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Abstract The magnitude of integrated water vapor (IWV) varies considerably in the spatial‐temporal
domain, which demonstrates the significance of high‐spatiotemporal‐resolution IWV observations for
atmospheric water vapor distribution monitoring, both locally and globally. Unlike previously published
algorithms based on data fusion, an empirical retrieval algorithm is for the first time proposed to directly retrieve
high‐temporal‐resolution IWV estimates from near‐infrared radiance observations of the non‐geostationary
Ocean and Land Color Instrument (OLCI). The retrieval algorithm is developed based on an observed
regression relationship between satellite‐based OLCI‐estimated transmittance and ground‐based Global
Navigation Satellite System (GNSS)‐estimated IWV in the temporal domain. The results show that all newly
retrieved IWV estimates have an overall good consistency with ground‐based IWV from additional GNSS‐
sensed measurements, indicating the feasibility of the retrieval approach. The performance of the retrieval
algorithm is acceptable and satisfactory when compared with that of IWV retrievals listed in previous studies.

Plain Language Summary Integrated water vapor (IWV) is the largest natural greenhouse
component, which plays a crucially important role in weather, climate, and other related fields. Remote
sensing of IWV from satellite‐based instruments provides a unique technique for monitoring atmospheric
water vapor distribution at proper spatial and temporal resolutions in both local and global areas. However,
non‐geostationary satellite‐retrieved IWV observations have much lower temporal resolutions compared to
geostationary satellite‐sensed IWV measurements. The previously published improvements in the temporal
resolution of non‐geostationary satellite‐retrieved IWV estimates are primarily performed based on data
fusion approaches using reanalysis‐based high‐temporal‐resolution IWV data. We propose a feasible IWV
retrieval algorithm for directly retrieving high‐temporal‐resolution IWV data from non‐geostationary Ocean
and Land Color Instrument (OLCI)‐sensed near‐infrared radiance observations. For the first time, this study
provides implications for the direct retrieval of high‐temporal‐resolution IWV estimates from non‐
geostationary satellite measurements. The retrieval algorithm has significant potential to be applicable to other
non‐geostationary OLCI‐like instruments, such as Medium Resolution Imaging Spectrometer (MERIS),
Medium Resolution Spectral Imager (MERSI), and Moderate Resolution Imaging Spectroradiometer
(MODIS).

1. Introduction
Water vapor is a crucial climatical parameter that plays a vital role in the hydrological cycle, atmospheric cir-
culation, and energy budget (Ashcroft et al., 2016; Bojinski et al., 2014; Cess, 2005; Held & Soden, 2000;
Sherwood et al., 2010). The magnitude of water vapor varies considerably in the spatiotemporal dimension
(Trenberth et al., 2005), denoting the importance of accurate integrated water vapor (IWV) measurements with
approximate spatial and temporal resolutions (Chen & Liu, 2016; Li & Long, 2020).

IWV can be observed from satellite‐based and ground‐based data (Vaquero‐Martínez et al., 2018; Xu &
Liu, 2022d). Ground‐based IWV observations are frequently employed as IWV references to validate satellite‐
retrieved IWV estimates (Antón et al., 2015; Liu et al., 2006; Xu & Liu, 2022c). In particular, Global Naviga-
tion Satellite System (GNSS), can provide high‐temporal‐resolution IWV data, which are little affected by
weather conditions (Vaquero‐Martínez & Antón, 2021). For this reason, ground‐based GNSS‐measured IWV
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data have also been utilized to develop water vapor retrieval/calibration algorithms for satellite‐sensed IWV
observations (Vaquero‐Martínez & Antón, 2021; Xu & Liu, 2022a, 2023b).

Remote sensing of IWV from satellite‐based instruments yields a unique means for atmospheric water vapor
distribution monitoring at an approximate spatiotemporal resolution in both local and global coverages (Vaquero‐
Martínez et al., 2018). IWV can be retrieved from satellite‐sensed measurements using different spectral
wavelengths like microwave, infrared (IR), and near‐IR (Du et al., 2015; Lee et al., 2019; Xu & Liu, 2022b). In
particular, near‐IR IWV observations have been the most frequently used satellite water vapor products over the
past several decades (He & Liu, 2019; Xu & Liu, 2023c). The Ocean and Land Color Instrument (OLCI) is a
remote sensing instrument on‐board the non‐geostationary Sentinel‐3 satellite series (Donlon et al., 2012). The
OLCI‐sensed operational IWV retrievals are calculated based on a 2‐band ratio of radiances from a near‐IR
window channel at 885 nm (O18) and a near‐IR IWV absorption channel at 900 nm (019) (Bennartz &
Fischer, 2001; Mertikas et al., 2020; Xu & Liu, 2021). The OLCI‐derived cloud‐free IWV data, in general, have
an overall good agreement with GNSS‐measured reference IWV estimates, with a root‐mean‐square error
(RMSE) of 3 and 4 mm (Mertikas et al., 2020; Xu & Liu, 2022d).

However, non‐geostationary satellite‐derived IWV data, in general, have a relatively low temporal resolution in
both regional and global areas (Li & Long, 2020; Peng et al., 2014), while geostationary satellite‐sensed ob-
servations can exclusively provide high‐temporal‐resolution full‐disk IWV retrievals locally (Wong et al., 2015;
Yang et al., 2017). It is crucial to precisely measure and monitor the worldwide water vapor variability using non‐
geostationary satellite‐sensed IWV observations, which demonstrates the significance of high‐spatiotemporal‐
resolution IWV satellite measurements (Li & Long, 2020). The previous improvements in the temporal resolu-
tion of non‐geostationary satellite‐retrieved IWV measurements are primarily conducted by fusing reanalysis‐
based high‐temporal‐resolution IWV estimates (Li & Long, 2020; Wu et al., 2023; Zhang & Yao, 2021). For
instance, Li and Long (2020) utilized an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model
(ESTARFM) to enhance the spatiotemporal resolution of operational IWV retrievals from polar‐orbiting Mod-
erate Resolution Imaging Spectroradiometer (MODIS) near‐IR observations based on reanalysis‐based ERA5
IWV data. The results showed that the fused IWV data had improvements in accuracy and spatiotemporal‐
resolution compared to operational MODIS near‐IR IWV observations (Li & Long, 2020).

Here, we observed an empirical relationship between measurements from OLCI and GNSS in the temporal
domain. Then we used the empirical relationship function to retrieve high‐temporal‐resolution IWV satellite data,
different from the previous research based on data fusion approaches. For the first time, this work provides in-
sights into directly deriving high‐temporal‐resolution IWV estimates using near‐IR radiance data from non‐
geostationary satellite‐sensed observations.

2. Study Region and Data
The research region in this letter is chiefly located in Europe, with latitudes from 35°08′ N to 62°23′ N and
longitudes from 9°40′W to 41°34′ E (see Figure 1). The selection of Europe is primarily because there are quite a
lot of ground‐based GNSS stations that can be used in algorithm development and verification. Two‐type data
measurements from OLCI and GNSS, collected from 1 January 2019 to 31 December 2020 across Europe, are
utilized.

OLCI is an imaging instrument on‐board the polar‐orbiting Sentinel‐3A and Sentinel‐3B satellites, which con-
tains 21 channels in the spectra from 0.4 to 1.02 μm (Donlon et al., 2012). It is capable of covering the globe
coverage every 2‐day (Donlon et al., 2012). The local observation time of the Sentinel‐3 satellites is frequently at
∼10:00 a.m. (Donlon et al., 2012). In the European region, the Coordinated Universal Time (UTC) is approximate
to the local time, with an overall difference of 1 and 2 hr. As a result, the Sentinel‐3 OLCI observations are
frequently at ∼10 UTC in Europe, as demonstrated in Figure S1 in Supporting Information S1.

The OLCI‐retrieved operational IWV estimates are calculated based on a 2‐channel ratio approach by using
radiance observations from a near‐IR IWV absorption channel (O19; 900 nm) and a near‐IR window channel
(O18; 885 nm) (Bennartz & Fischer, 2001; Mertikas et al., 2020; Xu & Liu, 2021). In this letter, the operational
OLCI Level‐1 Full Resolution (OL_1_EFR) product is utilized, which has radiance estimates of each band of the
OLCI sensor. The land quality and science flag data of the operational OLCI Level‐2 Land Full Resolution
(OL_2_LFR) product are utilized to define the sky conditions of OLCI‐sensed radiance data. Both OL_1_EFR
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and OL_2_LFR products have a full spatial‐resolution of 300 m. Only cloud‐free OLCI‐based radiance data are
used in this letter, as clouds have a significant influence on satellite near‐IR observations (He & Liu, 2019;
Mertikas et al., 2020; Xu & Liu, 2022c).

Additionally, ground‐based IWV, collected from 1,186 GNSS stations in 2019 across Europe (blue squares in
Figure 1), is utilized for the empirical regression analysis between observations from OLCI and GNSS. On the
other hand, IWV data, measured from additional 1,089 GNSS stations in 2019–2020 over Europe (red squares in
Figure 1), are employed to validate the performance of newly retrieved IWV estimates. All GNSS IWV data are
obtained from the Nevada Geodetic Laboratory (Blewitt et al., 2018), which are determined from wet zenith delay
observations based on Bevis et al. (1994, 1992).

In the regression procedure, OLCI‐sensed measurements, closest to GNSS stations, are selected and utilized,
provided that the closest distance between paired OLCI and GNSS observations does not exceed 5 km. In the
temporal domain, we choose and use high‐temporal‐resolution hourly GNSS‐sensed IWV data that are recorded
on the same day as the OLCI‐sensed data.

For the verification of newly derived IWV data, the temporal discrepancies between measurements from GNSS
and OLCI must be the closest, in addition to the spatial collocation criterion utilized in the regression procedure.
The spatiotemporal collocation criteria between GNSS and OLCI are based on the previous research (Vaquero‐
Martínez et al., 2018; Xu & Liu, 2023a).

3. Methodologies
3.1. Theoretical Basis

From space, remote sensing of radiance measurements from polar‐orbiting OLCI near‐IR spectra can be
calculated as (Gao & Goetz, 1990):

Ls(λ) = (
μE(λ)
π

) T(λ)ρ(λ) + Lp(λ) (1)

Figure 1. Research area and distributions of ground‐based GNSS stations. The blue squares indicate GNSS stations employed
for regression analysis between observations from OLCI and GNSS, while the red squares indicate GNSS stations employed
for the verification of newly derived IWV estimates. The color bar indicates the altitude of GNSS stations.
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where Ls(λ), E(λ), T(λ), ρ(λ), and Lp(λ) are the radiance, solar flux, transmittance, surface reflectance, and path
radiance at the spectral wavelength λ, respectively; μ is the cosine of solar zenith angle. In the near‐IR spectra,
Lp(λ) can be frequently ignored on account that the impact of aerosols on near‐IR observations is limited
(Kaufman & Gao, 1992). As a result, Equation 1 can be further re‐written in a more simplified form as:

ρ∗(λ) =
πLs(λ)
μE(λ)

= T(λ)ρ(λ) (2)

where ρ*(λ) is the apparent reflectance at the spectral wavelength λ (Kaufman & Gao, 1992).

Surface reflectance varies considerably in different types of surfaces; hence, it is impossible to estimate the at-
mospheric transmittance using radiance data of one individual near‐IR absorption channel of the OLCI sensor
(Bennartz & Fischer, 2001; Kaufman &Gao, 1992; Schläpfer et al., 1998). In the operational OLCI IWV retrieval
algorithm, a 2‐band ratio approach is presented to derive the atmospheric transmittance based on two near‐IR
channels, namely O19 at 900 nm (i.e., absorption band) and O18 at 885 nm (i.e., window band) (Bennartz &
Fischer, 2001; Xu & Liu, 2021). Additionally, previous studies indicated that the retrieval performance of 2‐band
ratio approach is comparable to that of 3‐band ratio method (He&Liu, 2020;Wang et al., 2021; Xu&Liu, 2022b).
For these reasons, a 2‐band ratio approach is used in this work to determine the transmittance of the O19 900‐nm
IWV absorption channel of the OLCI sensor. It is calculated as (Bennartz & Fischer, 2001; Xu & Liu, 2021):

T(900 nm) =
ρ∗(900 nm)
ρ∗(885 nm)

=
R(900 nm)
R(885 nm)

(3)

where T(900 nm) is the transmittance in the OLCI O19 900‐nm IWV absorption channel; ρ*(900 nm) is the
apparent reflectance in the OLCI O19 900‐nm IWV absorption channel; ρ*(865 nm) is the apparent reflectance in
the OLCI O18 885‐nm non‐absorption channel; R(900 nm) and R(885 nm) are the radiances measured from O19
and O18 bands of the OLCI sensor, respectively.

3.2. Relationship Between Satellite‐Based OLCI‐Estimated Transmittance and Ground‐Based GNSS‐
Estimated Water Vapor in the Temporal Domain

Figure 2 shows the scatterplots of the regression relationship between OLCI‐based transmittance and GNSS‐
based IWV from 00 to 23 UTC, which is performed based on the data of 2019 across Europe. In this regres-
sion analysis, the collocated OLCI–GNSS data points, which have a distance that is more than three standard
deviations of the mean, are removed and not used. For each hour, 54,916 data pairs are used to examine the
relationship between observations from OLCI and GNSS instruments in the temporal domain, that is, 00 to
23 UTC.

It can be observed in Figure 2 that the satellite‐based OLCI‐estimated transmittances have an overall strong
correlation with ground‐based GNSS‐measured IWV at different UTC hours, with a correlation coefficient (CC)
from − 0.95 to − 0.83. The CC decreases with the increase of the time difference between OLCI and GNSS
measurements. In particular, the strength of the correlation relationship (i.e., CC) between OLCI and GNSS is the
highest when the regression time is approximate to the OLCI observation time (i.e.,∼10 UTC). It is thus plausible
that IWV retrievals at different hours throughout a specific day have an overall significant correlation with the
OLCI‐sensed data obtained during the OLCI observation time on that same day. Consequently, we can use one
“instantaneous” OLCI‐sensed transmittance data observation to retrieve “continuous” high‐temporal‐resolution
IWV data on the same day.

After testing several types of regression functions, an exponential function is chosen to define the empirical
relationship between satellite‐based OLCI‐estimated transmittance and ground‐based GNSS‐estimated IWV in
the temporal domain. For each hour, this relationship can be defined as:

T(900 nm) = aexp(bW) + cexp(dW) (4)

whereW is the IWV; a, b, c, and d are the coefficients of the regression function, respectively. The coefficients a,
b, c, and d are calculated based on the least‐squares fitting approach.
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3.3. Retrieval of High‐Temporal‐Resolution IWV From OLCI‐Sensed Radiance Observations

Table S1 in Supporting Information S1 summarizes the coefficients a, b, c, and d of the regression function T
(900 nm)= aexp(bW) + cexp(dW) from 00 to 23 UTC, which are determined using collocated OLCI–GNSS data
in 2019 over Europe. The calculation of coefficients of the empirical fitting function relies significantly upon the

Figure 2. Scatter plots of the relationship between 2‐band ratio transmittances from the O19 900‐nm bands channel of the OLCI sensor and IWV from GNSS
observations in the temporal domain, based on collocated OLCI–GNSS data in 2019 across Europe. (a)–(x): 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, and 23 UTC, respectively.
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regression data set; hence, different regression data could obtain different coefficients. The least‐squares fitting
results of coefficients a, b, c, and d for four independent subsets of regression data are listed in Table S2 in
Supporting Information S1. It can be measured in Table S2 in Supporting Information S1 that the regression
coefficients vary slightly for different regression data sets. Additionally, the regression coefficients listed in Table
S2 in Supporting Information S1 are very consistent with those shown in Table S1 in Supporting Information S1.
Overall, our least‐squares fitting parameters of the exponential function are reliable and consistent for the
regression data in 2019 over Europe.

Once the coefficients are determined, high‐temporal‐resolution hourly IWV retrievals can be estimated from
polar‐orbiting OLCI‐sensed radiance data based on Equations 3 and 4. The verification of newly retrieved IWV
data is conducted using ground‐based IWV from additional 1,089 GNSS stations during 2019–2020 across
Europe, which is independent of regression data from 1,186 GNSS stations in 2019 over Europe. Four assessment
factors, that is, CC, RMSE, standard deviation (STD), and mean bias (MB), are utilized, which are calculated as:

CC =
∑
N

i=1
(WO − WO) (WR − WR)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

i=1
(WO − WO)

2
(WR − WR)

2
√ (5)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑
N

i=1
(WO − WR)2

√
√
√

(6)

STD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑
N

i=1
(WO − WR)2 − (

1
N
∑
N

i=1
(WO − WR))

2
√
√
√
√

(7)

MB =
1
N
∑
N

i=1
(WO − WR) (8)

whereWO is newly derived IWV estimates from polar‐orbiting OLCI near‐IR observations;WO is the average of
newly derived IWV estimates from polar‐orbiting OLCI near‐IR observations; WR is reference IWV estimates
from GNSS observations;WR is the average of reference IWV estimates from GNSS observations; N is the total
count of paired measurements for the verification of newly retrieved IWV data.

4. Results and Discussion
By using coefficients listed in Table S1 in Supporting Information S1, high‐temporal‐resolution IWV data (i.e.,
hourly) are retrieved from non‐geostationary OLCI‐sensed radiance measurements during 2019–2020 over
Europe. Figure 3 lists the overall verification result of newly derived hourly IWV estimates from the OLCI in-
strument, by conducting comparisons with GNSS‐observed reference IWV data.

The new OLCI‐derived IWV estimates had an overall good consistency with reference IWV from GNSS ob-
servations, with CC, RMSE, STD, and MB of 0.87, 4.23, 4.22, and 0.19 mm, respectively. In 2019, the newly
retrieved IWV data presented CC = 0.87, RMSE = 4.25 mm, STD = 4.25 mm, and MB = 0.15 mm compared to
GNSS‐measured IWV estimates. The verification metrics of newly derived IWV observations in 2020 were
similar to those in 2019, that is, CC= 0.86, RMSE= 4.20 mm, STD= 4.19 mm, andMB= 0.22 mm. This implies
that the newly proposed retrieval algorithm is capable and stable in deriving high‐temporal‐resolution hourly
IWV estimates from non‐geostationary OLCI data, although the coefficients of the retrieval algorithm are
calculated based on the data of 2019.

In Figure 3, the newly derived IWV retrievals also exhibited a good consistency with ground‐based GNSS IWV
measurements at different hours between 00 and 23 UTC. The CC between IWV fromOLCI and GNSSwas in the
range of 0.79 (23 UTC) to 0.94 (09 and 10 UTC), with an RMSE between 2.59 mm (09 and 10 UTC) and 6.23 mm
(23 UTC). At the same time, the new OLCI‐retrieved IWV data showed an STD from 2.52 mm (09 UTC) to
6.15 mm (23 UTC) and an MB from − 0.59 mm (11 UTC) to 0.98 mm (23 UTC), compared to GNSS‐estimated
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IWV data. In terms of CC, RMSE, and STD, the retrieval algorithm had the highest IWV retrieval performance
when the retrieval time was approximate to the OLCI observation time over Europe, that is,∼10 UTC. That is, the
performance of OLCI IWV retrievals tended to degrade with the increment of differences between the retrieval
time and OLCI observation time. This had a good consistency with the regression results shown in Figure 2.

The operational MODIS near‐IR and IR IWV retrievals had an RMSE between 4 and 6 mm compared with GNSS
IWV estimates (He & Liu, 2019; Xu & Liu, 2023c). For the operational OLCI water vapor product, it had an
RMSE from 3 to 4 mm (Mertikas et al., 2020; Xu & Liu, 2022d, 2023a). It is thus summarized that the retrieval
accuracy of our newly derived IWV estimates in terms of RMSE was comparable to that of operational MODIS
and OLCI IWV retrievals. Additionally, our OLCI IWV retrievals had an RMSE of 2.59 mm around the OLCI
observation time (i.e.,∼10 UTC), which was better than operational OLCI IWV retrievals (RMSE= 3 and 4 mm).
As shown in Figure S2 in Supporting Information S1, the performance of our newly derived IWV data in terms of
RMSE was also better than that of the operational OLCI IWV retrievals. This further confirmed the effectiveness
and practicality of our newly proposed retrieval approach. However, it should be mentioned that, in terms of STD,
the newly retrieved IWV data exhibited poorer performance compared to the operational IWV data. Our newly
retrieved IWV data also had slightly poorer performance than the fused IWV estimates shown in the previous
work (Li & Long, 2020;Wu et al., 2023; Zhang&Yao, 2021). The overall retrieval accuracy of our OLCI‐derived
IWV data is acceptable and satisfactory when compared to that of IWV estimates in previous studies.

In addition, we also investigated the retrieval performance of newly derived IWV estimates in both temporal and
spatial dimensions, with the results listed in Figure 4. Temporally, the daily mean IWV of newly derived IWV
data showed an overall good consistency with that of reference GNSS‐derived IWV estimates. In the spatial
domain, the new IWV retrievals also had an overall good agreement with ground‐based IWV from almost all
GNSS stations over Europe. In particular, when the retrieval time was approximate to the OLCI measurement
time, the RMSE and STD values were frequently below 3 mm in almost all GNSS stations. On the contrary, the

Figure 3. Verification of newly retrieved IWV data from the OLCI sensor using ground‐based IWV from GNSS observations
during 2019–2020 over Europe. (a): Scatter plot of hourly IWV from OLCI and GNSS; (b): Histogram of IWV differences
between OLCI and GNSS; (c): Heatmap of slope, offset, CC, RMSE, STD, and MB of OLCI IWV versus GNSS IWV
between 00 and 23 UTC.
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station‐wise verification metrics were relatively poor when the retrieval time was far from the OLCI observation
time, that is, 23 UTC. This was consistent with the hourly verification metrics listed in Figure 3.

5. Conclusions
In this letter, an empirical relationship between measurements from OLCI and GNSS is observed and defined for
the first time, which is feasible to be employed to directly retrieve high‐temporal‐resolution IWV estimates from
polar‐orbiting OLCI‐sensed observations. This study offers initial insights into deriving high‐temporal‐resolution

Figure 4. Spatiotemporal verification of newly retrieved IWV data from the OLCI sensor using ground‐based IWV from GNSS observations during 2019–2020 over
Europe. (a): Daily mean IWV from GNSS observations; (b): Daily mean IWV of newly derived IWV retrievals from the OLCI sensor; (c): Daily mean IWV differences
between OLCI and GNSS; (d)–(g): CC between IWV from OLCI and GNSS at 05, 10, 15, and 20 UTC, respectively. (h)–(k): RMSE between IWV from OLCI and
GNSS at 05, 10, 15, and 20 UTC, respectively. (l)–(o): STD between IWV from OLCI and GNSS at 05, 10, 15, and 20 UTC, respectively. (p)–(s): MB between IWV
from OLCI and GNSS at 05, 10, 15, and 20 UTC, respectively.
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IWV estimates from near‐IR measurements of non‐geostationary satellite instruments, differing from the pre-
vious research that typically uses data fusion methods.

It is found that all newly retrieved IWV data have an overall good consistency with ground‐based GNSS‐observed
IWV estimates, denoting the feasibility and effectiveness of the empirical retrieval algorithm. The retrieval
performance of newly derived IWV estimates in 2020 is comparable to that in 2019, which demonstrates the
capability and stability of the newly developed retrieval algorithm. The retrieval algorithm exhibits the best IWV
retrieval performance when the retrieval time is approximate to the OLCI observation time, that is,∼10 UTC. The
retrieval performance of our OLCI‐estimated IWV data degrades with the increase of differences between the
retrieval time and OLCI observation time. The retrieval approach shows acceptable and satisfactory performance
when compared with the accuracy of IWV data shown in previous studies.

Our IWV retrieval method is developed in the European region, and the performance of the retrieval approach is
expected to be relatively suboptimal in other regions worldwide if directly applied using coefficients calculated in
Europe. This is primarily because the UTC of satellite observations varies significantly from place to place across
the globe, although their local observation times are consistent. Additionally, regional disparities in atmospheric
conditions, such as temperature, humidity, and pressure, can significantly affect the accuracy of IWV retrievals in
regions outside Europe when using European‐determined coefficients. This is because atmospheric conditions
can vary considerably between different regions, which can affect the coefficient calculation of the empirical
retrieval algorithm. Hence, the coefficients of the retrieval algorithm, determined in the European region, could
not be ideally suited for other regions worldwide, frequently resulting in suboptimal IWV retrievals due to
regional differences in UTC observation times and atmospheric conditions.

In non‐European regions, it is thus recommended to re‐calculate the coefficients of the empirical retrieval algo-
rithm using collocated OLCI–GNSS data pairs from these specific regions. Through this approach, we can tailor
the coefficients to the unique UTC observation times and atmospheric conditions presented in the target regions,
thereby optimizing the retrieval algorithm's performance for non‐geostationary Sentinel‐3 OLCI measurements in
these specific areas. By accounting for regional differences in UTC observation times and atmospheric conditions,
this coefficient adjustment significantly enhances the retrieval algorithm's capability to derive accurate high‐
temporal‐resolution IWV data across various global regions. Ultimately, this will improve the overall accuracy
and reliability of the retrieval algorithm, ensuring its effectiveness in diverse geographical contexts.

Given the significant impact of clouds on satellite‐sensed near‐infrared data, we exclusively utilize cloud‐free
OLCI radiance data in the development of our empirical IWV retrieval approach. As such, our algorithm is
specifically intended for clear sky conditions and is not applicable in cloudy conditions. In future research, we
plan to enhance the applicability of our retrieval approach to cloudy conditions by integrating parameters
associated with cloud properties and characteristics. In addition, we will continue to refine the retrieval approach
to further improve its retrieval performance in the temporal domain, which could involve incorporating additional
data sources and exploring new techniques.

Data Availability Statement
The Sentinel‐3 OLCI data can be freely obtained from the CREODIAS at https://explore.creodias.eu/. The GNSS
IWV data can be freely accessed from the Nevada Geodetic Laboratory at http://geodesy.unr.edu/gps_timeseries/
trop/ (Blewitt et al., 2018).
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