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Abstract
Topology optimization is an influential technique engineers and designers employ to achieve desirable material distribution 
within a designated domain. This educational article introduces a concise and efficient Matlab code, comprising only 262 
lines, developed explicitly for the Level Set topology optimization based on the estimated Gradient Field (GFLS) in the 
body-fitted mesh. Unlike conventional level set methods that rely on the upwind scheme employed in the structured meshes, 
the proposed algorithm adopts the per-cell linear estimation of the discrete gradient vectors in the body-fitted mesh frame-
work to obtain the velocity field and update the level set function. The Matlab code, named GFLS262, consists of a 62-line 
main program, 41-line finite element analysis function, and 48-line sub-functions, enabling the implementation of the GFLS 
method in 2D scenarios. Additionally, a 111-line function describes an improved mesh generator incorporated in the code to 
facilitate the generation of body-fitted meshes. The superiority of this innovative approach over the previous optimization 
methods with invariant meshes is demonstrated through various benchmark examples. For ease of access and further learn-
ing, the educational Matlab code is available on the website and can also be found in the Appendix section of this article.

Keywords  Topology optimization · Level set method · Gradient field estimation · Body-fitted mesh · Educational Matlab 
code

1  Introduction

Topology optimization, a mathematical method for achiev-
ing optimized material distribution within design domains, 
has gained increasing popularity in the engineering and 
architecture communities (Dorn et  al. 1964; Glowinski 
1984; Goodman et al. 1986; Kikuchi et al. 1986; Lurie et al. 
1982; Svanberg 1987). It aims to achieve better structural 
performance while satisfying various design constraints by 
redistributing prescribed material. Over the years, several 
methods have been developed to tackle this challenging 

problem, including the well-known homogenization method 
proposed by Bendsoe and Kikuchi (1988). The homog-
enization method leverages the concept of homogenization 
theory (Bendsoe 1989; Suzuki and Kikuchi 1991), which 
allows for the representation of heterogeneous materials as 
an equivalent homogeneous material with effective proper-
ties. These methods seek to find the desirable distribution 
of material phases within a design domain discretized by 
finite elements, considering the macroscopic behavior and 
performance of the structure. However, the homogenization 
optimization method can be computationally demanding due 
to the requirement of solving multiple microscale problems 
in each iteration. The accuracy of the method is also depend-
ent on the fidelity of the homogenization model used and the 
appropriate representation of material behavior. Nowadays, 
three popular methods in topology optimization that have 
shown remarkable efficacy are the Solid Isotropic Material 
with Penalization (SIMP) method, the Bi-directional Evo-
lutionary Structural Optimization (BESO) method, and the 
level set method.

The SIMP method (Bendsoe and Sigmund 2004; Sigmund 
2001; Sigmund and Maute 2013), widely recognized for its 
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simplicity and effectiveness, penalizes intermediate densities 
of material to encourage either full inclusion or complete 
exclusion of material in each element of the design domain. 
By assigning a high penalty to intermediate densities, the 
method drives the optimization process toward achieving 
either fully solid or void regions. The SIMP method has 
gained widespread popularity due to its ability to generate 
structurally efficient designs efficiently. Several versions of 
Matlab programs employing the SIMP method in the fixed 
structured mesh have been published over the past decades 
(Andreassen et al. 2011; Ferrari and Sigmund 2020; Liu and 
Tovar 2014; Sigmund 2001). The SIMP method provides a 
simple and intuitive framework, making it suitable for quick 
design iterations and preliminary studies.

The BESO method (Xie and Steven 1992; 1993; 1996), 
drawing inspiration from evolutionary processes, utilizes 
bi-directional optimization wherein both the inclusion 
and exclusion of material are considered simultaneously. 
Through an iterative procedure, the BESO method progres-
sively removes the least significant material elements while 
introducing new elements to enhance the structural perfor-
mance (Huang et al. 2006; Huang and Xie 2009; 2010). It 
has been implemented using Python code (Zuo and Xie 
2015) and Matlab codes (Huang and Xie 2010; Zhuang 
et al. 2022a, b). The BESO method, with its evolutionary 
nature, excels in generating innovative designs and exploring 
unconventional solutions (He et al. 2023; Xiong et al. 2023).

The level set method (Osher and Sethian 1988; Sethian 
1999; Sethian and Wiegmann 2000) represents the evolv-
ing geometry implicitly using a higher-dimensional level set 
function, widely applied in numerical analysis and image 
processing. In this century, the level set method has been 
employed in topology optimization (Allaire et al. 2002, 
2004; Wang et al. 2003), where the boundaries between 
solid and void regions are represented by a level set func-
tion. This formulation provides a versatile framework for 
handling complex shape variations, including topological 
changes (Allaire et al. 2011; Yamada et al. 2010). The level 
set method enables the evolution and optimization of the 
level set function to obtain the desired material distribution 
(Li et al. 2021; Wang et al. 2022; Zhuang et al. 2021). The 
published Matlab codes (Challis 2010; Otomori et al. 2014; 
Wei et al. 2018) demonstrate level set optimization meth-
ods by solving the Hamilton–Jacobi, radial-basis, and reac-
tion–diffusion equations, respectively. The level set method 
has gained significant attention in the field of structural opti-
mization due to its ability to capture and represent complex 
geometries implicitly.

The level set optimization method offers a highly appeal-
ing advantage with its smooth and distinct material bounda-
ries depicted by the zero-level contour. However, conven-
tional practices commonly interpolate the level set function 
into a structured rectangular/hexahedral mesh, resulting 

in zig-zag boundaries that compromise accuracy. Thus, 
researchers leveraged the body-fitted mesh to accurately 
represent the material boundaries provided by the level set 
optimization method (Allaire et al. 2011; 2013; 2014) and 
the Deformable Simplicial Complex (DSC) method (Chris-
tiansen et al. 2014). Body-fitted meshing involves creating 
a computational grid that conforms to the geometry of the 
physical system being analyzed in the last decade (Dapogny 
and Frey 2012; Dapogny et al. 2014; Talischi et al. 2012). 
This technique is particularly useful for solving problems 
where the geometry is complex or changing, and the solu-
tion requires a high degree of accuracy around the bounda-
ries. Body-fitted meshes typically consist of structured or 
unstructured grids overlaid onto the physical domain (Baiges 
et al. 2019; Salazar de Troya and Tortorelli 2018; Zhang 
et al. 2020). The grid points are distributed across the physi-
cal domain such that they align with the boundaries, ensur-
ing an accurate representation of features such as flow sepa-
ration, boundary layer development, or material interfaces. 
This work generates the body-fitted mesh according to the 
smooth boundaries using the Delaunay triangulation and 
force–displacement equilibrium (Persson and Strang 2004; 
Zhuang et al. 2021; Zhuang et al. 2022a, b). The node posi-
tions are iteratively changed to produce the body-fitted mesh 
with high quality, which can be employed in level set opti-
mization methods to solve complex problems in structural 
mechanics and materials science. The body-fitted meshing 
ensures an accurate representation of physical boundaries, 
while the level set topology optimization provides a flex-
ible framework for exploring complex material layouts. This 
combined approach can lead to the creation of innovative 
and efficient structures and materials, helping to solve real-
world engineering problems.

The utilization of body-fitted meshing is essential within 
the finite element analysis and level set optimization pro-
cesses rather than merely serving as a post-processing tool 
for generating optimized results. This study aims to integrate 
body-fitted meshing with finite element analysis, sensitiv-
ity analysis, and the design variable updating procedures 
in level set topology optimization. However, it is crucial 
to acknowledge the specific limitations associated with the 
commonly employed upwind scheme in level set topology 
optimization. Primarily, the upwind scheme is limited to 
uniform sampling and tends to be sensitive to mesh irregu-
larities (Museth et al. 2005). The upwind scheme and level 
set optimization presented in previously published Matlab 
code are exclusively compatible with structured rectangular 
meshes (Challis 2010; Wei et al. 2018). Generally, imple-
menting the conventional upwind scheme can lead to inac-
curacies and impact the smoothness of the level set function 
when interpolating from a structured mesh to a body-fitted 
mesh (van Dijk et al. 2010). The level set function may 
develop steep gradients in the body-fitted mesh, leading to 
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problems in numerical approximations using the upwind 
schemes (Wang et al. 2007). Meanwhile, this study adopts 
the bi-section method rather than the augmented method to 
compute the Lagrangian multiplier, ensuring quicker con-
vergence and volume accuracy. In this context, the iterative 
calculation process within the upwind scheme may signifi-
cantly escalate the computational costs during the optimiza-
tion phase (Zhuang et al. 2024).

Thus, this paper presents an educational Matlab code 
that performs level set topology optimization utilizing the 
estimated gradient field (GFLS) within the framework of 
a body-fitted mesh. Building upon the 172-line code Tri-
TOP172 (Zhuang et al. 2022a, b), the code GFLS262 uti-
lizes the gradient field-based level set method rather than the 
BESO sensitivity ranking scheme to update design variables, 
maximizing the benefits of smooth boundaries. The GFLS 
method employs per-cell linear estimation of discrete gra-
dient vectors, instead of the traditional upwind method, to 
update the level set function and design variable. It is well-
known that time-dependent partial differential equations 
(PDEs) govern the evolution of the level set function and 
material densities. Through discretizing the design domain 
into a finite element mesh, the time-dependent issue can be 
transformed into a series of steady-state problems that are 
solvable in iterative procedures. Then, this approach allows 
for the step-by-step computation of the solution over a speci-
fied time interval based on the gradient field of the level set 
function (Azari Nejat et al. 2022; Jiang and Zhao 2020). The 
proposed method offers an effective means to solve time-
dependent PDEs in topology optimization, which facilitates 
the exploration of intricate material layouts and topological 
changes. The level set function is updated at prescribed time 
intervals, enabling the material distribution to evolve toward 
an optimized configuration that aligns with the design objec-
tives. This iterative process converges toward a material dis-
tribution that minimizes or maximizes a specific objective 
function while adhering to designated design constraints. 
The primary advantages of this method encompass superior 
mesh adaptivity, reduced computational cost, and enhanced 
compatibility with the bi-section Lagrangian method.

Researchers and practitioners face the hurdle of writ-
ing efficient and robust computer codes. Developing such 
codes demands expertise in both numerical techniques and 
programming skills. To enhance usability, the proposed 
GFLS262 code is equipped with user-friendly interfaces, 
allowing users to customize input parameters, including 
design domain dimensions, boundary conditions, and vol-
ume constraints. The code consists of 262 lines, making it 
easily understandable and modifiable for users. The provided 
Matlab program includes the main optimization loop (Lines 
2–62), body-fitted mesh generator (Lines 64–173), and finite 
element analysis (Lines 174–214). In the main loop, the 
program provides visualization capabilities to display the 

progressive evolution of the optimized designs. The code 
discretizes the governing equations and calculates the sensi-
tivity information necessary for optimization iterations. The 
derivations of curvature and gradient field are displayed in 
Lines 215–262, together with the level set reinitiating sub-
function. The code facilitates the generation of optimized 
structures by minimizing or maximizing the objective func-
tion subject to various constraints. This educational article 
will serve as a valuable tool for researchers and engineers 
working on topology optimization, providing fast and effi-
cient implementation of body-fitted level set methods based 
on the estimated gradient field.

The following sections provide an outline of the con-
tents of this paper. In Sect. 2, we introduce the optimization 
problem and the algorithms of the proposed GFLS method, 
which includes a definition of the level set function, the 
body-fitted mesh generator, and the derivation of the gradi-
ent field. The provided Matlab script is further explained and 
implemented to solve the compliance minimization prob-
lem in Sect. 3. The presented code is thoroughly validated 
against benchmark problems, demonstrating its reliability 
and accuracy. Finally, in Sect. 4, we summarize the contribu-
tions of this work. An educational Matlab program named 
GFLS262 is provided in the Appendix section of this paper 
for practical implementation. (https://​github.​com/​zhuan​
ginho​ngkong/​GFLS2​62)

2 � Methodology

2.1 � GFLS topology optimization

Topology optimization is a design process that optimizes 
the distribution of material within a given design space 
Ω ⊂ ℝ2 while simultaneously minimizing an objective 
function and considering specific constraints, such as 
volume and stress constraints. The optimization problem 
often involves solid and void materials within the design 
domain Ω = Ωs ∪ Ωv under the linear elasticity setting. 
A typical configuration for the Messerschmitt-Bölkow-
Blohm (MBB) beam optimization problem is depicted in 
Fig. 1, where the material boundary Γ consists of three 
components: Γ = ΓN ∪ ΓB ∪ ΓD. The Dirichlet boundary 
condition is imposed on ΓD, while the Neumann boundary 
condition is applied on ΓN ∪ ΓB. The Dirichlet boundary 
portion marked as ΓD remains fixed with no displacement. 
The concentrated load, represented by F (50 N), is applied 
on the inhomogeneous Neumann boundary labeled as ΓN. 
The homogeneous Neumann boundary ΓB bears no load 
and is not subject to displacement constraints. Assum-
ing zero body force is applied within the design domain, 
the surface traction g represents the external loads on 
the boundary ΓN. In this article, the objective function 
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represents the strain energy, where J characterizes the 
functional aspect of topology optimization for compliance 
minimization in linear elasticity.

The displacement field u represents the unique solution 
of the linearized elasticity system. The strain tensor ε(u) is 
defined as (∇u + (∇u)T)/2, while D pertains to the elasticity 
tensor governed by Hooke’s law. The common choice for 
the optimization constraint is the maximum volume frac-
tion Vmax of the solid material.

The level set method is a powerful approach for solv-
ing shape and topology optimization problems, which can 
achieve topological changes such as merging, splitting, and 
erosion of material regions. This method represents the 
interface between different material phases using a level 
set function, which can be evolved using time-dependent 
PDEs. This work introduces a level set model as an iso-
surface of a scalar function φ: ℝ2 → ℝ, which directly 
controls the exterior and interior boundary shapes of the 
structure. The design variable of the GFLS optimization is 
the boundary Γ determined by the level set function. The 
level set function value φ can be expressed as:

The variable x represents a space location in the design 
domain. The proposed method optimizes the design pat-
tern by iteratively updating the level set function according 

(1)

Min ∶ J(u) = �Ω

D�(u) ⋅ �(u)dΩ = �ΓN

g ⋅ udΓN

s.t. ∶

⎧⎪⎨⎪⎩

(D�(u))n�ΓN
= g

u�ΓD
= 0

∫
Ω
dΩ − Vmax ≤ 0

(2)

⎧⎪⎨⎪⎩

𝜑(x) < 0∀ x ∈ Ωs�Γ

𝜑(x) = 0∀ x ∈ Γ

𝜑(x) > 0∀ x ∈ Ωv�Γ

to the shape derivative. At the beginning of each iteration, 
the level set function φ is reinitialized as a signed distance 
function to the material boundaries. Using the pre-estab-
lished level set function φ, we can depict the optimization 
problem in the following manner using the Heaviside func-
tion H(φ) and Dirac function δ(φ).

This equation holds for any displacement field w in the 
space of kinematically admissible fields W. In previous 
level set works (Wang et al. 2003, 2007), the smoothed 
Dirac delta function and the Heaviside function are typi-
cally used to avoid regenerating the element mesh when 
the boundary is modified or updated during the iterative 
process. Conversely, the Dirac delta function with a near-
theoretical profile has the potential to be integrated into 
the proposed GFLS method, as the regenerated body-fitted 
mesh can continuously describe the moving boundaries in 
the design domain. However, the final objective function 
values and optimized structures are similar when using 
the smoothed and near theoretical delta function, since the 
shape derivative only considers solid elements (φ(x) < 0). 
Elements in the void region are excluded from the finite 
element analysis and sensitivity computation in this work.

The shape derivative of the compliance objective can be 
derived as the sensitivity according to previous level set works 
(Allaire et al. 2002, 2004; Wang et al. 2003). For a reference 
domain Ω0, we consider domains of the type Ω = Ω0 + ψ. The 
continuous function ψ belongs to the Hilbert functional space 
Ψ of order one, which is restricted on the Dirichlet boundary 
and inhomogeneous Neumann boundary.

(3)

Min ∶ J(�) = �ΓN

g ⋅ u�(�)�∇��dΓN

s.t. ∶

⎧⎪⎨⎪⎩

∫
Ω
D�(u) ⋅ �(w)H(�)dΩ = ∫

ΓN
(g ⋅ w)�(�)�∇��dΓN ∀w ∈ �

u�ΓD
= 0

∫
Ω
dΩ − Vmax ≤ 0

Fig. 1   A half MBB beam 
optimization problem with the 
design domain Ω and bound-
ary Γ 
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In this case, the shape derivative of the objective function 
J(Ω) at Ω0 can be defined as the Fréchet derivative in Ψ at 0.

where n0 represents the normal vector to variable boundary 
ΓB. The curvature κ is part of the expression of the obtained 
Fréchet derivative, which can be computed according to the 
positions of boundary nodes in the body-fitted mesh.

The dynamic level set model specifies a surface S in an 
implicit form as an iso-surface that takes into account the loca-
tion x and time t.

Subsequently, the Hamilton–Jacobi equation can be derived 
by differentiating each side of the equation with respect to the 
time variable t while applying the chain rule.

The shape derivative of the objective function delivers 
a vector field vc throughout the design domain. This time-
dependent PDE can be expressed using the magnitude of the 
velocity field vc and gradient field of the level set function 
∇φ(x,t) as follows:

The discrete solution of the Hamilton–Jacobi equation is 
employed in the level set optimization to approximate the 
system variables of a continuous level set function. A robust 
computational method to obtain the discrete solution was 
developed based on the notion of weak solutions and entropy 
limits (Osher and Sethian 1988). To solve the Hamilton–Jacobi 
equation, the equation can be replaced with an approximation 
based on the forward difference derivative by introducing a 
virtual time interval Δt.

The time step Δt for the finite difference scheme must 
satisfy the Courant–Friedrichs–Lewy (CFL) stability 
condition.

where α is a user-defined parameter to control the length 
of the time step. A larger time step accelerates topologi-
cal changes in each iteration, thereby achieving faster con-
vergence in optimization. However, the time step must not 

(4)Ψ =
{
�
|||� ∈ W1,∞(ℝ2,ℝ2)with� = 0 onΓN&ΓD

}

(5)

⟨
�J

�Ω
(Ω0),�

⟩
= ∫ΓB

(2

[
�(g ⋅ u)

�n0
+ �(g ⋅ u)

]
− D�(u) ⋅ �(u))� ⋅ n0dΓ

(6)S(t) = {x(t) ∶ �(x(t), t) = 0}

(7)
��(x, t)

�t
+ ∇�(x, t)

dx

dt
= 0

(8)
��(x, t)

�t
+ vc|∇�(x, t)| = 0

(9)�(x, t + Δt) − �(x, t) ≈ −vc|∇�(x, t)|Δt

(10)Δt = �∕max ||vc||

exceed a specific upper limit due to the CFL condition, 
which is essential for ensuring convergence when solving 
PDEs.

The time-dependent PDE can be transformed into a 
series of steady-state problems solved in iterative proce-
dures. The solution of the updated level set function φn+1 
can be calculated in each iteration as follows.

The magnitude of the velocity vc for the compliance 
minimization problem can be obtained using the shape 
derivative (Allaire et al. 2002; Simon 1980; Sokolowski 
and Zolesio 1992). In 2D scenarios, the design domain 
is discretized using a body-fitted triangular mesh. As a 
result, the value vc(e)of the element e in the finite element 
framework can be expressed as:

The solid material stiffness matrix kse can be determined 
by the vertices’ coordinates of the body-fitted element e. 
The ρe represents the relative density of the mesh e, where 
it is either one or zero, eliminating the greyscale problem, 
while the volume of the mesh e is denoted as Ve. The cur-
vature term is incorporated into the sensitivity analysis 
to enhance the stability of advection, whose derivation in 
the body-fitted mesh is included in Sect. 3.4. Meanwhile, 
the element displacement vector ue and stiffness matrix ke 
are determined during the finite element analysis proce-
dure. The element sensitivity number is interpolated to the 
nodes to obtain vc values using a weighted average method.

The Hamilton–Jacobi equation shown in Eq. (11) can 
be solved by a standard upwind scheme on a Cartesian 
grid (Allaire et al. 2004; Sethian 1999; Wang et al. 2003). 
Assuming fields φn

x+1, φn
x−1, φn

y+1, φn
y−1 represent the level 

set functions in the rectangular design domain with small 
offsets in x- and y- directions. The finite difference in various 
directions Tn

+x, Tn
−x, Tn

+y, Tn
−y can be calculated as:

(11)�n+1(x, t) = �n(x, t) − vc
||∇�n(x, t)

||Δt

(12)

vc(e) = 2

�
�(g ⋅ u)

�n0
+ �(g ⋅ u)

�
− D�(u) ⋅ �(u) = uT

e
keue + 2�eu

T
e
keue

s.t. ∶

⎧⎪⎨⎪⎩

ke = �ekse
�e = 0 or 1

N∑
e=1

�eVe − Vmax ≤ 0

(13)T+x
n

=
�x+1
n

− �n

Δx

(14)T−x
n

=
�n − �x−1

n

Δx
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The effectiveness of the upwind scheme in the level set 
method has been demonstrated in the formwork of a fixed 
structured mesh. The level set function can be updated by:

However, this well-established method proves to be less 
accurate and efficient when applied to an unstructured mesh. 
Unlike the structured mesh, the individual nodes of a body-
fitted triangular mesh have ambiguous neighboring nodes, 
and therefore, the previous upwind method becomes invalid 
to obtain fields φn

x+1, φn
x−1, φn

y+1, φn
y−1, which are neces-

sary to update the level set function. In this work, the GFLS 
method utilizes per-cell linear estimation of discrete gradient 
vectors, instead of the traditional upwind method (Osher and 
Sethian 1988), as a finite difference scheme to efficiently 
update the level set function in the body-fitted mesh. Let us 
consider a triangular element e in the body-fitted mesh with 
three vertices va, vb, vc, and three edges (va − vc), (vc − vb), 
(vb − va). The gradient vector of the triangular element 
∇φe for the scalar field of the level set function φ can be 
expressed by:

where the φa, φb, and φc are the level set function values 
on the vertices va, vb, and vc. The (vc − vb)┴ means that the 
edge (vc − vb) is rotated by 90 degrees. Thus, the per-vertex 
gradient estimation ∇φp can be obtained using the weighted 
average approach as follows.

where N(p) denotes all the triangles that include the node p 
as a vertex, and Vsum is the area sum of these elements. Thus, 
the level set function value at each node p in the body-fitted 
mesh can be expressed as:

(15)T+y
n

=
�
y+1
n − �n

Δy

(16)T−y
n

=
�n − �

y−1
n

Δy

(17)
�n+1(x, t) = �n(x, t) − [max(vc, 0)∇

+ +min(vc, 0)∇
−]Δt

(18)
∇+ = max(T−x

n
, 0)2 +min(T+x

n
, 0)2 +max(T−y

n
, 0)2 +min(T+y

n
, 0)2

(19)
∇− = max(T+x

n
, 0)2 +min(T−x

n
, 0)2 +max(T+y

n
, 0)2 +min(T−y

n
, 0)2

(20)∇𝜑e =
(𝜑a − 𝜑c)(�c − �b)

⊥

2Ve

+
(𝜑b − 𝜑c)(�a − �c)

⊥

2Ve

(21)∇�p =
1

Vsum

N(p)∑
e=1

∇�eVe

(22)�p(new) = �p − vc
|||∇�p

|||Δt

As illustrated in Fig.  2, the level set function and 
optimized structure can be iteratively updated by solv-
ing Eq. (11) until it meets the convergence criteria. This 
study adopts the bi-section Lagrangian method to ensure 
precise control of the volume fraction ratio and accelerate 
convergence.

2.2 � Body‑fitted meshing

This section presents the body-fitted meshing based on the 
Delaunay triangulation, improving the mesh generation 
scheme in the existing studies (Persson and Strang 2004). 
Firstly, a Matlab function ContourPoints1 is designed to 
find the points on the zero iso-surface of the level set func-
tion. In this work, the structure array data type in Matlab is 
employed to save the required information by groups using 
data containers called fields. Figure 3 consists of four parts 
illustrating different stages in the process of identifying and 
adjusting boundary nodes. Firstly, the zero-level contours 
of the level set function are plotted in Fig. 3a. Then, Fig. 3b 
displays the boundary nodes initially identified by MAT-
LAB along the zero-level contours determined in Fig. 3a. 
The nodes on the zero-level contour of the level set function 
are grouped based on their belongings to an open/closed 

Fig. 2   Overview of the GFLS topology optimization processes

1  Names in type-writer font refer to Matlab variables, commands, 
and functions.
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curve using the contour operator, where the repeated nodes 
in the closed groups must be removed. For example, Con-
tour 1 shown in Fig. 3a is an open curve, while Contours 
2, 3, 4, 5, and 6 are closed curves. However, these bound-
ary nodes need to be adjusted from the initial positions to 
improve accuracy in describing the boundary geometries. As 
illustrated in Fig. 3c, the distances between the neighboring 
points are adjusted to ensure the effective control of the node 
distribution. Figure 3d provides a closer view of the adjusted 
boundary nodes in three groups, labeled as Groups 1, 2, and 
6. The magnification highlights the detailed positioning and 
adjustments made to the boundary nodes.

The resulting information is stored as structure array 
variables, which include node numbers, coordinates, open/
closed group designations, and curvature values. The 
adjusted boundary nodes and loaded nodes are interspersed 
among unfixed points that are uniformly distributed across 
the structure. Figure 4a illustrates the body-fitted meshes 
generated by these nodes using Delaunay triangulation. 
Subsequently, the positions of these nodes undergo iterative 
adjustments to accurately delineate the boundaries by solv-
ing for force–displacement equilibrium. The spareness of the 

body-fitted mesh can be manually controlled by specifying a 
target edge length (L0) for each element. This work aims to 
create a denser mesh around the boundaries to improve the 
analysis accuracy. A coarser mesh is generated in the low-
sensitivity area to decrease the computational cost. Thus, 
the L0 value is defined as proportional to the distance from 
the material boundaries, as illustrated in Fig. 4b. The edge 
length (L) of the body-fitted mesh generated by Delaunay tri-
angulation can be calculated for each unstructured element. 
The difference between current L and desired bar length 
L0 causes the repulsive forces within the bars according to 
Hooke’s law. Suppose ps and pe represent the coordinates 
of the starting and ending points of bar b. In that case, the 
force vector Fb can be obtained using a scaling factor (fs) as 
follows:

The fixed scaling factor fs ensures that repulsive forces 
exist in most bars (Fb > 0) (Persson and Strang 2004). Now, 
we consider a node connected to several bars (total number: 

(23)�b = (max(fsL0

√
L2∕L2

0
− L, 0)∕L)(�e − �s)

Fig. 3   a The zero-level contours 
of the level set function; b the 
boundary nodes identified by 
Matlab; c the adjusted boundary 
nodes; d the magnified section 
of the adjusted nodes in Groups 
1, 2, and 6
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bm) in the body-fitted mesh framework. The force vector 
on the node is evaluated by the vector summation of all the 
connected bars. The node position p changes according to a 
positive parameter β after applying the repulsive forces. The 
parameter β is defined as 0.2 to ensure numerical stability.

Subsequently, the mesh generator iteratively performs 
Delaunay triangulation and adjusts node positions until the 
current and desired edge lengths are sufficiently close. After 
several iterations, high-quality body-fitted meshes can be 
generated, as depicted in Fig. 4b. In summary, the body-fit-
ted technique ensures that the computational grid conforms 
to the material boundaries, providing accurate representation 
and minimizing numerical errors.

3 � Matlab implementation

The main objective of this educational article is to provide 
a user-friendly and accessible codebase that allows engi-
neers and researchers to experiment and explore body-fitted 
level set topology optimization techniques. The compact and 
well-documented code enables users to grasp the underly-
ing concepts and incorporate them into their specific design 
problems. The numerical implementation of the GFLS opti-
mization approach is introduced by explaining the proposed 
262-line Matlab code GFLS262 line-by-line. The Matlab 
program can be called using the following command:

GFLS262(lx,ly,Vr,volReq,maxedge,minedge,E,nu,tau,s
igma,alpha).

In this context, lx and ly specify the dimensions of 
the 2D design domain along the x and y-axis directions 

(24)

� = � + �

bm∑
b=1

((max(fsL0

√
L2∕L2

0
− L, 0)∕L)(�e − �s))

correspondingly. Vr is utilized as the solid material removal 
ratio to regulate the volume decrease rate and adapt the num-
ber of iterations required for convergence. volReq denotes 
the maximum volume fraction that needs to be achieved. The 
parameters maxedge and minedge are employed to limit the 
range of edge lengths for the body-fitted mesh, thereby con-
trolling the mesh sparseness throughout the design domain. 
E and nu represent Young’s modulus and Poisson’s ratio of 
the linearly elastic solid material. tau denotes a positive coef-
ficient that contributes to the curvature term when calculat-
ing the sensitivity. A Gaussian filter is employed to smooth 
the material boundaries controlled by a positive parameter 
sigma. The step length Δt for the finite difference scheme 
is determined by the value of alpha. If this coefficient is too 
small, the topology evolution speed will decrease, poten-
tially converging to a suboptimal local minimum (Challis 
2010).

This code generates a visual representation of the distri-
bution of design variables in each iteration. Deep pink and 
indigo blue are employed to depict solid and void materials, 
respectively, while the material boundaries are captured with 
purple curves. Figure 5 showcases the optimized configura-
tion of a 2D MBB beam using the proposed Matlab code, 
executed with the specified input line.

GFLS262(120,40,0.05,0.5,10,2,2e5,0.3,4.8e-5,1.0,260)
Building upon prior research (Sigmund 2001), this 

approach leverages symmetry to diminish the computational 
expenses involved in optimization. Specifically, this example 
focuses solely on the right half of the MBB beam. During 
optimization, the smooth boundaries continuously evolve 
with the body-fitted mesh to improve the analysis accu-
racy. After 22 iterations, the optimized structure is achieved 
with an objective function value of 1.128 using the GFLS 
method. The volume fraction ratio closely matches the pre-
scribed value of 50%, measuring at 50.01%. The Matlab 
program was executed using 12th Gen Intel(R) Core(TM) 
i7-12700H@2.30-GHz CPUs in this work.

Fig. 4   a Initial regularly-dis-
tributed nodes and the meshes 
generated by the first Delauney 
triangulation; b Optimized node 
positions and the meshes gener-
ated by the last triangulation
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In the subsequent sections, we present a detailed descrip-
tion of the code architecture, along with explanations of the 
numerical methods employed. The 262-line code consists 
of four main parts, namely the GFLS main loop, body-fitted 
mesh generator, finite element analysis, and gradient field 
derivation, each explained individually in Sects. 3.1–3.4. 
Section 3.5 discusses the parameter definitions, differences 
from previous code, and possible extensions. Additionally, 
Sect. 3.6 provides extra numerical examples to demonstrate 
the effectiveness and robustness of the proposed method.

3.1 � GFLS main loop (Lines 2–62)

The code provided in the appendix implements a structural 
optimization algorithm based on the finite element method 
and the level set method. The main function of the GFLS 
method only contains 61 lines. First, the parameters and the 
initial mesh in the design domain are defined in Lines 3–9. 
In Line 3, a two-dimensional rectangular domain BDY is 
defined to represent the range of the optimization area. The 
coordinates of the regularly distributed points across the 
optimization area are obtained using the operator meshgrid 
in Line 4. Line 6 creates a level set function phi to describe 
the initial material distribution, which is further adjusted 
in Line 8 to obtain a usable boundary curve c. The maxi-
mum and minimum distances d1 and d2 balance the distance 
between neighboring nodes on the zero contour of the level 
set function phi. In Line 9, the GenerateMesh function is 
called to establish a body-fitted mesh using the obtained 
boundary curve c, generating a data structure that includes 
finite element information. The variables p, t, t1, t2, Ve, and 
pmid denote node coordinates, element connectivity, void 
element connectivity, solid element connectivity, element 
volume, and element centroid coordinates, respectively.

Lines 11–62 form the main loop of the GFLS optimiza-
tion program, which iterates multiple times, and each itera-
tion consists of the following steps. Line 13 performs finite 
element analysis for the body-fitted mesh to calculate strain 
energy J, volume fraction of the solid material vol, and sen-
sitivity numbers Ce, which is saved for each iteration. In 

Line 18, the element sensitivity numbers are interpolated 
to each node in the design domain. The scalar curvature 
values on the current boundary node are calculated in Line 
15, stored in Curvfull and integrated into the node sensitivity 
field. Line 19 calculates the velocity vector Vc, which repre-
sents the direction to transition from the current state to the 
optimized state. Lines 20–21 calculate the time step dt and 
the target volume V of the current iteration. Inspired by the 
evolutionary ratio in the conventional BESO method (Huang 
and Xie 2010), the target volume in each iteration is deter-
mined by a solid material removal ratio Vr and the allowable 
maximum volume volReq. Then, the objective function and 
volume fraction of the optimization are output, and the opti-
mized configuration is plotted using deep pink and indigo 
blue using the patch function (Lines 24–26). The smooth 
and elegant material boundaries are drawn using the con-
tour operator in Line 27. Lines 30–32 check for convergence 
criteria, including the minimum iteration to convergence, 
volume requirement, and objective function requirement. 
The objective function differences between the current and 
previous five iterations should be less than 0.5 percent to 
meet the criteria and exit the Matlab program.

Then, Lines 34–37 reinitialize the level set function in 
each iteration and interpolate to each node. The variables 
x, phiE, and phiN store the relative density, level set values 
for elements, and level set values for nodes. For numerical 
stability, the level set values for each element are defined as 
a signed distance function to the nearest material bounda-
ries (Challis 2010). In Line 38, the discrete gradient field 
of the level set function phiN is obtained as Gradx and 
Grady in x- and y-directions, which is used for subsequent 
design updates. Next, Lines 40–58 perform an optimization 
process using the bi-section method to update the level set 
function based on given constraints and target volume. It 
utilizes interpolation, contour extraction, and one-iteration 
meshing functions to estimate the current volume, adjust 
the Lagrange multiplier, and generate an updated mesh rep-
resentation. The variables l1 and l2 are initialized as 0 and 
1 × 109 (Line 40), representing the lower and upper bounds 
of the Lagrange multiplier. A while loop is initiated, which 
continues until the absolute difference between l2 and l1 
divided by the absolute value of l2 is smaller than 1 × 10−9. 
In Line 42, the sensitivity number for the bi-section algo-
rithm Vbs is calculated as the difference between Vc and the 
average of l1 and l2. Line 43 updates the level set function 
by solving the time-dependent PDE according to the sensi-
tivity and gradient values, as shown in Eq. (11). In Line 45, 
the function ContourPoints is called to extract the contour 
points of the updated level set function phinew. Next, an 
if-else condition checks if any contour points are found. If 
contour points exist, a mesh is generated to calculate the 
volume fraction of the solid materials in the current design. 
Note that the re-meshing process only operates for one 

Fig. 5   The optimized configurations of the half and full MBB beam 
designs obtained by the proposed Matlab program GFLS262
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iteration (maxiter defined as 1) to save computational cost. 
If no contour points are found, the volume of the void space 
inside the design is calculated based on the mean value of 
the level set function evaluated at the nodes of the triangles. 
The level set function is then convolved with a Gaussian ker-
nel (Zhuang et al. 2022a, b) and interpolated to the regularly 
distributed nodes to plot contours in Lines 44–45. Another 
if-else condition is used to update the Lagrange multiplier 
value based on the volCurr (volume fraction of the current 
structure) being greater or smaller than the target volume 
V. Line 61 is employed to generate a new body-fitted mesh 
based on the updated level set function. The resulting mesh 
data, including coordinates, connectivity, element volumes, 
and midpoints, are stored in the respective variables.

In conclusion, this part of the code implements an opti-
mization-based structural design process by combining the 
finite element method and the GFLS algorithm to optimize 
the distribution of structural materials. In each iteration, the 
target volume of the current iteration is prescribed, and the 
material distribution is continuously evolved based on this 
value. The convergence of the system is checked during the 
iteration, and the optimization is terminated when the con-
vergence criteria are met, aiming to achieve a decent design 
objective.

3.2 � Body‑fitted mesh generator (Lines 64–173)

The body-fitted mesh generator iteratively creates the mesh 
to capture the material boundaries (zero contours of the level 
set function), which mainly contains three functions: Con-
tourPoints (Lines 65–113), GenerateMesh (Lines 115–161), 
and Uniquenode (Lines 163–173). The Matlab function 
ContourPoints is utilized to find the nodes on the contour 
and adjust the distance between neighboring nodes. The 
boundary curve c is a two-dimensional array that records 
the coordinates of the contour nodes, and d1 and d2 are two 
threshold parameters for distance. Lines 67–74 contain a 
while loop that divides the contour node set c into several 
segments, each containing several nodes. As illustrated in 
Fig. 3b, the points of each segment are saved in a struc-
ture array, and whether each segment is an open curve is 
recorded. Meanwhile, the numbering columns obtained by 
the Matlab function contour are removed from the contour 
node-set. Next, the for loop in Lines 76–112 iterates through 
each segment of the contour and adjusts the node spacing for 
further processing. Line 75 clears the variable c and Curv to 
store new contour points and their curvature values. Lines 
77–80 retrieve the coordinate points of the current segment 
and calculate the distances between neighboring nodes in 
the current segment, saving in ndist. The for loop in lines 
81–86 is designed to remove all nodes that are too close to 
their neighboring points. Lines 88–90 check if the distance 
between the first and last points of a contour is less than 

d1, and if so, the last point is removed. Then, Lines 91–96 
calculate the distances between neighboring nodes in the 
updated node set and store them in ndist. Lines 97–103 aim 
to insert midpoints between the nodes that are larger than 
d2 in distance for the current segment. Lastly, the processed 
nodes with balanced distance are added to the variable c, and 
the corresponding curvature values are stored in the variable 
Curv (Lines 104–110).

The Matlab function ContourPoints is a novel function 
proposed by this paper, which significantly improves the 
quality of the body-fitted mesh generated by the function 
GenerateMesh. Lines 116–122 generate the regularly distrib-
uted nodes pi in the design domain and calculate the mini-
mum distances from each node to the contour points, stored 
in variable d. The contour points and loaded nodes are fixed 
in pfix, and the rejection method deletes points using a prob-
ability proportional to 1/d2 (Lines 123–127). After removing 
duplicate points, the for loop in Lines 131–151 iteratively 
updates the node coordinates p until the maximum iteration 
count is reached. First, the if statement in Lines 132–136 is 
used to determine whether to conduct Delaunay triangula-
tion according to the amplitude of node movement in the 
last iteration. In this work, the edge length of the body-fitted 
mesh is defined as proportional to this distance, which is 
also limited by the prescribed values maxedge and minedge. 
The parameter fscale influences the relation between dis-
placement and force in the body-fitted mesh generator. Lines 
138–144 aim to obtain the current L and desired length L0 
for each edge using the user-defined parameter fscale. Next, 
the repulsive forces within the bars are calculated using 
Hooke’s law, explained in Eq. (24), which is employed to 
update the positions of the non-fixed nodes accordingly. The 
node coordinates are determined by solving linear force–dis-
placement equilibrium in a truss structure, and the Delaunay 
triangulation iteratively updates the topology (Persson and 
Strang 2004; Zhuang et al. 2021). Lines 149–150 restrict 
the node coordinates within the prescribed boundary range. 
Then, the function Uniquenode is called in Line 152 to pro-
cess the obtained node coordinates p and triangular mesh 
t, removing duplicate nodes and updating the connectivity 
information. The variable pmid is calculated as the average 
coordinates of the three vertices for each element, which 
represents the midpoints of the elements. The level set val-
ues of elements dE are obtained in Line 154 by interpolating 
the level set values of nodes dN at the positions pmid using 
cubic interpolation. Elements are classified into two groups 
based on the sign of their corresponding dE values. Elements 
with positive dE values are stored in t1 as the void domain, 
while elements with non-positive dE values are stored in 
t2 as the solid domain (Line 155–156). Lastly, a for loop 
iterates in Lines 159–161 over each element to calculate the 
volume Ve of each element using a determinant formula.
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The third function, Uniquenode, removes duplicate nodes 
and recomputes the node indices in the triangular mesh. 
Lines 164–168 eliminate the elements whose volume is 
zero and delete repeated/vacant nodes from p, while Lines 
169–173 update the connectivity information in t according 
to the updated node matrix p. Overall, this part of the code 
appears to be performing mesh regeneration by comparing 
current and desired edge length, moving node positions, 
updating connectivity information, and calculating curva-
ture values of the boundary nodes.

3.3 � Finite element analysis (Lines 174–214)

Collectively, this section contributes a valuable finite ele-
ment analysis (FEA) tool for researchers and practitioners 
engaged in topology optimization using the body-fitted 
mesh. This section also contains three Matlab functions: 
E2N (Lines 174–180), FEA (Lines 181–208), and Getma-
trixKe (Lines 209–214). The objective of the function E2N 
is to estimate the node sensitivity number dN using the ele-
ment sensitivity x. It iterates over each node in p, calculates 
the dot product between the element volume and sensitivity, 
and then divides it by the sum of all elements. Line 178 finds 
all elements that contain the specific node, which determines 
the nodal sensitivity using the weighted average method.

Subsequently, the FEA program incorporates finite ele-
ment analysis within the body-fitted mesh framework. Lines 
183–186 form a loop to compute the stiffness matrix of the 
solid elements and combine them into a larger stiffness 
matrix. We only consider the solid elements in the FEA pro-
cedure to save remarkable computational costs, especially 
for structures with a low-volume fraction. Within the loop, 
the function GetmatrixKe is called to calculate the stiffness 
matrix for each element using the vertex coordinates, elas-
tic modulus E, and Poisson’s ratio nu. The detailed deri-
vations of the element stiffness matrix for the body-fitted 
mesh using symbol calculation are provided by Zhuang 
et al. (2021). The results are then stored in the correspond-
ing positions of the matrix KK. Line 159 defines an array 
elemDof to store the degree of freedom indices for each 
element. Based on the node indices t, the degrees of free-
dom in the x- and y-directions are assigned to each element. 
Inspired by published SIMP codes (Andreassen et al. 2011; 
Ferrari and Sigmund 2020), Lines 190–194 reconstruct KK 
into a one-dimensional array sK and create a symmetrized 
sparse matrix NK using the matrices iK, jK, and sK. After 
assembling the global stiffness matrix, the program defines 
the loads and boundary conditions across the design domain. 
Lines 195–197 find the indices of the fixed nodes on the 
boundary and store the fixed degree of freedom in fixed-
Dof. Line 198 finds the indices of force nodes and stores 
them in forceNodes. Next, the displacement vector U and the 
force vector F are initialized in Lines 201 and 202, where the 

degrees of freedom corresponding to the loaded position are 
subjected to a vertical force of − 50. Thus, the displacement 
vector U, the strain energy J, sensitivity numbers Ce, and 
solid material volume vol can be obtained in Lines 201–208.

While the element stiffness matrix remains constant 
across all elements in the structured rectangular mesh, it 
varies in the body-fitted triangular mesh based on the node 
coordinates. Lines 210 to 214 define the GetmatrixKe func-
tion, which is employed to calculate the stiffness matrix Ke 
for each element. The function inputs the vertex coordinates 
X and Y of a triangular element, as well as the material 
parameters to generate the elasticity matrix D. It first calcu-
lates the Jacobian matrix J, then computes the strain matrix 
Be, and finally obtains the stiffness matrix Ke of the ele-
ment based on Be and the material parameters. Overall, this 
part of the code implements the functionality of calculating 
the element stiffness matrix, assembling the global stiffness 
matrix, solving for displacements, and computing strain 
energy/sensitivity in finite element analysis.

3.4 � Derivation of curvature and gradient field 
(Lines 215–262)

The last part of the code involves three functions for level 
set function reinitialization, discrete gradient derivation, and 
curvature calculation. These functions are broken down and 
explained as follows. The function pdist is designed to reini-
tialize the level set function using the signed distance func-
tion at the beginning of each optimization iteration (Line 
36). The node coordinates xinds and yinds are obtained for 
void and solid domains. Then, Lines 224–226 calculate the 
minimum Euclidean distance between the centroid point of 
each element to the material boundaries and output the val-
ues in the dist array. The Mshdist library (Dapogny and Frey 
2012), an open-source tool, is highly recommended for reini-
tializing level set functions due to its numerical efficiency. It 
computes the exact distance only in the neighborhood of the 
boundary and then propagates inside the domain.

The function GradDeri (Lines 228–252) computes the dis-
crete gradient of the level set function on a body-fitted triangu-
lar mesh. A per-cell linear estimation of the discrete gradient 
inspired by the previous works (Mancinelli et al. 2018; Zhuang 
et al. 2024) is adopted in this section. The program takes the 
level set function values (f), nodal coordinates (p), element 
connectivity matrix (t), element areas (Ve), and a node-set (c) 
as input parameters. First, Lines 229 and 230 initialize gradi-
ent components Gradx and Grady as zero arrays. The function 
then iterates over the nodes and finds all the elements ts that 
include the specific node (Line 233). Then, the gradient vec-
tor for the elements included in ts can be estimated. Within 
the for loop, it calculates the difference vectors D1 and D2 
based on the nodal coordinates p1, p2, and p3 and computes 
the gradient vector (Gradu) using the nodal level set function 
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values phi1, phi2, and phi3. Thus, the per-vertex discrete gra-
dient components Gradx and Grady for node A0 can be calcu-
lated using the weighted average approach in Lines 250–251. 
The curvature number for a boundary node can be estimated 
according to the coordinates of its adjacent two points on the 
contour. A circumscribed circle of the triangle is created by 
the three points i − 1, i, i + 1 to determine the scalar curvature 
values. The curvature radius R of this circle can be calculated 
as follows.

where the Xi−1, Xi, and Xi+1 represent the coordinates of the 
three nodes. The symbol “ × ” returns the cross product of 
vectors. The scalar curvature κi is the reciprocal of the cur-
vature radius, which is computed as follows:

CalculateCurv (Lines 254–262) computes the curvature 
C of a curve defined by a set of contour points (X). Line 255 
initializes N as the number of points in X and appends an 
additional column of zeros to X. It then iterates over each 
point in X except the first and last points and calculates the 
curvature radius R according to Eq. (25). Next, the curvature 
C can be computed as the reciprocal of R (Line 262).

(25)Ri =
||Xi−1 − Xi+1

||||Xi − Xi+1
||||Xi − Xi−1

||
||(Xi−1 − Xi) × (Xi+1 − Xi)

||

(26)�i =
||(Xi−1 − Xi) × (Xi+1 − Xi)

||
||Xi−1 − Xi+1

||||Xi − Xi+1
||||Xi − Xi−1

||

In summary, this part of the code provides functions for 
calculating distances between points, computing the discrete 
gradient of the level set function on a body-fitted mesh, and 
evaluating the curvature values. The accessibility and ease of 
implementation of the code contribute to ongoing advance-
ments in structural optimization.

3.5 � Discussions

This section explores how to select appropriate values for 
the parameters used in the Matlab implementation of the 
proposed algorithm. It also outlines potential extensions 
that could enhance the approach to address more complex 
optimization problems. Table 1 presents the recommended 
value ranges for the nine input parameters established by 
testing the stiffness optimization problems. Users have 
the flexibility to define these parameters based on specific 
requirements. Input values within the recommended ranges 
typically yield optimization results with objective values that 
closely approach the optimal value. Selecting various param-
eters can produce a range of competitive designs, which 
allows architects and engineers to achieve more architectural 
innovation (He et al. 2023).

Furthermore, Table  2 includes definitions for other 
parameters within the Matlab code. The Young’s modulus 
and Poisson’s ratio of the solid material can be manually 
specified as input parameters. The remaining parameters are 
hardcoded in the script to streamline operations, as these 

Table 1   Suggested parameter values for nine input parameters in program GFLS262

Parameter Meaning Suggested value range Inappropriate values will cause:

lx & ly Dimensions of the design domain 
along the x and y-axis directions

Integer values
The value of lx × ly should range from 

400 to 40,000

Too small: Poor mesh quality
Too large: Significant computational 

costs
Vr Solid material removal ratio between 

iterations
The value of Vr should range from 0.01 

to 0.2
Too small: Very slow convergence
Too large: Local optimality problem

volReq Maximum allowable volume fraction 
of solid material

The value of volReq should range from 
0 to 1

Too small: No solid materials in the 
domain

Too large: No void materials in the 
domain

maxedge & minedge Range of edge lengths for the body-
fitted mesh

The ratio of maxedge/minedge should 
range from 2 to 10

Too small: Uniform mesh distribution
Too large: Poor mesh quality

tau Positive coefficient contributing to the 
curvature term

The value of tau should range from 
1 × 10–5 to 1 × 10–3

Too small: The effect of the curvature 
term is unnoticeable

Too large: The curvature term domi-
nates the level set evolution

sigma Gaussian filtering coefficient The value of sigma should range from 
0.8 to 2

Too small: Unsmooth material 
boundaries

Too large: Large volume fraction 
changes

alpha Step length coefficient Integer value
The value of alpha should range from 

200 to 300

Too small: The design changes slowly 
and converges to a poor solution

Too large: The design changes steeply 
and affects accuracy
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values have been found suitable for stiffness optimization 
problems.

The key differences between the proposed 262-line 
code GFLS262 and the previous 172-line code TriTOP172 
(Zhuang et al. 2022a, b) are outlined below.

(1)	 The proposed GFLS method employs the gradient field-
based level set method instead of the BESO sensitivity 
ranking scheme to update the design variables, which 
takes advantage of the smooth boundaries to the maxi-
mum extent;

(2)	 Matlab function ContourPoints is provided in this work 
to find the points on the zero iso-surface of the level 
set function. The points on each contour are found, 
adjusted, and stored as structure array variables, which 
significantly increases the mesh generator efficiency;

(3)	 The mean curvature values of the boundary nodes are 
included in the sensitivity analysis rather than the non-
linear diffusion term;

(4)	 Gradient field derivation and level set function reini-
tialization are involved in updating the design variables 
during the optimization;

(5)	 As shown in Table 3, the newly introduced 262-line 
code improves the optimization efficiency and objec-
tive function value (mean compliance) of the optimized 
configuration.

The proposed method is capable of addressing optimi-
zation problems featuring various objective functions and 
constraints. For instance, compliant mechanisms achieve 
mobility via elastic deformation rather than relying on 
rigid-body connections. In the optimal design of compliant 

Table 2   The definitions of 
material property parameters 
and parameters hard-coded in 
program GFLS262

Parameter Meaning

E (Input) The Young’s modulus of the solid material
nu (Input) The Poisson’s ratio of the solid material
BYD (Line 3) The ranges of the design domain
d1 & d2 (Line 7) Maximum and minimum allowable distances between boundary nodes
Fscale = 1.2 (Lines 9, 47, 61) A positive scaling factor to ensure that most bars give repulsive forces
maxiter = 80 (Lines 9, 61) Maximum iteration number during the re-meshing process
0.005 (Line 30) Relative tolerance on the volume fraction and objective values for 

termination of the program
l1 = 0 & l2 = 1 × 109 (Line 40) Lower and upper bounds of the Lagrange multiplier
num & col (Line 66) Group index and node index
rv = 0.5 (Line 125) Rejection value
beta = 0.2 (Line 129) Force–displacement parameter

Table 3   Optimization objectives and computational efficiency comparison of the GFLS, BESO, BFLS-UPWIND, and HJLS methods

Optimization Method GFLS262
(GFLS)

TriTOP172
(BESO)

BFLS with Upwind HJLS

Mean Compliance 1.799 1.802 1.867 1.882
Objective Function
Difference

N/A 0.17% 3.64% 4.41%

Iterations to Convergence 24 22 27 74
Total Run Time (second) 89.800 142.349 122.652 100.488
Total Element Number 7,859 9,783 6,088 4,000
Total DOF 8,060 10,036 6,232 8,262
Run Time per DOF (second) 1.114 × 10–2 1.418 × 10–2 1.968 × 10–2 1.216 × 10–2

Efficiency Difference N/A 21.44% 43.39% 8.39%
Algorithm Category Boundary-based 

method
Density-based method Boundary-based method Boundary-

based 
method

Using Upwind Scheme? × × ✔ ✔
Using Body-fitted Mesh? ✔ ✔ ✔ ×
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mechanisms, the objective function focuses on displacement 
in a specified direction, denoted as uout at the specific output 
port.

The sensitivity analysis of the compliant mechanism 
problem utilizes an adjoint load approach, where a virtual 
force is applied to the specified output port. A gripper opti-
mization example demonstrating the design of a compliant 
mechanism using the proposed GFLS method is presented 
in the following section.

Stress constraints can be incorporated with topology opti-
mization (Bruggi and Duysinx 2012; Chen et al. 2021; Fan 
et al. 2019; Holmberg et al. 2013; Xia et al. 2018) to address 
issues related to excessive structural stress. The compliance 
optimization problem, which concurrently considers volume 
and stress constraints, can be formulated as follows:

where �max

vM
  denotes the maximum von Mises stress for all 

body-fitted elements in the design domain. �∗
vM

  represents 
the maximum allowable von Mises stress value. When deal-
ing with multiple constraints in the optimization problem, 
the proposed approach can integrate the augmented Lagran-
gian technique (Luo et al. 2008) or incorporate an isotropy 
constraint (Challis et al. 2008). A T-Pier column example 
illustrating the multi-constraint optimization is presented 
in the subsequent section to showcase the advantage of the 
proposed GFLS method.

3.6 � More numerical examples

The numerical examples presented in this section showcase 
the reliability and effectiveness of the proposed program in 
achieving outcomes within a reasonable number of itera-
tions. The Matlab program can solve user-defined optimiza-
tion problems by changing a few command lines. Different 
load and boundary conditions can be applied by making 
changes to Lines 195–202 in the finite element analysis 
function. The initial pattern within the design domain can 
be defined manually in Line 6. The two threshold parameters 
(d1 and d2) for the distance between adjacent nodes on the 
boundary curve are prescribed in Line 6. Furthermore, the 
parameters fscale (Lines 9, 47, 61), maxiter (Lines 9, 61), rv 

(27)

Max ∶ J = uout

s.t. ∶

{
u|ΓD

= 0

∫
Ω
dΩ − Vmax ≤ 0

(28)

Min ∶ J(𝜑) = �ΓN

g ⋅ u𝛿(𝜑)�∇𝜑�dΓN

s.t. ∶

⎧⎪⎨⎪⎩

u�ΓD
= 0

∫
Ω
dΩ − Vmax ≤ 0

0 < 𝜎max

vM
≤ 𝜎∗

vM

(Line 125), and beta (Line 129) can also be adjusted accord-
ing to the specific optimization problem. The following com-
mand is added in Line 28 to save the plotted figures during 
each iteration in the folder.

saveas(gcf,[‘./fig’, int2str(iterNum) ‘.png’]);
As illustrated in Fig. 6, a vertical downward external load 

F with a magnitude of 100 N is applied at the midpoint of the 
right edge of the rectangular design domain. The entire left 
edge of the 80 × 50 design domain is fixed on both the x- and 
y-directions. The boundary condition of the cantilever beam 
can be defined using the following command to replace the 
command in Lines 195–198:

fixedNodes = find(p(:,1) =  = BDY(1,1));
forceNodes = find(p(:,1) =  = BDY(2,1) & p(:,2) =  = 0);
fixedDof = [2*fixedNodes-1; 2*fixedNodes];
Similarly, the load condition of the cantilever beam can 

be defined using the following command to replace the com-
mand in Line 202:

F = sparse(2*forceNodes,1,-100,2*length(p),1);
The initial pattern is also changed in Line 6 to expedite 

convergence.
p h i  =  - ( s i n ( x n / B D Y ( 2 , 1 ) * 5 * p i ) . * c o s ( y n /

BDY(2,1)*5*pi) + 0.5);
Figure 6 displays the optimized configuration of a 2D 

cantilever beam using the provided Matlab code, executed 
with the designated input line:

GFLS262(80,50,0.1,0.5,10,2,1e5,0.3,4.3e-5,1.1,265).
The GFLS method effectively produces a highly opti-

mized structure with an objective function value of 1.799 
converged in 24 iterations. The volume fraction ratio of 
the solid materials is measured as 49.99%, which closely 
matches the desired value of 50%. The body-fitted mesh gen-
erated in each iteration precisely captures the smooth mate-
rial boundaries without zig-zag shapes to take advantage of 
the level set method.

This work compares three alternative topology optimiza-
tion methods, BESO, BFLS-UPWIND, and HJLS, with the 

Fig. 6   The optimized configuration of the cantilever beam designs 
obtained by the proposed Matlab program GFLS262
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optimized result shown in Fig. 7a obtained using the GFLS 
method. The comparison utilizes the same design domain 
dimensions, boundary conditions, and a similar number of 
nodes. Table 3 presents a comparison of the objective func-
tion values, iteration numbers, and computational efficiency 
of the GFLS method alongside the other methods. Regard-
ing computational efficiency, it is important to consider 
the total run time required for each algorithm rather than 
focusing solely on iteration counts. Computational time per 
degree of freedom (DOF) for the Matlab programs GFLS262 
and the other methods are evaluated using profile viewer 
commands. Additionally, iteration numbers to convergence 
are detailed in Table 3 to assess the performance of each 
algorithm. While parameter settings, initial patterns, and 
algorithmic enhancements influence iteration counts, this 
number remains crucial in evaluating the convergence speed, 
stability, and effectiveness of an optimization approach.

The Matlab program TriTOP172 integrates a body-fitted 
mesh and nonlinear diffusion regularization in the BESO 
method to eliminate zig-zag boundaries (Zhuang et  al. 
2022a, b). Figure 7b displays the optimized configuration 
of a cantilever beam using the TriTOP172 code. As indi-
cated in Tables 3 and 4, the similar compliance values of the 
optimized structures achieved by GFLS262 and TriTOP172 
are notably better than those obtained by other methods. 
This similarity suggests that the primary enhancement in 
performance stems from the capability of body-fitted mesh 
algorithms to adapt the mesh to the solution rather than from 
the specific choice between GFLS or BESO approaches. 
This observation underscores the significance of employing 
body-fitted meshes to achieve favorable outcomes in topol-
ogy optimization. Moreover, the CPU computational time 

per DOF of the proposed GFLS262 code is 21.44% lower 
than that of the TriTOP172 code.

Fig. 7   The optimized configu-
rations of the cantilever beam 
designs using the a GFLS 
method; b BESO method 
(Zhuang et al. 2022a, b); c 
BFLS-UPWIND method; and d 
HJLS method

Table 4   Optimization result comparison between the proposed 
GFLS, SIMP, BESO, and RDLS methods

Numerical Examples Cantilever 
Beam MBB Beam L-

bracket

GFLS
262

Iterations to 
convergence 24 22 21

Objective 
function value 1.799 1.128 11.673

Optimized 
Design

BESO 
101 

Iterations to 
convergence 

79 71 41 

Objective 
function value 

1.864 1.187 11.905 

Improvement 
Ratio 

3.49% 4.97% 1.95% 

Optimized 
Design 

 
 

 

SIMP 
99 

Iterations to 
convergence 

71 53 41 

Objective 
function value 

1.917 1.250 12.223 

Improvement 
Ratio 

6.16% 9.76% 4.50% 

Optimized 
Design 

 
 

 

RDLS 
88 

Iterations to 
convergence 

104 108 108 

Objective 
function value 

1.896 1.186 11.867 

Improvement 
Ratio 

5.12% 4.89% 1.63% 

Optimized 
Design 
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Based on prior research (Allaire et al. 2014), this study 
adapts the conventional Level Set method into the Body-
Fitted mesh framework (BFLS-UPWIND), incorporating 
upwind schemes and numerical interpolation. This approach 
involves interpolating level set function values to a virtual 
structured mesh to ensure compatibility between the tradi-
tional upwind scheme and the body-fitted mesh used in level 
set optimization. However, the iterative upwind schemes and 
excessive interpolation processes impact the algorithm accu-
racy and computational efficiency of the BFLS-UPWIND 
method during the level set function updating procedure. 
Figure 7c illustrates the optimized configuration achieved 
by the BFLS-UPWIND method, converging to an objec-
tive function value of 1.867 after 27 iterations. According 
to Table  3, compared to the GFLS method, the BFLS-
UPWIND method achieves an objective function value 
3.64% higher, with computational time being 43.39% longer 
for optimizing the cantilever beam.

The upwind scheme proves effective and efficient in level 
set topology optimization within fixed structured meshes 
(Allaire et al. 2004; Wang et al. 2003). Figure 7d provides 
the optimized structure of the Level Set method by solv-
ing the Hamilton–Jacobi equation (HJLS) under identical 
load and boundary conditions. The optimization adapts the 
129-line Matlab code from Challis (2010) with fixed rec-
tangular meshes. However, the resulting zig-zag bounda-
ries do not conform well to the actual geometry, resulting 
in a 4.41% higher compliance value compared to the GFLS 
method. Despite additional tasks such as re-meshing and 
re-distancing that may extend total run times, the proposed 
GFLS method offers a computational cost savings of 8.39% 
over the HJLS method.

For clarity, we utilized Matlab commands to profile the 
execution time for the GFLS method. Figure 8 visually 
represents the cost distribution across different parts of 
the proposed Matlab program GFLS262. In the cantile-
ver beam case study, the costs associated with remeshing, 
encompassing the discovery of contour nodes and Delau-
nay triangulation, constitute approximately 31% of the 
overall computational expenses during optimization. Iden-
tifying contour nodes comprises 7% of the computational 
costs, which is crucial for subsequent mesh generators to 
accurately capture material boundaries. Iterative Delaunay 
triangulation, accounting for 24% of the costs, transforms 
these nodes into a body-fitted mesh with user-defined mesh 
density. An efficient FEA procedure consumes 4% of the 
computational resources to assess structural responses 
under specific conditions. In the proposed GFLS method, 
we excluded low-sensitivity void regions from the time-
consuming FEA, which means that FEA is only applied to 
the DOFs within the solid domain represented by Solid-
Dof in the code, rather than the entire design space. In 
more complex optimization scenarios, especially those 

involving extensive or non-linear FEA models, the com-
putational cost of FEA would be considerably higher. The 
derivation of the gradient field represents another 4% of 
computational expenses, offering an efficient alternative 
to traditional upwind schemes. Interpolating sensitivities 
consume 16.8% of computational resources to obtain the 
sensitivity numbers on the nodes in the design domain. 
Updating the level set function using bi-section methods 
accounts for 27% of the computational costs, ensuring pre-
cise control over solid material volume and accelerating 
convergence. Finally, 12% of computational costs are dedi-
cated to storing essential information such as node coordi-
nates, element connectivity, and updated level set values in 
each iteration. This step is vital for analyzing optimization 
progress and visualizing optimized structures.

The following paragraph describes an optimization 
design for an L-bracket in a 100 × 100 rectangular design 
domain. The model is fixed on the top edge, and the down-
ward loads are imposed at the bottom right corner of the pas-
sive regions. A passive region is located in a 60 × 60 square 
in the upper right corner of the design domain, where all 
elements should be defined as the void element. Based on 
the GFLS262 program, the nodes on the boundaries of the 
passive region can be found by adding the following com-
mand after Line 118.

px = 0.2 * BDY(1,1); py = 0.2 * BDY(1,2);
[xp,yp] = meshgrid(px,py:BDY(2,2));
[xp2,yp2] = meshgrid(px:BDY(2,1),py);
P = [xp(:),yp(:); xp2(:),yp2(:)];
Forcepts = [BDY(2,1) py; BDY(2,1)-1 py;BDY(2,1)-2 

py;BDY(2,1)-3 py;BDY(2,1)-4 py; BDY(2,1)-5 py];

Fig. 8   The cost allocation pie chart for the proposed Matlab program 
GFLS262
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These nodes are fixed in the mesh generator by replac-
ing the codes in Line 124.

pfix = [ c; P; Forcepts; BDY(2,1) BDY(1,2); BDY(1,1) 
BDY(2,2); BDY(1,1) BDY(1,2); BDY(2,1) BDY(2,2)];

The edge length L should be limited to a specific range 
using the following command after Line 142:

L = min(max(0.1,L),8);
The passive elements tp, non-passive void elements tv, 

void elements t1, and solid elements t2 are defined using 
the following command to replace Lines 155–157.

tnp = t(~ (pmid(:,1) > px & pmid(:,2) > py),:);
tp = t((pmid(:,1) > px & pmid(:,2) > py),:);
Passive = length(tp);
dEnp = dE(~ (pmid(:,1) > px & pmid(:,2) > py),:);
tv = tnp(dEnp > 0,:);
t1 = [tp; tnp(dEnp > 0,:)]; t2 = tnp(dEnp < 0,:);
t = [t1;t2];
In addition, Lines 9, 24, 61, and 115 are replaced to 

define passive elements tp and non-passive void elements 
tv as the output of the function GenerateMesh. Line 9 is 
replaced by:

[p,t,t1,t2,Ve,pmid,tv,tp] = GenerateMesh(xn,yn,c,phi,ma
xedge,minedge,1.2,BDY,80);

Line 24 is replaced by:
patch(‘Faces’,tv, ‘Vertices’,p,‘EdgeColor’,[250 250 

250]/255, ‘FaceColor’,[92 158 173]/255);
Line 61 is replaced by:
[p,t,t1,t2,Ve,pmid,tv,tp] = GenerateMesh(xn,yn,c,phi,ma

xedge,minedge,1.2,BDY,80);
Line 115 is replaced by:
function [p,t,t1,t2,Ve,pmid,tv,tp] = GenerateMesh(xn,yn,

c,dN,maxedge,minedge,fscale,BDY,maxiter).
Next, Lines 184–185 in the finite element analysis are 

replaced by:
for i = 1:NT.
if i <  = length(t1) x = 1e-5; else x = 1; end.
KK(:,6*i-5:6*i) = x* GetmatrixKe(p(t(i,:),1),p(t(i,:),2),

E,nu);
The following command is required to replace Line 50 

during the bi-section procedure of the GFLS algorithm.
xnew = max(0,sign(mean(phiNnew(t),2)));
xnew(1:length(tp)) = 0;
volVoid = dot(xnew,Ve’);
The load and boundary condition of the L-bracket design 

replaces Lines 195–202 as:
fixedNodes = find(p(:,2) =  = BDY(2,1));
fixedDof = [2*fixedNodes-1; 2*fixedNodes];
SolidDof = 1:2*length(p);
fo r c e N o d e s  =  f i n d ( p ( : , 1 )  <   =  B DY ( 2 , 1 )  & 

p(:,1) >  = BDY(2,1)-5 & p(:,2) =  = 0.2*BDY(1,2));
freeDofs = setdiff(SolidDof,fixedDof);
U = zeros(2*length(p),1);
F = sparse(2*forceNodes,1,-0.1,2*length(p),1);

Lastly, the initial pattern of the L-bracket is defined in 
Line 6 as follows.

p h i  =  - ( s i n ( x n / B D Y ( 2 , 1 ) * 5 * p i ) . * c o s ( y n /
BDY(2,1)*5*pi) + 0.5);

The threshold parameters for the distance between adja-
cent nodes on the boundary curve are changed in Line 7 as 
follows:

d1 = 0.6; d2 = 1.2;
The optimized configuration of an L-bracket design is 

illustrated in Fig. 9, obtained through the execution of the 
Matlab code GFLS262 with the specified input line:

GFLS262(100,100,0.05,0.4,10,2.5,2,0.3,6e-4,1,250).
The optimized design of the L-bracket is achieved within 

21 iterations using the GFLS method, resulting in a compli-
ance value of 11.673 and a solid volume fraction ratio of 
40.02%. The body-fitted mesh precisely captures the smooth 
and refined boundaries, significantly improving the objec-
tive function value and increasing the analysis accuracy. 
Compared to the previous SIMP 99-line code (Sigmund 
2001), BESO 101-line code (Huang and Xie 2010), and 
reaction–diffusion level set (RDLS) 88-line code (Otomori 
et al. 2014), the proposed GFLS methodology can gener-
ate a 1.63–9.76% better compliance value for the identical 
numerical example, as illustrated in Table 4. Meanwhile, 
the iteration number required before convergence is signifi-
cantly reduced, saving computational cost. The improvement 
is primarily attributed to the superior mesh adaptivity, high 
computational efficiency, and enhanced compatibility of 
the proposed GFLS method. The proposed GFLS method is 
demonstrated to be effective and robust in achieving decent 

Fig. 9   The optimized configuration of the L-bracket designs obtained 
by the proposed Matlab program GFLS262
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objective function values and smooth boundaries through 
the provided numerical examples. Figure 10 illustrates the 
convergence history of the optimization problems. The com-
mand can be added after Line 30 to store the body-fitted 
mesh and optimization history information for plotting 
figures.

save(‘History.mat’, ‘Obj’, ‘volt’, ‘p', ‘t’, ‘t1’, ‘t2’);
The compliance values of structures optimized with 

body-fitted meshes are typically better due to improved 
mesh quality. Sharp corner details presented in conven-
tional approaches utilizing fixed rectangular meshes can 
introduce numerical issues, particularly in simulations 
involving boundary-dependent quantities like traction loads 
(Andreasen et al. 2020; Soares da Costa Azevêdo et al. 
2024). Body-fitted meshes are designed to conform closely 
to material boundaries, resulting in a more precise represen-
tation of complex shapes and smoother transitions between 
elements. Thus, the finite element model built on a body-
fitted mesh tends to capture structural behavior more accu-
rately during optimization processes, generating improved 
compliance compared to designs on the square grid. The 
result obtained by the SIMP method is post-processed to 
ensure volume-preserving thresholding, ensuring a fair 
comparison based on thresholded 0–1 solutions (Sigmund 
2022). The proposed body-fitted meshing approach can be 
extended to 3D scenarios using the unstructured tetrahedral 
mesh (Zhuang et al. 2022a, b). Meanwhile, the open-source 
Mmg library, freely available on http://​www.​mmgto​ols.​org/, 
addresses mesh evolution challenges in the context of free 
and moving boundary problems across 2D and 3D dimen-
sions (Dapogny et al. 2014; Dobrzynski and Frey 2008).

In another instance, the focus is on achieving an optimal 
design of a compliant mechanism, which functions as an 

efficient gripper. As shown in Fig. 11a, a predefined non-
design region measuring 25 × 26 × 1 is allocated within a 
100 × 100 × 1 design domain for workpiece gripping. This 
section leverages the GFLS algorithm to achieve the desired 
objective function of displacement at the corners of the pas-
sive region under volume constraints. An external force of 
magnitude g is applied horizontally at the midpoint of the 
left edge, with the top and bottom corners of this edge being 
immovably fixed. The input parameters are defined as fol-
lows: material removal ratio Vr = 0.05; maximum volume 
fraction volReq = 0.25; Young’s modulus E = 0.1; Poisson’s 
ratio nu = 0.3; and curvature term coefficient tau = 4 × 10–3. 
As illustrated in Fig. 11b, an optimized gripper is achieved 
with a volume fraction of 25.16% after 39 iterations. Well-
defined material boundaries between solid and void domains 
ensure smooth transitions, resulting in a higher displace-
ment value at the output port, specifically 1.009 × 10–2. Fig-
ure 11c, d illustrate the optimization results using the BESO 
method with a fixed mesh and the RDLS method with a 
body-fitted mesh. The displacement values obtained by the 
RDLS and BESO methods are 9.833 × 10–3 and 9.180 × 10–3, 
respectively, demonstrating reduction ratios of 2.55% and 
9.02% compared to the GFLS method.

Furthermore, the proposed GFLS method demonstrates 
promising capabilities in representing smooth boundaries, 
which is particularly beneficial for addressing stress-con-
strained optimization challenges. This paper illustrates an 
optimization example involving a T-Pier column, where a 
50% volume constraint and a maximum allowable von Mises 
stress ( �∗

vM
 ) of 0.5 for all elements are enforced. Details 

regarding the design domain dimensions and boundary con-
ditions are depicted in Fig. 12a. The T-Pier structure is fixed 
at the bottom of the design domain, subjected to uniform 

Fig. 10   Convergence history of the numerical examples using the GFLS method: a objective function value and b volume fraction of the solid 
materials

http://www.mmgtools.org/
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loads on its top surface, with a 240 × 15 rectangular non-
design domain near the surface.

Figure 12b depicts the optimized configuration achieved 
with the proposed GFLS method employing body-fitted 
meshes, facilitating the precise application of boundary 
conditions at structural interfaces. Compared to the opti-
mized structure using a fixed rectangular mesh displayed 
in Fig. 12c, there is a 2.42% improvement in the objective 
function value, decreasing from 629.648 to 614.439. Fixed 
rectangular meshes, especially when dealing with irregu-
lar or highly curved geometries, may not align well with 
the actual shape, leading to inaccurate representations of 
stress and strain distributions. As shown in Fig. 12c, the 
non-optimal stress concentration areas highlighted in red 
circles contribute to an increase in the maximum von Mises 
stress. Body-fitted meshes ensure accurate transmission of 
forces and constraints throughout the model by aligning 
mesh elements with the geometric contours. This alignment 
results in more realistic von Mises stress distributions, as 
demonstrated in Fig. 12c, d, where colored von Mises stress 
fields are compared between optimized structures using fixed 
rectangular and body-fitted triangular meshes with the same 
color map. Notably, the maximum von Mises stress within 

the body-fitted elements shows an 8.55% reduction from 
0.351 to 0.321.

4 � Conclusions

This educational article presents an efficient Matlab program 
comprising 262 lines, specifically designed for the level set 
topology optimization. The level set method, known for 
its ability to represent complex geometries implicitly, has 
proven to be a valuable approach in structural optimization. 
The proposed GFLS method has great potential to solve 
complex problems of fluid–structure interaction, aerody-
namics, and additive manufacturing with the body-fitted 
mesh. This approach incorporates several key improvements, 
including updated body-fitted meshing, the integration of the 
gradient field derivation for design variable updates, and the 
inclusion of mean curvature values in sensitivity analysis. 
The capability of the proposed code is showcased through 
illustrative examples, highlighting its efficacy in optimiz-
ing structures while adhering to various objective functions, 
boundary conditions, and design constraints. The simplic-
ity and compactness of this program ensure that users can 

Fig. 11   aThe boundary condi-
tions and the optimization 
results of the gripper mecha-
nism using the b proposed 
GFLS method with a body-fit-
ted mesh; c BESO method with 
a fixed mesh (Li 2014); d RDLS 
method with a body-fitted mesh 
(Zhuang et al. 2021)
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readily integrate it into their existing workflows, thereby 
promoting further advancements in structural optimization.

Appendix–Matlab Code GFLS262

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00158-​024-​03891-y.
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
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