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Abstract
Cancer is globally a disease of significant public health concern owing to its 
prevalence, and association with morbidity and mortality. Thus, cost-effective 
treatments for cancer are important to help reduce its significant morbidity and 
mortality. However, the current therapeutic options for cancer such as chemo-
therapy, radiotherapy, and surgery may produce serious adverse events such as 
nausea, vomiting, fatigue, and peripheral neuropathy, especially in the long term. 
In addition, these therapeutic options may not be well tolerated by the elderly 
especially those who are frail. The current article is aimed at discussing an al-
ternative therapeutic option, non-invasive vagus nerve stimulation (VNS), and 
the roles it plays in cancer pathology and immunotherapy. The VNS does this 
by reducing oxidative stress via silent information regulator 1 (SIRT1); inhibit-
ing inflammation via both hypothalamic–pituitary–axis (HPA) and the release of 
corticosteroid from the adrenal gland, and cholinergic anti-inflammatory path-
way (CAP), and increasing vagal activity which helps in the regulation of cell 
proliferation, differentiation, apoptosis, and metabolism, and increase chance of 
survival. Furthermore, it helps with reducing complications due to cancer or its 
treatments such as postoperative ileus and severity of peripheral neuropathy in-
duced by chemotherapy, and improves cancer-related fatigue, lymphopenia, and 
quality of life. These suggest that the importance of non-invasive VNS in cancer 
pathology and immunotherapy cannot be overemphasized. Therefore, consid-
ering the safety of non-invasive VNS and its cost-effectiveness, it is a therapeu-
tic option worth trying for these patients, especially in combination with other 
therapies.
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1   |   INTRODUCTION

Cancer is a disease of the genome that arises from alter-
ations in DNA signaling and metabolism, leading to un-
controlled division and survival of transformed cells.1–3 
The alteration can be caused by many factors. One of the 
factors is the error in protein synthesis and DNA duplica-
tion, which results in metabolic waste accumulation over 
a long period of time.4,5 Thus, given that there is an inher-
ent error rate in DNA replication with increasing age, all 
multicellular organisms are at the risk of developing neo-
plasm that may result in cancer development with time.6–8

In addition, pathogenic organisms such as viruses, 
toxic chemical compounds, and radiation can also lead 
to cancer pathogenesis by promoting inflammation in the 
cells.5,9–16 Furthermore, reversible alterations in gene ex-
pression called ‘epigenetic changes’ can also cause neo-
plasm, which may lead to the development of cancer.17,18

According to global cancer statistics, as of the year 2020, 
there were about 19 million new cases of cancers globally; 
out of which, nine million cases resulted in death.19 In addi-
tion, although, there are many types of cancers, there are 10 
types of cancers that are recognized as major types of can-
cers.20 These include breast invasive carcinoma, glioblas-
toma multiforme, head and neck squamous cell carcinoma, 
bladder urothelial carcinoma, rectum adenocarcinoma, 
kidney renal clear cell carcinoma, lung squamous cell car-
cinoma, uterine corpus endometroid carcinoma, colon ad-
enocarcinoma, and ovarian serous cystadeno carcinoma.20 
However, despite the number and different types of can-
cers, they share several pathological processes.21,22

The pathological processes they share are the capacity to 
convey information for cell growth and increase in its num-
ber for a long time; avoid genes that forcibly put an end to 
cell development and growth; resist cell death, enable unlim-
ited replication of cells; and form new blood vessels and in-
vade and migrate to other cells and tissues of the body.23 The 
capacity to convey information for cell growth and increase 
its number for a long time is caused by oxidative stress, 
avoidance of genes that forcibly put an end to cell develop-
ment and growth, enabling unlimited replication of cells and 
formation of new blood vessels are contributed by inflamma-
tion, and invasion and migration to other cells and tissues 
is caused by inflammation and increased, and uncontrolled 
activity of the sympathetic nervous system.22,24–28

Thus, some of the therapeutic targets for cancer are ox-
idative stress, inflammation, and sympathetic nerve activ-
ity. For these, chemotherapy, radiation therapy, and a host 
of other therapies are used.29–31 However, these therapies 
may produce serious side effects such as nausea, vomit-
ing, fatigue, and peripheral neuropathy especially when 
they are used for a very long time.32–34 In particular, for 
the treatment of cancer in the elderly, the kind of therapies 

that should be given deserve special consideration.35 This 
is because, the risk of developing cancer and death thereof, 
increases with age.36 The reason for this, is the accumu-
lation of mutation over the years.37 Notably, as humans 
age, unrepaired DNA causes genomic instability, which as 
earlier noted, results in cancer.1–3,38 In addition, the types 
of treatment given may be associated with more adverse 
events. For instance, elderly people, especially those who 
are frail have an increased risk of mortality, morbidity, and 
complication due to surgery,39 and surgery is one of the in-
terventions used for people living with cancers.40

In addition, since many people in the world are suf-
fering from one or more cancers, and that the disease in-
cidence increases with age, and it has high potential for 
morbidity and mortality, finding any therapeutic solu-
tions especially those that are cost-effective, will be wel-
comed with an open arm. One such therapeutic option 
that is nowadays being considered, is the vagus nerve 
stimulation (VNS).

2   |   VAGUS NERVE STIMULATION

Vagus nerve stimulation (VNS) is any method such as 
the use of electrical current, manual touch, mindful-
ness meditation, or deep breathing exercise to stimulate 
the branches of vagus nerve to help modulate its neuro-
physiological and visceral functions such as increasing 
the levels of norepinephrine (NE) and gamma amino-
butyric acid (GABA), and control of digestion, heart rate, 
and respiration.41–44 The vagus nerve is the tenth cranial 
nerve, a major component of the parasympathetic nervous 
system, and the longest cranial nerve in the body.45–47 It 
performs both motor and sensory functions, as it is com-
prised of 80% afferent (sensory) fibers that carry informa-
tion from the body to the brain, and 20% efferent fibers 
that carry information from the brain to the body.41,48,49 
Thus, the nerve serves a two-way means of carrying infor-
mation from the body to the brain and vice-versa, by me-
andering from the brainstem to the proximal two-thirds 
of colon, giving off many branches to various organs and 
parts of the body such as the tongue, pharynx, heart, and 
gastrointestinal system in order to help maintain homeo-
stasis.49 This wide distribution of the nerve throughout 
the body, makes it to have many important clinical cor-
relations46; and as such, VNS is carried out to subserve the 
aforementioned roles and more.

Stimulation of the vagus nerve can be carried out directly 
via surgically implanted electrodes connected to it (invasive 
VNS); or indirectly via electrodes applied over the distribu-
tion of its peripheral branches in the skin, manual touch 
of its branch in the neck, and respiratory stimulation of its 
diaphragmatic branch (non-invasive VNS).42,50 However, 
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the invasive method is more associated with adverse events 
such as cardiac arrhythmias, vocal cord palsy, dysphagia, 
taste disturbance after the surgery (metallic taste), atrial 
fibrillation, reduced oxygen saturation, and chest pain that 
may be serious compared to the non-invasive VNS.50–53 
Thus, considering non-invasive VNS in the treatment of 
cancer, may be a long-awaited hidden treasure. This is be-
cause, nowadays, in cancer treatments, the use of less or 
non-invasive treatment options such as the use of ablation 
therapy is gaining prominence.54–56

In addition, as noted earlier, some of the methods of ad-
ministering non-invasive VNS include electrical, manual 
touch, respiratory stimulation of the peripheral branches of 
the vagus nerve, and mindfulness meditation.41,42,57 For elec-
trical stimulation, it relies on the cutaneous distribution of 
vagal afferents, either at the external ear (auricular branch of 
the vagus nerve) or at the neck (cervical branch of the vagus 
nerve).49,58–60 However, the concha and inner tragus of the 
external ear are regarded as the most suitable stimulation 
areas for non-invasive VNS.49 For the VNS using manual 
touch, the peripheral branch of the vagus nerve in the neck 
around the position of the carotid sheath is pressed or electri-
cally stimulated.41,61,62 This is because, after the vagus nerve 
exited the brainstem, it coursed through the neck, around 
the carotid sheath area.63 For the respiratory stimulation of 
the vagus nerve, slow-deep breathing is used to stimulate the 
diaphragmatic branch of the vagus nerve.64 For the mindful-
ness meditation, it is a stress-coping technique that promotes 
relaxation and elevates heart rate variability (HRV), an indi-
cator of stimulation of the activity of the vagus nerve.57

So far, several reports have shown the effects of non-
invasive VNS at improving functions such as motor func-
tion following stroke, control of seizures in epilepsy, 
cognitive function, and acute respiratory distress syn-
drome in Covid-19.52,53,65–69 The aim of this article is to 
present the putative role of non-invasive VNS in cancer 
pathology and immunotherapy.

3   |   PUTATIVE ROLE OF 
NON-INVASIVE VAGUS 
NERVE STIMULATION IN 
CANCER PATHOLOGY AND 
IMMUNOTHERAPY

Roles of non-invasive VNS in cancer pathology and immu-
notherapy are emerging. In particular, several important 
mechanisms have been identified: oxidative stress reduc-
tion; inhibition of inflammatory response by targeting two 
inflammation pathways (the hypothalamic–pituitary–
adrenal axis (HPA) and the cholinergic anti-inflammatory 
pathway) and inhibition of sympathetic activity.48,70,71 See 
Table 1 for the summary of the potential VNS parameters T
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for patients with cancer72–75; and Figure  1 for the sche-
matic representation of its mechanisms.

3.1  |  Oxidative stress reduction

Oxidative stress is a pathological process that results from 
an imbalance between the production and accumulation 
of reactive oxygen species such as superoxide radicals, 
hydrogen peroxide, hydroxyl radicals, and singlet oxygen 
in the cells and the ability of the body system to detoxify 
them.76,77 Vagus nerve stimulation (VNS) reduces oxida-
tive stress via silent information regulator 1 (SIRT1), which 
is a histone of deacetylase of nicotinamide adenine dinu-
cleotide (NAD+) that helps in the regulation of cell pro-
liferation, differentiation, apoptosis, and metabolism.71,78

3.2  |  Anti-inflammatory effect

Inflammation characterizes cancer pathology.16,79 It is de-
fined as the cellular, tissue, organ, or system's response or 
defense against a foreign body such as pathogens, chemi-
cal compounds, and radiation.80 It results in cancer when 
it fails to resolve over a long period of time.1,81 This is be-
cause, when inflammation persists for a very long period 
of time, prolonged tissue damage occurs, which in turn 
induces cellular proliferation, a precursor for cancers.1–3,82

The pathological process through which inflamma-
tion results in cancer generally starts from the recognition 
of the foreign body by the cell surface pattern receptors, 
which is then followed successively by the activation of in-
flammatory pathways, release of inflammatory markers, 
and recruitment of inflammatory cells.83 The inflamma-
tory pathways that are activated include mitogen-activated 
protein kinase (MAPK), nuclear factor kappa-B (NF-κB), 
and Janus kinase (JAK)-signal transducer and activator 

of transcription (STAT) pathways.84–86 Activation of 
these pathways in turn results in the activation of pro-
inflammatory cells such as the macrophages, and the 
release of inflammatory biomarkers such as the interleu-
kin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis 
alpha (TNF-α), and other inflammatory proteins and en-
zymes that eventually cause abnormal growth of the cells, 
damage, and death.83 Thus, arresting these pathological 
processes can be an important immunotherapeutic target.

Vagus nerve stimulation (VNS) is known to reduce 
systemic inflammatory response.87 This is because, 
through the use of its afferent and efferent pathways, 
the vagus nerve brings about an anti-inflammatory ef-
fect that inhibits inflammation.41,70 For that to occur, 
the afferent pathways will activate or regulate the 
hypothalamic–pituitary–axis (HPA) and release of 
corticosteroid by the adrenal gland.70 Similarly, the 
efferent pathways will regulate the cholinergic anti-
inflammatory pathway (CAP).41

3.2.1  |  Activation/ regulation of HPA

The HPA is a complex part of the autonomic nervous sys-
tem of neuroendocrine pathways that responds to negative 
feedback loops, involving hypothalamus, anterior pituitary 
gland, and adrenal gland to help maintain physiological 
homeostasis.88 It is the primary innate defense against in-
flammation.89 This is made possible because, the afferent 
fibers of the vagus nerve are endowed with interleukin-1β 
(IL-1β) receptors in the paraganglia which transmit sensory 
information to nucleus tractus solitarius (NTS), where neu-
rons located in the A2 noradrenergic group are activated 
and then project information to the parvo-cellular zone 
of paraventricular nucleus of the hypothalamus (PVH) 
around corticotrophin-releasing factor (CRF)-containing 
neurons.90 These CRF neurons then activate the release 

F I G U R E  1   Mechanisms of treatment of cancer using VNS. Keywords: HRV, heart rate variability; VNS, vagus nerve stimulation.
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of adreno-corticotrophin hormone by the hypophysis that 
will finally stimulate the release of glucocorticoids by the 
adrenal glands to decrease peripheral inflammation.90

Consequently, the HPA is the physiological basis for 
the use of hormonal treatments for cancer malignancies 
and, it is considered cytostatic because it restricts tumor 
development by limiting the hormonal growth factors 
acting through the direction of HPA, hormone recep-
tor blockage, and limiting adrenal steroid synthesis.70 
Interestingly, VNS also acts on the same pathway to main-
tain homeostasis.70 For instance, it has been shown that 
VNS resulted in the downregulation of the insulin cata-
bolic process, which may reduce circulating blood glucose 
that is pro-inflammatory.91–93

3.2.2  |  The cholinergic anti-inflammatory 
pathway (CAP)

The cholinergic anti-inflammatory pathway (CAP) is a 
neural mechanism of inhibiting inflammation via the par-
asympathetic nervous system activity that influences the 
level of circulating tumor necrosis α (TNF- α) and other 
inflammatory biomarkers such as the interleukins, and 
endotoxins.94 The VNS can activate the CAP by stimulat-
ing the activation of vagal afferent which inhibits inflam-
mation by reducing or suppressing the production and 
release of pro-inflammatory cytokines and biomarkers 
such as the tumor necrosis α (TNF- α) and interleukin-6 
(IL-6).41,45,95,96 In particular, VNS may delay tumorigen-
esis through its action on acetylcholine (ACh) and the 
acetylcholine receptor, α7nAChR, since they are widely 
expressed in many types of immune cells.97 In addition, 
the sympathetic nervous system and the vagus nerve act in 
synergy, through the splenic nerve, to inhibit the release 
of tumor necrosis factor-alpha (TNFα) by macrophages of 
the peripheral tissues and the spleen.48

Furthermore, VNS helps to suppress the activation of 
other inflammatory pathways such as the activation of NF-
κB.98 Consequently, non-invasive VNS has been reported to 
surge CAP to suppress 1, 2-dimethyhydrazine (DMH) in-
duced colon cancinogenesis.99 This role is similar to that of 
the drug, Roflumilast, a selective phosphodiesterase-4 inhib-
itor (PDE4).100 Furthermore, non-invasive VNS stimulates 
tumor-infiltrating lymphocytes.72 The tumor-infiltrating 
lymphocytes are types of immune cells that help attenuate 
acute inflammatory response and kill cancer cells.72,73

3.3  |  Inhibition of sympathetic activity

High vagal activity, which is indicated by heart rate varia-
bility (which reflects combined activity of parasympathetic 

and sympathetic tone on heart rate) is related to good prog-
nosis and increased chance of survival in patients with var-
ious forms of cancers such as colon, pancreatic, lung, and 
breast cancers.101–107 This is because high vagal activity in-
hibits sympathetic nervous system activity, which is associ-
ated with decreased plasma level of TNF- α.108 In contrast, 
the absence of vagal nerve activity promotes tumor growth 
and reduces cell survival due to increased levels of TNF- α, 
which in turn promotes invasion and migration of cancer 
cells, one of the hallmarks of cancer pathology.23,109,110

4   |   OTHER ROLES OF 
NON-INVASIVE VNS IN CANCER

Other ways through which non-invasive VNS play a 
role in patients with cancer are also many. For instance, 
postoperative ileus was reported to reduce following 
low-intensity non-invasive VNS (25 Hz, 50 mA) that was 
given for 20 min prior to anesthesia in patients who had 
laparoscopic radical resection of colorectal cancer.111,112 
Similarly, it was also reported to help reduce the severity 
of peripheral neuropathy induced by chemotherapy.32 In 
addition, it helps improve cancer-related fatigue, lympho-
penia, and quality of life.113 Thus, the importance of non-
invasive VNS cannot be overemphasized.

Furthermore, the positive association between de-
pression and anxiety and incidence of cancer and all-
cause mortality114; and the increased risk of depression 
among patients with cancer are also factors that can be 
considered as mechanisms through which VNS plays a 
role in the treatment of cancer.115–117 This is because VNS 
is used in the management of depression, which by im-
plication helps improve a symptom associated with can-
cer and reduce the risk of developing it.118,119 Similarly, 
cardiovascular diseases and cancer share many common 
risk factors such as smoking, metabolic syndrome, age, 
environmental toxins, and air pollution.120 Moreover, 
heart rate variability (HRV), which is the fluctuation in 
the time intervals between adjacent heartbeats serves as 
a measure of vagal tone that is used to indicate the over-
all level of vagal activity.121,122 Thus, since HRV is a mea-
sure of cardiovascular health and an indicator of vagal 
activity, improving cardiovascular health with the use of 
VNS may help with positive outcomes during treatment 
of cancer.57,123–125

5   |   IMPLICATION FOR RESEARCH 
AND PRACTICE

Acute inflammatory response is an essential and protec-
tive response in injured tissues, and it can at times restore 
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the tissues to their preinjury state.126 In addition, cancer 
cells as well as surrounding stromal and inflammatory 
cells may engage in well-orchestrated reciprocal interac-
tions to form an inflammatory tumor microenvironment 
that is highly plastic.15 Thus, the use of non-invasive VNS 
for cancer treatment should take advantage of the early 
stage of the disease and the plastic nature of the tumor 
microenvironment.

Another way non-invasive VNS can be used for can-
cer treatment is by combining it with other therapies such 
as radiotherapy. This is because, such a combination has 
helped stimulate tumor-infiltrating lymphocytes, types 
of immune cells that kill cancer cells.72 In addition, very 
often, immunotherapy is utilized as a part of a combina-
tory therapy along with other treatments like radiation, 
chemotherapy, remission surgery and so on.127

Although, the role of VNS in cancer pathology and im-
munotherapy is still ambiguous and requires further in-
vestigation128; however, its role may just be similar to that 
of the corticotrophic releasing hormone (CRH), which has 
an anti-inflammatory effect when released from the brain, 
but pro-inflammatory effect when released by the nerve 
endings at the site of the inflammation.129 This analogy 
was made because the vagus nerve consists of 80% afferent 
(sensory) fibers that carry information from the body to 
the brain.41,48,49 That way, it can sense peripheral inflam-
mation and transmit action potentials from the periphery 
to the brain stem.23,130 Thus, a proper understanding of 
the vagus nerve is required for understanding its patho-
physiology and its potential roles in the treatment of dis-
eases such as cancer.131
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