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1. Introduction

Quality assurance of the printed circuit boards (PCBs) and PCB
assemblies (PCBAs) is vital for electronic product manufactur-
ing. Instead of relying on laborious, costly, and subjective man-
ual inspection, an intelligent automatic optical inspection (AOI)
system can be employed to detect defects and aid human

operators in decision-making. By utilizing
such a system, the time required for
inspecting soldering defects can be
reduced, resulting in reduced human and
time costs. However, traditional AOI sys-
tems for PCB soldering defect detection
rely heavily on the quality of the acquired
PCB images. When a lower-cost imaging
system is used, the variation in the image
quality will introduce much difficulty to the
traditional detection approaches which are
built on handcrafted features, predefined
rules, or thresholds.[1–7] Besides, these tra-
ditional approaches are often computation-
ally intensive which affects their real-time
performance. The rise of deep learning
has spurred the advancement and imple-
mentation of AOI systems.[8] Current
approaches often treat PCB soldering
defect detection as a supervised image clas-
sification problem.[9–13] Vanilla deep learn-
ing models are used and trained with
thousands of PCB defect images. In fact,
for most industrial-grade PCB manufactur-

ing processes, soldering defects are not common. It will take a
long time and huge manpower to collect sufficient PCBs with
soldering defects to construct a dataset for deep neural network
(DNN) training. It is particularly difficult for new production
lines where the AOI system needs to be in place before produc-
tion starts. The PCB samples that can be used for model training
are rather limited.

In this article, we propose to adopt the multitask learning
(MTL) method for PCB soldering defect detection under the
low-data regime. Specifically, we propose to add another head
to the model to segment the soldering points. Segmentation
tasks are generally more difficult than classifications as they
involve predicting the class of every pixel. We hypothesize that
if a model is capable of achieving good segmentation of the sol-
der regions in a PCB, it should have learned rich semantic fea-
tures, leading to an improvement in the feature representation
learning for PCB images, and ultimately enhancing the classifi-
cation performance of soldering defects. Thereby, our strategy to
address the low-data problem is to utilize the semantic feature
knowledge obtained from the segmentation mask to assist the
low-data training. While the segmentation task requires extra
labels of soldering point positions, it may also be considered that
the proposed approach tackles the low-data problem by using
more labels in lieu of training data.
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To increase the reliability of the printed circuit board (PCB) manufacturing
process, automated optical inspection is often employed for soldering defect
detection. However, traditional approaches built on handcrafted features, pre-
defined rules, or thresholds are often susceptible to the variation of the acquired
images’ quality and give unstable performances. To solve this problem, a deep
learning-based soldering defect detection method is developed in this article. Like
many real-life deep learning applications, the number of available training
samples is often limited. This creates a challenging low-data scenario, as deep
learning typically requires massive data to perform well. To address this issue, a
multitask learning model is proposed, namely, PCBMTL, that can simultaneously
learn the classification and segmentation tasks under low-data regimes. By
acquiring the segmentation knowledge, classification performance is substan-
tially improved with few samples. To facilitate the study, a soldering defect image
dataset, namely, PCBSPDefect, is built. It focuses on the dual in-line packages
(DIP) at the PCB back side, DIP at the PCB front side, and flat flexible cables.
Experimental results show that the proposed PCBMTL outperforms the best
existing approaches by over 5–17% of average accuracy for different datasets.
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To verify the above idea, a new PCB soldering defect detection
model called PCBMTL is proposed. The new model has a
U-Net-like structure but has two heads for segmentation and
defect classification, respectively.[14] For training the model, an
image dataset with PCB soldering defects is needed. There
are however not many open-source datasets related to PCB
images, and all of them are not about PCB soldering
defects.[15–23] For this reason, a new PCB soldering defect data-
set, namely, PCBSPDefect is constructed.[24] The dataset contains
images of PCB soldering points of three component parts,
namely, dual in-line packages (DIP) located on the PCB back side
(BDIP), DIP on the PCB front side (FDIP), and the flat flexible
cables (FFC), as depicted in Figure 1. These components are typ-
ical in conventional electronic circuit boards. Ten classes of sol-
dering defects can be found in the images. They are all typical
soldering defects commonly found in PCBs. These images are
captured from real defective PCBs. The dataset will be made pub-
licly available for research purposes.

2. Background

2.1. Related Works

AOI for soldering defect detection has been widely studied for
decades. The early studies focused on traditional rule-based
image processing techniques for detecting soldering defects.[1,2]

While they might use statistical or probabilistic techniques, they
were all rule-based approaches. Even in recent years, there were
still some rule-based methods used for detecting the defects of
PCB through-holes and water pump PCB soldering points.[3,4]

These rule-based methods relied on handcrafted features, prede-
fined rules, or thresholds, which were difficult to generalize and
led to inferior performance in new applications.

In recent years, machine learning (ML) techniques such as
K-means clustering, artificial neural networks (ANN), and
multilayer perceptron (MLP) have emerged to become the main
tools for classification tasks.[25,26] They also gained popularity for
soldering quality inspection.[5–7] However, these approaches still
use handcrafted features. In addition, ANN or MLP models are
relatively shallow and may not be able to aggregate image repre-
sentation features, which can limit the overall performance.[6,7]

To solve the problem, deep learning techniques were devel-
oped and demonstrated to outperform traditional ML methods.[8]

They were applied to different defect detection tasks, such as
detecting the defects of contemporary artworks and carbon fiber
composites.[27,28] DNN techniques were also used in PCB solder-
ing defect detection. For instance, object detection models were
used for simultaneously localizing and classifying soldering
defects.[29,30] A rule-based approach was used to crop out the sol-
dering points, followed by a convolutional neural network (CNN)
to classify whether the soldering point was normal or not.[9] CNN
was also adopted for USB soldering point classification after
localizing the USB connections.[10] VGGNet, a variant of
CNN, was modified to classify abnormal solder joints.[11,12]

For soldering defect classification in X-ray modality, 2D CNN
and 3D CNN were designed for detecting defects in 2D and
3D X-ray images, respectively.[13] While these approaches achieve
some success in defect detection, they require a large number of
images (at least 4000) for training, which is hard to achieve in
many practice situations.

2.2. Learning Approaches for Low-Data Scenarios

One of the main challenges of the abovementioned deep learning
approaches is the need for large amounts of high-quality labeled
data. In many real-world scenarios, obtaining such data can be
difficult, time-consuming, and expensive. While it is a common

BDIP (5 Classes: Normal, Missing Solder,
Insufficient Solder, Excessive Solder, and Bridging Solder)

(a)

(b) (c)

FDIP (3 Classes: Normal, Excessive 
Solder, and Bridging Solder)

FFC (5 Classes: Normal, Bridging Pins, 
Dirty Pins, Lifted Pins, and Shifted Pins)

Figure 1. Image samples and the corresponding binary segmentation masks in the proposed PCBSPDefect dataset for soldering defect detection: a) DIP
at PCB back side (BDIP), b) DIP at PCB front side (FDIP), and c) flat flexible cables (FFC).
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problem for deep learning research, various approaches under
low-data regimes have been developed to address this issue.

One approach is pretraining or transfer learning. The model is
first pretrained using a supervised or self-supervised approach
based on a massive external dataset such as ImageNet.[31–33]

Rich feature representations of the data are learned and then
adapted to a smaller dataset through fine-tuning. Although
self-supervised learning (SSL) has shown promise in learning
representations for downstream applications without domain
data, the incurred high cost of the required computational
resources as well as the long training time mean the solution will
be expensive to the end users. While it is possible to use SSL
pretrained models to avoid the training process, they are only
available for a few popular ones. They may not be suitable for
the requirement of PCB soldering defect detection.

Data synthesizing is another common approach for dealing
with the low-data problem. Negative samples can be synthesized
from the positive samples (which are assumed to be obtained
more easily) through image processing or deep learning techni-
ques.[34,35] However, the accuracy of the model will largely
depend on the accuracy of the synthesizer, which is not available
for general PCB soldering defects. Another approach is data
augmentation to generate samples for training. This can be done
by simple operations such as random cropping, rotating, and
flipping image samples, or more sophisticated approaches such
as Copy–Paste and using generative adversarial networks
(GAN).[34,35] Data augmentation is commonly practiced in deep
learning applications for reducing overfitting. When using it to
solve the low-data problem, the data variability or the quality of
the augmented images will not be high enough to replace the
true soldering defect samples.

Multitask learning (MTL) is another approach that can be used
under low-data regimes. In MTL, a single model is trained to per-
formmultiple related tasks simultaneously, sharing and learning
from common representations. This approach can leverage task-
specific information to improve the model’s performance on
each task, even with limited data. The shared representations
learned by the model can capture common features across tasks
and help regularize the model, reducing overfitting to the limited
data. In this article, the MTL technique is applied to PCB solder-
ing defect detection under low-data regimes. It is the first work
that addresses the low-data problem in training PCB soldering
defect detection models. When the available training data is only
10% of a normal dataset, the proposed MTL approach can still
achieve 80% or higher detection accuracy, which significantly
outperforms the conventional approaches.

2.3. Contributions

The contribution of this work has three folds: 1) We propose a
novel PCB soldering defect detection DNN model namely
PCBMTL. It adopts the multitask learning (MTL) approach that
allows for improved classification accuracy using a limited num-
ber of PCB samples, even under low-data regimes. This is
achieved by leveraging the acquired segmentation knowledge,
which helps the model better understand the features and char-
acteristics of the different components on the PCB. By training
the model to perform both segmentation and classification tasks

simultaneously, we can improve the model’s ability to accurately
classify defects, even if only a limited number of training sam-
ples are available. 2) We developed a new PCB image dataset
namely PCBSPDefect for soldering defect detection.[24] The data-
set contains images of PCB soldering points of DIP and FFC
components with 10 classes of soldering defects. This dataset
provides not only image-level labels but also pixel-wise binary
segmentation masks that indicate the regions where the PCB
has solder. The dataset will be released for public download.
3) We have evaluated the performance of our PCBMTL model
using the PCBSPDefect dataset. The results show that the pro-
posed PCBMTL outperforms state-of-the-art methods under dif-
ferent amounts of training data. This indicates the potential of
PCBMTL for effective PCB soldering defect classification using
limited data. Additionally, the segmentation results can provide
valuable insights into the model’s decision-making process and
can help identify areas for further improvement.

3. Proposed Multitask Learning Approach

3.1. New PCB Soldering Defect Image Dataset

As mentioned in Section 1, there is no open-sourced PCB solder-
ing defect dataset publicly available. To facilitate the study, a new
PCB soldering defect image dataset was developed. The new
dataset contains soldering point images of DIP and FFC compo-
nents. The images were captured using a camera placed under a
white color ring light, as illustrated in Figure 2a. A jig was used to
fix the position of the PCBs, enabling easy cropping of BDIP,
FDIP, and FFC soldering point images, as depicted in
Figure 1 and 2b.

The soldering defects in BDIP are divided into four classes,
namely, missing solder, insufficient solder, excessive solder,
and bridging solder. In FDIP, there are two classes, including
excessive solder and bridging solder. Whereas, for FFC, the
defect classes are bridging pins, dirty pins, lifted pins, and
shifted pins. Normal PCB images are also added to each category.
Every image contains two soldering points or pins so that the
problems of bridging solder, bridging pins, and shifted pins
can be clearly seen. It also enables us to generalize the dataset
to PCBs with different numbers of DIP and FFC soldering points
or pins. The images were captured under three brightness levels,
as displayed in Figure 2b, to simulate various lighting conditions

Camera

(a) (b)

Ring 
Light

Jig

PCB

Figure 2. a) Image acquisition system and b) BDIP, FDIP, and FFC image
samples captured under different lighting levels and their corresponding
segmentation masks.
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in real environments. To generate the ground-truth binary seg-
mentation mask, we utilized LabelMe annotation software to
label the pixels with solder as foreground (white) and the remain-
ing pixels as background (black).

Using the above setup, three datasets were created for BDIP,
FDIP, and FFC, respectively, with around 6,000 images in total.
Note that different data augmentation methods were applied to
generate the images in the datasets. The details of each dataset
are summarized in Table 1. To simulate the low-data scenario, a
20:20:60 split ratio is employed for the training, validation, and
test sets, respectively. The exact numbers of the training images
are shown in the last row of Table 1. To study the effect of train-
ing data size, the training set is further reduced by 2% incremen-
tally down to 10% while keeping the validation and test sets
unchanged. Each smaller training set is a proper subset of a
larger training set, i.e.

D Trainð Þ
p ⊂ D Trainð Þ

q for p < q (1)

whereD Trainð Þ
p andD Trainð Þ

q are the training setD Trainð Þ with p and q
percent of the total training samples, respectively (with p smaller
than q). The sets are also balanced to ensure an equal proportion
of different classes. To avoid overlapping, the same sample cap-
tured with different lighting levels is only included in one of the
three sets.

3.2. Proposed Multitask Learning Framework

The main concept behind MTL is to extract and utilize the shared
knowledge and information among multiple tasks so that the
MTL model can learn multiple tasks concurrently, thereby
enhancing the learning efficiency by exploiting the common fea-
tures across tasks. It is adopted in the design of the proposed
model PCBMTL to deal with the low-data problem due to the
difficulties in collecting training samples for PCB soldering
defect detection, as mentioned in Section 1. The proposed
PCBMTL is an end-to-end CNN model that integrates classifica-
tion and segmentation. This model is capable of taking an input
soldering point (pin) image of BDIP, FDIP, or FFC, and gener-
ating two outputs: a binary pixel-wise segmentation map of the
regions with solder and an image-level soldering defect type pre-
diction. The model architecture depicted in Figure 3 is an
encoder–decoder structure which is similar to some popular
structures for image segmentation such as U-Net.[14] The pro-
posed architecture comprises three parts: 1) an encoder for
high-level feature representation learning, 2) a decoder or a seg-
mentation branch for pixel-wise segmentation, and 3) an addi-
tional branch for classification. Specifically, given an image
I ∈ ℝH�W�C, where H �W is the corresponding pixel-wise
spatial resolution and C is the number of color channels, the pro-
posed model predicts the segmentation map M̂ ∈ ℝH�W and the
corresponding image-level soldering class ŷ.

3.2.1. Encoder

The input images are gradually encoded into low-resolution high-
level feature representation by the encoder, as depicted in the left
portion of Figure 3. Each level in the encoding branch contains
two convolutional blocks, as described by a 3� 3 convolution
layer (Conv3�3) with a stride of 1, followed by batch normaliza-
tion (BN) and rectifier linear unit (ReLU) activation function in
sequential order.[36,37] Unlike U-Net, our model employs BN,
which is useful to stabilize the model training. Downsampling
(Down) is achieved through the application of a 2� 2 max pool-
ing layer with a stride of 2 between two levels, which reduces the

Table 1. Summary of the BDIP, FDIP, and FFC datasets. (Numbers within
brackets are the number of PCBs used).

BDIP (five classes) FDIP (three classes) FFC (five classes)

Train [%] Train Val Test Train Val Test Train Val Test

10 246 (21) 489 1446 126 (11) 252 744 222 (19) 438 1329

12 294 (25) 153 (13) 264 (22)

14 342 (29) 180 (15) 306 (26)

16 390 (33) 198 (17) 348 (29)

18 441 (37) 225 (19) 393 (33)

20 489 (41) 252 (21) 438 (37)

Figure 3. Overview of the proposed MTL framework, PCBMTL. The convolutional layer, fully connected layer, downsampling, upsampling, and global
average pooling are denoted as Conv, FC, Down, Up, and GAP, respectively.
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spatial dimension by 2 and increases the number of channels by
2. Max pooling is used because it is a simple operation that picks
the maximum value of the pooling area from the previous layer,
meaning that the most representative feature is selected.[38] The
feature maps generated at the end of each level prior to down-
sampling can be expressed formally as

El ¼
�
Conv3�3 Conv3�3 Ið Þð Þ for l ¼ 1

Conv3�3 Conv3�3 Down El�1ð Þð Þð Þ for l ∈ 2, L½ � (2)

where El is the encoder features obtained at level l. BN and ReLU
are omitted for the sake of simplicity. This procedure is repeated
for L times in the encoder.

After passing the input image through the encoder, a total of
Llevels of image feature maps fElgLl¼1 are extracted, where L is set
to 5. To perform soldering defect classification, a subset of
Ellevels is fed into the classification branch. When using
MTL, the extracted features are also passed into the decoder
to provide spatial information for predicting a segmentation
mask of the regions with solder.

3.2.2. Decoder

In the decoder, the feature maps are upsampled to obtain the
predicted segmentation mask M̂ at the input resolution. As
depicted in the right part of Figure 3, skip connections are used
to concatenate the corresponding encoder features with the
decoder features to obtain finer segmentation masks with more
spatial details.[31] The fused features are then processed by two
convolutional blocks to further enhance the feature representa-
tion

Dl ¼
�
Conv3�3 Conv3�3 Up Elþ1ð Þ⊕Elð Þð Þ for l ¼ L� 1

Conv3�3 Conv3�3 Up Dlþ1ð Þ⊕Elð Þð Þ for l ∈ 1, L� 2½ �
(3)

where Dl is the encoder features obtained at level l, and ⊕ is the
concatenation operation. Bilinear interpolation is used for
upsampling. The last layer of the decoder consists of a 1� 1 con-
volution layer, which reduces the number of channels and pro-
duces the predicted binary segmentation map M̂. The sigmoid
function is applied to the output to ensure that the values lie
between 0 and 1, representing the probability of each pixel that
has solder. The operation can be described as follows

M̂ ¼ σ Conv1�1 D1ð Þð Þ (4)

where σ is the sigmoid activation function. Let M̂i be the proba-
bility of having solder for the i-th pixel in M̂. M̂i approaches 1
when the pixel has a high probability of having solder, and
vice versa. We hypothesize that the segmentation knowledge
of the pixels with solder can improve the performance of the clas-
sification task. Notably, when MTL is not employed, the decoder
branch is not used for segmentation prediction.

3.2.3. Classification Branch

To classify the soldering defects, a classification branch is added
to the end of the network, as shown at the bottom of Figure 3.

The semantic features learned from the segmentation task are
extracted and fed as inputs of the classification branch.
Specifically, the classification network receives feature maps of
EL�1, EL, and DL�1, which are globally average pooled (GAP)
as EL�1, EL, andDL�1. Additionally, the predicted binary segmen-
tation map M̂ can provide hints for the classification task as it
indicates the predicted pixels in the image with solder. M̂ is fur-
ther processed using K consecutive 3� 3 convolutional and
downsampling layers to obtain enhanced features with a smaller
spatial size.

Mk ¼ Down Conv3�3 Mk�1ð Þð Þ for k ∈ 1, K½ � (5)

where K is set to 3,M0 is the predicted segmentation map M̂, and
the downsampling is implemented by a 4� 4 max pooling layer
with a stride of 4. The resulting enhanced feature map MK is
then flattened.

Finally, EL�1, EL, DL�1, and the flattenedMK are fused by con-
catenation and fed into the classification branch, which has three
fully connected (FC) layers to predict the soldering defect type.
ReLU is used for first the two layers while softmax is used for the
last layer.[37] A dropout of 0.5 is used for each FC layer.[39] The
whole operation is described as follows

ŷ ¼ Softmax FC FC FC EL�1⊕EL⊕DL�1⊕MK
� �� �� �� �

(6)

where the first two FC layers reduce the feature size by half.

3.3. Multitask Loss Functions

To train the segmentation branch, two losses are used. The first
one is the binary cross-entropy loss LBCE estimated between the
predicted segmentation map M̂ and the ground-truth segmenta-
tion map M

LBCE M̂,M
� � ¼ 1

jΩj
XΩ
i

�MilogM̂i � 1�Mið Þlog 1� M̂i
� �

(7)

where Ω is the set of pixels and jΩj is the cardinality of Ω, i.e., the
number of elements withinΩ. Another loss is the Dice loss. Given
two countable sets A and B, the Dice coefficient is defined as

Dice A,Bð Þ ¼ 2jA ∩ Bj
jA ∩ Bj þ jA∪Bj (8)

which is useful to measure the overlapping between A and B sim-
ilar to Intersection over Union (IoU). It can be observed that
Dice A,Bð Þ is maximized at 1 when A ¼ B and minimized at 0
when A \ B ¼ ∅. Based on the Dice coefficient, the Dice loss is
defined as

LDice M̂,M
� � ¼ 1� 2

PΩ
i MiM̂i þ εPΩ

i Mi þ
PΩ

i M̂i þ ε
(9)

where ε is a very small value for avoiding numerical issues.
Consequently, the segmentation loss is the sum of the binary
cross-entropy loss and the Dice loss

LSeg ¼ LBCE þ λDLDice (10)
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where λD is a hyperparameter to balance LBCE and LDice. For clas-
sification, the cross-entropy loss is used

LCE ŷ, yð Þ ¼
Xy
i

�y log ŷ (11)

In the end, when MTL is used, the total loss is the sum of
classification loss and segmentation loss, i.e.

LTotal ¼ LCE þ λSegLSeg (12)

where λSeg is used to balance LCE and LSeg. The two hyperpara-
meters λD and λSeg were selected empirically based on the vali-
dation sets of PCBSPDefect. We found that the network already
worked well by selecting λD ¼ λSeg ¼ 1 although we believe that
further finetuning them may lead to even better results. When
MTL is enabled, the network is trained in an end-to-end manner
by minimizing (12) so that for each input image, the network
requires to predict the segmentation mask well and classify
the defect correctly at the same time. The training details are
described in the next section. Note that when MTL is disabled,
only the cross-entropy loss LCE is used for model training, i.e.,
λSeg ¼ 0.

We can see from (12) that, to minimize the total loss, the net-
work needs to learn well for both classification and segmentation
tasks. However, our focus is on classifying soldering defects, and
therefore, we aim to utilize the insights gained from the segmen-
tation task to enhance the performance of the classification
task. Additionally, the second term in (12) can be viewed as a
regularizer that enables the classification task to be constrained
by the segmentation task, which avoids the learning of redundant
features.

4. Experimental Results

To evaluate the performance of the proposed multitask learning
framework, we used our newly developed datasets BDIP, FDIP,
and FFC. The implementation of the proposed model, PCBMTL,
was carried out using PyTorch and trained from scratch for 50
epochs with a batch size of 16.[40] It is noted that the number of
iterations equals the number of training samples times the num-
ber of epochs then divided by the batch size. The number of iter-
ations is different for different training percentages. Adam
optimizer was used with an initial learning rate of 0.001.[41]

Random horizontal flipping was applied for data augmentation
during training. As we formulate the problem as a classification
task, classification accuracy was used as the evaluation metric. To
ensure the accuracy and reliability of our findings, the average
results from five independent runs are presented in all cases,
which is a common practice under low data regimes. This is nec-
essary because when models are trained using limited samples,
with random initialization, the accuracy can fluctuate. Training
and testing the model five times and taking the average accuracy
across these runs allows us to obtain a more reliable and repre-
sentative measure of the model performance. Furthermore, as
shown in Table 1, the performances of the models at different
training percentages, ranging from 10% to 20%, need to be eval-
uated to study the impact of training data size. Thus, the 5-run

average accuracy of each model was measured for each training
percentage.

4.1. Ablation Study of PCBMTL

For selecting different design parameters of PCBMTL, a compre-
hensive ablation study was conducted. Specifically, we performed
ablation experiments on the BDIP dataset by varying the training
sample percentage from 10% to 20% of the total. The model was
trained using different sizes of training sets, and the correspond-

ing validation accuracy, Acc D Valð ÞjD Trainð Þ
p

� �
, was measured. We

also calculated the average accuracy, Acc Valð Þ
Avg , on the validation set

D Valð Þ as follows

Acc Valð Þ
Avg ¼ 1

jPj
XP
p

Acc D Valð ÞjD Trainð Þ
p

� �
(13)

where P is the set of training samples with varying sizes. In this
case, p ∈ P ¼ f10, 12, 16, 20g.

Table 2 presents the results with different configuration set-
tings. First, by comparing the configuration settings S1 and
S2, we can see that S2, using the features of E5 and MTL for
classification, achieves an average accuracy of 76.42%, which
is higher than the 69.65% accuracy obtained by S1. This demon-
strates that leveraging the knowledge acquired from the segmen-
tation task improves the classification accuracy and confirms the
effectiveness of the proposed MTL approach.

In our second analysis, we examined the performance of dif-
ferent combinations of encoder layers E4, E5, and the decoder
layer D4 from settings S2 to S7. Settings S2 to S4 use single-level
features extracted from E4, E5, and D4, respectively. We observe
that using the features from E5 andD4 alone for PCBMTL results
in accuracies of 76.42% and 74.57%, respectively, which are
much higher than using those of E4 with an accuracy of
51.40%. This suggests that deeper layers, such as E5 or D4,

Table 2. Ablation study of the proposed PCBMTL on the BDIP validation
set. (Here, and in following tables, the best result is bolded while the
second best is underlined).

Settings E4 E5 D4 M3 MTL Acc D Valð ÞjD Trainð Þ
p

� �
[%] Acc Valð Þ

Avg [%]

p= 10 p= 12 p= 16 p= 20

S1 ✓ 58.12 64.09 77.42 78.98 69.65

S2 ✓ ✓ 61.27 72.31 83.48 88.63 76.42

S3 ✓ ✓ 42.54 44.21 53.62 65.24 51.40

S4 ✓ ✓ 62.13 65.36 84.58 86.22 74.57

S5 ✓ ✓ ✓ 62.99 75.58 84.79 87.53 77.72

S6 ✓ ✓ ✓ 70.92 82.86 87.20 89.20 82.55

S7 ✓ ✓ ✓ ✓ 72.80 81.72 88.26 88.96 82.93

S8 ✓ ✓ 28.63 35.66 41.19 55.50 40.25

S9 ✓ ✓ ✓ 75.13 84.87 89.98 90.43 85.10

S10 ✓ ✓ ✓ ✓ 73.91 82.58 85.19 89.57 82.81

S11 ✓ ✓ ✓ ✓ 79.59 85.52 89.16 90.88 86.29

S12 ✓ ✓ ✓ ✓ ✓ 76.73 84.13 87.89 89.78 84.63
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contain higher semantic features, allowing for better knowledge
acquisition. We also studied the utilization of multilevel features
in settings S5 to S7. We found that S6 (E5 þ D4) and S7
(E4 þ E5 þD4) achieve much higher accuracies of 82.55% and
82.93% compared to S5 (E4 þ E5) with an accuracy of 77.72%.
This again confirms that E5 and D4contain more useful high-level
features for soldering defect classification. In addition, for S5–S7,
features at different levels complement each other providing
higher accuracies compared to those using settings S2–S4.

Third, we also conducted experiments with the inclusion of
the soldering segmentation mask feature M3 from S8 to S12.
UsingM3 in S8 for PCBMTL results in even lower accuracy than
S1 which does not use MTL. This suggests that solely using the
soldering segmentation mask does not help with soldering defect
classification. However, when used in combination with other
features, M3 can be useful. S10 (E4 þ E5 þM3) is the setting
of S5 (E4 þ E5) with the addition ofM3. S10 obtained an accuracy
of 82.81% which is higher than the accuracy of 77.72% by S5.
Yet, the performance of S10 is on par with the ones in S6
and S7. In contrast, S9, with only E5 þM3, obtained an
85.10% accuracy, which is higher than that of S10. With the
use of the features of D4, S11 (E5 þD4 þM3) and S12
(E4 þ E5 þ D4 þM3) obtain average validation accuracies of
86.29% and 84.63% respectively, which are among the highest
among all configuration settings.

Hence, S9, S11, and S12, achieving the top-3 highest accura-
cies, were selected for further experiments based on their high
accuracy in the ablation study. They are named, PCBMTL-2F,
PCBMTL-3F, and PCBMTL-4F, respectively, for the rest of this
article.

4.2. Comparisons with State-of-The-Art Approaches

Table 3–5 summarize the comparisons of the proposed
PCBMTL with state-of-the-art PCB classification approaches
and ResNet-50 by evaluating the corresponding test accuracy,

Acc D Testð ÞjD Trainð Þ
p

� �
, where D Testð Þ is the test set, with

p ∈ P ¼ f10, 12, 14, 16, 18, 20g.[9,10,12,13,31] We also include a
classification and segmentation MTL approach for comparison
although it was originally used for biomedical images.[42]

Similar to (13), the average accuracy on the test set D Testð Þ,

Acc Testð Þ
Avg , is also provided in Table 3–5.
On the BDIP dataset, as shown in Table 3, PCBMTL-2 F,

PCBMTL-3 F, and PCBMTL-4 F achieve the highest average accu-
racies of 85.31%, 85.92%, and 85.14%, respectively, which outper-
form state-of-the-art approaches of accuracies ranging from
30.64% to 72.37% by large margins. At p ¼ 10%, the proposed
PCBMTL achieves accuracies of 75.19% to 78.59%, which already

Table 3. Comparisons of the proposed PCBMTL with state-of-the-art approaches on the BDIP test set.

Approaches Acc D Testð ÞjD Trainð Þ
p

� �
[%] Acc Testð Þ

Avg [%] R Testð Þ
Avg [%]

p= 10 p= 12 p= 14 p= 16 p= 18 p= 20

PCBMTL-2F 75.19 82.74 86.61 88.06 89.78 89.50 85.31 84.89

PCBMTL-3F 78.59 83.31 87.55 87.44 88.98 89.67 85.92 85.71

PCBMTL-4F 75.62 82.99 86.43 86.98 89.82 89.00 85.14 84.92

Gao’s[9] 53.15 60.44 62.32 62.53 64.23 64.85 61.26 61.08

Ma’s[10] 64.08 70.58 73.06 72.97 76.64 76.86 72.37 72.28

Metzner’s[12] 61.66 63.31 61.85 64.26 64.62 67.08 63.80 64.07

Zhang’s[13] 61.87 68.15 66.53 70.94 69.14 72.60 68.20 68.10

ResNet-50[31] 60.18 65.10 67.10 70.03 71.20 72.27 67.65 68.05

Ciga’s[42] 27.91 31.69 31.41 28.04 29.31 35.50 30.64 30.25

Table 4. Comparisons of the proposed PCBMTL with state-of-the-art approaches on the FDIP test set.

Approaches Acc D Testð ÞjD Trainð Þ
p

� �
[%] Acc Testð Þ

Avg [%] R Testð Þ
Avg [%]

p= 10 p= 12 p= 14 p= 16 p= 18 p= 20

PCBMTL-2F 95.40 96.37 97.26 97.96 97.77 98.36 97.19 97.20

PCBMTL-3F 95.11 96.80 97.34 98.04 98.15 98.63 97.34 97.36

PCBMTL-4F 94.44 97.10 97.98 98.41 98.49 98.23 97.44 97.46

Gao’s[9] 75.16 77.55 79.81 80.89 82.42 82.10 79.66 79.53

Ma’s[10] 71.45 72.90 75.75 77.93 81.08 83.25 77.06 76.89

Metzner’s[12] 68.20 76.91 78.28 81.26 87.45 87.18 79.88 79.73

Zhang’s[13] 89.87 91.16 91.94 91.61 92.90 94.09 91.93 91.92

ResNet-50[31] 67.10 70.78 77.82 80.48 83.47 84.46 77.35 79.33

Ciga’s[42] 46.02 50.51 45.97 54.78 65.27 51.69 52.37 52.31
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outperforms state-of-the-art approaches of accuracies ranging
from 35.50% to 72.60%, and are on par with Ma’s accuracy of
76.86%, at p ¼ 20%. This verifies the effectiveness of MTL, where
the segmentation task helps improve classification accuracy.

On the FDIP dataset, as shown in Table 4, PCBMTL-2F,
PCBMTL-3F, and PCBMTL-4F achieve the highest average accu-
racies of 97.19 %, 97.34%, and 97.44% respectively, with signifi-
cant improvement over other approaches of accuracies ranging
from 52.37% to 91.93%. At p ¼ 10%, the proposed PCBMTL
achieves accuracies of 94.44% to 95.11%, which outperforms
approaches of accuracies ranging from 51.69% to 94.09%, at
p ¼ 20%:

Regarding FFC, as shown in Table 5, PCBMTL-2F, PCBMTL-3F,
and PCBMTL-4F achieve the highest average accuracies of 86.46%,
86.04%, and 84.28%, respectively, which outperforms other
approaches ranging from 31.73% to 68.89%, with significant mar-
gins. Similar to the trend in FDIP, at p ¼ 10%, the proposed
PCBMTL obtains accuracies of 81.53% to 83.91%, respectively,
which already outperforms with accuracies ranging from 35.82%
to 74.90% at p ¼ 20%: The large improvement demonstrates
the superiority of the proposed PCBMTL model.

In addition, the average sensitivity or equivalently average

recall rate, R Testð Þ
Avg , of each method was also measured. On

BDIP, as shown in Table 3, our PCBMTL-2F, PCBMTL-3F,
and PCBMTL-4F achieve the highest average recall rates of
84.98%, 85.71%, and 84.92%, respectively, which outperform
state-of-the-art approaches of average recall rates ranging from
30.25% to 72.28% by large margins. Similar trends are observed
for the FDIP and FFC datasets. On FDIP, as shown in Table 4,
our PCBMTL-2F, PCBMTL-3F, and PCBMTL-4F achieve the
highest average recall rates of 97.20%, 97.36%, and 97.46%,
respectively, which outperform state-of-the-art approaches of
average recall rates ranging from 52.31% to 91.92%. On FFC,
as shown in Table 5, our PCBMTL-2F, PCBMTL-3F, and
PCBMTL-4F achieve the highest average recall rates of
86.23%, 85.79%, and 83.93%, respectively, which outperform
state-of-the-art approaches of average recall rates ranging from
31.85% to 68.93%. As our dataset is a balanced dataset, the aver-
age recall rate is close to the accuracy. In cases where the dataset
is imbalanced, the recall rate is often more informative and rele-
vant than accuracy.

In summary, PCBMTL-2F, PCBMTL-3F, and PCBMTL-4F
consistently outperform other approaches on all three datasets
for all percentages of training samples. When the number of
training samples is only 10% of the original dataset, the proposed
PCBMTL can still achieve 80% or higher accuracy, which signif-
icantly outperforms the conventional approaches. Overall,
PCBMTL is a data-efficient PCB soldering defect detection model
that is particularly useful under low data regimes when it is chal-
lenging or expensive to collect the required training data.

4.3. Visualizations of Soldering Region Segmentation

Even though the segmentation task is not necessary during infer-
ence, we include a visualization of the segmentation results on
the test set for a better understanding of what the PCBMTL-3F
network has learned. The visualizations, as shown in Figure 4,
are generated using the models trained with 10%, 16%, and 20%
of the training data.

In the case of BDIP, we can observe from Figure 4a that for the
normal class, the proposed PCBMTL-3 F can achieve a good seg-
mentation of the soldering region even when the training sample
percentage is 10%. As we increase the training sample percent-
age to 20%, the segmentation becomes much closer to the
ground truth. In the case of FDIP, as shown in Figure 4f, the
proposedmodel successfully segments the solder without includ-
ing the DIP pins. Even though a rough ground-truth segmenta-
tion mask is manually annotated in Figure 4h, the proposed
model can still accurately segment the solder without misjudging
the pins as solder. Similarly, in FFC, for example, in Figure 4j,
the proposed model accurately differentiates between silkscreen
and soldering areas.

The visualization of segmentation results provides insights
into the model’s learning and helps identify areas where the
model performs well or poorly. By leveraging the segmentation
results, we can be confident that the proposed model accurately
classifies the soldering defects.

4.4. Further Enhancement with Pretraining

ImageNet pretraining is a popular technique for initializing
the weights of a model using the massive ImageNet dataset,

Table 5. Comparisons of the proposed PCBMTL with state-of-the-art approaches on the FFC test set.

Approaches Acc D Testð ÞjD Trainð Þ
p

� �
[%] Acc Testð Þ

Avg [%] R Testð Þ
Avg [%]

p= 10 p= 12 p= 14 p= 16 p= 18 p= 20

PCBMTL-2F 83.49 84.27 83.90 87.67 89.26 90.17 86.46 86.23

PCBMTL-3F 83.91 83.58 82.41 86.05 90.37 89.93 86.04 85.79

PCBMTL-4F 81.53 81.97 80.20 84.73 88.80 88.46 84.28 83.93

Gao’s[9] 59.86 65.60 65.00 66.59 67.15 66.73 65.15 65.33

Ma’s[10] 66.02 66.62 62.95 72.37 70.47 74.90 68.89 68.93

Metzner’s[12] 60.12 66.31 64.42 61.25 71.51 71.81 65.90 66.09

Zhang’s[13] 62.30 65.13 72.26 62.72 70.11 71.66 67.37 67.54

ResNet-50[31] 60.47 60.23 64.21 67.92 71.42 73.26 66.25 66.04

Ciga’s[42] 25.76 24.18 28.04 37.41 39.42 35.82 31.73 31.85
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which consists of approximately 1.2 million training images.[33]

The pretrained model is subsequently fine-tuned for a specific
downstream task. It can be a way to help in the low-data regime
since the task-related training data can be reduced. In this sec-
tion, we investigate the effectiveness of our proposed MTL
approach for ImageNet pretrained models on our
PCBSPDefect dataset. We first pretrained the encoder and the
classification branch of the proposed PCBMIL on ImageNet
using (11). Then, during the fine-tuning phase, the entire model
was further trained on our BDIP dataset using MTL via (12). The
results are presented from Table 6–8.

On BDIP (Table 6), our model pretrained on ImageNet without
MTL (referred to as PT) achieves an average accuracy of 82.87%.

However, when we utilize both pretraining and MTL, our models,
PTþ PCBMTL-2F, PTþ PCBMTL-3F, and PTþ PCBMTL-4F,
achieve significantly higher average accuracies of 86.90%,
87.02%, and 86.90%, respectively, with a margin of about 4%.
This suggests that although ImageNet pretraining can help the
model learn rich image representations, our proposed MTL
approach can further improve the classification performance.

On FDIP (Table 7), our model pretrained on ImageNet without
MTL (referred to as PT) already achieves an average accuracy of
97.96% since this is a relatively easier task. Yet, similar to the
BDIP case, when we utilize both pretraining andMTL, our models,
PTþ PCBMTL-2F, PTþ PCBMTL-3F, and PTþ PCBMTL-4F,
achieve significantly higher average accuracies of 99.26%,

Table 6. Effectiveness of the proposed PCBMTL approach for ImageNet pretrained (PT) models on the BDIP test set.

Approaches MTL Acc D Testð ÞjD Trainð Þ
p

� �
[%] Acc Testð Þ

Avg [%]

p= 10 p= 12 p= 14 p= 16 p= 18 p= 20

PT (w/o MTL) 72.39 81.45 82.92 84.99 86.90 88.55 82.87

PTþ PCBMTL-2F ✓ 81.47 84.37 87.66 87.14 90.21 90.57 86.90

PTþ PCBMTL-3F ✓ 81.23 84.51 88.17 88.22 89.97 90.00 87.02

PTþ PCBMTL-4F ✓ 82.17 84.38 86.13 87.22 88.12 89.99 86.33

BDIP FDIP FFC
Input GT p=10% p=16% p=20% Input GT p=10% p=16% p=20% Input GT p=10% p=16% p=20%

Normal Normal

Insufficient Solder Normal

(i) 

(j) 

(k) 

(l) 

(m) 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Bridging Pins

 Missing Solder Excessive Solder Dirty Pins

Excessive Solder Bridging Solder Lifted Pins

Bridging Solder Shifted Pins

Figure 4. Visualization of soldering segmentation results using PCBMTL-3F trained under different percentages of training samples: a–e) BDIP,
f–h) FDIP, and i–m) FFC. (GT: Ground-Truth).

Table 7. Effectiveness of our proposed PCBMTL approach for ImageNet pretrained (PT) models on the FDIP test set.

Approaches MTL Acc D Testð ÞjD Trainð Þ
p

� �
[%] Acc Testð Þ

Ag [%]

p= 10 p= 12 p= 14 p= 16 p= 18 p= 20

PT (w/o MTL) 96.64 97.69 97.39 98.31 98.79 98.92 97.96

PTþ PCBMTL-2F ✓ 98.36 99.17 99.44 99.70 99.30 99.60 99.26

PTþ PCBMTL-3F ✓ 98.36 99.09 99.46 99.60 99.57 99.76 99.31

PTþ PCBMTL-4F ✓ 98.06 98.71 98.90 99.62 99.57 99.70 99.09
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99.31%, and 99.09%, respectively, with a margin of over 1%.
This again shows that our proposed MTL approach can further
improve the classification performance even when pretraining is
utilized.

On FFC (Table 8), our model pretrained on ImageNet without
MTL (referred to as PT) achieves an average accuracy of 90.74%.
Likewise, our models, PTþ PCBMTL-2F, PTþ PCBMTL-3F,
and PTþ PCBMTL-4F, achieve significantly higher average
accuracies of 92.71%, 92.81%, and 92.59%, respectively, with
a margin of about 2%.

All these results are way better than the traditional PCB
soldering defect detection methods, as shown in Table 3–5.

5. Conclusion

In PCB assembly, identifying soldering defects is crucial for
enhancing manufacturing reliability. AOI using deep learning
is a promising solution for this task. Yet, due to many practical
reasons, there is a lack of training samples, which poses a chal-
lenge for training deep learning PCB soldering defect detection
models under low-data regimes. To address this, we have pro-
posed a novel MTL deep learning model PCBMTL in this article,
which simultaneously learns the segmentation and classification
tasks. With the learned segmentation knowledge, the classifica-
tion performance is improved even when only a small amount of
training samples are available. To facilitate MTL, we also built the
PCBSPDefect dataset, which covers three components: BDIP,
FDIP, and FFC, with corresponding segmentation masks.
Experimental results show that the proposed PCBMTL achieves
the highest accuracies of 85.92%, 97.44%, and 86.46% when test-
ing on the BDIP, FDIP, and FFC test sets, respectively, outper-
forming the best prior arts by over 13%, 5%, and 17%,
respectively. Besides, further improvements are noted when
themodels are pretrained on ImageNet. To the best of our knowl-
edge, this is the first work to provide a classification and segmen-
tation soldering defect dataset, as well as apply MTL to PCB
soldering AOI. We believe that the proposed framework can
improve the performance of soldering defect inspection while
reducing the need for large datasets.
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