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Abstract
This paper introduces a robust methodology for predicting traffic volume and speed on major strategic routes in Hong Kong 
by leveraging data from data.gov.hk and utilizing deep learning models. The approach offers predictions from 6 min to 1 h, 
considering detector reliability. By extracting hidden deep features from historical detector data to establish detector profiles 
and grouping detectors into clusters based on profile similarities, the method employs a CNN-LSTM prediction model for 
each cluster. The study demonstrates the model’s resilience to detector failures, with tests conducted across failure rates 
from 1% to 20%, highlighting its ability to maintain accurate predictions despite random failures. In scenarios without failed 
detectors, the method achieves favorable performance metrics: MAE, RMSE, and MAPE for traffic volume prediction over 
the next 6 min stand at 5.17 vehicles/6 min, 7.64 vehicles/6 min, and 14.07%, respectively, while for traffic speed prediction, 
the values are 3.70 km/h, 6.32 km/h, and 6.33%. Considering a failure rate of approximately 6% in the Hong Kong dataset, 
in simulated scenarios with 6% failures, the model maintains its predictive accuracy, with average MAE, RMSE, and MAPE 
for traffic volume prediction at 5.24 vehicles/6 min, 7.81 vehicles/6 min, and 14.21%, and for traffic speed prediction at 3.87 
km/h, 6.55 km/h, and 6.68%. However, the limitation of the proposed method is its potential to underperform when predict-
ing rare or unseen scenarios, indicating the need for future research to incorporate additional data sources and methods to 
enhance predictive performance.

Keywords  Traffic volume prediction · Traffic speed prediction · Deep learning · Clustering method · Detector profile

Introduction

Traffic congestion is a prominent issue in urban transporta-
tion systems, especially in densely populated cities. With 
its limited land and large population, Hong Kong has been 
dedicated to implementing various measures to optimize 
the transportation system and alleviate traffic congestion. 

One practical and cost-efficient method is intelligent traffic 
signal control systems, which enable dynamic adjustment 
of signal phases based on real-time traffic flow, reducing 
congestion (Zhao et al. 2011; Mandhare et al. 2018; Qadri 
et al. 2020). By incorporating short-term traffic variables 
prediction, such as traffic volume and speed, signal phases 
can be more accurately adjusted to adapt to near-future traf-
fic changes. This proactive approach, such as extending the 
green light duration when an increase in traffic volume is 
predicted, effectively reduces waiting time, improves overall 
road capacity, and alleviates traffic pressure.

To collect data on traffic volume, speed, and occupancy, 
traffic detectors have been installed on all strategic routes in 
Hong Kong, with the installation completed by the end of 
2020. Data-driven analysis and deep learning models can be 
used to leverage the vast traffic data collected to understand 
underlying traffic patterns and predict short-term traffic vol-
ume and speed (Lu et al. 2015; Kong et al. 2019). In recent 
years, deep learning (DL) methods have demonstrated sig-
nificant advantages in predicting short-term traffic volume 
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and traffic speed (Tedjopurnomo et al. 2022; Lee et al. 2021; 
Yin et al. 2021). These methods excel in modeling complex 
nonlinear relationships. Some works focus on predicting 
traffic for individual stations or road sections. For instance, 
Xu et al. (2023) proposed a hybrid model that combines 
autoregressive fractionally integrated moving average and 
nonlinear autoregressive neural network models for traffic 
flow prediction. Lv et al. (2015) employed stacked autoen-
coders to predict short-term road traffic flow. Qu et al. (2021) 
utilized a stacked recurrent neural network (RNN) to extract 
features from historical time series and employed an autoen-
coder to capture contextual features like dates and weeks to 
assist in traffic speed prediction. Han et al. (2019) proposed 
DeepCluster, a method that applies k-means clustering to 
group all detectors and developed individual detector predic-
tion models for each cluster. For the daily flow prediction 
of a single detector, Song et al. (2018) divided the historical 
daily data into groups using density-based clustering and 
trained a feedforward neural network model, GMDH, for 
each group. Long Short-Term Memory (LSTM) models 
and their variants, known for effectively capturing temporal 
dependencies and patterns in time series data, have been 
widely applied in traffic prediction studies (Khan et al. 2023; 
Jiang et al. 2021; Yuan and Li 2021). Abduljabbar and Dia 
(2021); Abduljabbar et al. (2021) developed LSTMs for traf-
fic volume/speed prediction on a single highway and vali-
dated their performance on multiple highways using a public 
dataset. The results showcased the outstanding performance 
of LSTM in this task. The results also highlighted the chal-
lenges of traffic volume prediction due to its noisier nature 
compared to speed measurements.

However, such single-detector input–output prediction 
models did not consider the accessibility between adjacent 
road sections or stations, thus overlooking spatial dependen-
cies. Hence, Ma et al. (2022) utilized a hybrid spatial-tempo-
ral feature selection algorithm (STFSA) to identify the four 
monitoring points with the highest correlation to the predic-
tion point, constructing a spatiotemporal matrix of traffic 
speed. This matrix was used as input features for a prediction 
model based on Convolutional Neural Network (CNN) and 
Gated Recurrent Unit (GRU) to forecast the traffic speed 
at a single prediction point. Numerous studies provided a 
prediction model outputting predictions for all monitoring 
points along a single road or a few connected roads. Tan 
et al. (2016) proposed a new short-term traffic flow predic-
tion method based on Dynamic Tensor Completion (DTC), 
representing traffic data as dynamic tensor patterns and esti-
mating future traffic using weekly, daily, and close historical 
data under low-rank assumptions. However, this approach 
is not suitable for larger-scale traffic networks due to the 
large size of tensors and the amount of missing data. Zhang 
et al. (2020) decomposed traffic speed time series data into 
different frequency components using Ensemble Empirical 

Mode Decomposition (EEMD) and constructed a three-
dimensional tensor X ∈ R(n1,n2,n3) , where n1, n2, n3 represent 
the number of historical time slices, decomposed compo-
nents, and detectors, respectively. They then employed 3D 
CNN for speed prediction.

Combining CNN and LSTM has emerged as a popular 
solution in traffic prediction (Zang et al. 2019; Rajalakshmi 
and Ganesh Vaidyanathan 2022; Ma et al. 2020). This com-
bination allows CNN to capture spatial dependencies and 
LSTM to capture temporal relationships. Cao et al. (2020) 
proposed a CNN-LSTM model that utilized historical traffic 
speed from upstream and downstream and the predicted road 
to predict traffic speed in the Cross-Harbour Tunnel from 
Hong Kong Island to Kowloon. Ke et al. (2020) considered 
the volume impact in speed prediction and used CNN with 
historical traffic volume and speed data to predict traffic 
speed. Furthermore, attention mechanisms are incorporated 
to capture crucial contextual information and improve pre-
dictions. Liu et al. (2018) introduced attention CNN, which 
used a three-dimensional data matrix constructed from traf-
fic flow, speed, and occupancy to predict traffic speed. Wu 
et al. (2018) proposed a traffic flow prediction model that 
integrated an attention mechanism, CNN, and RNN. This 
model utilized historical traffic speed and flow data while 
incorporating recent traffic flow and the preceding day and 
week to account for the multi-periodicity of traffic flow. 
Zheng et al. (2020) developed a Conv-LSTM module with 
the attention mechanism to extract spatial and short-term 
temporal features and a bidirectional LSTM module to cap-
ture daily and weekly cyclical features for short-term traffic 
flow prediction.

However, CNN is designed for fixed-size image inputs, 
which poses a challenge when dealing with irregular traffic 
data. When CNN is applied to traffic prediction, the preproc-
essing of traffic data is required to transform it into inputs of 
fixed dimensions. Lv et al. (2018) proposed a speed predic-
tion method based on a road network embedded convolution 
method and RNN. They constructed a matrix that provided 
information about the connectivity between adjacent road 
sections and utilized a combination of search operations 
and convolution to capture spatial relationships among 
connected road sections. However, preprocessing becomes 
challenging for large-scale traffic networks and may result 
in information loss or introduce noise, thus impacting the 
model’s performance. Thus, Graph Neural Networks (GNN) 
have been introduced to handle irregular inputs and learn 
spatial relationships (Diao et al. 2019; Song et al. 2020; 
Zhou et al. 2022).

For network-level predictions, various studies constructed 
traffic graphs based on traffic topology. For instance, Xie 
et al. (2019) emphasized that the connectivity of road sec-
tions is the fundamental cause of traffic congestion propaga-
tion. Consequently, they represented multiple road sections 



Data Science for Transportation            (2024) 6:27 	 Page 3 of 18     27 

as graphs based on connectivity and proposed SeqGNN to 
handle graph sequences for prediction. Wang et al. (2023) 
proposed PFNet, which utilized graph embedding techniques 
to capture spatial relationships and employed a Deep Multi-
View Sequence Encoder (DMVSE) to capture time corre-
lation from monthly periodicity, weekly periodicity, and 
closeness. The spatial correlations among different traffic 
network nodes are local and non-local. To address this, Fang 
et al. (2019) proposed the Global Spatial-Temporal Network 
(GSTNet), which considered both local spatial correlations 
among adjacent stations and global spatial correlations. Lv 
et al. (2021) considered road connectivity and incorporated 
historical traffic pattern correlations and local area function-
ality similarity to construct traffic graphs. They proposed a 
traffic flow prediction model based on multi-graph convolu-
tion and GRU. Moreover, the interaction between road sec-
tions is influenced by factors such as the natural environment 
and socio-economic factors. Xia et al. (2024) extracted static 
features such as spatial distance and dynamic features from 
the most recent traffic data using a multi-head attention net-
work and dynamic node embedding to capture these dynam-
ics. They integrated dynamic graph convolution modules 
and LSTM to achieve accurate traffic flow prediction. Chen 
and Chen (2022) introduced a graph learning model based 
on reinforcement learning. They initially constructed a traffic 
graph based on the accessibility of road sections. Then, they 
utilized reinforcement learning to extract nonlinear spati-
otemporal dependencies between stations, adaptively gen-
erating the graph adjacency matrix. However, GNN-based 
approaches need to address challenges such as handling 
large-scale graph structures, high-dimensional features, and 
the issue of gradient vanishing during information propaga-
tion. The computational cost of processing large-scale graph 
structures is high and may not satisfy real-time requirements.

To predict traffic volume and speed for detectors on major 
strategy routes in Hong Kong, it is essential to consider the 
detectors’ reliability, given the average failure rate of 6% in 
Hong Kong. Handling the resulting missing data is of utmost 
importance. This paper proposes an approach that utilizes 
data from data.gov.hk to develop a robust traffic volume/
speed prediction model resilient to detector failures. Hidden 
deep features within each detector’s historical daily traffic 
volume data are extracted to derive the corresponding detec-
tor profiles. These detectors are then grouped into clusters 
based on profile similarities. Subsequently, for each cluster, a 
prediction model based on CNN-LSTM is developed to fore-
cast traffic volume/speed for all detectors within the clus-
ter. Moreover, the extracted profiles can aid in identifying 
unusual daily traffic patterns for each detector, facilitating 
investigations into potential equipment issues or unrecorded 
traffic incidents.

The remaining sections of this paper are organized as 
follows. Section “Methodology” presents the proposed 

method and DL model architectures. Section “Results” 
discusses the experimental results. Finally, Sect. “Con-
clusion” provides a summary of this paper.

Data

Description of the Data Source

The traffic data used in this study is sourced from data.gov.
hk and extracted from fixed-location traffic detectors. The 
dataset includes timestamps, detector IDs, traffic volume, 
speed, and occupancy. These detectors are strategically 
placed on major roads and routes in Hong Kong. A total 
of 1,912 lane detectors corresponding to 714 sites are sur-
veyed. The locations of these sites are depicted in Fig. 1. 
By examining the traffic flow-speed graph of the dataset, 
noteworthy changes in the relationships of most detectors 
are observed in May 2022, which are attributed to detec-
tor recalibration. Consequently, data from May 2022 to 
November 2022 are selected for training, validation, and 
testing. Each time slice in this paper represents a 6-minute 
time interval.

Due to communication interruptions or detector failures, 
the collected raw traffic flow data inevitably contains miss-
ing values. Figure 2 depicts the traffic volume measured by 
all detectors over six months. The x-axis corresponds to 
time, while the y-axis represents detector IDs arranged by 
name. Each data point signifies the traffic volume a detec-
tor measures at a specific time interval. The color intensity 
indicates the magnitude of the traffic volume, with lighter 
colors representing more vehicles passing by the detector 
during that time interval. Blank spaces in the figure denote 
missing data. The overall average failure rate of the dataset 
is 5.94%. Data imputation is necessary for this dataset to 
facilitate the training of prediction models.

Fig. 1   Locations of investigated traffic detectors in HK
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Data Imputation

Figure 2 provides insights into the types of missing data, 
which can be categorized into three groups based on the 
duration of continuous detector failures. Each category 
requires a different data imputation method: 

(1)	 For cases where a detector’s continuous failure duration 
is no more than 6 min, the most recent observed traffic 
value can be used for imputation.

(2)	 For cases where a detector’s continuous failure dura-
tion is more than 6 min but less than 6 h, the K-Nearest 
Neighbors (KNN) method is utilized for data imputa-
tion. KNN’s similarity-based, nonparametric approach 
is well-suited for interpolating missing values in 
complex datasets without prior modeling or train-
ing. Within our context, KNN computes the average 
Euclidean distance between the failed detector’s avail-
able measurements and those of other detectors at cor-
responding time intervals to identify detectors sharing 
similar traffic patterns for that day. Subsequently, a 
weighted average of these similar detectors’ measure-
ments is utilized for data imputation. Smaller average 
Euclidean distances indicate higher similarity (weight) 
between detectors.

(3)	 For cases where a detector’s continuous failure dura-
tion exceeds 6 h, using KNN to find similar detectors 
may not be accurate. In such instances, the approach 
involves identifying the K most similar dates for data 
imputation. The distance between two dates is deter-
mined by the average Euclidean distance of measured 
values provided by working detectors within their cor-
responding time slices. If the number of points with 
values between two dates is less than 60% of the total 
number of points in a day, the distance between these 
two dates is set to infinity. Missing values can be filled 
with the average values from the K nearest dates whose 
distances are smaller than a threshold value.

Data Normalization

To expedite the search for the optimal solution for the DL 
models, perform min-max normalization to scale the data 
to the range of [0, 1]:

where X represents the input traffic variable, xmin and xmax 
represent the minimum and maximum values of that traffic 
variable in the training dataset.

For the model’s output, perform the following operation 
to restore it to the original scale:

where Y∗ is the output of the model, and Y ′ is the traffic 
variable prediction after being restored to the original scale.

Methodology

Overview of the Proposed Method

Taking traffic volume prediction as an example, the proposed 
method consists of the following steps: 

(1)	 Extracting deep features with detector signatures from 
each daily traffic volume sequence.

(2)	 Generating representative profiles for each detector 
based on their daily features and grouping the detec-
tors based on profile similarity.

(3)	 Developing a traffic volume prediction model for each 
group.

Following these steps, detectors across the Intelligent Road 
Network (IRN) are grouped into multiple clusters, each with 

(1)X∗ =
X − xmin

xmax − xmin
,

(2)Y
�

= Y∗ × (xmax − xmin) + xmin,

Fig. 2   Measured traffic volume of traffic detectors over six months
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a dedicated prediction model that operates independently. 
This division allows each model to process inputs from spe-
cific sub-segments, reducing input complexity and enhanc-
ing prediction speed. Furthermore, detectors within the same 
cluster can provide mutual support. In the event of detector 
failure, real-time imputation and effective prediction can be 
achieved by leveraging information from similar detectors 
within the cluster. This approach also minimizes the num-
ber of prediction models for the entire network, reducing 
development and maintenance costs. Subsequent sections 
will elaborate on these three pivotal steps.

Daily Feature Extraction Model

The traffic volume measured by each detector shows peri-
odic changes, such as similar peak and off-peak periods on 
workdays. When making traffic predictions, it is beneficial 
to consider the temporal similarity for each location and 
draw insights from locations with similar periodic patterns, 
especially in cases of detector failure. These similarities may 
arise from factors like points of interest (POI), geographi-
cal location, and functionality. To capture these similarities, 
we analyze each detector’s daily trends in historical traffic 
volume. DL models possess strong pattern analysis capabili-
ties and are utilized to extract features from the daily traffic 
volumes of each detector. The periodic variations in traf-
fic volume manifest in the similarity of the extracted daily 
deep features, aiding in creating a distinct profile for each 
detector. Notably, the profile extraction process focuses on 
daily features rather than 6-minute intervals, as our detector 
clustering strategy centers on similarities in periodic trends 
rather than transient traffic fluctuations caused by weather 
conditions or special events.

The proposed feature extraction model, as illustrated in 
Fig. 3, consists of several CNN layers and an FC layer. It 
takes a daily traffic volume data of a detector vdjxi as input 
and outputs a distribution L̂djxi representing the ID of the 
detector corresponding to the input daily data. CNN applies 
convolutional operations with kernels of a certain size to 
local regions of the input data, computing the inner product 
between different data windows and the convolutional kernel 

to capture local relationships. Hence, CNNs are utilized to 
extract features from time series and reduce feature dimen-
sionality. Initially, we perform convolution operations on 
the input using kernels of different sizes while maintaining 
the output feature map size through padding. In Fig. 3, a, 
b, and c represent kernel sizes of 3, 5, and 7, respectively. 
The convolution results are then summed together to achieve 
multi-scale feature extraction and fusion. Subsequently, sev-
eral stacked convolutional layers are used, with the sliding 
stride of the convolutional kernels set to (a − 2) . By sliding 
at different positions, the convolutional kernels can traverse 
the entire input. The stride setting reduces the output size of 
the convolutional layer by half, decreasing the feature map 
size in each convolutional layer. After passing through mul-
tiple CNN layers and flattening, the features ydjxi are obtained, 
representing the features of detector xi throughout day dj . 
Next, through a fully-connected layer, ydjxi is mapped to an 
output vector L̂djxi , with dimensions equal to the number of 
detectors. Each dimension of L̂djxi represents the relevance to 
the corresponding detector ID.

where fCLU indicate the proposed daily feature extraction 
model. vdjxi is the traffic volume sequence of detector xi on day 
dj , encompassing the entire day.

Profile Obtain

Deep features associated with individual detectors are 
gathered. However, certain days for a detector may exhibit 
atypical traffic patterns, potentially leading to inaccuracies 
in identifying the detector ID using the deep features from 
these days. To better extract the general characteristics of 
detectors, only deep features extracted from typical days are 
used to calculate the profile for each detector, encompassing 
both weekdays and weekends. The excluded atypical days 
vary across different detectors. Nevertheless, no atypical 
days are excluded during the prediction model’s learning 
and testing phases.

(3)y
dj
xi
, L̂

dj
xi
= fCLU(v

dj
xi
),

Fig. 3   Proposed daily feature extraction model
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For detector xi on the jth day, the predicted distribution 
L̂
dj
xi
 is as follows:

where pdjxi represents the model’s estimation of the probabil-
ity that the input daily data belongs to the ith detector, and N 
is the total number of detector IDs.

Sort L̂djxi in descending order based on probabilities, result-
ing in:

Denote the top 1% of the sorted probabilities in L̂′dj
xi

 as 

P�dj
xi
= {p

dj
x�1
, p

dj
x�2
,⋯ p

dj
x�N∕100

}

where ȳxi is the obtained profile of detector xi.
The Euclidean distance between each pair of detector pro-

files is computed, and the hierarchical clustering algorithm 
fHA is used to divide the detectors into multiple clusters 
(C1,C2, ...,CM):

Proposed Traffic Volume Prediction Model 
Architecture

After clustering, each cluster comprises detectors with simi-
lar profiles. A separate traffic volume prediction model is 
constructed for each cluster, as illustrated in Fig. 4. For a 
given Cluster CJ(J = 1, 2, ..,M) , the LSTM and CNN are 
employed to extract spatial-temporal features. The LSTM 
captures global information for the cluster, while the CNN 
utilizes the individual detector’s time series to obtain each 

(4)L̂
dj
xi
= {p

dj
x1
, p

dj
x2
,⋯ , p

dj
xi
,⋯ , p

dj
xN
}

(5)L̂�
dj

xi
= {p

dj
x𝜄1
, p

dj
x𝜄2
,⋯ , p

dj
x𝜄N
}(p

dj
x𝜄1

≥ p
dj
x𝜄2

≥ ⋯ ≥ p
dj
x𝜄N
)

(6)ȳxi =
1

k

k∑

j=1

y
dj
xi
, ifp

dj
xi
∈ P�dj

xi
,

(7)
C1,C2, ...,CM = fHA(ȳx1 , ȳx2 ,⋯ , ȳxN )

C1 ∪ C2 ∪⋯ ∪ CM = {x1, x2,⋯ , xN}

detector’s deep features separately. The obtained deep fea-
tures are then fused to generate traffic volume predictions 
for the cluster for the next hour. For example, for Cluster CJ 
composed of n detectors (xJ1 , xJ2 ,⋯ , xJn ):

where y�
CJ

 represents the concatenated deep features 
extracted from the cluster using the two neural networks. v̂𝜏

CJ
 

is an n-dimensional vector representing the predicted traffic 
volume at time � for each detector in the cluster.

In Eq. (10), fCNNs utilizes multiple convolutional layers 
to extract temporal features from the input data. At each 
layer, neighboring kl

t
 features are combined along the tempo-

ral dimension. The convolutional kernels at each layer have 
a size of (kl

t
, 1) , where 1 indicates that no feature fusion is 

performed in the spatial (detector) dimension. By passing 
through multiple convolutional layers, the temporal dimen-
sion is compressed from the input Th to 1. Since the desired 
output is the prediction for the next Tp time steps, the number 
of convolutional kernels in the final layer is set to Tp . The 
resulting output from the right-hand side of the equation is 
a tensor of size (Tp, 1,N).

On the left-hand side of Eq. (10), cluster information 
is extracted. Firstly, for each time step in the data, spatial 
features are extracted using a fully connected layer ( fFC ). 
The input information from N detectors at each time step is 
connected to a new set of N units. The information from dif-
ferent time steps is independent of each other. Subsequently, 
the new N-dimensional features from each time step are fed 
into an LSTM ( fLSTM ) to extract temporal features and obtain 
the feature prediction for the next time step, resulting in a 

(8)CJ = {xJ1 , xJ2 ,⋯ , xJn}, v
�−Δ
CJ

= {v�−Δ
xJ1

, v�−Δ
xJ2

,⋯ v�−Δ
xJn

}

(9)
y�CJ

= fFCfLSTMfFC(v�−10ΔCJ
, v�−9ΔCJ

,⋯ , v�−ΔCJ
)

⊕ fCNNs(v�−10ΔCJ
, v�−9ΔCJ

,⋯ , v�−ΔCJ
)

(10)(v̂𝜏
CJ
, v̂𝜏+Δ

CJ
,⋯ , v̂𝜏+9Δ

CJ
) = fCNNs(y

𝜏

CJ
)

Fig. 4   Proposed DL traffic volume prediction model
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tensor with the size of (1, N). Afterward, a fully connected 
layer is used to obtain a (TP × N) -dimensional vector, which 
is then transformed into a tensor of size (TP, 1,N).

Finally, feature concatenation is performed. Each detec-
tor at each time step has a 2-dimensional feature. The final 
prediction is obtained using a convolutional layer with a 
kernel size of (2, 1). The proposed prediction model not 
only considers the temporal features of each detector but 
also incorporates cluster information to assist in the predic-
tion process.

Training of DL Models

The daily feature extraction model, which functions as a 
multi-classification neural network, utilizes the cross-
entropy loss function to minimize the disparity between the 
predicted probability distribution and the one-hot encoded 
representation of the actual detector ID. The input daily 
traffic volume is standardized to ensure uniformity. Model 
parameters are updated through backpropagation and gradi-
ent descent optimization. The maximum number of training 
iterations for the model is capped at 300.

Regarding the Traffic Volume Prediction Model, the mean 
squared error (MSE) loss function measures the discrepancy 
between the predicted traffic volume and the actual values. 
During training, the standardized historical 1-hour traffic 
volume data for each detector within a cluster is used as 
input, while the corresponding standardized ground truth 
values (i.e., the future 1-hour traffic volume) serve as the 
target for prediction.

All DL models are trained iteratively on a training data-
set, and the performance is evaluated on a validation data-
set. Hyperparameters, including learning rate, batch size, 
and network architecture, are fine-tuned for optimal perfor-
mance. Adam optimization is employed as the optimizer 
for all deep models. The learning rate, a critical parameter 
affecting convergence, is selected through multiple experi-
ments within the range of [ 10−3, 10−4, 10−5 ]. A dynamic 
learning rate scheme is implemented, reducing the learn-
ing rate by a factor of 0.1 if the model’s evaluation metric 
fails to improve after 30 training iterations until it reaches 
the minimum value of 10−6 . Additionally, an early stopping 
strategy is utilized to prevent overfitting.

Results

The proposed method involved training and validating traf-
fic volume and speed prediction models using datasets col-
lected from major roads in Hong Kong between May 2022 

and October 2022. Subsequently, we evaluate the proposed 
method using the corresponding traffic volume and speed 
datasets from November 2022.

The testing included the following aspects: 

(1)	 Evaluating the predictive performance of the prediction 
models when all detectors are working.

(2)	 Simulating 1%-20% detector failures to assess the resil-
ience of the prediction models to detector failures.

(3)	 Assessment of the proposed method’s performance in 
offline data imputation for addressing missing data in 
the dataset.

(4)	 Additionally, we evaluated the accuracy of the proposed 
daily feature extraction model in identifying detector 
IDs.

These tests enabled a comprehensive understanding of 
the proposed method’s performance in various scenarios, 
including its predictive capabilities under both normal and 
detector failure conditions, its performance in data imputa-
tion, and the accuracy of the daily feature extraction model 
in identifying detector IDs.

Evaluation Metrics Used for Testing

The predictive model is evaluated using the Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and Mean 
Absolute Percentage Error (MAPE).

where Ŷ  and Y represent the prediction and the observation, 
respectively. The predictive performance improves as MAE, 
RMSE, and MAPE decrease. All MAPE calculations for 
traffic volume/speed prediction only consider observations 
with a traffic volume greater than 10 vehicles per 6 min or 
1 km per hour to avoid division by zero and biases in error 
for low observations. For example, if the observed traffic 
volume is four vehicles and the predicted traffic volume 
is two, the MAPE is 50%, although the error is only two 
vehicles.

(11)MAE(Y , Ŷ) =
1

N

N∑

i=1

|Yi − Ŷi|,

(12)RMSE(Y , Ŷ) =

√√√√ 1

N

N∑

i=1

(Yi − Ŷi)
2,

(13)MAPE(Y , Ŷ) =
1

N

N∑

i=1

|||Ŷi − Yi
|||

Yi
,
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Predictive Performance of the Prediction Model 
without Failed Detectors

This paper introduces a method for forecasting traffic volume 
and speed for 6 min to 1 h. These forecasts can aid road traf-
fic management departments in promptly identifying con-
gested areas. Additionally, travel time can be derived from 
traffic volume and speed predictions, allowing individual 
travelers to plan their journeys effectively.

Traffic Volume Prediction Without Failures

The proposed method enables a one-step traffic volume 
prediction from 6 min to 1 h. To evaluate the overall per-
formance, we compared the proposed method with simple 
baseline and advanced models, including: (1) Naive: The 
simple method for prediction using the most recent observed 
traffic volume. (2) STGCN (Spatio-Temporal Graph Convo-
lutional Network) (Yu et al. 2018): The DL method utilizes 
Graph Convolutional Networks and one-dimensional tem-
poral convolutions to capture spatial and temporal correla-
tions. Following the STGCN paper, we constructed edges 
based on the geographical distances between stations. Addi-
tionally, we calculated the Pearson correlation coefficients 
between the historical time series of detectors. Detectors 
with high coefficients were also connected by edges, even 
if their geographical locations were potentially distant. The 
model’s construction is based on publicly available code 
at https://github.com/FelixOpolka/STGCN-PyTorch/blob/
master/stgcn.py. (3) Transformer (Vaswani et al. 2017): The 
DL method uses attention mechanisms to capture spatio-
temporal relationships. The Transformer is employed to 
learn temporal relationships, and our position encoding for 
the input historical time series follows the absolute posi-
tional encoding based on sine and cosine functions from the 
paper. Fully connected layers are utilized to learn the global 
spatial relationships from historical data of all detectors to 
make predictions. (4) MC_Transformer: Building upon the 
Transformer’s promising performance, we further tested 
using our clustering results with a separate Transformer for 
each cluster. Post-clustering, each detector extracts global 

spatial relationships from its highly correlated subset for 
prediction purposes.

For the DL models (STGCN, Transformer) used for 
comparison, we utilized trained models to conduct multi-
step forecasting, evaluating performance across prediction 
horizons from 6 min to 1 h. These results were then quan-
titatively compared with those generated by our proposed 
method. Besides the single-step Transformer generating pre-
dictions for one time interval at a time, we also attempted 
training the Transformer to provide one-step predictions for 
the next 6 min to 1 h. However, we found that although its 
performance for 1-hour predictions was comparable to that 
of the single-step Transformer, it exhibited larger errors in 
predicting the subsequent 6 min. In practical applications, 
the emphasis on forecasting the next 6 or 12 min outweighs 
that of the following hour. Hence, we used the single-step 
Transformer for subsequent comparisons. All DL models 
were implemented on the same platform with the same 
resources as our method.

Figure 5 illustrates the Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and Mean Absolute Percent-
age Error (MAPE) for each method at each time interval. 
For predictions of the next 6 min, the proposed method 
achieved MAE, RMSE, and MAPE values of 5.17 vehi-
cles/6 min, 7.64 vehicles/6 min, and 14.07%, respectively. 
For forecasting traffic volume for the next 1 h, the obtained 
MAE, RMSE, and MAPE were 5.69 vehicles/6 min, 8.96 
vehicles/6 min, and 15.26%, respectively. However, for the 
6-minute predictions, the MC_Transformer shows a very 
slight advantage over the proposed method, with correspond-
ing MAE, RMSE, and MAPE values of 5.16 vehicles/6 min, 
7.60 vehicles/6 min, and 14.06%, respectively. Nevertheless, 
the proposed method outperforms other approaches. Over 
time, though, the proposed method exhibits superior fore-
casting compared to the MC_Transformer. We attribute this 
to the exceptional performance of the attention mechanism 
in capturing short-term relationships. However, LSTMs are 
more suitable for capturing longer temporal variations in 
this task.

Furthermore, as depicted in Fig. 5, the superior per-
formance of the MC_Transformer over a standalone 

Fig. 5   Traffic volume predictive performance without detector failures
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Transformer indicates that our profiling cluster enhances 
the coherence within each cluster, aiding in learning more 
accurate traffic patterns for prediction. While STGCN 
exhibits comparatively lower performance than other DL 
methods in this context, it is crucial to note that the graphs 
utilized are based on the geographical distance between 
stations and the historical data correlations of lane detec-
tors. If alternative graphs, such as those based on func-
tional similarities, were incorporated, we believe STGCN 
could demonstrate improved efficacy. Additionally, learn-
ing graphs is more challenging and demands a substantial 
volume of data, which may be another reason STGCN 
is less effective than the Transformer and the proposed 
method in this task.

As the forecasting time horizon increases, accuracy 
decreases for longer-term (1 h) predictions compared to 

short-term ones. Still, it provides relatively accurate fore-
casts, as shown in Fig. 6. However, Fig. 6 shows that the 
proposed method can capture traffic volume trends but may 
underestimate traffic volume under rarely seen congested 
conditions.

Traffic Speed Prediction Without Failures

Accurate traffic speed prediction models were developed by 
adapting the prediction model from traffic volume data to 
traffic speed data and retraining the models. The evaluation 
metrics, including MAE, RMSE, and MAPE, are illustrated 
in Fig. 7, showcasing the speed predictions generated by 
the proposed approach for the subsequent 6 min to 1 h. The 
6-minute predictions yielded MAE/RMSE/MAPE values 
of 3.70 km/h, 6.32 km/h, and 6.33%, respectively. For the 

Fig. 6   Visualization of predicted traffic volume and actual observation

Fig. 7   Traffic speed predictive performance without detector failures

Fig. 8   Visualization of predicted traffic speed and actual observation
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following 1 h, the corresponding values were 4.24 km/h, 
7.37 km/h, and 8.44% for MAE/RMSE/MAPE.

Figure 8 visually compares the predicted speeds obtained 
6 min and 1 h ahead using the proposed method and the 
actual measurements. It demonstrates the method’s profi-
ciency in predicting traffic speeds under normal conditions 
and its ability to capture trends of sudden speed drops.

The proposed method faces challenges in extreme or 
rare low-speed (0–15 km/h) traffic scenarios (< 1% of the 
data, see Table 1). Figure 9 illustrates the counts of detec-
tors measuring low speeds at different time intervals, shows 
that low-speed events are not confined to specific days, with 
prevalence during peak hours and rarity in the early morn-
ing. Additionally, Fig. 10 visualizes the spatial distribution 
of low-speed data within the dataset timeframe, showing 
variability; regions with darker colors indicate higher fre-
quencies of low-speed events. For improved clarity, Figs. 9 
and 10 display data within the dataset for one month, with 
similar patterns for other months. Note that Figures 5–8 pre-
sent prediction errors across all speed ranges, including low 
speeds. Table 1 details the sample proportions within dif-
ferent speed ranges and their respective MAE, RMSE, and 
MAPE values. Due to limited available samples for learning, 
the proposed model might not be suitable for non-recurrent 
congestion scenarios with low traffic speeds. Innovative 
methods are required to predict non-recurrent congestion 
speeds effectively.

Table 1 shows that the proposed method yields rela-
tively large values for all the metrics when the speed is less 
than 15 km/h, indicating a significant distance between the 
predictions and the actual observed values. Hence, we vis-
ualized such data, as shown in Fig. 11. The ‘Median’ in the 
figure represents the median values of the training dataset 

for each corresponding time slot from Monday to Sunday. 
‘Mean’ indicates the mean values. The blue line represents 
the visualization of the actual observed values for one 
week from the test set of this detector, while the orange 
line represents the predictions obtained from the proposed 
method. It can be observed that the actual observed values 
exhibit significant fluctuations, while the predictions are 
only able to fit a general trend. However, such substantial 
fluctuations in speed observations throughout the week are 
highly abnormal and likely caused by erroneous reports 
due to detector malfunctions. Hence, we removed these 
exceptional values where the difference between the cur-
rent speed and the speed measured in the previous time 
slot exceeds 30 km/h, with a frequency greater than 50% 
within a day.

The predictive performance after removing these excep-
tional values is shown in Table 2. It can be observed that 
the predictive performance for low-speed traffic scenar-
ios improves after the removal. However, it is still not 
particularly satisfactory. We conducted visualizations to 
investigate possible reasons, as shown in Fig. 12. It can be 
observed that the variation trend of traffic speed for this 

Table 1   Traffic Speed Prediction performance of different speed 
ranges

Speed range Proportion % MAE RMSE MAPE%

0 ≤ x < 15 km/h 0.58 9.9 km/h 15.6 km/h 149
15 ≤ x < 30 km/h 1.42 7.3 km/h 11.8 km/h 33
x ≥ 30 km/h 98 3.7 km/h 6.1 km/h 5

Fig. 9   The count of detec-
tors detecting very low speeds 
(0–15 km/h) at different times 
of the day. Brighter colors indi-
cate more detectors capturing 
low speeds

Fig. 10   Heatmap displaying the distribution of detectors measuring 
very low speeds (0–15 km/h). The increasing intensity of red signifies 
a higher frequency of low-speed occurrences
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detector has changed, differing from the training data used 
to train the prediction model. The results also highlight 
that DL models rely on the data used for learning. If traffic 
trends change, it is necessary to train the prediction model 
using new data to adapt to the new circumstances.

Predictive Performance of the Prediction Model 
with Detector Failures

In the real world, the failures in traffic detectors are random 
in terms of location and timing. Nevertheless, the proposed 
method demonstrates minimal performance degradation even 
under such scenarios of random failures.

Traffic volume prediction with failures

The proposed method can generate accurate traffic volume pre-
dictions even with detector failures. Failures were simulated 

by randomly designating some detectors in each cluster as 
‘failed’. When a detector is marked as failed, all its traffic data 
during testing is set to missing. Failure rates range from 1% 
to 20%, meaning that 1% to 20% of detectors in each cluster 
are randomly selected to fail in each simulation. Detector mal-
functions usually occur randomly, although it is possible for 
a group of detectors in a specific area to malfunction due to 
network connectivity issues. However, our clustering is based 
on profile similarity rather than geographical proximity, lead-
ing to diverse detector locations within a cluster. In this paper, 
we only consider random failures.

When a detector fails, the model’s input contains missing 
values corresponding to the failed detectors. We filled in the 
missing inputs to make predictions based on the current avail-
able observations of other working detectors within the same 
cluster as the failed detector and their historical average weekly 
traffic volume (AWT) derived from the training dataset.

For a detector xj in cluster CJ , if it fails at time � (corre-
sponding to day of the week Da and time of the day Tb ), the 
imputed value ṽ𝜏

xj
 is obtained as follows:

(14)ṽ𝜏
xj
= AWTDa,Tb

xj
× Avgxl∈CJ

v𝜏
xl

AWT
Da,Tb
xl

,

Fig. 11   Visualization of predicted traffic speed and actual observation (speed < 15 km/h) (Abnormal Speed)

Table 2   Traffic Speed Prediction performance of different speed 
ranges after removing abnormal speed

Speed range MAE RMSE MAPE%

0 ≤ x < 15 km/h 6.8 km/h 10.5 km/h 86
15 ≤ x < 30 km/h 6.4 km/h 9.7 km/h 29
x ≥ 30 km/h 3.3 km/h 5.0 km/h 5

Fig. 12   Visualization of predicted traffic speed and actual observation (speed < 15 km/h) (Pattern Changed)



	 Data Science for Transportation            (2024) 6:27    27   Page 12 of 18

where ṽ𝜏
xj
 represents the real-time measured traffic volume of 

the working detector xl in the cluster. Avg refers to the aver-
age function.

The average values of MAE/RMSE/MAPE obtained are 
visualized in Fig. 13. Each data point in the figure represents 
the average of 30 experiments, where different detectors 
are randomly designated as failures. The results in Fig. 13 
reveal a gradual decline in the model’s performance with an 
increasing number of failed detectors, aligning with expec-
tations. Notably, the proposed method demonstrates mini-
mal degradation in performance in the presence of failures. 
For the next 6-minute prediction, when the failure rate of 
detectors reaches 20%, the average performance degrada-
tion results in an increase of 0.29 vehs/6min in MAE, 0.72 
vehs/6min in RMSE, and 0.56% in MAPE (as indicated in 
the bottom line of Fig. 13). For the prediction of the next 
1 h (as displayed in the top line of Fig. 13), the degradation 
leads to an average increase of 0.11 vehs/6min in MAE, 0.27 
vehs/6min in RMSE, and 0.21% in MAPE.

As a reference, the average failure rate in the dataset is 
5.94%. With 6% failed detectors, the average MAE, RMSE, 
and MAPE obtained for the 6-minute prediction are 5.24 
vehs/6min, 7.81 vehs/6min, and 14.21%, respectively. 
Compared to the scenario without detector failures, this 
represents increases of 0.07 vehs/6min, 0.17 vehs/6min, 
and 0.14%, respectively. For the 1-hour prediction with 6% 
failed detectors, the average MAE, RMSE, and MAPE are 
5.70 vehs/6min, 8.99 vehs/6min, and 15.29%, respectively. 
Compared to the scenario without detector failures, this 
represents increases of 0.02 vehs/6min, 0.03 vehs/6min, 
and 0.03%, respectively. Moreover, Fig. 14 presents a box 
plot illustrating the results for all test cases, offering a 
comprehensive visualization of the proposed method’s 
predictive performance with different failed detectors. 
Despite fluctuations in predictive performance with dif-
ferent failed detectors, the proposed method consistently 
exhibits resilience to detector failures, maintaining satis-
factory prediction accuracy.

These findings underscore the model’s resilience, 
highlighting its ability to maintain relatively stable per-
formance despite failures. This resilience is valuable for 

Fig. 13   Traffic volume predictive performance with detector failures

Fig. 14   Traffic volume predictive performance of each case for next6 min with detector failures



Data Science for Transportation            (2024) 6:27 	 Page 13 of 18     27 

real-world applications where sensor malfunctions or fail-
ures are common, emphasizing the practical utility of the 
proposed method.

Traffic Speed Prediction with Failures

The performance of traffic speed prediction with failed 
detectors is shown in Fig. 15. For the 6-minute predictions, 
when there is a 6% failure rate in the detectors, the MAE, 
RMSE, and MAPE values are 3.87 km/h, 6.55 km/h, and 
6.68%, respectively. Compared to the predictions without 
failures, the average performance decreases by 0.17 km/h, 
0.23 km/h, and 0.34% in MAE, RMSE, and MAPE, respec-
tively. Figure 16 shows box plots illustrating the MAE, 
RMSE, and MAPE values for each failure case in the next 
6 min. For the predictions of the next 1 h, with a 6% failure 
rate in the detectors, the MAE, RMSE, and MAPE values 
are 4.30 km/h, 7.43 km/h, and 8.55%, respectively. On 
average, there is a decrease of 0.06 km/h, 0.06 km/h, and 
0.10% in MAE, RMSE, and MAPE, respectively, com-
pared to the predictions without failures.

Similar to traffic volume prediction, these results offer 
valuable insights into the model’s performance under 

diverse failure scenarios concerning traffic speed, show-
casing its robustness and adaptability for traffic speed pre-
diction in failure scenarios.

Imputation Performance of the Prediction Model 
for Offline Dataset

Traffic Volume Imputation

Furthermore, the proposed prediction model can be utilized 
for offline missing data imputation. The results of utilizing 
the proposed method for data imputation are presented in 
Fig. 17. Each data point in the figure represents the aver-
age of 30 experiments, with different detectors randomly 
selected as targets for imputation in each experiment. The 
results demonstrate that the proposed method’s imputa-
tion yields MAE, RMSE, and MAPE values ranging from 
approximately 5.1 to 5.3 vehs/6min, 7.6 to 7.8 vehs/6min, 
and 14% to 14.2%, respectively. These findings underscore 
the effectiveness of the proposed method in accurately filling 
in missing data.

Fig. 15   Traffic speed predictive performance with detector failures

Fig. 16   Traffic speed predictive performance of each case for next 6 min with detector failures
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Traffic Speed Imputation

The offline imputation performance of traffic speed data is 
depicted in Fig. 18. The results demonstrate that the impu-
tation method yields a range of MAE, RMSE, and MAPE 
values ranging from 3.7 to 3.8 km/h, 6.2 to 6.4 km/h, and 
6.5% to 6.9%, respectively. These findings emphasize the 
capability of the proposed method in effectively filling miss-
ing traffic speed data.

Recognition Performance of the Daily Feature 
Extraction Model for Detector IDs

The proposed daily feature extraction model can identify the 
detector ID corresponding to each daily traffic volume in the 
dataset. The proposed daily feature extraction model pro-
duces a probability distribution, with each element indicat-
ing the likelihood of the input daily volume originating from 
a specific detector. As a result, it enables the calculation of 
the probability of each detector being correctly identified 
daily, as well as the percentage of all detectors that can be 
accurately recognized each day.

Detectors can be ranked based on the probabilities pro-
vided by the model’s output. In Figs. 19 and 20, the label 
‘Top 1’ indicates that the detector ID with the highest prob-
ability predicted by the model is the correct ID. Similarly, 
‘Top 1%’ signifies that the correct ID corresponding to the 
input’s daily volume is among the top 1% of the ranked 
detectors. It should be noted that different detectors may 
exhibit similar profiles, thereby providing a basis for cluster-
ing them based on their similarities. Our focus lies on the 
top 1% ranking results.

Figure 19 illustrates that the daily feature extraction 
model achieves a correct identification rate of exceeding 
95% on most days. Moreover, Fig. 20 reveals that only a 
minimal 1.4% of detectors exhibit identification accuracy 
below 90% but still above 70%.

The daily feature extraction model can also identify 
abnormal situations in the dataset where the traffic pat-
tern deviates from the normal. For instance, on November 
2, 2022, as depicted in Fig. 19, the identification accuracy 
(Top 1%) drops significantly to only 32%, while it surpasses 
90% for other days. Figure 21 visualizes the average traf-
fic volume of all detectors over time for that day and the 
previous and following weeks. It is evident that the traffic 

Fig. 17   Performance of offline traffic volume data imputation

Fig. 18   Performance of offline traffic speed data imputation
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volume changes follow a periodic pattern, but on Novem-
ber 2, 2022, a different trend emerged. Figure 22 shows the 
traffic volume trends for two randomly selected detectors 
on these days. Research on relevant news revealed that the 
Hong Kong Observatory issued a Typhoon Signal No. 8 

Northwest Gale or Storm warning at 1:40 PM that day. This 
explains why the traffic volume deviated from the regular 
pattern, with a decrease in the number of vehicles on the 
road. It can be seen that the daily feature extraction model 
can identify special days exhibiting divergent traffic patterns 

Fig. 19   Identification accuracy of each day of proposed DL daily feature extraction model

Fig. 20   Identification accuracy of each detector of proposed DL daily feature extraction model

Fig. 21   Visualization of average traffic volumes of all detectors for few days

Fig. 22   Visualization of traffic volumes of two detectors of few days



	 Data Science for Transportation            (2024) 6:27    27   Page 16 of 18

compared to regular days. In the future, integrating the pro-
posed daily feature extraction model with reports on differ-
ent events would enhance the analysis of traffic changes in 
various scenarios.

Furthermore, the proposed profile model can serve as one 
of the metrics to identify drifting traffic volumes for specific 
detectors. If a daily volume is inputted into the profile model 
and the correct detector ID does not rank within the top 1% 
of the output probability ranking, this daily volume likely 
deviates from its regular traffic pattern. For example, for 
detector ‘AID01117 lane1’, there are two days in the test 
set where it cannot be correctly identified. As mentioned 
earlier, one of those days is November 2nd, and the other is 
November 20th, 2022, as shown in Fig. 23. The abnormal 
days the profile model identifies differ from the usual traf-
fic volume. Similarly, another detector identified different 
traffic patterns than usual on November 26th, 2022. Hence, 
the profile can be utilized as one of the indicators for iden-
tifying anomalies in future work. The deviation of traffic 
patterns from the norm can be attributed to various factors, 
such as events and detector malfunctions. For instance, on 
the left of Fig. 23, besides abnormal traffic volume, there is 
an extended period of abnormally low speed, which could 
result from detector malfunction. By examining the subse-
quent day, it was observed that the traffic speed in that lane 
returned to the normal range, suggesting that an event likely 
caused the anomaly on that particular day. In future work, 
the proposed profiles, along with traffic incidents, weather 
data, and other datasets, can be combined to provide a better 
analysis of the causes of traffic anomalies.

Conclusion

This paper proposes an approach for predicting traffic vol-
ume and speed on major strategic routes in Hong Kong. 
The proposed approach considers the reliability of detectors, 
allowing for accurate predictions with and without failed 
detectors.

The approach incorporates two deep model structures: 
the daily feature extraction model and the traffic volume/
speed prediction model, leveraging a hierarchical clustering 
method to enhance performance. The daily feature extraction 
model extracts deep features from daily traffic volume to 
establish detector profiles, facilitating the formation of clus-
ters based on similar profiles for tailored prediction models.

The proposed method achieves promising results under 
ideal conditions with all detectors operational. For traffic 
volume prediction over the next 6 min, the MAE, RMSE, 
and MAPE are 5.17 vehicles/6 min, 7.64 vehicles/6 min, and 
14.07%, respectively. Similarly, for traffic speed prediction, 
the values are 3.70 km/h, 6.32 km/h, and 6.33%.

Moreover, the approach demonstrates resilience to detec-
tor failures, as evidenced by performance metrics with a 
6% detector failure rate (referring to a dataset loss rate of 
5.9%). With 6% failures, the MAE, RMSE, and MAPE for 
traffic volume prediction are 5.24 vehicles/6 min, 7.81 vehi-
cles/6 min, and 14.21%, respectively, while for traffic speed 
prediction, the values are 3.87 km/h, 6.55 km/h, and 6.68%. 
Furthermore, the proposed daily feature extraction model is 
instrumental in clustering detectors and can be a valuable 
metric for detecting abnormalities in traffic data.

However, it is essential to note that the proposed method 
may not perform optimally in predicting traffic volume and 
speed in rare or unseen situations, such as non-recurrent 
congestion. To enhance the predictive capabilities of our 
method across diverse scenarios, future research will focus 
on integrating multiple data sources, including traffic events, 
weather conditions, holiday schedules, and other relevant 
factors. By incorporating these additional dimensions, we 
aim to refine our approach further and improve its perfor-
mance in handling varied and complex traffic conditions.

Acknowledgements  The work described in this paper was supported 
by grants from the Smart Traffic Fund (Project No. PSRI/21/2111/PR).

Funding  Open access funding provided by The Hong Kong Polytech-
nic University.

Data Availability  The dataset can be retrieved from data.gov.hk.

Fig. 23   Days diverging from typical traffic volume



Data Science for Transportation            (2024) 6:27 	 Page 17 of 18     27 

Declarations 

Conflict of Interest  The authors declare that there is no conflict of in-
terest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abduljabbar R, Dia H (2021) Short-term traffic forecasting: an LSTM 
network for spatial-temporal speed prediction. Future Transp 
1(1):21–37

Abduljabbar RL, Dia H (2021) Tsai PW (2021) Unidirectional and 
bidirectional LSTM models for short-term traffic prediction. J 
Adv Transp 1:5589075

Cao M, Li VO, Chan VW (2020) A CNN-LSTM model for traf-
fic speed prediction. In: 2020 IEEE 91st Vehicular Technology 
Conference (VTC2020-Spring), IEEE, pp 1–5

Chen Y, Chen XM (2022) A novel reinforced dynamic graph con-
volutional network model with data imputation for network-
wide traffic flow prediction. Transp Res Part C: Emerg Technol 
143:103820

Diao Z, Wang X, Zhang D, et al (2019) Dynamic spatial-temporal 
graph convolutional neural networks for traffic forecasting. In: 
Proceedings of the AAAI Conference on Artificial Intelligence, 
pp 890–897

Fang S, Zhang Q, Meng G, et al (2019) GSTNet: Global spatial-
temporal network for traffic flow prediction. In: Proceedings of 
the Twenty-Eighth International Joint Conference on Artificial 
Intelligence, IJCAI-19, pp 2286–2293

Han L, Zheng K, Zhao L et al (2019) Short-term traffic prediction 
based on DeepCluster in large-scale road networks. IEEE Trans 
Veh Technol 68(12):12301–12313

Jiang R, Yin D, Wang Z, et al (2021) DL-Traff: Survey and bench-
mark of deep learning models for urban traffic prediction. 
In: Proceedings of the 30th ACM International Conference 
on Information & Knowledge Management. Association for 
Computing Machinery, New York, NY, USA, CIKM ’21, pp 
4515–4525

Ke R, Li W, Cui Z et  al (2020) Two-stream multi-channel con-
volutional neural network for multi-lane traffic speed pre-
diction considering traffic volume impact. Transp Res Rec 
2674(4):459–470

Khan A, Fouda MM, Do DT et al (2023) Short-term traffic pre-
diction using deep learning long short-term memory: taxon-
omy, applications, challenges, and future trends. IEEE Access 
11:94371–91

Kong F, Li J, Jiang B et al (2019) Big data-driven machine learn-
ing-enabled traffic flow prediction. Trans Emerg Telecommun 
Technol 30(9):e3482

Lee K, Eo M, Jung E et al (2021) Short-term traffic prediction with 
deep neural networks: A survey. IEEE Access 9:54739–54756

Liu Q, Wang B, Zhu Y (2018) Short-term traffic speed forecasting 
based on attention convolutional neural network for arterials. 
Comput-Aided Civ Infrastruct Eng 33(11):999–1016

Lu HP, Sun ZY, Qu WC et al (2015) Big data-driven based real-time 
traffic flow state identification and prediction. Discret Dyn Nat 
Soc 2015(1):284906

Lv Y, Duan Y, Kang W et al (2015) Traffic flow prediction with big 
data: a deep learning approach. IEEE Trans Intell Transp Syst 
16(2):865–873

Lv M, Hong Z, Chen L et al (2021) Temporal multi-graph convo-
lutional network for traffic flow prediction. IEEE Trans Intell 
Transp Syst 22(6):3337–3348

Lv Z, Xu J, Zheng K, et al (2018) LC-RNN: A deep learning model 
for traffic speed prediction. In: Proceedings of the Twenty-Sev-
enth International Joint Conference on Artificial Intelligence, 
IJCAI-18, pp 3470–3476

Ma Y, Zhang Z, Ihler A (2020) Multi-lane short-term traffic forecast-
ing with convolutional LSTM network. IEEE Access 8:34629–
34643. https://​doi.​org/​10.​1109/​ACCESS.​2020.​29745​75

Ma C, Zhao Y, Dai G et al (2022) A novel STFSA-CNN-GRU hybrid 
model for short-term traffic speed prediction. IEEE Trans Intell 
Transp Syst 24(4):3728–3737

Mandhare PA, Kharat V, Patil C (2018) Intelligent road traffic control 
system for traffic congestion a perspective. Int J Comput Sci 
Eng 6(7):2018

Qadri SSSM, Gökçe MA, Öner E (2020) State-of-art review of traf-
fic signal control methods: challenges and opportunities. Eur 
Transp Res Rev 12:1–23

Qu L, Lyu J, Li W et al (2021) Features injected recurrent neural 
networks for short-term traffic speed prediction. Neurocomput-
ing 451:290–304

Rajalakshmi V, Ganesh Vaidyanathan S (2022) Hybrid CNN-LSTM 
for traffic flow forecasting. In: Mathur G, Bundele M, Lalwani 
M, et al (eds) Proceedings of 2nd International Conference on 
Artificial Intelligence: Advances and Applications. Springer 
Nature Singapore, Singapore, pp 407–414

Song X, Li W, Ma D et al (2018) A match-then-predict method for 
daily traffic flow forecasting based on group method of data 
handling. Comput-Aided Civ Infrastruct Eng 33(11):982–998

Song Q, Ming R, Hu J, et al (2020) Graph attention convolutional 
network: Spatiotemporal modeling for urban traffic prediction. 
In: 2020 IEEE 23rd International Conference on Intelligent 
Transportation Systems (ITSC), IEEE, pp 1–6

Tan H, Wu Y, Shen B et al (2016) Short-term traffic prediction based 
on dynamic tensor completion. IEEE Trans Intell Transp Syst 
17(8):2123–2133

Tedjopurnomo DA, Bao Z, Zheng B et al (2022) A survey on mod-
ern deep neural network for traffic prediction: trends, methods 
and challenges. IEEE Trans Knowl Data Eng 34(4):1544–1561. 
https://​doi.​org/​10.​1109/​TKDE.​2020.​30011​95

Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you 
need. Adv Neural inform Process Syst 30:140036

Wang C, Zuo K, Zhang S et al (2023) PFNet: large-scale traffic fore-
casting with progressive spatio-temporal fusion. IEEE Trans 
Intell Transp Syst 24(12):14580–14597

Wu Y, Tan H, Qin L et al (2018) A hybrid deep learning based traffic 
flow prediction method and its understanding. Transport Res 
Part C: Emerg Technol 90:166–180

Xia Z, Zhang Y, Yang J et al (2024) Dynamic spatial-temporal graph 
convolutional recurrent networks for traffic flow forecasting. 
Expert Syst Appl 240:122381

Xie Z, Lv W, Huang S et al (2019) Sequential graph neural net-
work for urban road traffic speed prediction. IEEE Access 
8:63349–63358

Xu X, Jin X, Xiao D et al (2023) A hybrid autoregressive fractionally 
integrated moving average and nonlinear autoregressive neural 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2020.2974575
https://doi.org/10.1109/TKDE.2020.3001195


	 Data Science for Transportation            (2024) 6:27    27   Page 18 of 18

network model for short-term traffic flow prediction. J Intell 
Transport Syst 27(1):1–18

Yin X, Wu G, Wei J et al (2021) Deep learning on traffic predic-
tion: methods, analysis and future directions. IEEE Trans Intell 
Transp Syst 23(6):4927–43

Yuan H, Li G (2021) A survey of traffic prediction: from spatio-tem-
poral data to intelligent transportation. Data Sci Eng 6:63–85

Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional 
networks: A deep learning framework for traffic forecasting. 
In: International Joint Conferences on Artificial Intelligence 
Organization, pp 3634–3640

Zang D, Ling J, Wei Z et al (2019) Long-term traffic speed prediction 
based on multiscale spatio-temporal feature learning network. 
IEEE Trans Intell Transp Syst 20(10):3700–3709

Zhang S, Zhou L, Chen X et al (2020) Network-wide traffic speed 
forecasting: 3D convolutional neural network with ensemble 
empirical mode decomposition. Comput-Aided Civ Infrastruct 
Eng 35(10):1132–1147

Zhao D, Dai Y, Zhang Z (2011) Computational intelligence in urban 
traffic signal control: a survey. IEEE Trans Syst, Man, Cybern 
Part C (Appl Rev) 42(4):485–494

Zheng H, Lin F, Feng X et  al (2020) A hybrid deep learning 
model with attention-based Conv-LSTM networks for short-
term traffic flow prediction. IEEE Trans Intell Transp Syst 
22(11):6910–6920

Zhou J, Shuai S, Wang L et al (2022) Lane-level traffic flow predic-
tion with heterogeneous data and dynamic graphs. Appl Sci 
12(11):5340

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Deep Learning for Traffic Prediction and Trend Deviation Identification: A Case Study in Hong Kong
	Abstract
	Introduction
	Data
	Description of the Data Source
	Data Imputation
	Data Normalization

	Methodology
	Overview of the Proposed Method
	Daily Feature Extraction Model
	Profile Obtain
	Proposed Traffic Volume Prediction Model Architecture
	Training of DL Models

	Results
	Evaluation Metrics Used for Testing
	Predictive Performance of the Prediction Model without Failed Detectors
	Traffic Volume Prediction Without Failures
	Traffic Speed Prediction Without Failures

	Predictive Performance of the Prediction Model with Detector Failures
	Traffic volume prediction with failures
	Traffic Speed Prediction with Failures

	Imputation Performance of the Prediction Model for Offline Dataset
	Traffic Volume Imputation
	Traffic Speed Imputation

	Recognition Performance of the Daily Feature Extraction Model for Detector IDs

	Conclusion
	Acknowledgements 
	References


