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Abstract

Introduction:Ocular artifact has long been viewed as an impediment to the interpre-

tation of electroencephalogram (EEG) signals in basic and applied research. Today, the

useof blind source separation (BSS)methods, including independent component analy-

sis (ICA) and second-order blind identification (SOBI), is considered an essential step in

improving the quality of neural signals. Recently, we introduced amethod consisting of

SOBI and a discriminant and similarity (DANS)-based identificationmethod, capable of

identifying and extracting eye movement–related components. These recovered com-

ponents can be localized within ocular structures with a high goodness of fit (>95%).

This raised the possibility that such EEG-derived SOBI components may be used to

build predictivemodels for tracking gaze position.

Methods:As proof of this new concept, we designed an EEG-based virtual eye-tracker

(EEG-VET) for tracking eye movement from EEG alone. The EEG-VET is composed of

a SOBI algorithm for separating EEG signals into different components, a DANS algo-

rithm for automatically identifying ocular components, and a linear model to transfer

ocular components into gaze positions.

Results: The prototype of EEG-VET achieved an accuracy of 0.920◦ and precision

of 1.510◦ of a visual angle in the best participant, whereas an average accuracy

of 1.008◦ ± 0.357◦ and a precision of 2.348◦ ± 0.580◦ of a visual angle across all

participants (N= 18).

Conclusion: This work offers a novel approach that readily co-registers eyemovement

and neural signals from a single-EEG recording, thus increasing the ease of studying

neural mechanisms underlying natural cognition in the context of free eyemovement.
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1 INTRODUCTION

Electroencephalography (EEG) and EEG-based source imaging have

been widely used in basic, clinical, educational, and commercial neuro-

science research and applications (Cavanagh, 2018;Dikker et al., 2017;

Donchin et al., 2000; He et al., 2018; Khushaba et al., 2013; Lau-Zhu

et al., 2019; Luck, 2014;McLoughlin et al., 2014; Niedermeyer & Lopes

Da Silva, 2004; Privitera et al., 2022; Protzak & Gramann, 2018; Zink

et al., 2016). Although advances have been made in the development

of new electrodes for better signal quality (Casson, 2019) and ease of

application (Kam et al., 2019; Lopez-Gordo et al., 2014), the presence

of large amplitude artifacts associated with eye movement continues

to constrain the utility of EEG in the investigation of neural processes

underlying natural cognition. To address this issue, typical EEG experi-

mental paradigms require the fixation of the gaze at a specific location

prior to and during stimulus presentation. Consequently, EEG-based

brain and behavior research is seldom conducted under the natural

conditions of free eye movement, with few exceptions (Dimigen et al.,

2011; Nikolaev et al., 2016).

Persistent efforts have beenmade over the past decades to identify,

separate, and remove components associatedwith eyemovements and

other artifacts from EEG signal (Ranjan et al., 2021; Wallstrom et al.,

2004). Blind source separation (BSS) methods, including independent

component analysis (ICA) and second-order blind identification (SOBI)

(Bell & Sejnowski, 1995; Belouchrani et al., 1997), are typically used to

separate and remove artifactual components from the original EEG in

order to improve the quality of the neural signal (for reviews, see Tang

2010; Tang et al., 2011; Dimigen et al., 2011; Croft et al., 2000; Man-

nan et al., 2018; Jiang et al., 2019; Uriguen et al., 2015; Islam et al.,

2016; Croft et al., 2005; Jung et al., 2000; Joyce et al., 2004; Bridwell et

al., 2018). Today, the identification of ocular components from EEG is

achieved through automatic classification or selection algorithms (Sun

et al., 2021; Chaumon et al., 2015; Delorme et al., 2001; Dimigen et al.,

2011; Joyce et al., 2004; Kierkels et al., 2007; Li et al., 2006; Mognon

et al., 2011; Nolan et al., 2010; Plochl et al., 2012; Raduntz et al., 2015;

Viola et al., 2009). In one example, Plochl et al. (2012) used eye move-

ment data collected by an eye-tracker to automatically identify and

exclude five types of ocular artifact-related components separated by

ICA from EEG signal with a true positive success rate of 99%. More-

over, Many ICA selection algorithms, such as SASICA (Chaumon et al.,

2015), FASTER (Nolan et al., 2010), and ADJUST (Mognon et al., 2011),

have been developed to automatically identify different classes of arti-

facts (like blinks, vertical and horizontal eye movements, and generic

discontinuities) with good success rates. Most previous works used

approaches that treat the separated ocular and artifactual components

as contaminations to be removed. They shared an implicit assumption

that the extracted ocular signals are indeed ocular in origin. Recently,

Castellanos and Makarov (2006) showed that ICA-identified ocular

components are actually contaminated by neural signals. Such contam-

inationof artifact components byneural signalswent unexamined,with

few studies providing a systematic and quantitative measurement and

statistical analysis of underlying sources of identified artifacts.

Recently, a novel SOBI–discriminant and similarity (DANS)-based

approach was developed to quantitatively validate extracted horizon-

tal and vertical eye movement–related ocular artifact components

and set an upper bound for any potential “contamination” of these

components by remaining neural signals represented by the amount

of unexplained variance (Sun et al., 2021). Spatially, these horizontal

and vertical eye movement–related components, H and V components

(H and V Comps), can be modeled as a pair of equivalent current

dipoles with an ocular, nonneural origin. In the majority of participants

studied, the neural contamination of SOBI-identified ocular compo-

nents was less than 5% for both H and V Comps. Further quantitative

validation of the components’ ocular origin was provided by the sys-

tematic modulation of amplitudes of the H and V Comps as a function

of saccade directions and distances, indicated by an effect size mea-

sure. Therefore, these components are more than mere artifacts but

potentially contain useful signals indicating the gaze positions of indi-

vidual participants. Furthermore, the systematic modulation of H and

V Comps’ amplitude by gaze direction and distance was found not

merely in group statistics but in statistics for each individual. These

results raise the possibility that these eye movement–related com-

ponents recovered from EEG data alone could be used to construct

individual-specific models for predicting gaze positions. If this could be

achieved, one would be equipped with temporally synchronized neu-

ral signals related to cognitive processing and eye movement signals

related to behavioral output, thus avoiding the additional demands

and constraints associated with using a separate eye-tracker and

having to co-register with the EEG. Building on this previous work

(Sun et al., 2021), in an earlier feasibility study (Sun et al., 2020),

we proposed a novel method for tracking eye movement using only

the ocular component from EEG signal: an EEG-based virtual eye-

tracker (VET). We believe this method can facilitate the study of

neural mechanisms supporting visual perception and language func-

tions in the natural context of free eye movement, like Egurtzegi

et al. (2022).

Here, we describe our prototype of the EEG-VET to show that it is

possible to achieve a reasonable level of accuracy and precision. In this

study, two kinds of eyemovements tasks were used The first dot track-

ing trask, consisting of a sequence of directed saccadic eye moments

to 8 directions and 2 distances to generate EEG data for estimating

the parameters for the predictive models behind the EEG-VET includ-

ing determining accuracy and precision, whereas smooth pursuit eye

movements were used to evaluate the performance of model predic-

tion in terms of the rootmean square error (RMSE) between the target

and predicted gaze position. The results of this study strengthen our

previous finding that SOBI–DANS identified ocular components cap-

ture signals coding for eye movement, and further demonstrate that

these signals can be used to construct predictive models for tracking

eye gaze without the need for an eye-tracker. With further optimiza-

tion, it is our hope that EEG-VET will not only impact the study of

neural mechanisms underlying natural cognition in the context of free

eye movement but also provide a convenient way for tracking eye

movement in EEG studies.
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2 MATERIALS AND METHODS

2.1 Participants

Based on the sample size used in previous related works (Brooks

et al., 2019; Niehorster et al., 2020), 25 healthy adults were initially

included in the present study, 7 participants were excluded due to

poor behavioral performance (fixation duration of 10% trials below

than300ms,which follow the calibration procedure of commercialized

eye-trackers; n = 3), problems with eye-tracking (missing trials >10%;

n = 2), and EEG data quality (impedances of 1/3 electrodes >20 kΩ;
n = 2). The final sample consisted of 18 participants (11 females) with

a mean age of 20.71 years (SD = 1.83). Ethical approval (EA1801033)

of this study was granted by the Human Research Ethics Committee

of the University of Hong Kong, and written informed consent was

obtained from each participant before the experiment.

2.2 Experimental tasks

Tasks were administered using E-prime 2.0 software (Psychology Soft-

wareTools). Participantswere asked to sit in front of a computer screen

in aquiet room, and their headpositionwas stabilizedbya chinrest. The

chinrestwas adjusted such that participants’ eye level was alignedwith

the screen center with a viewing distance of 600 mm. The experiment

was composed of two tasks: dot calibration task and smooth pursuit

task. The dot tracking task was used to estimate model parameters of

the EEG-VET, whereas the smooth pursuit task was used to test the

performance (i.e., accuracy, precision, and RMSE) (Figure 1a).

2.2.1 Dot tracking task

This task consisted of 32 directed eye movements from a central fix-

ation point to one of 32 black dots presented on a white background,

one at a time, at 16 possible locations, with 2 trials for each location

(Figure 1b). Among the 16 possible locations, 8 locations were 12.2◦

of visual angle away from the screen center, and the other 8 locations

were 6.1◦ of visual angle away from the screen center. These formed

inner and outer rings of short versus long-distance saccade target loca-

tions. In both conditions, the eight locations were evenly distributed

among all possible directions from the screen center (0◦, 45◦, 90◦,

135◦, 180◦, 225◦, 270◦, and 315◦ of visual angle). Each dot was a circle

subtending about 0.6◦ of visual angle (or a diameter of 16 pixels). We

define the upper left corner of the screen as the coordinate origin with

the X axis extending to the right and the Y axis extending downward;

the coordinates of the 16 target dots (given in mm) can be observed

in Figure 1b. Participants were instructed to follow a sequence of

dots presented at different locations in a random order, one at a time

(Figure 1c). Prior to each trial, participants were told to focus on a

fixation symbol “O” displayed in the center of the screen. A trial was

initiated by the experimenter when the participant was fixated at the

symbol “O.” The trial then began with a fixation cross “+” displayed

at the center of the screen for a random duration between 500 and

1000 ms. Immediately after the offset of the fixation cross, a target

dot appeared at one of the 16 possible locations randomly, towhich the

participant was instructed to move their eyes as fast and accurately as

possible while avoiding blinks. Once a stable fixation on the target dot

was detected by the eye-tracker, the dot disappeared and participants

were allowed to blink until they saw the fixation symbol “O” again. This

task took approximately 3min.

2.2.2 Smooth pursuit task

This task consisted of 64 smooth pursuit eye movements with 8 trials

for4 speeds (1, 5, 9, and19◦/s) in2directions (left and right) (Figure1d).

Prior to each trial, participants lookedat the center of the screenwhere

a fixation symbol “O” was displayed for a minimum of 500 ms. A trial

was initiated by the experimenter when the participant was fixated

at the symbol “O.” The trial then began with a fixation cross “+” dis-

played at the center of the screen for a random duration between

600 and 900 ms. Participants were instructed to remain fixated until

the target dot appeared. Immediately after the offset of the fixation

cross “+,” a pursuit target dot appeared 2◦ of visual angle to the left

(229, 142.5 mm) or right (275, 142.5 mm) of the fixation cross to pre-

pare the participant to make a smooth pursuit (Braun et al., 2017).

After 256ms, the fixation cross disappeared, and the pursuit target dot

began to move for 512 ms at one of the four possible speeds (1, 5, 9,

or 19◦/s) randomly in the opposite direction of the step. After stopping,

the pursuit target dot remained stationary for 256 ms. This task took

approximately 10–14min.

2.3 Eye movement and EEG data acquisition and
processing

Eye movement data were continuously collected at a sampling rate of

60 Hz using an SMI REDn eye-tracker (iMotions), which was attached

to a 17.5-inch monitor with a screen resolution of 1280 × 720 pixels.

Because the algorithm of the EEG-VET does not involve the use of eye-

tracker data, these data were only used to exclude participants who

missed>10%of task trials.Only data from the dominant eyewere used

for eye-tracking data analysis. EEG data were recorded continuously

along with eye-tracking data using an eegoMylab system (ANT Neuro)

with 64 electrodes placed according to the standard 10–20 system at a

sampling rate of 500 Hz, with reference electrodes placed on the mas-

toids (the bones behind the ears) and electrode impedance kept below

20 kΩ. EEG data were notch-filtered (50 Hz) and high-pass filtered

(0.1 Hz) before further processing. E-prime software communicated

with the EEG system via a parallel port.

2.4 Design of the EEG-VET

Prior to use, EEG-VET requires calibration to separate EEG signals into

different components, identify ocular components from the recovered

components (i.e., H and V Comps), and establish a linear regression

model between ocular components and gaze position. The calibration
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F IGURE 1 Methods: (a) study design flowchart; (b) the position of target dots in the dot tracking task; (c) dot tracking task; and (d) smooth
pursuit task.

algorithm includes an SOBI algorithm (Belouchrani et al., 1993, 1997)

to decomposeEEGsignals, then the aDANSalgorithm (Sunet al., 2021)

to identify the horizontal and vertical ocular components, and finally a

linear regressionmodel (see flowchart inFigure2) tomap the identified

ocular components to gaze positions.

2.4.1 Decomposing EEG using SOBI algorithm

SOBI was applied to continuous EEG to decompose the 64-channel

data into 64 components, each of which corresponds to a recov-

ered putative source contributing to the scalp-recorded EEG signals.

Detailed descriptions of SOBI’s usage (Sutherland & Tang, 2006; Tang

et al., 2002a; Tang et al., 2002b; Tang, Liu, et al., 2005; Tang, Suther-

land and Wang et al., 2006), validation (Lio & Boulinguez, 2013; Tang,

Sutherland, et al., 2005), and a review of SOBI usage (Tang, 2010; Tang

et al., 2011; Urigüen &Garcia-Zapirain, 2015) can be found elsewhere.

Here we briefly introduce SOBI algorithm: Let x(t) represent the n con-

tinuous time series from the nEEGchannels,where xi(t) corresponds to

the ith EEG channel. Because various underlying sources are summed

via volume conduction to give rise to the scalp EEG, each of the xi(t)

is assumed to be an instantaneous linear mixture of n unknown com-

ponents or sources si(t), via an unknown n × n mixing matrix A, where

x (t) = As(t). The putative sources ŝi(t) are given by ŝi (t) = Wx(t), where

W = A−1. SOBI finds theunmixingmatrixWormixingmatrixA through

an iterative process that minimizes the sum squared cross correlations

between one recovered component at time t and another at time t + 𝜏,

across a set of time delays. The following set of delays, 𝜏s (in ms), was

chosen to cover a reasonably wide interval without extending beyond

the support of the autocorrelation function:

𝜏 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40,

45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125,

150, 175, 200, 225, 250, 275, 300, 325, 350}.

The calculation of mixing matrix A and source signals ŝi(t) is

described in Belouchrani et al. (1997).

2.4.2 Identifying ocular components using DANS
algorithm

Our previously validated DANS algorithm was applied to automati-

cally identify the H and V Comps recovered by SOBI (Sun et al., 2021).

DANS generates two discriminant indices (DIH andDIV) for every SOBI

component to index temporal response selectivity. DIH and DIV were

defined as the normalized difference between two signed amplitudes

of saccade-related potentials (SRPs) in response to long saccades in
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F IGURE 2 Flowchart of model calibration and performance testing of the electroencephalogram-based virtual eye-tracker (EEG-VET).
EEG-VETmainly consists of three parts: second-order blind identification (SOBI), discriminant and similarity (DANS), and linear regression
analysis. It estimates themodel parameters (Wmatrix, coefficients of independent variables, and intercepts) using data from the dot tracking task.
The performance of EEG-VET (accuracy, precision, and root mean square error [RMSE]) is assessed using data from both the dot tracking and
smooth pursuit tasks. Note that eachmodel is individual specific and does not require the pooling from group data.

opposite directions (DIH: SRPRight–SRPLeft; DIV: SRPUp–SRPDown) in

proportion to the maximum difference value (maximum DI = 1.0). In

this study, SRP refers to the event-related potentials triggered by

target onsets in dot tracking task. SRP amplitude was computed as

the median amplitude within 200–1200 ms after target onset with a

baseline correctionwindow of 500ms prior to target onset. DANS also

generated two similarity indices (SIH and SIV) to index the resemblance

of a component’s scalp projection with the known prototypical scalp

projection maps of H and V Comps. SIH and SIV were defined as the

normalized correlation between the scalp projection of a SOBI compo-

nent and the projection of a prototypical H or V Comps, respectively

(normalization by the maximum value; maximum = 1.0). Examples of

prototypicalmaps ofH orVComps can be found in previouswork using

BSS in ocular artifact removal (such as in Plochl et al., 2012; Vigário,

1997) or in Figure S1. If an SI is smaller than 0.5, then SI is set to 0, so

that the corresponding component is effectively excluded from consid-

erationbecausea componentwith SI<50%of the SIMAX is unlikely tobe

the single best candidate capturing the horizontal or vertical saccade-

related component. Finally, horizontal and vertical scores (H and V

scores), defined as the product of DI and SI, were computed for each
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6 of 14 SUN ET AL.

component. The components with the largest nonzero H or V scores

were the final selected H or V Comps, respectively. DANS selected H

and V Comps for each participant are shown in Figure S1, whereas the

grand averaged plot can refer to our previous study (Sun et al., 2021).

2.4.3 Construction of individual-specific linear
regression models of gaze position using dot track
data

The scatter diagrams of the relationship between horizontal, vertical

SRP amplitudes (AmpSRP_H, AmpSRP_V) and target gaze positions (Xt, Yt)

for each participant are shown in Figure S2A (for scatter diagrams of

AmpSRP_H vs.Xt) andFigureS2B (for scatter diagramsofAmpSRP_V vs.Yt).

It can be seen from the scatter diagrams that SRP amplitude and gaze

position show a linear relationship in all participants. Therefore, lin-

ear regression analysiswas used to fit the relationship. Target positions

(Xt, Yt) were defined as dependent variables, whereas SRP amplitudes

(AmpSRP_H,AmpSRP_V) were defined as independent variables. The linear

equations can be established as follows:

Xt = ax × AmpSRP_H + bx × AmpSRP_V + cx

Yt = ay × AmpSRP_H + by × AmpSRP_V + cy

Least-square estimationwas used to estimate the slope coefficients

of independent variables (ax, bx, ay, and by) and intercepts (cx and cy),

which will be applied in performance testing of the EEG-VET.

In summary, the method of the EEG-VET is composed of a

SOBI method, a DANS algorithm, and two linear equations. SOBI

algorithm was used to separate EEG signals into different compo-

nents, whereas DANS algorithm was used to automatically iden-

tify H and V Comps from SOBI-recovered components. The linear

regression analysis was used to establish linear equations between

ocular components (AmpSRP_H, AmpSRP_V) and gaze positions (Xt, Yt).

The performance of the EEG-VET was evaluated by accuracy, pre-

cision in a saccadic eye movement, and RMSE between target and

measured movement trajectory by EEG-VET in a smooth pursuit

task.

2.5 Model performance test using smooth pursuit
task accuracy and precision

In evaluating the EEG-VET, individual specific model constructed from

dot tracking task data was used to (1) predict gaze positions during the

left and right saccades that began the smooth pursuit trials; (2) pre-

dict gaze positions during the tracking of a moving target in the same

smooth pursuit task. In measuring the errors in the two types of pre-

diction, accuracy and precisions were computed for prediction (1) and

a RMSE in tracking was computed for prediction (2).

Both accuracy and precision are defined in degrees of visual angle.

Since both target and gaze positions are originally given as distances

on the display screen, below we show derivation of the final visual

angle measures from the distance measures. The accuracy in mm can

be defined as

Accurancy =

√
(Xt − Xm)

2
+ (Yt − Ym)

2

In the equation,Xt andYt are the horizontal and vertical coordinates

of a target location, whereas Xm and Ym are the average horizontal

and vertical coordinates of the measured gaze location by eye-tracker

when participants were required to fix their eyes on the target

point.

The OnscreenDistance refers to the distance from a location on the

screen to the center of the screen. Therefore, the OnscreenDistance of

the target point is

OnScreenDistanceT =

√(
Xt −

xscreen
2

)2
+
(
Yt −

yscreen
2

)2
whereas the OnscreenDistance of average gaze location measured by

eye-tracker is

OnScreenDistanceG =

√(
Xm −

xscreen
2

)2
+
(
Ym −

yscreen
2

)2
The visual angle related to on-screen distance can be calculated via

Angle = tan−1
(
OnScreenDistance

Distance

)
xscreen, yscreen refers to the width and height of the screen.

Distance refers to the distance from the screen to the participant’s eye,

which was 600 mm in this study. The accuracy in degrees of visual

angle can be expressed as the deviation in degrees between the actual

gaze direction and gaze direction measured by the eye-tracker, with

the point of origin determined by the position of the eye. It can be

estimated via

VisualAngleAcurrancy =
180
𝜋

× cos−1
{

1
2
×

[
cosAngle2t + cosAngle2m
cosAnglet × cosAnglem

−
Accuracy2 × cosAnglet × cosAnglem

Distance2

]}
Precision (in degrees of visual angle) is defined as the ability of the

eye-tracker to reliably reproduce the same gaze point measurement. It

is calculated via the rootmean square from the n successive data points

(in degrees of visual angle 𝜃i) between gaze location measured by eye-

tracker (Xmi, Ymi) to (Xm(i+1), Ym(i+1))

𝜃i =
180
𝜋

× cos−1
⎧⎪⎨⎪⎩
1
2
×

⎡⎢⎢⎣
cosAngle2mi + cosAngle2m(i+1)
cosAnglemi × cosAnglem(i+1)

−
OnScreenDistance2mi, m(i+1) × cosAnglemi × cosAnglem(i+1)

Distance2

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

TheOnScreenDistancemi, m(i+1) is the distance between (Xmi, Ymi) and

(Xm(i+1), Ym(i+1)). Then the precision in degrees of visual angle can be
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SUN ET AL. 7 of 14

F IGURE 3 Comparison of accuracy/precision between electroencephalogram-based virtual eye-tracker (EEG-VET) (red bar) and SMI REDn
eye-tracker (blue bar) on 16 target points: (a) the accuracy/precision is combined from the X and Y axes as a general description; (b) the
accuracy/precision is separated along X and Y axes. The bars indicate the accuracy value, whereas the error lines indicate the precision value. The
average accuracy of EEG-VET across all participants and all target points is 2.05◦ Å} 0.93◦, whereas the precision is 4.76◦ Å}0.55◦ of visual angle. For
SMIREDn eye-tracker, the accuracy is 1.19◦ Å} 0.67◦,whereas the precision is 2.23◦ Å} 0.61◦ of visual angle. This difference is significant (accuracy: t(15)=
5.66, p< .01; precision: t(15)= 13.97, p< .01). The accuracy is better when the target points are in the inner ring than outer ring both the EEG-VET and the
commerical eye tracker (EEG-VET: t(7)= 6.23, p< .01; eye tracker: t(7)= 2.71, p= .03).

F IGURE 4 An example illustrating a selective contribution of the Horizontal ocular component to tracking of amoving target while the other
neuronal components (line 2,4,5) are insertive to horizontal eyemovement. Gray block: smooth pursuit period.
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8 of 14 SUN ET AL.

TABLE 1 Goodness of the individual-specific linear models for using saccade-related potential (AmpSRP_H, AmpSRP_V) to predict target gaze
position (Xt, Yt) for each participant’s data from the dot tracking task.

Using bothAmpSRP_H andAmpSRP_V to predict Xt (mm) Using bothAmpSRP_H and AmpSRP_V to predict Yt (mm)

#P r p for SRP_H p for SRP_V r p for SRP_H p for SRP_V

P1 .91 <.01** .21 .84 <.01** <.01**

P2 .96 <.01** .12 .60 .01* <.01**

P3 .96 <.01** .80 .94 .99 <.01**

P4 .96 <.01** .16 .89 <.01** <.01**

P5 .98 <.01** <.01** .92 <.01** <.01**

P6 .93 <.01** .65 .91 <.01** <.01**

P7 .96 <.01** .13 .88 <.01** <.01**

P8 .99 <.01** .65 .96 <.01** <.01**

P9 .97 <.01** <.01** .91 .75 <.01**

P10 .96 <.01** .02* .76 .06 <.01**

P11 .92 <.01** .16 .90 .55 <.01**

P12 .98 <.01** <.01** .86 .52 <.01**

P13 .94 <.01** .72 .73 .01* <.01**

P14 .97 <.01** .27 .47 .45 .01*

P15 .95 <.01** .05 .94 .15 <.01**

P16 .99 <.01** .16 .83 .68 <.01**

P17 .85 <.01** .34 .90 .81 <.01**

P18 .86 <.01** .19 .94 .04* <.01**

Mean .95 .84

SD .04 .13

* stands for p< 0.05while ** for p< 0.01.

Abbreviations: #P, identifier number of participant; p, significant value; r, correlation coefficient; SRP_H, horizontal saccade–related potential; SRP_V, vertical
saccade–related potential.

estimated via

VisualAnglePrecision =

√√√√1
n

n∑
i=1

𝜃2i

The accuracy and precision of the EEG-VET in individuals were esti-

mated using 64 trials of saccade eye movements starting from the

screen center (252, 142.5mm) to a left point (229, 142.5mm) or a right

point (275, 142.5mm) with 32 trials for each.

Meanwhile, we also calculated the accuracy and precision across

all participants, which were estimated using the dot tracking tasks

across all participants, including 576 trials of the saccade eye move-

ments (16 participants with 32 trials for each) starting from the screen

center (252, 142.5 mm) to each target location (see Figure 1b). It is

used to compare the performance between EEG-VET and SMI REDn

eye-tracker.

2.6 Model performance: Errors in tracking a
moving target measured by RMSE

RMSE between target trajectory and estimated eye movement trajec-

tory in the smooth pursuit task by EEG-VET was computed for each

pursuit trial according to the following equation where i represents

time sampling point, total sampling point= 180:

RMSE =

√√√√total sampling point∑
i=1

(predicted coordinate − Target coordinatei)
2

total sampling point

Two-way repeated measures analysis of variance (ANOVA) with

four speeds (1, 5, 9, and 19◦/s) and two directions (left and right)

as within factors was used to test the effects of speeds (1, 5, 9, and

19◦/s), directions (left vs. right) and the interaction effect. Analyses

were conducted using SPSS (Version 22, IBM) with a significance level

of .05.

3 RESULTS

3.1 Model construction: Goodness of fit of the
individual-specific linear repression model in
mapping SRP amplitude to gaze position

For each participant, two linear equations with bothH and VComps as

independent variables and gaze position X or Y as dependent variables

were established reasonable. The correlation coefficients (r) and their

respective p values for the linear regression analysis are summarized in
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SUN ET AL. 9 of 14

Table 1. The correlation coefficient between SRPs (AmpSRP_H, AmpSRP_V)

and Xt is .95 ± .04, which accounts for over 80% (R square) of variance

in horizontal gaze coordinates. whereas Yt is .84 ± .13 which accounts

for only over 60% of variance in vertical gaze coordinates. Note also

that amajority of the p-values are below .01. The relative inferior fits in

the vertical dimension is expected in part because in the current work

we did optimize on the removal of blinks and minimizing the correla-

tions between eye lids opening and closing during the blinks and during

the up and down eye movement. This is to be further considered in the

next stage of the EEG-VET development.

To give a concrete impression of the model goodness in the visual

space, we show the group measures of accuracy and precision for

each of the 16 target positions in dot tracking task (Fig. 3) contrast-

ing the performances from the EEG-VET (FIg. 3a) and the commericial

eye tracker used in the present study (Fig. 3b). We that as these

accuracy/precision data were calculated across all participants, we do not

recommend comparing these with the above or other accuracy/precision

results calculated on single participant separately. While the performance

of the current method appeared not as good as the eye tracker, they

are on the same order of magnitude. Further optimization beyond the

present proof of concept is planned to further significantly improve the

EEG-VET performance.

Although the accuracy of commercial eye-tracker systems is often

reported by manufacturers to be <0.5◦ of visual angle, the true gaze

point of remote eye-trackers is often found to be worse than 1◦ of

visual angle, even in controlled environments (Blignaut et al., 2014;

Nyström et al., 2013). Besides, it can be seen from Figure 4 that

the accuracy/precision of EEG-VET is below twice of SMI REDn eye-

tracker inmost of the target points. Therefore, the accuracy of this first

attempt EEG-VET approaches that of commercial eye-trackers.

3.2 Performance of EEG-VET in tracking gaze
positions in the smooth pursuit task

Using the models fitted with data from the first dot tracking task, we

estimatedgazepositionsduring the subsequent taskof smoothpursuit.

While we have previously shown that DANS selected H and V compo-

nentswere highly selective for horizontal and verticalmovement in the

dot tracking task (Sunet al., 2021), herewealso showsuch selectivity in

the smooth pursuit task (see an example of a single pursuit trial in one

participant in Fig. 4). For this example participant, the estimated gaze

positions after the initial horizontal saccadic eye movement to the left

and right of the fixation point are shown in Fig. 5a and 5b respectively.

Figure 3 illustrates the performance of the EEG-VET in one partici-

pant with Figure 2a and 2b showing predicted gaze positions (Blue)

to the Left and Right target positions (Red) respectively in the smooth

pursuit task. Across all 18 participants, the accuracy across all partici-

pants was 1.008◦ ± 0.357◦ of visual angle, whereas the precision was

2.347◦ ± 0.580◦ of visual angle.

To give a concrete impression of the model goodness in the visual

space, we show the groupmeasures of accuracy and precision for each

of the 16 target positions in dot tracking task (Fig. 3) contrasting the

F IGURE 5 Illustration of model performance in estimating the
gaze positions after the saccades to the left and right target position
during the smooth pursuit task (Fig. 1d, the 3rd screen). (a)
demonstration of a left target point (red dot at [229, 142.5mm]) and
32 predicted gaze points by EEG-VET (blue asterisk points); (b)
demonstration of a right target point (275, 142.5mm) and 32
predicted gaze points by EEG-VET (blue asterisk points) for one
participantwith an accuracy of 0.920◦ of visual angle and a precision of
1.510◦ of visual angle.

performances from the EEG-VET (FIg. 3a) and the commericial eye

tracker used in the present study (Fig. 3b). While the performance

of the current method appeared not as good as the eye tracker, they

are on the same order of magnitude. Further optimization beyond the

present proof of concept is planned to further significantly improve the

EEG-VET performance.

In evaluating EEG-VET performance during the tracking of amoving

target, we first show the performance of the EEG-VET, in a single par-

ticipant, for tracking the gaze position with four different speeds (1, 5,

9, and 19◦/s) and two different directions (left and right) in the same

participant shown in Fig. 5. Figure 6a–h illustrates the actual target’s X

coordinate X and the estimated gaze position X predicted by EEG-VET

as a function of time, whereas Figure 6i–p shows the actual change in

target trajectory and the estimated trajectory measured by EEG-VET

across time. The blue line indicates the actual target gaze trajectory,

whereas the red line indicates the gaze trajectory predicted by EEG-

VET. The estimated waveforms across four speeds and two directions

follow the target waveform fairly well indicating that the EEG-VET

perform fairly well. The group performance is shown in Fig. 7.
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10 of 14 SUN ET AL.

F IGURE 6 Demonstration of target X (a–h, blue line), X predicted by electroencephalogram-based virtual eye-tracker (EEG-VET) (a–h, red
line), target gaze trajectory (i–p, blue line), and gaze trajectory predicted by EEG-VET (I–P, red line) in one participant performing a smooth pursuit
task at different pursuit speeds (1, 5, 9, and 19◦/s) and directions (left and right) with labels as L-1, L-5, L-9, L-19, R-1, R-5, R-9, R-19. Data are from
the same participant as in Fig. 5. For dynamic display, see Supplementary video.

3.3 Performance of EEG-VET with changes in
direction and speed of eye movement

Two-way repeated measure ANOVA was performed on the RMSE of

the EEG-VET with Direction and Speed as within factors. Tracking

speed had a significant effect on X RMSE (F(3, 51) = 29.408; p < .001;

partial 𝜂2 = .634) and Y RMSE (F(3, 51) = 4.010; p = .012; partial

𝜂2 = .191). There was no significant effect of direction on the RMSE

X (F(1, 17) = .215; p = .648; partial 𝜂2 = .013) and RMSE Y observed

(F(1, 17) = .612; p = .445; partial 𝜂2 = .035), which indicates no differ-

ence in the performance of EEG-VET between pursuing left and right.

No significant Speed by Direction interaction effects were found. It is

important to point out that given the nature of the task, the actual gaze

position during the pursuit would be falling behind the target move-

ment. Thus the error in the horizontal dimension in part contains this

distance lag. This in part explains why onver average Y RMSE appeared

apparently smaller than RMSE.

4 DISCUSSION

4.1 Concept of an EEG-based virtual eye tracker

Building upon previous work (Tang, Sutherland, Mckinney, et al., 2006,

Sun et al., 2019, Sun et al., 2021), in the context of horizontal eye

movement, the present study demonstrated that it is possible to build

individualized predictive models of gaze positions from EEG without

the aid of an eye-tracker. The results show that it is possible to obtain

an accuracy as high as 0.920◦ of visual angle and precision of 1.510◦

of visual angle in one participant that is comparable to the accuracy

and precision of electrooculogram (EOG)-based eye tracking (Young

& Sheena, 1975) and combined EOG–EEG based eye-tracking systems

(Joyce et al., 2002). The prediction errors of EEG-VET across all partic-

ipants are greater than those of a commercialized eye-tracker but no

more than twice of it. Such a “resolution” is sufficient for many types of

experimental studies and applications.

Ocular artifacts associated with eye movement in EEG present a

major problem in cognitive neuroscience and clinical research. Instead

of minimizing artifacts by restricting eyemovement and removing arti-

facts from the EEG data as documented in a number of review papers

(Croft &Barry, 2000; Islamet al., 2016; Jiang et al., 2019;Mannan et al.,

2018; Urigüen & Garcia-Zapirain, 2015), the present study presents a

novel approach to this problemby transforming the artifacts into infor-

mative signals for predicting gaze positions. Specifically, the EEG-VET

method requires a directed saccadic eye movement task, to generate

the EEG data to “calibrate” the EEG-VET for predicting gaze positions

in subsequent tasks involving eye movement. This work offers a first

prototype of the EEG-VET for predicting gaze positions from EEG data

alone in horizontal smooth pursuit tasks.

4.2 The usage and advantage of the EEG-VET

The method of the EEG-VET is similar to that of commercial eye-

trackers as both require data collected during a sequence of directed

saccadic eye movement to known positions in order to build the model

for estimating gaze positions and then the EEG-VET can be used for

tracking gaze position not only during directed eye movement but

also during any subsequent tasks within the same EEG session, includ-

ing free eye movement. The EEG-VET can potentially provide many
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SUN ET AL. 11 of 14

F IGURE 7 Performance of EEG-VET in estimating gaze position
during the tracking of amoving target in the smooth pursuit task. (a)
prediction error in the horizontal coordinate and (b) prediction error
in vertical coordinate. * and ** indicate significant Speed effects on
estimation error. Error bars are standard deviations (N=18).

advantages over widely used commercial eye-trackers. Most signifi-

cant is that the use of the EEG-VET facilitates the tracking of eye

movement during EEG studies without the need for any additional

hardware. Beyond predicting eye movement, this system can provide

ocular artifact-free EEG signal by summing non-ocular components,

which is especially suitable for Brain Computer Interface applications

as it provides eye movement information and ocular contamination-

free EEG signal simultaneously. Finally, because the system relies on

information recovered from internal signals (i.e., EEG), it can be used to

measure eye movements in contexts where the use of an eye-tracker

would prove impractical or impossible such as during sleep or free

viewing without the limitation of a screen.

For the computation time, the calculation speed of SOBI largely

depends on the speed of the computing device, the number of EEG

channels, the sampling rate, and the recording time length. For using

the dot tracking task as the calibration task (calibration is normally

used in most of commercialize eye-trackers). We have done a pre-

liminary exploration using data from a single participant and found

that it is possible to achieve asymptotic performance within 4 repeti-

tions of the dot positions (Sun et al., 2020). A general recommendation

would only be available after further studies with more participants.

For the readers’ reference, the calibration task used in the present

study took around 2–3 min in this study. Using SOBI to deriving the

H and V components from the 64-channel EEG collected during 3 min

dot tracking task. The computation time needed by DANS algorithm

and linear regressionanalysis is negligible. Therefore, the time required

for model parameter estimation is no more than a few minutes. After

model establishment, the computing of gaze position is negligible.

4.3 Limitations and future work

As a newly emerging method, the current performance of EEG-VET is

not yet as good as the commercially available eye trackers especially

in the vertical direction. The performance has been evaluated in a nar-

row context of horizontal smooth pursuit task. Future work may fall

into four categories. The first is to further improve the efficiency and

effectiveness of the entire EEG-VET process, starting from the design,

evaluation criterion, and the optimal length of the calibration task to

using of potentially even better algorithms. The second is to expand

the work beyond tracking of moving target in the horizontal direc-

tions by recognizing and considering the unique properties of vertical

versus horizontal eye movements in EEG-VET design. The third is to

remove the constraint of headmovement by introducing innovations of

the EEG-VET take allow the computation to take head direction infor-

mation into consideration. The fourth is to expand the performance

evaluation into amore diverse range of application scenarios.

In summary,wehope that the potential technical capability afforded

by this new concept of VET will inspire new areas of investigation,

such as neurophysiological investigation of natural reading, learning

and memory during sleep, better devices for neural feedback control,

and other clinical neuroscience problems.

It is interesting to note that the recovered H Comps were more

informative than V Comps. H Comps had higher correlation coeffi-

cients with X gaze position (r = .95 ± .04) than V Comps with Y gaze

position (r = .84 ± .13). We suspect that the signals due to eye blinks

may be mixed with the signals due to vertical eye movement for look-

ing up and down can naturally involve the opening and closing of the

eye lids. Because the V Comp is one of the independent variables in

the linear regression model, the final model performance measures

reported here should be considered conservative. Better performance

can potentially be expected if blinks and vertical eye movements could

be dissociated in the behavioral task of dot tracking.

5 Conclusion

In conclusion, we offered a proof of a concept that the use of a novel

EEG-VET can enable the simultaneous collection of EEG and eyemove-

ment data without the need for additional hardware. This work is the

first to utilize the information contained in typically discarded ocu-

lar artifact components in order to track eye movement from EEG

signal alone. The current version of EEG-VET can achieve levels of

accuracy and precision that almost approach those of commercial eye-

trackers.
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