158-018-2084-2
https://doi.org/10.1007/s00158-018-2084-2
https://doi.org/10.1006/jcph.2000.6581
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s00158-022-03427-2
https://doi.org/10.1007/s00158-022-03427-2
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1080/01630563.1980.10120631
https://doi.org/10.1137/1.9780898718690
https://doi.org/10.1016/0045-7825(91)90245-2
https://doi.org/10.1007/s00158-011-0706-z
https://doi.org/10.1007/s00158-011-0706-z
https://doi.org/10.1007/s00158-010-0485-y
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/j.jcp.2006.06.029
https://doi.org/10.1016/j.cma.2022.115252
https://doi.org/10.1016/j.cma.2022.115252
https://doi.org/10.1007/s00158-018-1904-8
https://doi.org/10.1016/j.cma.2018.01.035
https://doi.org/10.1016/j.cma.2018.01.035
https://doi.org/10.1016/0045-7949(93)90035-C
https://doi.org/10.1016/0045-7949(93)90035-C
https://doi.org/10.1016/0045-7949(95)00235-9
https://doi.org/10.1016/0045-7949(95)00235-9
https://doi.org/10.1016/j.advengsoft.2022.103389
https://doi.org/10.1016/j.advengsoft.2022.103389
https://doi.org/10.1016/j.cma.2010.05.013
https://doi.org/10.1016/j.cma.2010.05.013
https://doi.org/10.1016/j.cma.2020.112930
https://doi.org/10.1016/j.cma.2020.112930
https://doi.org/10.1016/j.cma.2021.113829
https://doi.org/10.1016/j.cma.2021.113829
https://doi.org/10.1007/s00158-022-03464-x
https://doi.org/10.1007/s00158-022-03464-x

A 262‑line Matlab code for the level set topology optimization based on the estimated gradient… Page 23 of 23  171

regularization. Comput Methods Appl Mech Eng 396:115114.
https://​doi.​org/​10.​1016/j.​cma.​2022.​115114

Zhuang Z, Weng Y, Xie YM, Wang C, Zhang X, Zhou S (2024) A node
moving-based structural topology optimization method in the
body-fitted mesh. Comput Methods Appl Mech Eng 419:116663.
https://​doi.​org/​10.​1016/j.​cma.​2023.​116663

Zuo ZH, Xie YM (2015) A simple and compact Python code for com-
plex 3D topology optimization. Adv Eng Softw 85:1–11. https://​
doi.​org/​10.​1016/j.​adven​gsoft.​2015.​02.​006

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.cma.2022.115114
https://doi.org/10.1016/j.cma.2023.116663
https://doi.org/10.1016/j.advengsoft.2015.02.006
https://doi.org/10.1016/j.advengsoft.2015.02.006

	A 262-line Matlab code for the level set topology optimization based on the estimated gradient field in the body-fitted mesh
	Abstract
	1 Introduction
	2 Methodology
	2.1 GFLS topology optimization
	2.2 Body-fitted meshing

	3 Matlab implementation
	3.1 GFLS main loop (Lines 2–62)
	3.2 Body-fitted mesh generator (Lines 64–173)
	3.3 Finite element analysis (Lines 174–214)
	3.4 Derivation of curvature and gradient field (Lines 215–262)
	3.5 Discussions
	3.6 More numerical examples

	4 Conclusions
	Appendix–Matlab Code GFLS262
	Acknowledgements
	References

