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Abstract: A drawback of the existing event-triggered distributed observer for a rigid body
leader system over jointly connected switching networks is that the upper bounds of two key
design parameters were only shown to exist without giving an explicit estimate of the upper
bounds. In this paper, by assuming that the communication network is acyclic, we further show
that these two design parameters can take any positive value by choosing other parameters
appropriately. We will also apply our event-triggered distributed observer to the leader-following
consensus problem of multiple rigid body systems and illustrate our design by a numerical
example.
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1. INTRODUCTION

The cooperative control of multiple rigid body systems has
attracted extensive attentions over the past decade Cai
and Huang (2014); Dimarogonas et al. (2009); Liu and
Huang (2018); Wang and Huang (2020). An effective tool
to solve this problem is the so-called distributed observer
approach summarized by Cai et al. (2022). The distributed
observer is a distributed dynamic compensator that es-
timates the leader system’s information over the com-
munication network. Based on the distributed observer,
one may systematically synthesize a distributed control
law by composing a distributed observer and a purely
decentralized control law. As pointed out in Cai et al.
(2022); Wang and Huang (2022), the distributed observer
approach has two advantages over other approaches. First,
the distributed observer approach can handle the jointly
connected communication network which can be discon-
nected at every time. Second, the distributed observer
and the purely decentralized control law can be separately
designed.

The event-triggered control technology, which generates
the samplings and control actuation by some event-
triggered mechanisms, has been gaining momentum over
the past two decades. Some representative papers are Ab-
delrahim et al. (2017); Åström and Bernhardsson (1999);
Borgers and Heemels (2014); Chen et al. (2020); Donkers
and Heemels (2012); Eqtami et al. (2010); Heemels et al.
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Table 1. Table of Notations

Symbol Meaning

‖ · ‖ The Euclidean norm of a vector;
or the induced Euclidean norm of a matrix.

col(·) col(A1, ..., Am) =
[
A�

1 , ..., A�
m

]�
∈ R(n1+···+nm)×p, for Ai ∈ Rni×p.

Q The set of all quaternions:
Q = {q : q = col(q̂, q̄), q̂ ∈ R3, q̄ ∈ R}.

Qu Qu = {q ∈ Q : ‖q‖ = 1}.
q∗ Quaternion conjugate: q∗ =

[
−q̂�, q̄

]�
,

for q ∈ Q.

� qi � qj =

[
q̄iq̂j + q̄j q̂i + q̂×i q̂j

q̄iq̄j − q̂�i q̂j

]
, for qi, qj ∈ Q.

(·)× x× =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

]
, for x =

[
x1

x2

x3

]
.

Q(·) Q(α) = col(α, 0) where α ∈ R3.
C(·) C(q) = (q̄2 − q̂�q̂)I3 + 2q̂q̂� − 2q̄q̂×, q ∈ Q.

(2012); Nowzari et al. (2019); Tabuada (2007). Compared
with time-triggered sampling, event-triggered control can
significantly reduce the consumption of communication
and actuation energy. This advantage has motivated the
study of the event-triggered distributed observer. Specif-
ically, Dong and Lin (2022) proposed an event-triggered
distributed observer for a linear leader system and applied
this observer to the cooperative linear output regulation
and the leader-following consensus of Euler-Lagrange sys-
tems. Under the assumption that the communication net-
work is every time connected, Wang et al. (2021) presented
an approach to implement the continuous-time distributed
observer for rigid body systems used in Cai and Huang
(2014); Liu and Huang (2018). Our recent work Wang
and Huang (2022) has extended the result in Wang et al.
(2021) to the case where the communication network is
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jointly connected. Nevertheless, one drawback of the result
in Wang and Huang (2022) is that it only guarantees the
existence of the upper bounds of two key design parame-
ters βv and βη without giving an explicit estimate of the
upper bounds of these two parameters.

In this paper, we will further investigate the problem of
designing an event-triggered distributed observer for rigid
body systems studied in Wang and Huang (2022). We will
show that, for the class of the acyclic communication net-
work, the above-mentioned two design parameters can take
any positive value by properly choosing other parameters.
For this purpose, we need to study the stability properties
of some classes of linear time-varying systems.

The rest of this paper is organized as follows. In Section 2,
we will review the result in Wang and Huang (2022) and
formulate the problem. Then, we present some stability
results on some classes of linear time-varying systems in
Section 3, which will be used to establish our main result.
Our main result will be presented in Section 4. In Section
5, we will apply our event-triggered distributed observer
to the leader-following consensus problem of multiple rigid
body systems together with a numerical example. Finally,
we close this paper with some concluding remarks in
Section 6. The notation we will use in this paper are
collected in Table 1. In what follows, given a system
ẋ = f(x, t), we say it is globally exponentially stable at
the rate of at least λ if there exists a positive constant α
such that

‖x(t)‖ ≤ α‖x(t0)‖e−λ(t−t0), ∀t ≥ t0 (1)

for any x(t0); if a time function x(t) satisfies (1) with
t0 = 0, we say x(t) tends to zero (x(t) → 0) exponentially
at the rate of at least λ.

2. PROBLEM FORMULATION

Consider a group of N rigid body systems as follows:

q̇i(t) =
1

2
qi(t)�Q(ωi(t)), (2a)

Jiω̇i(t) =− ωi(t)
×Jiωi(t) + ui(t), (2b)

where qi ∈ Qu describes the attitude of follower i; ωi ∈ R3

is the angular velocity; Ji ∈ R3×3 is the uncertain positive
definite inertia matrix of the ith follower; ui ∈ R3 is the
control torque; i = 1, ..., N .

Also, assume that the desired attitude and angular velocity
for system (2) are generated by:

q̇0(t) =
1

2
q0(t)�Q(ω0(t)), (3a)

v̇(t) =Sv(t), ω0(t) = Ev(t), (3b)

where q0 ∈ Qu is the desired attitude to be synchronized
by the followers; ω0 ∈ R3 is the desired angular velocity;
v ∈ Rn; S ∈ R3×3 and E ∈ R3×n are two constant
matrices.

Systems (2) and (3) together can be viewed as a leader-
follower multi-agent system with (3) as the leader sys-
tem and the N subsystems of (2) as N followers. The
communication network among these N + 1 agents is de-
scribed by a switching digraph Gσ(t) =

(
V, Eσ(t)

)
, where

σ : [0,∞) → P = {1, ..., n0} is a piecewise constant
switching signal with dwell time τ > 0; the node set

is defined as V = {0, 1, ..., N} with node 0 represents
the leader and nodes 1 to N represent followers 1 to N ,
respectively; the edge set Eσ(t) is such that (i, j) ∈ Eσ(t)
if and only if node j can receive the information from
node i at time t. We say node ik is reachable from
node i1 at time t if {(i1, i2), (i2, i3), ..., (ik−1, ik)} ⊂ Eσ(t).
The neighbor set of node i is defined as Ni(t) = {j :
(j, i) ∈ Eσ(t), j �= i}. The weighted adjacency matrix asso-

ciated with Gσ(t) is defined as Aσ(t) = [aij(t)]
N
i,j=0 where

aij(t) = 1 ⇔ (j, i) ∈ Eσ(t), i �= j and aij = 0 otherwise.

DefineHσ(t) = [hij(t)]
N
i,j=1 where hii(t) =

∑N
j=0 aij(t) and

hij(t) = −aij(t) for i �= j.

Let us recall the following event-triggered distributed
observer for the leader system (3) proposed by Wang and
Huang (2022):



v̇i(t) = Svi(t) + vei(t
v,i
k ),

vei(t) = µv

∑
j∈Ni(t)

(vj(t)− vi(t)), t ∈ [tv,ik , tv,ik+1), (4a)




η̇i(t) =
1

2
ηi(t)�Q(Evi(t)) + ηei(t

η,i
k ),

ηei(t) = µη

∑
j∈Ni(t)

(ηj(t)− ηi(t)), t ∈ [tη,ik , tη,ik+1),
(4b)

tv,ik+1 = inf
{
t > tv,ik : ‖evi(t)‖ ≥ αve

−βvt
}
, (4c)

tη,ik+1 = inf
{
t > tη,ik : ‖eηi(t)‖ ≥ αηe

−βηt
}
, (4d)

where (4a) and (4b) are respectively the event-triggered
distributed observer for leader’s states v and q0; (4c) and
(4d) are the event-triggered mechanism respectively for

the triggering times tv,ik and tη,ik , with

evi(t) =vei(t
v,i
k )− vei(t), t ∈ [tv,ik , tv,ik+1), (5a)

eηi(t) =ηei(t
η,i
k )− ηei(t), t ∈ [tη,ik , tη,ik+1). (5b)

Two standard assumptions are as follows:

Assumption 1. All the eigenvalues of S are semi-simple
with zero real parts.

Assumption 2. The switched digraph Gσ(t) is jointly con-
nected with node 0 as the root. That is, there exists a
subsequence {jk : k = 0, 1, 2, ...} of {j : j = 0, 1, 2, ...}
with tjk+1

− tjk < T for some positive T such that
node 0 can reach every other node in the union graph⋃

tjk≤t<tjk+1
Gσ(t).

Remark 1. Under Assumption 1, the leader system is able
to generate a large class of reference trajectories including
step functions and sinusoidal functions with arbitrarily
unknown amplitudes. Assumption 2 is the mildest restric-
tion on the digraph Gσ(t) which allows the graph to be
disconnected at every time.

The main result of Wang and Huang (2022) is summarized
as follows:

Lemma 1. Under Assumptions 1 and 2, there exist β∗
v > 0

and β∗
η > 0 such that, for any µv > 0, µη > 0, αv > 0, αη >

0, for any 0 < βv < β∗
v , 0 < βη < β∗

η , and, for any initial
condition with q0(0) ∈ Qu, the trajectories of (3) and (4)
exist for all t ≥ 0 and are such that for all i = 1, ..., N ,
limt→∞ (vi(t)− v(t)) = 0 and limt→∞ (ηi(t)− q0(t)) = 0
both exponentially.

Remark 2. Due to Lemma 1, the dynamic compen-
sator (4) is able to exponentially estimate the leader’s
states v and q0; and from (4), the inter-agent signals
µv

∑
j∈Ni(t)

(vj(t) − vi(t)) and µη

∑
j∈Ni(t)

(ηj(t) − ηi(t))

are only updated at the triggering time tv,ik and tη,ik , re-
spectively. Thus, we call (4) the event-triggered distributed
observer for the leader system (3). However, one weakness
of Lemma 1 is that it only guarantees the existence of the
upper bounds β∗

v and β∗
η without knowing their specific

values.

In this paper, we will further show that βv and βη may
take any positive value if we strengthen Assumption 2 to
the following form:

Assumption 3. The digraph Gσ(t) is jointly connected with
node 0 as the root, and every node in the union graph⋃

p∈P Gp is not reachable from itself.

In what follows, we call a switching graph Gσ(t) satisfying
Assumption 3 jointly connected acyclic switching graph.

3. SOME STABILITY RESULTS

In this section, we present some stability results on some
classes of linear time-varying systems, which will be used
to establish our main results in the subsequent sections.

Lemma 2. Suppose that the following system

ẋ(t) = A(t)x(t) (6)

is exponentially stable at the rate of at least β1, i.e.,
its state transition matrix Φ(t, τ) satisfies ‖Φ(t, τ)‖ ≤
α1e

−β1(t−τ) for some α1, β1 > 0. Let b(t) → 0 exponen-
tially at the rate of at least β2, i.e., ‖b(t)‖ ≤ α2e

−β2t for
α2, β2 > 0. Then, the solution of the following system

ẋ(t) = A(t)x(t) + b(t) (7)

is such that ‖x(t)‖ ≤ αe−βt, where α > 0 and

β =

{
min{β1, β2} if β1 �= β2;
β1 − ε if β1 = β2.

for any ε ∈ (0, β1).

Proof: For any x(0), the general solution of the system (7)
is given by

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)b(τ)dτ. (8)

Taking the norm on both sides gives

‖x(t)‖ ≤‖Φ(t, 0)‖‖x(0)‖+
∫ t

0

‖Φ(t, τ)‖‖b(τ)‖dτ

≤α1e
−β1t‖x(0)‖+

∫ t

0

α1e
−β1(t−τ)α2e

−β2τdτ

=α1e
−β1t‖x(0)‖+ α1α2e

−β1t

∫ t

0

e(β1−β2)τdτ

=




α1e
−β1t‖x(0)‖+ α1α2

β1 − β2

(
e−β2t − e−β1t

)

if β1 �= β2;
α1e

−β1t‖x(0)‖+ α1α2te
−β1t

if β1 = β2,

which implies ‖x(t)‖ ≤ αe−βt. �

Now, consider the following system

ẋ(t) =
(
block diag(G1(t), ..., GN (t))− µ(F (t)⊗ I4)

)
x(t),
(9)

where µ > 0; x ∈ R4N is the state; G1(t), ..., GN (t) ∈
R4×4 are bounded skew-symmetric matrices; F (t) =
[fij(t)]

N
i,j=1 ∈ RN×N is a lower-triangular, piecewise con-

tinuous, and bounded matrix satisfying the following as-
sumption:

Assumption 4. For all i = 1, ..., N and all t ≥ 0, fii(t) ≥ 0,
and there exists positive constants δ0 and T0 such that∫ t+T0

t
fii(τ)dτ ≥ δ0T0.

Before presenting the stability result of (9), we first estab-
lish a technical lemma as follows:

Lemma 3. Under Assumption 4, for any µ > 0 and for all
i = 1, ..., N , the origin of the following system

˙̃x(t) =
(
Gi(t)− µfii(t)I4

)
x̃(t), (10)

where x̃ ∈ R4, is globally exponentially stable at the rate
of at least µδ0.

Proof: Inspired from Su and Huang (2012), let Φi(t, τ) be
the state transition matrix of the following system:

˙̄x(t) = Gi(t)x̄(t). (11)

Performing the state transformation z(t) = Φi(0, t)x̃(t)
gives

ż(t) =Φ̇i(0, t)x̃(t) + Φi(0, t) ˙̃x(t)

=− Φi(0, t)Gi(t)x̃(t) + Φi(0, t)(Gi(t)− µfii(t)I4)x̃(t)

=− µfii(t)Φi(0, t)x̃(t) = −µfii(t)I4z(t). (12)

Keeping in mind the diagonal structure of −µfii(t)I4, one
may conclude from the proof of Lemma 3.2 of He and
Huang (2021) that there exists a constant α3 > 0 such
that

‖z(t)‖ ≤ α3e
−µδ0t‖z(0)‖. (13)

For (11), using the skew-symmetry of Gi(t) gives

d

dt
‖x̄(t)‖2 = 2x̄(t)� ˙̄x(t) = 2x̄(t)�Gi(t)x̄(t) = 0, (14)

thus, Φi(t, 0) is bounded for all t ≥ 0. As a result,

‖x̃(t)‖ =‖Φi(t, 0)z(t)‖ ≤ α3e
−µδ0t‖Φi(t, 0)‖‖z(0)‖

≤ α4e
−µδ0t‖x̃(0)‖ (15)

for some α4 > 0. �

Now we are ready to present the convergence result of
system (9).

Lemma 4. Under Assumption 4, for any initial condition,
the trajectory of (9) satisfies

‖x(t)‖ ≤ α5e
−(µδ0−ε)t‖x(0)‖ (16)

for any ε ∈ (0, µδ0), where α5 > 0.

Proof: Let x = [x�
1 , x

�
2 , ..., x

�
N ]� where xi ∈ R4, i =

1, ..., N . Then, (9) is equivalent to the following system:

ẋ1(t) =
(
G1(t)− µf11(t)I4

)
x1(t), (17a)

ẋ2(t) =
(
G2(t)− µf22(t)I4

)
x2(t)− µf21(t)x1(t), (17b)

ẋ3(t) =
(
G3(t)− µf33(t)I4

)
x3(t)− µf31(t)x1(t)

− µf32(t)x2(t), (17c)

...
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Remark 2. Due to Lemma 1, the dynamic compen-
sator (4) is able to exponentially estimate the leader’s
states v and q0; and from (4), the inter-agent signals
µv

∑
j∈Ni(t)

(vj(t) − vi(t)) and µη

∑
j∈Ni(t)

(ηj(t) − ηi(t))

are only updated at the triggering time tv,ik and tη,ik , re-
spectively. Thus, we call (4) the event-triggered distributed
observer for the leader system (3). However, one weakness
of Lemma 1 is that it only guarantees the existence of the
upper bounds β∗

v and β∗
η without knowing their specific

values.

In this paper, we will further show that βv and βη may
take any positive value if we strengthen Assumption 2 to
the following form:

Assumption 3. The digraph Gσ(t) is jointly connected with
node 0 as the root, and every node in the union graph⋃

p∈P Gp is not reachable from itself.

In what follows, we call a switching graph Gσ(t) satisfying
Assumption 3 jointly connected acyclic switching graph.

3. SOME STABILITY RESULTS

In this section, we present some stability results on some
classes of linear time-varying systems, which will be used
to establish our main results in the subsequent sections.

Lemma 2. Suppose that the following system

ẋ(t) = A(t)x(t) (6)

is exponentially stable at the rate of at least β1, i.e.,
its state transition matrix Φ(t, τ) satisfies ‖Φ(t, τ)‖ ≤
α1e

−β1(t−τ) for some α1, β1 > 0. Let b(t) → 0 exponen-
tially at the rate of at least β2, i.e., ‖b(t)‖ ≤ α2e

−β2t for
α2, β2 > 0. Then, the solution of the following system

ẋ(t) = A(t)x(t) + b(t) (7)

is such that ‖x(t)‖ ≤ αe−βt, where α > 0 and

β =

{
min{β1, β2} if β1 �= β2;
β1 − ε if β1 = β2.

for any ε ∈ (0, β1).

Proof: For any x(0), the general solution of the system (7)
is given by

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)b(τ)dτ. (8)

Taking the norm on both sides gives

‖x(t)‖ ≤‖Φ(t, 0)‖‖x(0)‖+
∫ t

0

‖Φ(t, τ)‖‖b(τ)‖dτ

≤α1e
−β1t‖x(0)‖+

∫ t

0

α1e
−β1(t−τ)α2e

−β2τdτ

=α1e
−β1t‖x(0)‖+ α1α2e

−β1t

∫ t

0

e(β1−β2)τdτ

=




α1e
−β1t‖x(0)‖+ α1α2

β1 − β2

(
e−β2t − e−β1t

)

if β1 �= β2;
α1e

−β1t‖x(0)‖+ α1α2te
−β1t

if β1 = β2,

which implies ‖x(t)‖ ≤ αe−βt. �

Now, consider the following system

ẋ(t) =
(
block diag(G1(t), ..., GN (t))− µ(F (t)⊗ I4)

)
x(t),
(9)

where µ > 0; x ∈ R4N is the state; G1(t), ..., GN (t) ∈
R4×4 are bounded skew-symmetric matrices; F (t) =
[fij(t)]

N
i,j=1 ∈ RN×N is a lower-triangular, piecewise con-

tinuous, and bounded matrix satisfying the following as-
sumption:

Assumption 4. For all i = 1, ..., N and all t ≥ 0, fii(t) ≥ 0,
and there exists positive constants δ0 and T0 such that∫ t+T0

t
fii(τ)dτ ≥ δ0T0.

Before presenting the stability result of (9), we first estab-
lish a technical lemma as follows:

Lemma 3. Under Assumption 4, for any µ > 0 and for all
i = 1, ..., N , the origin of the following system

˙̃x(t) =
(
Gi(t)− µfii(t)I4

)
x̃(t), (10)

where x̃ ∈ R4, is globally exponentially stable at the rate
of at least µδ0.

Proof: Inspired from Su and Huang (2012), let Φi(t, τ) be
the state transition matrix of the following system:

˙̄x(t) = Gi(t)x̄(t). (11)

Performing the state transformation z(t) = Φi(0, t)x̃(t)
gives

ż(t) =Φ̇i(0, t)x̃(t) + Φi(0, t) ˙̃x(t)

=− Φi(0, t)Gi(t)x̃(t) + Φi(0, t)(Gi(t)− µfii(t)I4)x̃(t)

=− µfii(t)Φi(0, t)x̃(t) = −µfii(t)I4z(t). (12)

Keeping in mind the diagonal structure of −µfii(t)I4, one
may conclude from the proof of Lemma 3.2 of He and
Huang (2021) that there exists a constant α3 > 0 such
that

‖z(t)‖ ≤ α3e
−µδ0t‖z(0)‖. (13)

For (11), using the skew-symmetry of Gi(t) gives

d

dt
‖x̄(t)‖2 = 2x̄(t)� ˙̄x(t) = 2x̄(t)�Gi(t)x̄(t) = 0, (14)

thus, Φi(t, 0) is bounded for all t ≥ 0. As a result,

‖x̃(t)‖ =‖Φi(t, 0)z(t)‖ ≤ α3e
−µδ0t‖Φi(t, 0)‖‖z(0)‖

≤ α4e
−µδ0t‖x̃(0)‖ (15)

for some α4 > 0. �

Now we are ready to present the convergence result of
system (9).

Lemma 4. Under Assumption 4, for any initial condition,
the trajectory of (9) satisfies

‖x(t)‖ ≤ α5e
−(µδ0−ε)t‖x(0)‖ (16)

for any ε ∈ (0, µδ0), where α5 > 0.

Proof: Let x = [x�
1 , x

�
2 , ..., x

�
N ]� where xi ∈ R4, i =

1, ..., N . Then, (9) is equivalent to the following system:

ẋ1(t) =
(
G1(t)− µf11(t)I4

)
x1(t), (17a)

ẋ2(t) =
(
G2(t)− µf22(t)I4

)
x2(t)− µf21(t)x1(t), (17b)

ẋ3(t) =
(
G3(t)− µf33(t)I4

)
x3(t)− µf31(t)x1(t)

− µf32(t)x2(t), (17c)

...
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ẋN (t) =
(
GN (t)− µfNN (t)I4

)
xN (t)−

N−1∑
i=1

µfNi(t)xi(t).

(17d)

In what follows, we will show the claim of this lemma
by induction. First of all, (17a) is globally exponentially
stable at the rate of at least µδ0 by invoking Lemma 3
with i = 1. Then consider (17b), which takes the form (7)
with A(t) = G2(t) − µf22(t)I4 and b(t) = −µf21(t)x1(t).
Since by Lemma 3, system

ẋ2(t) =
(
G2(t)− µf22(t)I4

)
x2(t)

is globally exponentially stable at the rate of at least µδ0;
and from our previous argument, −µf21(t)x1(t) also tends
to zero exponentially at the rate of at least µδ0, invoking
Lemma 2 concludes that x2(t) → 0 exponentially at the
rate of at least µδ0 − ε for any ε ∈ (0, µδ0) as t → ∞.

Now consider (17c), which takes the form (7) with A(t) =
G3(t)−µf33(t)I4 and b(t) = −µf31(t)x1(t)−µf32(t)x2(t).
Since, by Lemma 3, system

ẋ3(t) =
(
G3(t)− µf33(t)I4

)
x3(t)

is globally exponentially stable at the rate of at least
µδ0; and from the previous argument, −µf31(t)x1(t) −
µf32(t)x2(t) tends to zero exponentially at the rate of at
least µδ0 − ε for any ε ∈ (0, µδ0), Lemma 2 implies that
x3(t) → 0 exponentially at the rate of at least µδ0 − ε for
any ε ∈ (0, µδ0) as t → ∞.

Repeating the above steps concludes that, for all i =
2, 3, ..., N , xi(t) → 0 exponentially at the rate of at least
µδ0 − ε for any ε ∈ (0, µδ0) as t → ∞. Thus, the origin of
(9) is globally exponentially stable at the rate of at least
µδ0 − ε for any ε ∈ (0, µδ0), in other words, (16) holds for
any initial condition. �

4. EVENT-TRIGGERED DISTRIBUTED OBSERVER
OVER ACYCLIC SWITCHING GRAPHS

In this section, we will establish our main result. Let us
first note that, under Assumption 3, by properly number-
ing the nodes, the weighted adjacency matrix Aσ(t) and
the corresponding Hσ(t) are both in lower-triangular form
with hii(t) ≥ 0 for all t ≥ 0 and i = 1, ..., N . Moreover, by
Remark 4.1 of He and Huang (2021), there exists δ1 > 0
such that, for any t ≥ 0,∫ t+2T

t

hii(τ)dτ ≥ 2δ1T. (18)

In other words, Hσ(t) satisfies Assumption 4 with δ0 = δ1
and T0 = 2T .

Let ṽi = vi − v and η̃i = ηi − q0 be the tracking errors
of v and q0 of follower i. Define ṽ = col(ṽ1, ..., ṽN ) and
η̃ = col(η̃1, ..., η̃N ). Also, for any y = [y1, y2, y3]

�, let
M : R3 → R4×4 be such that

M(y) =




0 y3 −y2 y1
−y3 0 y1 y2
y2 −y1 0 y3
−y1 −y2 −y3 0


 . (19)

Then, from Wang and Huang (2022), the error system of
(4) can be put as follows:

˙̃v(t) =Av(t)ṽ(t) + ev(t), (20a)

˙̃η(t) =Aη(t)η̃(t) + Fd(t) + eη(t), (20b)

where Aη(t) = 1
2block diag (M(Ev1), ...,M(EvN )) −

µη(Hσ(t) ⊗ I4), Av(t) = IN ⊗ S − µv(Hσ(t) ⊗ In), Fd(t) =

col
(
1
2M(Eṽ1)q0, ...,

1
2M(EṽN )q0

)
, ev = col(ev1, ..., evN ),

eη = col(eη1, ..., eηN ).

Our main result is summarized as follows:

Theorem 1. Under Assumption 1 and Assumption 3, for

any µη, αv, αη > 0, let µv > 2‖S‖
δ1

, βv ∈ (0, µvδ1
2 −‖S‖), and

βη ∈ (0,min{βv, µηδ1}). Then, for any initial condition
with q0(0) ∈ Qu, the trajectories of (3) and (4) exist
for all t ≥ 0 and are such that for all i = 1, ..., N ,
limt→∞ (vi(t)− v(t)) = 0 and limt→∞ (ηi(t)− q0(t)) = 0
both exponentially.

Proof: First consider (20a). Let [0, T v
M ) with 0 < T v

M ≤ ∞
be the maximally defined interval for the solution of (20a)
with the triggering mechanism (4c). By Theorem 4.1 of
He and Huang (2021), under Assumptions 1 and 3, let

µv > 2‖S‖
δ1

, the origin of the following system

˙̃v(t) = Av(t)ṽ(t) (21)

is globally exponentially stable at the rate of at least
µvδ1
2 − ‖S‖. Set 0 < βv < µvδ1

2 − ‖S‖. Invoking Lemma 2
to (20a) gives, along the trajectory of (20a),

‖ṽ(t)‖ ≤ cv1e
−βvt, t ∈ [0, T v

M ), (22)

for some cv1 > 0.

Next, we show that there is a positive lower bound of
the inter-event time tv,ik+1 − tv,ik , which implies that T v

M =

∞. First note that, for t ∈ [tv,ik , tv,ik+1),
d
dt‖evi(t)‖ =

evi(t)
�ėvi(t)

‖evi(t)‖ ≤ ‖ėvi(t)‖, and (4a), (4c), (22) imply that

there exists cv2 > 0 such that, for t ∈ [tv,ik , tv,ik+1),

d

dt
‖evi(t)‖ ≤ ‖ėvi(t)‖ = ‖v̇ei(t)‖

=

∥∥∥∥µv

∑
j∈Ni(t)

(
Svj(t) + vej(t

v,j
k )− Svi(t)− vei(t

v,i
k )

)∥∥∥∥

≤
∥∥∥∥µv

∑
j∈Ni(t)

(Sṽj(t)− Sṽi(t))

∥∥∥∥

+

∥∥∥∥µv

∑
j∈Ni(t)

(evj(t)− evi(t)) + (vej(t)− vei(t))

∥∥∥∥

≤cv2e
−βvt t ∈ [0, tvM ). (23)

Since evi(t
v,i
k ) = 0 for all i, k, (23) further yields

‖evi(t)‖ ≤
∫ t

tv,i
k

cv2e
−βvτdτ =

cv2
βv

e−βvt
(
eβv(t−tv,i

k
) − 1

)
,

(24)

for t ∈ [tv,ik , tv,ik+1).

Note that the right-hand side of (24) is monotoni-
cally increasing with respect to t and the next trig-
gering time instant tv,ik+1 must satisfy ‖evi((tv,ik+1)

−)‖ ≥
αve

−βvt
v,i
k+1 , which, together with (24) gives tv,ik+1 − tv,ik ≥

1
βv

ln
(

αvβv

cv2
+ 1

)
. As 1

βv
ln
(

αvβv

cv2
+ 1

)
is a positive con-

stant independent of t, we conclude that there is a dwell

time no smaller than 1
βv

ln
(

αvβv

cv2
+ 1

)
between any two

triggering time instants of (4a).

Now we turn our attention to (20b). First consider the
following time-varying system

˙̃η(t) =
(1
2
block diag (M(Ev1), ...,M(EvN ))

− µη(Hσ(t) ⊗ I4)
)
η̃(t), (25)

which takes the form (9) with Gi = 1
2M(Evi), µ = µη,

F (t) = Hσ(t). Since under Assumptions 1 and 3, (25)
satisfies all the conditions of Lemma 4, it is globally
exponentially stable at the rate of at least µηδ1 − ε for
all ε ∈ (0, µηδ1).

Now consider (20b). Let [0, T η
M ) with 0 < T η

M ≤ ∞ be the
maximally defined interval for the solution of (20b) with
the triggering mechanism (4d). Since ‖eη(t)‖ ≤ Nαηe

−βηt

by (4d) and ‖Fd(t)‖ → 0 exponentially at the rate of at
least βv by (22), letting 0 < βη < min{βv, µηδ1} and
making use of Lemma 2 gives

‖η̃(t)‖ ≤ cη1e
−βηt, t ∈ [0, T η

M ), (26)

for some cη1 > 0.

Next, we show T η
M = ∞. First note that, for t ∈ [tη,ik , tη,ik+1),

d
dt‖eηi(t)‖ =

eηi(t)
�ėηi(t)

‖eηi(t)‖ ≤ ‖ėηi(t)‖. By (4b), (4d), (5b),

for t ∈ [tη,ik , tη,ik+1),

d

dt
‖eηi(t)‖ ≤ ‖ėηi(t)‖ = ‖η̇ei(t)‖

≤
∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
ηj �Q(Evj)−

1

2
ηi �Q(Evi)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
ηej(t

η,j
k )− ηei(t

η,i
k )

)∥∥∥∥

≤
∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
(η̃j − η̃i)�Q(Ev)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
(η̃j − η̃i)�Q(Eṽj)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
q0 �Q(Eṽj − Eṽi)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
η̃i �Q(Eṽj − Eṽi)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

((eηj(t)− eηi(t)) + (ηej(t)− ηei(t)))

∥∥∥∥.

(27)

Since, under Assumptions 1 and 3, for any βη <
min{λη, βv}, each term on the right-hand side of (27)
exponentially converges to zero at the rate of at least βη,
there exists some cη2 > 0 such that

d

dt
‖eηi(t)‖ ≤ cη2e

−βηt, t ∈ [0, T η
M ). (28)

Like the previous argument, (28) further yields

‖eηi(t)‖ ≤
∫ t

tη,i
k

cη2e
−βητdτ =

cη2
βη

e−βηt
(
eβη(t−tη,i

k
) − 1

)
,

(29)

for t ∈ [tη,ik , tη,ik+1) since eηi(t
η,i
k ) = 0; and the event-

triggered mechanism (4d) implies that ‖eηi((tη,ik+1)
−)‖ ≥

αηe
−βηt

η,i
k+1 , which, combined with (29) yields tη,ik+1 −

tη,ik ≥ 1
βη

ln
(

αηβη

cη2
+ 1

)
. Thus, there is a lower bound,

which is independent of t, between two triggering times
of (4b). As a result, the solution of the event-triggered
distributed observer (4) is well-defined over [0,∞). This
fact together with equations (22) and (26) concludes that
limt→∞ (vi(t)− v(t)) = 0 and limt→∞ (ηi(t)− q0(t)) = 0
both exponentially. The proof is thus completed. �

Remark 3. Since both µv and µη can be arbitrarily large,
βv and βη can take any positive numbers. Thus, Theorem
1 effectively overcomes the drawback of Lemma 1.

Remark 4. It can be easily shown that the positive lower
bounds of tv,ik+1 − tv,ik and tη,ik+1 − tη,ik are monotonically
decreasing respectively with respect to βv and βη. Thus,
even though large βv and βη will lead to faster convergence
rate, they may incur shorter dwell time for the sequence
tv,ik and tη,ik , respectively.

5. AN APPLICATION TO THE COOPERATIVE
RIGID BODY CONTROL PROBLEM

In this section, we will apply the event-triggered dis-
tributed observer to the leader-following attitude consen-
sus of multiple rigid body systems as studied in Liu and
Huang (2018). Define the attitude tracking error qεi and
the angular velocity tracking error ωεi as follows:

qεi =q∗0 � qi, (30a)

ωεi =ωi −C(qεi)ω0. (30b)

By Proposition 1 of Yuan (1988), the body frame of the
ith follower coincide with the body frame of the leader if
and only if q̂εi = 0. Thus, the leader-following consensus
problem is formulated as follows:

Problem 1. Given the leader system (3), the N followers
(2), and a digraph Gσ(t), design a distributed control law
such that, for any initial condition with qi(0) ∈ Qu, there
hold limt→∞ q̂εi(t) = 0 and limt→∞ ωεi(t) = 0, i = 0, ..., N .

Following the same argument as that in Wang and Huang
(2022), the solution of Problem 1 under jointly connected
acyclic graphs is summarized as follows:

Theorem 2. Under Assumptions 1 and 3, for any µη > 0,

αv > 0, αη > 0, k1i > 0, k2i > 0, let µv > 2‖S‖
δ1

,

βv ∈ (0, µvδ1
2 − ‖S‖), and βη ∈ (0,min{βv, µηδ1}). Then

Problem 1 is solvable by combining the event-triggered
distributed observer (4) and the control input

ui(t) =− k2izi + ωi(t)
×Jiωi(t)

− Ji((zi(t)− k1iq̂ei(t))
×C(qei(t))Evi(t)

+
1

2
k1i(q̄ei(t)I3 + q̂ei(t)

×)(zi(t)− k1iq̂ei(t))

−C(qei(t))ESvi(t)).

Next, we use an example to illustrate our approach.
Consider the case where N = 4. The inertia matrices of

follower i is given by Ji =

[
11− i 0.3 −0.2
0.3 9− i 0.1
−0.2 0.1 6− i

]
; and the
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time no smaller than 1
βv

ln
(

αvβv

cv2
+ 1

)
between any two

triggering time instants of (4a).

Now we turn our attention to (20b). First consider the
following time-varying system

˙̃η(t) =
(1
2
block diag (M(Ev1), ...,M(EvN ))

− µη(Hσ(t) ⊗ I4)
)
η̃(t), (25)

which takes the form (9) with Gi = 1
2M(Evi), µ = µη,

F (t) = Hσ(t). Since under Assumptions 1 and 3, (25)
satisfies all the conditions of Lemma 4, it is globally
exponentially stable at the rate of at least µηδ1 − ε for
all ε ∈ (0, µηδ1).

Now consider (20b). Let [0, T η
M ) with 0 < T η

M ≤ ∞ be the
maximally defined interval for the solution of (20b) with
the triggering mechanism (4d). Since ‖eη(t)‖ ≤ Nαηe

−βηt

by (4d) and ‖Fd(t)‖ → 0 exponentially at the rate of at
least βv by (22), letting 0 < βη < min{βv, µηδ1} and
making use of Lemma 2 gives

‖η̃(t)‖ ≤ cη1e
−βηt, t ∈ [0, T η

M ), (26)

for some cη1 > 0.

Next, we show T η
M = ∞. First note that, for t ∈ [tη,ik , tη,ik+1),

d
dt‖eηi(t)‖ =

eηi(t)
�ėηi(t)

‖eηi(t)‖ ≤ ‖ėηi(t)‖. By (4b), (4d), (5b),

for t ∈ [tη,ik , tη,ik+1),

d

dt
‖eηi(t)‖ ≤ ‖ėηi(t)‖ = ‖η̇ei(t)‖

≤
∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
ηj �Q(Evj)−

1

2
ηi �Q(Evi)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
ηej(t

η,j
k )− ηei(t

η,i
k )

)∥∥∥∥

≤
∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
(η̃j − η̃i)�Q(Ev)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
(η̃j − η̃i)�Q(Eṽj)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
q0 �Q(Eṽj − Eṽi)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

(
1

2
η̃i �Q(Eṽj − Eṽi)

)∥∥∥∥

+

∥∥∥∥µη

∑
j∈Ni(t)

((eηj(t)− eηi(t)) + (ηej(t)− ηei(t)))

∥∥∥∥.

(27)

Since, under Assumptions 1 and 3, for any βη <
min{λη, βv}, each term on the right-hand side of (27)
exponentially converges to zero at the rate of at least βη,
there exists some cη2 > 0 such that

d

dt
‖eηi(t)‖ ≤ cη2e

−βηt, t ∈ [0, T η
M ). (28)

Like the previous argument, (28) further yields

‖eηi(t)‖ ≤
∫ t

tη,i
k

cη2e
−βητdτ =

cη2
βη

e−βηt
(
eβη(t−tη,i

k
) − 1

)
,

(29)

for t ∈ [tη,ik , tη,ik+1) since eηi(t
η,i
k ) = 0; and the event-

triggered mechanism (4d) implies that ‖eηi((tη,ik+1)
−)‖ ≥

αηe
−βηt

η,i
k+1 , which, combined with (29) yields tη,ik+1 −

tη,ik ≥ 1
βη

ln
(

αηβη

cη2
+ 1

)
. Thus, there is a lower bound,

which is independent of t, between two triggering times
of (4b). As a result, the solution of the event-triggered
distributed observer (4) is well-defined over [0,∞). This
fact together with equations (22) and (26) concludes that
limt→∞ (vi(t)− v(t)) = 0 and limt→∞ (ηi(t)− q0(t)) = 0
both exponentially. The proof is thus completed. �

Remark 3. Since both µv and µη can be arbitrarily large,
βv and βη can take any positive numbers. Thus, Theorem
1 effectively overcomes the drawback of Lemma 1.

Remark 4. It can be easily shown that the positive lower
bounds of tv,ik+1 − tv,ik and tη,ik+1 − tη,ik are monotonically
decreasing respectively with respect to βv and βη. Thus,
even though large βv and βη will lead to faster convergence
rate, they may incur shorter dwell time for the sequence
tv,ik and tη,ik , respectively.

5. AN APPLICATION TO THE COOPERATIVE
RIGID BODY CONTROL PROBLEM

In this section, we will apply the event-triggered dis-
tributed observer to the leader-following attitude consen-
sus of multiple rigid body systems as studied in Liu and
Huang (2018). Define the attitude tracking error qεi and
the angular velocity tracking error ωεi as follows:

qεi =q∗0 � qi, (30a)

ωεi =ωi −C(qεi)ω0. (30b)

By Proposition 1 of Yuan (1988), the body frame of the
ith follower coincide with the body frame of the leader if
and only if q̂εi = 0. Thus, the leader-following consensus
problem is formulated as follows:

Problem 1. Given the leader system (3), the N followers
(2), and a digraph Gσ(t), design a distributed control law
such that, for any initial condition with qi(0) ∈ Qu, there
hold limt→∞ q̂εi(t) = 0 and limt→∞ ωεi(t) = 0, i = 0, ..., N .

Following the same argument as that in Wang and Huang
(2022), the solution of Problem 1 under jointly connected
acyclic graphs is summarized as follows:

Theorem 2. Under Assumptions 1 and 3, for any µη > 0,

αv > 0, αη > 0, k1i > 0, k2i > 0, let µv > 2‖S‖
δ1

,

βv ∈ (0, µvδ1
2 − ‖S‖), and βη ∈ (0,min{βv, µηδ1}). Then

Problem 1 is solvable by combining the event-triggered
distributed observer (4) and the control input

ui(t) =− k2izi + ωi(t)
×Jiωi(t)

− Ji((zi(t)− k1iq̂ei(t))
×C(qei(t))Evi(t)

+
1

2
k1i(q̄ei(t)I3 + q̂ei(t)

×)(zi(t)− k1iq̂ei(t))

−C(qei(t))ESvi(t)).

Next, we use an example to illustrate our approach.
Consider the case where N = 4. The inertia matrices of

follower i is given by Ji =

[
11− i 0.3 −0.2
0.3 9− i 0.1
−0.2 0.1 6− i

]
; and the
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leader takes the form of (3) with S =

[
0 2 0
−2 0 0
0 0 0

]
, E = I3.

It is clear that Assumption 1 is satisfied.

The switching communication network is generated by the
switching signal being given as follows:

σ(t) =





1, if kT1 ≤ t < (k + 0.25)T1
2, if (k + 0.25)T1 ≤ t < (k + 0.5)T1
3, if (k + 0.5)T1 ≤ t < (k + 0.75)T1
4, if (k + 0.75)T1 ≤ t < (k + 1)T1

(31)

with T1 = 1 second and k = 0, 1, 2, .... The edge sets for
σ(t) = 1, 2, 3, 4 are respectively given by E1 = {(1, 3)},
E2 = {(0, 1)}, E3 = ∅, E4 = {(1, 2), (3, 4)}. It can be verified
that the switching graph satisfies Assumption 3. Moreover,
by simple calculation, (18) holds with δ1 = 0.25.

As Assumptions 1 and 3 are all satisfied, a distributed
control law in Theorem 2 can be designed to solve Problem
1. The design parameters are µv = 20, αv = 5, βv = 0.45,
µη = 10, αη = 5, βη = 0.4, k1i = 10, k2i = 3, i = 1, 2, 3, 4.
It can be verified that the above setting satisfies the
conditions in Theorem 2.

The performance is evaluated under random chosen initial
conditions. As expected, the estimation errors approach
0 asymptotically, and the attitude and angular velocity
tracking errors both converge to zero as t → ∞. Due to
the space limit, all figures are removed.

6. CONCLUSION

In this paper, we have investigated the design of the
event-triggered distributed observer problem in Wang and
Huang (2022) by assuming that the communication net-
work is acyclic. As a result, we have shown that the two
design parameters βv and βη can take any positive value
by choosing other parameters appropriately. We have then
applied our event-triggered distributed observer to the
leader-following consensus problem of multiple rigid body
systems and illustrated our design by a numerical example.
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