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1. Introduction

Stress is a universally ubiquitous emotional state and takes place
everywhere. According to The American Institute of Stress,[1] the
global average of the number of stressed people out of 143 coun-
tries is 35% and around half of American adults report their
behaviors have been negatively affected due to the physical
and emotional toll of increased stress. Stress has been closely
linked to psychological illness and physical diseases,[2] such as
depression,[3] hypertension,[4] cardiovascular disease,[4] infec-
tious illness,[5] and even cancer.[6] Stress plays a vital role in
the development of unwanted behaviors and detecting stress
at an early stage can help prevent aggression.[7]

Inferring users’ emotional states[8] is
a long-standing problem in human–
computer interaction (HCI) community
as it involves the UX design,[9,10] tracking
methods,[11] security concerns,[12] and so
on. To track the emotional stress changes,
some previous research works have been
proposed based on facial tracking[11] and
touch sensing.[7,13] However, people tend
to suppress or hide their feeling on
most occasions.[11] As a special group of
gestures, microgestures (MGs) have been
verified to indicate more accurate people’s
hidden emotions.[7] Specially, when
people experience high stress or nervous-
ness, they may perform those physiological
responses,[14] for example, hand wringing
and wrist rubbing. Comparing with facial
expressions or acoustic clues, MGs could

provide more reliable emotional indicators.[15–20] Besides, track-
ing facial expressions or acoustic signals can be highly intrusive
to the participants, which may cause severe privacy leakage and
security issues.[12] Although several works[21–24] focused on
inferring emotions by sensor-based touch sensing technologies,
no one has explored the issues like analyzing the correlations
between MGs and stress. Tackling these issues could be
beneficial for a deep understanding of the emotional changes
represented by MGs, which further provides guidelines while
detecting high stress levels.

Inspired by prior studies in MGs,[21,25] we focus on hand-
based MGs when people experience high stress, which can be
beneficial for stress detection in wearable devices (like watch-
band and wristband).[2] Prior work[26] investigated the effect of
suspicious and deceptive feelings on the frequency of hand
movements based on video-recorded tapes. More frequency-
based studies have been found on human bodily movements[27]

based on strain sensors. Instead of classifying the MGs under
surveillance,[11] we analyze the users’ reactions toward the media
stimuli and count the MGs simultaneously (we note the number
of MGs between two stimuli as MG Frequency). To capture the
MGs, we adopt the swept frequency capacitive sensing (SFCS)
circuit[21,28] that links with a three-layer tangible object, which
changes the signal flow regarding various MGs. To analyze
the correlation between stress level and MG frequency, 16
participants were recruited to provide emotional reports toward
the stimuli from the international affective picture system
(IAPS).[29,30] Considering the variances of MGs, our study
focuses on the MG frequency instead of investigating the effects
of various MGs as a pilot study.
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Stress is a universally ubiquitous emotional state that takes place everywhere
and microgestures (MGs) have been verified to indicate more accurate hidden
emotions. However, only limited studies attempted to explore how MGs could
reflect stress levels. Herein, EmoSense, an emerging technology for wearable
systems containing a three-layer stress detection mechanism, is proposed:
1) converting the MGs into digital signals; 2) training a machine learning-based
MG detection model; and 3) configuring the stress level based on the MG
frequency. To detect the MGs, the swept frequency capacitive sensing technology
to is adopted capture the MG signals and the random forest model to detect the
MGs effectively is applied. 16 participants are recruited in the pilot study to verify
the correlation between stress level and MG frequency. The experimental results
further verify that stress level is highly related to other negative emotions that
should be studied while handling high stress levels.
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This article yields a MG-based stress detection system,
namely, EmoSense, and conducts empirical studies to investigate
the correlation between the frequency of MGs and changes in
stress level. Specifically, our contributions to the HCI commu-
nity are as follows: 1) We embed SFCS technology with a
three-layer tangible object to capture MGs; 2) We unpack the
assumption that MGs link to stress through user studies;
3) We provide a pilot study on inferring the stress level based
on the MG frequency; and 4) Our study delves deeper into
the relationship between stress levels and specific emotions,
and our finds suggest that other negative emotions need to be
explored in order to better understand how high stress levels
impact emotions.

2. Background

2.1. Stress

Although the term “stress” is widely adopted in diverse scenar-
ios, there is no unified definition. In general, we can consider
stress from two perspectives: psychologically and physiologically,[2]

where the former focuses on the emotional feelings and
perception of stress, and the latter refers to the bodily responses
to external events.

The traditional psychological definition of stress[31] indicates
that stress occurs when a person perceives the demands of
environmental stimuli to be greater than their ability to meet,
mitigate, or alter those demands.[32] Perceived stress[33] typically
includes several psychological components of the stress response
or feelings of overwhelm, or anxiety, as well as cognitions that
demands outweigh resources, or not having control.

In medicine, stress relates to the scientific and objective
appraise by specific characteristic changes in the structural
and chemical composition of the body,[34] controlled by the sym-
pathetic nervous system (SNS) and hypothalamus–pituitary–
adrenocortical axis (HPA axis). Existing research works have
proposed several physiological measurements as stress indica-
tors, such as electroencephalography (EEG),[35] heart rate vari-
ability (HRV), electrodermal activity (EDA), electromyogram
(EMG), blood pressure, pupil diameter, salivary cortisol, and sal-
ivary alpha-amylase.[36]

2.2. Stress Detection and Assessment

To detect and assess human stress, subjective and objective
measures have been used pervasively,[37,38] where the former
tends to measure the current emotional state of the participant
based on the standard questionnaires designed by field
experts.[39] However, the latter includes physiological and
physical measures.[40,41]

For subjective stress assessment, standard stress measure-
ment questionnaires are widely adopted,[39] including the
perceived stress scale (PSS) questionnaire,[42] acute stress
disorder (ASD) scale questionnaire,[43] relative stress scale
(RSS),[44] and so on. Comparing to these existing old-fashioned
methods, a graphic questionnaire, the self-assessment Manikin
(SAM),[45] can be adopted to measure the emotional state
on three dimensions, including affective valence, arousal, and

dominance, where more attractive emojis could be added to show
more specific emotions (e.g., “Happy”, “Sad”, “Tired”).[13]

Objective measurements include physiological and physical
measures. As mentioned above, physiological methods need
extra sensors on human bodies at specific locations[46] to track
physiological changes, like EEG, HRV, and blood pressure.
For physical measures, nonwearable sensors (like acoustic
sensors and cameras) can be adopted to keep a distance from
the subject and track the stress based on the behavioral changes,
including facial expressions,[11] gestures,[7,13] speeches,[7] and so
on. As there is no extra human intervention in the objective
measurements, they can avoid the intuitive bias caused by
subjective questionnaires. Moreover, the research finding from
the objective methods can help validate the results from the
questionnaires.[46]

3. Related Work

3.1. Linking Stress with MGs

Although previous studies mostly focused on gestures,[21,25] for
example, hand-waving refers to the expression “hello” or “good-
bye”, which are intentionally expressed for each piece of certain
information. Compared with them, MGs could be more appro-
priate to indicate the current inner emotional state of the subject,
for example, hand-rubbing in an interview relates to stress. As
MGs are unintentional behaviors elicited by humans’ hidden
feelings, detecting the MGs could be a promising way for
researchers to consider if the subject feels stressed.

To detect the MGs, several research studies have proposed
multiple sensor-based frameworks. In ref. [47], bioacoustic
sensors equipped with piezoelectric elements are placed on
the subject’s hand, and a machine-learning classifier is based
on the sensor data to detect MGs. In ref. [22], a thumb ring built
with a flexible printed circuit board was designed, and a support-
vector-machine (SVM) classifier was adopted to detect 12 micro-
finger poses. In ref. [48], electrodes attached to the fingertips of
users’ gloves were used to infer the real-time spatial relationship
between fingers, coupling for interacting with a head-mounted
device. In ref. [23], they designed a wristband for 3D finger track-
ing and pose estimation with four miniature thermal cameras by
adopting a customized deep neural network. However, these
technologies mainly focus on one-hand interaction and finger
gestures, which could not directly apply to MGs with both hands.
Moreover, Puchihar et al.[49] investigated Google Soli’s radar
sensing technology for MG detection, which led to low recogni-
tion accuracy. Therefore, exploring novel technologies and inter-
active ways for MG detection is essential.

Only limited works investigated the relationship between the
MGs and stress levels. In ref. [11], the authors proposed an MG
recognition framework by leveraging neural networks based on
the videos captured from the competition interview and provided
a hierarchy that allows exploration of the relationship between
MGs and emotional states. In ref. [7], a multimodal framework
was proposed to track the subject’s stress based on acoustic and
gesture features. A common limitation is that these methods
mainly distill gesture features from the visual input (images
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or video frames), which can be invasive for users who care about
privacy issues.

To satisfy the technological, interactive, and privacy-related
needs, we adopt a flexible printed circuit board and propose a
three-layer tangible object to capture the subject’s MGs. Then
we use the machine learning (ML) classifiers for MG detection
and propose an analytical hierarchy mechanism to link MG fre-
quency with various stress levels.

3.2. Stress Detection Approaches

Some previous works explored stress detection from the HCI
perspective. In an office environment, interactive ways with
the mouse and the keyboard can be analyzed to indicate the sub-
ject’s emotional change.[50,51] Unfortunately, these ways may
limit to a specific scenario. Besides, smartphones embedded with
sensors are commonly used to detect stress based on human
voices,[52] smartphone usage data,[13] touching activity,[13,53,54]

and so on. However, these methods are constrained to
smartphone platforms and may cause severe privacy issues.

In contrast, wearable devices embedded with sensors are more
advantageous for daily stress detection,[2] as physiological data
can be assessed in a real-time manner. For instance, a chest
belt[9] was adopted to sense respiration data and electrocardio-
graphs (ECGs) to detect stress. Besides, wearable devices from
commercial companies also provide stress detection services
by tracking HRV, respiration data, and blood pressure,
including Huawei, Garmin, and Samsung. These products
can also provide visualization interfaces for users to track their
current stress levels. For example, Huawei “Health” app can be
paired with a wearing device to measure current stress level every
30min by providing a stress value s in refs. [1,55], where
s ∈ ½1, 29� relates to the “relaxed” state, s ∈ ½30, 50� indicates
the “normal” state, s ∈ ½60, 79� refers to the “medium stress”
and s ∈ ½80, 99� shows the “high stress”. However, the stress
update frequency is still quite slow for practical use.
Furthermore, stability and accuracy issues are frequently raised
for such wearable products.[2]

To overcome low frequency, stability, and accuracy issues, the
user-based experiment is included as a preliminary study to ana-
lyze the correlation between stress level and MG frequency.
Based on the method suggested in SAM report,[45] the emotional
changes and the MG signals from the participant can be collected
simultaneously from our validated MG tracking system during
each experiment. Furthermore, based on the quantitative analyt-
ical results, a fit model is exploited to describe the linear function
between MG frequency and stress level, which can be applied
to the user interface and update the stress level frequently
(per minute or even faster) for practical scenarios.

4. Experimental Section

4.1. Swept Frequency Capacitive Sensing

Motivated by refs. [21,28], we adopted the SFCS technology to
detect the MGs (as shown in Figure 1). The human body is
relatively conductive, whereas the skin is highly resistive.[56]

Therefore, the skin generates a capacitive interface between

the electrode and the ionic physiologic fluids inside the body,
allowing alternating current (AC) to pass through.[57] The resis-
tive and capacitive properties of the human body oppose the
applied AC signal, changing the phase and amplitude of the
AC signal. Besides, the amount of signal changes highly depends
on the signal frequency,[21] as the AC signal will follow distinct
pathways inside the body at various frequencies.[57] For instance,
some tissues become more and others less resistant to the
passage of charges when the frequency of the AC signal changes,
changing the route of the signal flow.

Therefore, by sweeping the capacitive sensing through various
frequencies, we can explore: 1) how material type influences the
generation of the signal flow and 2) how MG affects the changes
in AC signal. The whole architecture of the double-sided capaci-
tive sensing PCB is shown in Figure 2: the SFCS circuit was
placed on the front surface and the other smooth surface was
used to connect with wearable conductive objects. The SFCS-
based sensor worked with an update frequency of 20 Hz, and
the minimum displacement can reach to a few micro-
meters.[28,58] Due to the minimal voltage resolution 3.3/256 V
supported by Arduino, we further evaluated the minimal
displacement of 2.08 μm in our case (For ease of reading, we
leave the detailed evaluation process in the Appendix).
Specifically, the conductive object is a three-layer synthetic
material (as illustrated in Figure 1): the top layer is to adjust
the conductivity (e.g., thermoplastic polyurethane [TPU]), the
middle layer is fully conductive, whereas the bottom layer is fully
resistive to insulating unwanted human contacts. Considering
the wearable need, we adopted the bottom layer to prevent
unnecessary changes of AC signals when placing the object
on the human body.

In practical deployment(as shown in Figure 3), we can deploy
the circuit based on Arduino Uno Board[59] and show a 160-point
capacitive profile chart from the sweep frequency through
the Processing Platform.[60] In our experiment (shown in
Figure 4), the top layer of the tangible object was constructed
using a thin piece of tissue (0.1 mm thickness) to reduce
sensitivity, while the middle layer was composed of a fabric
mesh woven from silver (0.2 mm thickness) and cotton
threads (0.4mm thickness), providing optimal conductivity
and stretchability. The bottom layer consisted of a nonconductive
felt ball (4 cm diameter) with a plausible shape and size
for conducting experiments. From the size and shape
perspectives, the tangible object was designed to avoid mistouch-
ing cases when participants put one hand on top of the
object during the experiment, while the sensing area could be
touched when various MGs occurred. This design was intended
to reduce the likelihood of errors occurring during the
experimental process.

4.2. ML-Based Stress Detection

As ML methods were verified with compelling performances in
MG recognition,[22,47] we adopted ML methods with the SFCS
application to detect MGs through the captured MG features.
Furthermore, by collecting the emotional feedback from
participants, we calculated the MG frequency within each media
stimulus by counting MGs and linked the MG frequency to the
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corresponding specific stress level. Besides, a mathematical fit
model between MG frequency and stress level can be generated
through correlation analysis. Finally, we further designed the
user interface embedded with the trained MG recognition model

and the stress prediction fit model, which can present the current
MG state and stress level by connecting with the SFCS circuit.
The overall architecture of the ML-based stress detection system
(ML-SDS) is illustrated in Figure 1.

Figure 2. A self-designed PCB of the LC circuit drawn based on the schematics from ref. [76]. A): the layout design of the LC circuit; B): the front view of
the circuit with mounted electronic components; C): the back side of the circuit to which the conductive material connects; and D): the SFCS circuit
diagram.

Swept Frequency 
Capacitive Sensing

MG Data 
Collection

Group 1: 
Recruited 

participants
Machine 
Learning

Trained MG 
Detection 

Model

Stress 
Detection

Data 
Analysis

Group 2: 
Recruited 

participants 

Figure 1. EmoSense: A three-layer stress detection system.
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Step 1: Adopt ML models to detect MGs. When touching the
conductive object with a MG, the output from the SFCS circuit is
a 160-point profile chart that can keep stable for a while. EachMG
can be recorded as a 160-point data sequence, and each point
represents a signal value. To collect enough valuable data, we
recruit four participants (Female: Male= 2:2) to touch the con-
ductive object with various MGs (As illustrated in Figure 5). To
improve the generalization and usability of the trained ML
model, we allow the participant to touch every area of the object.
Each participant is required to touch the object at least 100 times.
For example, a participant can touch the object at a random area
and repeat the process 100 times. Considering the fluctuation of
MG signals, we further collected 400 sets of data sequences
without touching the object. Finally, we collect 800 labeled

data sequences with two labels separately: “Normal”, “Detected”
(with a ratio 400:400).

For the ML-based detection model, we select and compare
some standard methods that are widely adopted in gesture rec-
ognition[22,47]: random forest (RF), SVM, naive Bayes classifier
(NBC), decision tree (DT), k-nearest neighbor (KNN), adaptive
boosting algorithm (AdaBoost). All details of these models are
illustrated in Table 1. Note that we deploy all these models
and conduct the experiments on PyCharm,[61] which is a
Python integrated development environment (IDE) with built-
in ML libraries.

We randomly split the whole dataset into train and test subsets
with a ratio of 9:1 and train each model 10 times (standard
validation). All the experimental findings are summarized in

Figure 3. The working mechanism of SFCS based on our self-designed PCB. The dashed line indicates the current flow between the conductive object and
the human body.

Figure 4. A) The three-layer tangible object was designed with careful consideration for both functionality and practicality. B) The top layer was composed
of a thin piece of tissue (0.1 mm thickness) to reduce sensitivity, while the middle layer was made of a fabric mesh woven from silver (0.2mm thickness)
and cotton threads (0.4mm thickness), providing optimal conductivity and stretchability. Finally, the bottom layer consisted of a nonconductive felt ball
(4 cm diameter) with a plausible shape and size for experiments.
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Table 1: RF model performs the best among them with the
perfect accuracy (100%) when distinguishing “Normal” and
“Detected”. To verify the robustness of adopted detection
models, we adopt the four-time leave-one-out cross-validation
(LOOCV),[62] in which we leave all the data from one volunteer
as the test data while regarding the rest data as the training data.
The experimental results further verify the effectiveness of the
RF-based model over other methods. Considering the outstand-
ing performance of the RF-based detection model, we adopt this
model in our subsequent user studies.

Step 2: Link the MG frequency to the stress level. To investi-
gate the correlations between the MG frequency and the stress
level, participants were recruited to report feelings toward vari-
ous figures from the IAPS.[29,30] IAPS is a database of pictures
designed to provide a standardized set of pictures to a viewer with
specific emotional labels (Note that these labels are anonymized
during the experiment), for example, happiness, contentment,
fear, anger, disgust, etc. According to the prior study,[63] higher

stress levels would cause an increase in negative emotions in the
practical environment. We randomly choose pictures labeled
with positive and negative emotions to analyze various stress
levels. As the emotional state is periodic and subjective, we mod-
ify the graphic self-assessment scale (SAM)[45] questionnaire
with emotional emojis, and self-assessment stress scale[13] (as
shown in Figure 6) to collect emotional reports from participants.
Three dimensions of emotion (valence, arousal, dominance
(VAD) dimensions) are measured by the SAM questionnaire:
1) Valence is the pleasure scale, which shows SAM smiling at
the left end and unhappiness at the other; 2) Arousal represents
the intensity scale, which uses an excited figure at the left end
and a calm figure at the other; and 3) Dominance evaluates
the degree of control, where a tiny portrait indicates a controlled
state. Based on the collected MG signals and emotional reports,
we can compute the MG frequency by counting MGs within each
stimulus and further analyze the correlations between stress level
and MG frequency.

Figure 5. MG data collection: A) The MG collection interface is developed on the processing platform. B) The touch-sensing object and circuit are
connected to the laptop. C) The MG data example: Gesture type, 160-point MG sequence, and the timestamp. The first number represents a specific
state (0: Normal, 1: Detected).

Table 1. We adopt six standard classification models for MG detection and summarize all the experimental results. We test and compare the MG
detection accuracy performances of baselines based on two validation methods, and the RF-based model outperforms other baselines through our
experimental results.

Model RF DT SVM NBC KNN AdaBoost

Structure A model constructs a
multitude of decision
trees and the output is
selected by most trees

A tree-like model
illustrates every possible
output for a specific

input

A supervised learning
model outputs a map of
the sorted data with the

margins

A model adopts Bayes’
theorem to detect

objects

A model classifies each
input based on its

closest Top-K neighbors

A model uses wrong
samples of the previous
classifier to train the next

classifier

Standard 100% 92.96% 94.13% 89.44% 92.96% 94.72%

LOOCV 100% 88.16% 93.08% 86.17% 93.55% 93.67%
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After collecting and preprocessing all the data sequences, we
analyze the correlation between stress level and MG frequency
and provide a fit model that predicts the stress level based on
the captured MGs.

5. Experiments

Following the MG-based stress detection based on SFCS technol-
ogy and MLmodel, user studies were conducted to verify the cor-
relation between stress level andMG frequency. This section first
introduces our experiment setup and how users interact with our
stress detection model. Based on the MG data and questionnaire,
we analyze the received user data and present the experimental
results: 1) the correlation between the MG frequency and stress
level and 2) the deeper correlation between these two variables in
the VAD emotional space.

5.1. Experimental Setup

5.1.1. Participants

16 participants were recruited from various occupations for our
experiments (Female: 8, Male: 8, and ages vary from 19 to 65 with
the mean value 31.72 and the standard deviation (SD) 14.76), sat-
isfying the participant criteria outlined in previous studies for
emotion and stress analysis.[64–67] None of them have anymental,
visual, or hearing disorders. Participation in this study is volun-
tary, and all the collected information/data is solely utilized for
research purposes with the participants’ consent. Furthermore,
our project has been approved by HKPolyU Institutional

Review Board (PolyU IRB) (HSESC Reference Number:
HSEARS20211006003).

5.1.2. Apparatus

To detect the gesture signals, we implement a gesture tracking
system based on the processing platform[60] (similar to the set-
ting in Figure 5) leveraging the capacitive sensing circuit, which
can update and record the 160-point vector of touch sensing sig-
nals at a frequency of 20 Hz. That means we can capture around
20 sets of touching data per second. To analyze the experimental
results more efficiently, we equip a high-performance computer
with Intel Core i9-13900 K, GeForce RTX 3090 Ti, and 64 GB
RAM. Note that we preprocess all the data sequences on
PyCharm and complete all the correlation analysis in IBM
Statistical Product Service Solutions (SPSS) Platform.[68]

5.1.3. Stimuli

56 picture stimuli are provided from the database IAPS.[29,30] As
shown in Figure 7, the stimulus pictures are colorful photographs
ranging from everyday objects and scenes labeled with eight emo-
tional labels: amusement, contentment, excitement, awe, anger,
disgust, fear, and sad. In the following user study, seven pictures
are provided representing each emotion. The stimuli were pre-
sented on a laptop at 1440 horizontal� 960 vertical pixels (full
screen). Participants can adjust the visual angle to their satisfaction.

5.1.4. Procedure

The whole experimental layout is shown in Figure 8. We carry
out the experiment with each participant separately in a

Figure 6. Graphic Questionnaire with 5 questions: 1) Q1 measures the pleasantness of the picture (Valence), 2) Q2 measures the intensity of emotion
provoked by the picture (Arousal), 3) Q3 measures the degree of control exerted by the picture (Dominance), 4) Q4 gauges the stress level caused by the
picture, 5) Q5 collects the user’s emotions toward the picture.
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soundproof room. The whole experiment lasts around 40min.
Upon arrival, participants are informed that the experiment
involves evaluating emotional changes with a self-assessment
report. As illustrated in Figure 8, each participant would place
one hand on top of the tangible object, recording the initial state
as the “Normal” state and counting the occurrences of MGs. In
addition, the other hand is used to answer an online question-
naire on a tablet between the participant and the screen. Each
participant is given about 5min to adapt to the experimental
room. In the beginning, 6 pictures were given for practice, which
allowed all participants to get familiar with the experiment. Then,
the other 50 stimuli were presented successively. We further
pseudo-randomize the picture presentation orders across partic-
ipants so that no one can predict the picture type before
viewing it. According to existing experiments on IAPS,[69–71] each
stimulus was allowed to display for 3 s for invoking emotional
changes. The screen transforms into a blank page for participants
to finish five questions within 15 s between two stimuli.[30]

Before moving to the next picture, we allow 5 s for each partici-
pant to relax. After the experiments, a fast post-interview would
be conducted for around 5 minutes, acquiring feedback about
this experiment. According to feedback, all the participants
reported it was enough to fill in the questionnaire in 15 s.
Besides, they were satisfied about setting the relaxing time
between two stimuli.

5.2. Data Analysis

5.2.1. Data Preprocessing

After completing all the experiments, we collect 850 sets of data
sequences in total, each of which contains the MG signals and
the questionnaire output. Based on the RF-based MG detection
model (100%), each MG data sequence is applied as the input,
and the MG state can be obtained as the output (“Detected” or
“Normal”). As we care about the occurrence frequency of MG, we
count the “Detected” states viewing the stimulus for each
participant. Specifically, we regard MG counts in 18 s as the
MG frequency (3 s for displaying the figure plus 15 s for showing
the blank page).

5.2.2. Link Stress Level to MG Frequency Based on the
Questionnaire Report

To investigate the correlations of MG frequency and stress level,
we adopt a measure of linear correlation between two variables,
namely, Pearson correlation coefficients ranging in ½�1, 1� with
the general rules of thumb[72]: 1) if the value is near�1, then it is
said to be a perfect correlation; 2) if the coefficient value lies
between �0.7 and �1, then it is said to be a strong correlation;
3) if the value lies between �0.4 and �0.7, then it is said to be a

Figure 7. IAPS: A) amusement, B) contentment, C) excitement, D) awe, E) anger, F) disgust, G) fear, H) sad.

Figure 8. Experimental layout: A) Image stimuli are shown on the laptop screen, a touch-sensing model is adopted to capture participants’ MGs, and a
tablet is used to answer the questionnaire. B) We show how participants interact with our devices. C) The touching-sensing circuit based on the Arduino
board is hidden behind the laptop.
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moderate correlation; 4) when the value lies below�0.4, then it is
said to be a weak correlation; and 5) zero value means no corre-
lation. As we notice that participants rate diverse stress levels to
the same picture as emotional changes are intuitively personal-
ized, we first analyze and create a user profile for each of them
(as shown in Table 2). Table 2 shows that a strong correlation
between these two variables can be obtained from 62.5%
(10 out of 16) of subjects, 25%, a moderate correlation can be
viewed from (4 out of 16) of them, and only 12.5% (2 out of
16) of subjects show a weak correlation. We add significance tests
to verify the confidence level of the correlation between MG
frequency and stress level. We adopt the T-test to calculate the
p-value: if the p-value is 5%, there is only a 5% chance that
MG frequency and stress level are unrelated. To give a T-test,
a null hypothesis states that no relationship exists between the
stress level and MG frequency being studied. A p-value less than
0.05 is typically considered statistically significant, in which we
reject the null hypothesis.[73] As we are solely interested in the
positive correlation between these two variables based on the
Pearson correlation coefficients, we omit the negative correlation
and adopt a one-tailed T-test in our experiment. Since all p-values
are smaller than 0.05, a positive correlation exists between the
stress level and the MG frequency.

The majority of statistics data from the subjects (14 out of 16)
show a strong or moderate correlation between stress level and
MG frequency. We received comments from them after the stud-
ies indicating that some pictures made them feel highly stressed.
We note the tolerance variance toward various stress levels for
various participants in our analysis. Regarding O10 and O16,
the experimental results only reveal a weak correlation between
stress level and MG frequency. Then a thorough conversation
was held individually with O10 and O16 to investigate the bias.
O10, who consistently displayed the same stress levels in
response to various figure stimuli, explained: “These pictures
are nearly the same for me as they are not very striking. I just
lost interest and started fiddling with my fingers.” Besides,
O16, who consistently reported a stress level between 2 and 4,
stated: “I was a bit tired of viewing these pictures.
Furthermore, I have to say some pictures made me feel so
bored.” For O16, more MGs are detected when some emotional
states are reported as “Boring” with lower stress levels.

To investigate the generalization of the correlation between
these two variables, we consider the bias in the physical applica-
tion scenario and provide the scatter plot based on all the data

(Stress level vs. MG frequency) and the relationship map (as
shown in Figure 9). We further obtained the Pearson correlation
coefficient 0.625 and the p-value 7.36E � 137 ð<< 0:05Þ, which
indicates a highly moderate correlation between the stress l
evel and the MG frequency. As shown in Figure 9a, based on
the linear correlation, we generate the mathematical fit
model y ¼ 1.47þ 1.22x ðx∶MGfrequency, y∶StresslevelÞ. As
shown in Figure 9b, we note that higher counts occur in
some slightly low stress levels, like 0, 1, and 2. Most counts occur
when theMG frequency is between 0 and 3. Besides, more occur-
rences of lower stress levels are linked to lower MG frequency as
well.

5.2.3. Analyzing Stress Levels in the 3D VAD Emotional Space

For each participant, we collect the stress level, MG frequency,
and three emotional components simultaneously. We calculate
the mean values and standard deviations (SD) regarding each
stress level and summarize the results in Table 3. As evident
from Table 3, a positive correlation exists between the stress level
and the MG frequency, further validating our findings. Besides,
each variable (stress level or MG frequency) tends to hold a posi-
tive correlation with the valence score and a negative correlation
with the arousal or dominance score. To further investigate the
emotional differences among various stress levels, we plot all 850
points in VAD space as shown in Figure 10: higher stress levels
tend to bring higher valence scores (more unhappy), lower
arousal scores (more excited), and lower dominance scores (more
controlled), and vice versa. Specifically, when the stress level
increases to 10 (highest level), the valence score is 5 (highest),
the arousal score is 1 (lowest), and the dominance score is 1 (low-
est). However, we also notice some outliers. For example, when
the stress level is 4, there is no clear distribution difference con-
sidering the valence and dominance scores. Besides, the arousal/
dominance scores are incredibly high when the stress level is 6
and the arousal score is relatively small when the stress level is
only 4. Considering the high SD values in arousal (1.242) or dom-
inance (1.452) when the stress level is 6 in Table 1, it indicates a
higher fluctuation when rating these two dimensions. One
reason can be the presence of noise caused by participant bias.
The data analysis in the VAD emotional space further provides
evidence that there exists the correlation between the stress level
and MG frequency.

Table 2. Analysis of all experimental subjects: all participants are labeled from O1 to O16. We count data sequences for each participant and summarize
all the Pearson correlation coefficients and p-values.

Subject Data sequences Correlation coefficient P-value Subject Data sequences Correlation coefficient P-Value

O1 54 0.706 1.58E�06 O2 55 0.591 8.00E�04

O3 55 0.674 3.39E�43 O4 55 0.803 1.70E�10

O5 55 0.821 7.45E�21 O6 55 0.806 3.88E�37

O7 54 0.823 8.66E�07 O8 34 0.827 5.63E�14

O9 55 0.730 3.64E�12 O10 52 0.277 8.68E�33

O11 55 0.426 0.001 O12 54 0.845 5.79E�05

O13 54 0.894 5.21E�11 O14 54 0.584 2.35E�35

O15 54 0.837 7.46E�16 O16 55 0.283 8.41E�23
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6. Discussions

6.1. Linking Stress Levels with Other Emotional States

According to a prior study,[63] findings suggested that people who
perceived higher stress levels would lead to increases in negative
emotions. As part of our modified questionnaire, we collect
emotional changes toward various stimuli for each participant.
Therefore, we further explore the relationship between
stress and other emotions. Considering the limited amount of
data sequences for some stress levels in the VAD space
(Figure 10), we adopt the k-means clustering[74] method and
divide all stress levels into three classes: 1) low stress level
(including Levels 0, 1, 2, and 3); 2) middle stress level (including
Levels 4, 5, 6); and 3) high stress level (including Levels 7, 8, 9,
10). We summarize the occurrence probability of each emotional
state in Table 4 and generate the top-5 word cloud for each stress
class (as shown in Figure 11). From Table 4 and Figure 11, we
observe the following: 1) The most emotional occurrences are

“Surprised”, “Shocked”, and “Fearful” for low stress level, middle
stress level, and high stress level separately; 2) “Happy” and
“Tired” states only occur at low stress level; 3) “Sad” and
“Shocked” states occur neutrally in all three stress classes;
4) “Stress” and “Disgusted” emotional states merely exist at
low stress level; 5) Compared to the other two stress classes,
“Fearful” and “Annoyed” emotional states are mostly viewed
in high stress level; and 6) We find it interesting that participants
tend to choose other specific negative emotions (e.g., “Fearful”,
“Disgusted”, “Annoyed”, etc.) instead of “Stressed” state even in
high stress levels.

6.2. Novelties

In this article, we propose EmoSense and conduct empirical
studies to investigate the correlation between stress level and
MG frequency. We summarize our novelties in the following
aspects.

Figure 9. Correlation analysis based on all the data. a) Linear Correlation: Stress level versus. MG frequency: We generate a fit line between MG frequency
and stress level through linear model generation on SPSS. Based on the fit model, we can predict the stress level due to the MG frequency. b) Relationship
map: Stress level versus MG frequency: we note a larger dot area (Green: stress level, Blue: MG Frequency) indicates higher occurrences. A wider line
means a higher count between the specific stress level and MG frequency due to the relationship table.

Table 3. Mean and SD of different stress levels on MG frequency and VAD dimensions.

Stress level MG frequency [Count] Valence [Score] Arousal [Score] Dominance [Score]

Mean SD Mean SD Mean SD Mean SD

0 0.500 0.712 2.269 0.911 3.769 1.382 3.567 1.100

1 0.544 0.575 2.544 0.778 3.448 0.963 3.480 0.894

2 0.797 0.694 2.880 0.888 3.248 0.883 3.128 1.033

3 0.869 0.678 3.141 0.873 3.364 1.056 3.505 1.165

4 1.380 0.789 3.658 0.887 2.696 0.822 2.987 0.967

5 1.739 1.358 3.623 0.842 3.217 1.055 3.087 1.197

6 2.213 0.810 4.027 0.870 3.747 1.242 3.600 1.452

7 3.048 0.865 4.762 0.436 2.714 1.056 2.905 1.480

8 3.125 1.356 4.625 0.744 1.750 0.707 1.500 0.756

9 3.250 0.957 4.750 0.500 1.750 0.500 1.000 0

10 4.750 2.217 5.000 0 1.000 0 1.000 0
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6.2.1. Three-Layer Structure Design

First, although SFCS technology has been verified with robust
sensing capabilities on objects in a fixed position or on rigid sur-
faces[21,28] (e.g., door, sofa, mobile device), limited works explore

the integration with wearable devices, such as wristbands and
watchbands. In order to prevent mistouching cases and improve
the performance of MG detection using SFCS, we employed a
three-layer structure for the touchable object linked to the
sensing area. The top layer is designed to adjust conductivity,

Figure 10. A) Stress level distribution in 3D emotional space: The X-axis shows the “Valence” score, Y-axis indicates the “Arousal” score, and Z-axis
means the “Dominance” score. B,C,D) Stress level distribution between Valence, Arousal, and Dominance pairs: Diverse colors represent various stress
levels. A larger dot area indicates higher occurrences of a specific stress level.

Table 4. The occurrence probabilities of emotional states for each stress level.

Emotional states Stressed Surprised Disgusted Fearful Annoyed Sad Happy Excited Shocked Bored Tired

Low stress level 4.23% 10.51% 2.71% 0.34% 0.25% 6.78% 1.36% 9.5% 6.44% 6.78% 0.34%

Middle stress level 12.72% 10.41% 11.56% 0.87% 7.51% 13.01% 0 2.89% 14.45% 0.57% 0

High stress level 11.11% 0 26.67% 31.11% 22.22% 13.33% 0 0 17.78% 4% 0

Figure 11. Emotional Word Cloud (a bigger word indicates a higher occurrence rate) and top-5 word list: A) low stress level: Surprised, Excited, Bored,
Sad, Shocked, B) middle stress level: Shocked, Disgusted, Stressed, Sad, Surprised, C) high stress level: Fearful, Disgusted, Annoyed, Shocked, Sad.
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the middle layer is fully conductive, and the bottom layer is fully
resistive to insulate unwanted human contacts. Besides, we adopt
ML models for MG detection based on the received MG
sequences, in which RF outperforms other models with the best
accuracy (100%).

6.2.2. MG Frequency–Stress Level Correlation

Second, we analyze the correlation between stress level and MG
frequency based on user studies. From the general perspective,
the experimental results verify the moderate linear positive cor-
relation between these two variables. As evident from Table 3 and
Figure 10, we provide the inner correlation analysis between
stress level and MG frequency in the VAD emotional space.

6.2.3. Stress–Other Negative Emotions Correlation

Finally, we further discuss and analyze the relationships between
the “Stressed” and other emotions. As evident from Figure 11
and Table 4, people tend to use other negative emotions instead

of “Stressed” state when people experience high stress levels, for
example, “Fearful”, “Disgusted”, “Annoyed”, “Schoked”, and
“Sad”. We assume that people tend to use specific emotional
words while suffering high stress levels. These findings can
guide us in investigating the effects of various negative emotions
on high stress levels.

6.3. Limitations and Future Work

As a comparatively small group of subjects were involved in our
experiments to verify the correlation between these two variables,

Figure 12. Four kinds of MGs: A) Tap, B) Pinch, C) Grab, D) Press.

Table 5. We adopt six standard classification models for MG classification
and summarize all the experimental results. Note we consider five classes:
“Tap”, “Pinch”, “Grab”, “Press”, and “Normal”.

Model RF DT SVM NBC KNN AdaBoost

Standard 96.81% 86.24% 84.74% 76.18% 81.25% 71.32%

LOOCV 91.20% 84.75% 80.06% 75.07% 74.19% 70.09%

Figure 13. Stress detection interface contains three components: the detected state (“Normal”, “Tap”, “Pinch”, “Grab,” and “Press”), the current
stress level, and the SFCS graph. To illustrate the phase and amplitude changes of signals, we further zoom up the red circular part in the SFCS graph
for each state. A) “Normal”, B) “Tap”, C) “Pinch”, D) “Grab”, and E) “Press”.
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some outliers exist due to participant bias. As part of future work,
more participants will be included to improve the generalization
of correlation analysis and the fit model.

As a pilot study, this article discussed the correlation between
MG frequency and stress level. Considering the variety of MG
types, we further split most of the MG data sequences for
MG detection with four MG labels as MG representatives[11]:
“Tap”, “Pinch”, “Press,” and “Grab” (as shown in Figure 12).
Adding the existing “Normal” state, we follow the similar ML
model training procedures mentioned in Step 1 of Section 4.2
and adopt those six standard ML models. To keep a balanced
dataset for the proper model training, we selected 80 sets of data
sequences for each MG (including the “Normal” state). As shown
in Table 5, these experimental results have verified the effective-
ness of the RF-based model on MG detection. We provide basic
tests on the six standard ML models for MG classification. An
intriguing research direction is investigating how to improve
MG classification performance using cutting-edge AI/ML tech-
niques.[11] In our user studies in Section 5, we only focus on
the MG frequency rather than a specific MG and adopt the
RF model (with 100% accuracy) to detect the “Normal” and
“Detected” states during the experiment. More research studies
on how specific MGs affect emotions will be investigated in our
future work. As part of our research plan, more variables could be
considered in our future work, like MG type and the duration of a
specific MG.

Additionally, with the touch-sensing device and picture stim-
uli in the lab environment, recruited volunteers could be induced
to generate a set of emotional reactions accompanied by MGs. To
further apply the correlation function in real scenarios, we
employ the fit model y ¼ 1.47þ 1.22x ðx∶MG frequency, y∶
Stress levelÞ into a user interface, which shows the current stress
level and further presents the MG state based on the trained RF-
based detection model (Note that we use the wristband
(Prototype C) as an example) (as shown in Figure 13). More prac-
tical user experience studies in real scenarios will be conducted
in our future work, such as mocking a stressful interview and
investigating the long-term emotional analysis when using our
wearable devices. In accordance with the subsequent experimen-
tal requirements, a more user-friendly interface will be designed
to fit the smartphone or wristwatch screen and fulfill numerous
application scenarios. Finally, we are currently investigating the
occurrence rate given the self-rating reports from all participants

to evaluate the correlation between the “stress” state and other
emotions. Furthermore, we believe that occurrence of other neg-
ative emotions when people suffer high stress levels can be sig-
nificant for researchers to investigate the hidden correlations
among those negative emotions.

7. Conclusion

In this article, we propose EmoSense, an emerging technology
for wearable systems containing a three-layer stress detection
mechanism. To capture the MGs, we design a three-layer struc-
ture for tangible objects embedded with the SFCS technology. To
recognize the MGs, we adopt various ML models and verify the
effectiveness of RF with the highest accuracy (100%). 16 partic-
ipants were recruited to verify the correlation between stress level
and MG frequency. We further design a real-time user interface
that shows the current stress level and MG state based on the
generated correlation fit model and trained MG recognition
model. Also, we observe that the “Stressed” state is highly related
to other specific negative emotions (e.g., “Fearful”, “Disgusted”,
“Annoyed”). Finally, we summarize three novelties in this work
and provide more promising directions that can benefit both
researchers and designers in HCI. As future work, we will
analyze the influences of specific MGs on emotions and conduct
long-term user studies based on wearable devices.

Appendix

Calculation of Minimal Displacement

As shown in the circuit diagram Figure 2D, we adopt the
standard chip capacitor (C0G)[75] with the relative
permittivity εr ¼ 1 and the capacitance C ¼ 10 pF. As
Q ¼ UC, under the same quantity of charge, we can obtain
Q ¼ ðU � ΔUÞðC þ ΔCÞ ¼ UC. Since the minimal voltage
resolution is ΔU ¼ 3.3=256V (8 bits) using the Arduino board
with U ¼ 3:3V, we can obtain the minimal capacitance change

ΔC ¼ CΔU
U � ΔU

(1)

According to the function C ¼ εrS=4πkd between C and
the distance of the capacitor plate d, the facing area

Figure 14. Four prototypes of wristbands: A) Top: thermoplastic polyurethane (TPU, thickness 0.15mm), Middle: flexible printed circuit, Bottom: fluoro
rubber strap. B) Top: TPU (thickness 0.15mm), Middle: metal conductive mesh, Bottom: TPU (thickness 0.5 mm). C) Top: thermoplastic polyurethane
(TPU, thickness 0.15mm),Middle: liquid metal-printed circuit, Bottom: leatherþ TPU (thickness 0.15mm). D) Top: polyurethane (thickness, 0.15mm),
middle: transparent indium tin oxide (ITO) Bottom: leather (thickness, 2 mm).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300050 2300050 (13 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300050 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [22/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


S ¼ 6� 10�4 m2, and the electrostatic force constant
k ¼ 8.987551� 109 N ⋅m2 C�2, we obtain

εrS
4πk

¼ Cd ¼ ðC þ ΔCÞðd � ΔdÞ (2)

Solving the equation, we further obtain the minimal displace-
ment

Δd ¼ dðC þ ΔCÞ � εrS
4πk

C þ ΔC
¼ εrSΔU

4πkCU
(3)

By bringing in the known data, we can calculate
Δd ¼ 2:08 μm.

Proof-of-Concept Wristbands

To conquer the oversensitive responses to human contacts, we
further propose the three-layer wristband design and provide
four proof-of-concept wristbands (as shown in Figure 14), which
are designed for daily applications in real scenarios. The interac-
tion way between the hand and the wristband is shown in
Figure 15. More detailed and comparing characteristics will be
evaluated as part of future work. To verify the effectiveness
and robustness of those prototypes, we leave conducting user
studies in field deployment for future work.
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Figure 15. The interaction between the wristband and a specific gesture: A) “Tap”, B) “Pinch”, C) “Grab,” and D) “Press”.
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