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Power system fault diagnosis 
with quantum computing 
and efficient gate decomposition
Xiang Fei 1, Huan Zhao 2*, Xiyuan Zhou 3, Junhua Zhao 3,6*, Ting Shu 4 & Fushuan Wen 5

Power system fault diagnosis is crucial for identifying the location and causes of faults and providing 
decision-making support for power dispatchers. However, most classical methods suffer from 
significant time-consuming, memory overhead, and computational complexity issues as the scale of 
the power system concerned increases. With rapid development of quantum computing technology, 
the combinatorial optimization method based on quantum computing has shown certain advantages 
in computational time over existing methods. Given this background, this paper proposes a quantum 
computing based power system fault diagnosis method with the quantum approximate optimization 
algorithm. The proposed method reformulates the fault diagnosis problem as a Hamiltonian by using 
Ising model, which completely preserves the coupling relationship between faulty components and 
various operations of protective relays and circuit breakers. Additionally, to enhance problem-solving 
efficiency under current equipment limitations, the symmetric equivalent decomposition method of 
multi-z-rotation gate is utilized. Furthermore, the small probability characteristics of power system 
events is utilized to reduce the number of qubits. Simulation results based on the test system show 
that the proposed methods can achieve the same optimal results with a faster speed compared with 
the classical higher-order solver provided by D-Wave.

Power system faults could result in widespread power outages, leading to significant economic losses and safety 
 concerns1. To identify faulty equipment and process, the power system fault diagnosis analyzes the action behav-
iors of protective relays (PRs) and circuit breakers (CBs) based on alarm information collected by the control 
center. The fault diagnosis result helps to reconstruct the fault process and provides decision-making support for 
dispatchers. However, with the increasing complexity of modern power grids, power system faults are displaying 
more intricate  patterns2. Hence, there is an urgent need for faster and more reliable power system fault diagnosis 
technologies to support power system operation.

Various kinds of methods have been developed for power system fault diagnosis and can be generally divided 
into two main categories, data-driven and optimization-based methods. For the data-driven methods, expert 
systems (ESs) and artificial neural networks (ANNs) are most widely used. The ES captures the behavior of the 
protection system through powerful logical  reasoning3,4. However, the learning capability and fault tolerance of 
ES-based methods are weak, and the establishment and maintenance of the knowledge base are challenging. The 
ANN-based methods utilize sample data to model the complex internal logic of the protection system and are 
of advantages in fast diagnosis speed, strong learning ability, and good fault tolerance. Various types of ANNS 
and related algorithms, such as the radial basis function (RBF)5, multilayer perception (MLP)6, support vector 
machine (SVM)7, and parameter  selection8, have been applied for automatic fault detection and diagnosis. How-
ever, the ANN-based methods have limitations due to the dependency on the fault sample volume and quality. 
Also, it is difficult to establish a complete set of fault samples due to the small probability of power system faults.

The optimization-based method models the power system fault diagnosis as a binary integer programming 
problem and uses optimization technology to solve it, which has a strict mathematical foundation and theo-
retical basis. Power system fault diagnosis can be expressed as an NP-hard  problem9,10 and various kinds of 
heuristic algorithms are often used to obtain approximate optimal solutions, such as tabu search (TS)11, particle 
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swarm optimization algorithm (PSO)12, generic algorithm-II (NSGA-II)13, binary coded brain storm optimiza-
tion (BCBSO)14. Although these classical heuristic algorithms can effectively diagnose faulty components, they 
still suffer limitations in terms of inaccurate solution, time-consuming, memory overhead, and computational 
complexity, especially for large-scale power grids. Meanwhile, with the continuous development of quantum 
computing, its computational advantages are expected to well address these challenges.

Quantum computing is considered to be a new computing paradigm with a disruptive impact on the  future15. 
For combinatorial optimization problems, methods such as the quantum annealing algorithm (QA) and quantum 
approximate optimization algorithm (QAOA) have appeared in the field of quantum  computing16. QA uses the 
quantum tunneling effect to complete the optimization process through a guided quantum evolution. QAOA 
is a quantum–classical hybrid algorithm based on the gate structure and has a potential exponential speedup 
in solving combinatorial optimization  problems17. In addition to the potential computational speed advantage, 
the accuracy of QAOA optimization results for large-scale problems cannot be ignored when considering the 
noise in actual quantum devices. Although in the short term, the capabilities of quantum devices are limited by 
the number of qubits, gate fidelity, and error correction capabilities, QAOA has the potential to be applied to 
large-scale fault diagnosis problems.

QAOA has been applied to various kinds of combinatorial optimization problems, such as the maximum 
cut  problem18–20, the exact coverage  problem21–27, and the Hamilton path  problem28. However, there are few 
researches on the application of the QAOA algorithm in power systems at present, and existing researches mainly 
focus on the unit commitment  problem29–32. The limitation of the aforementioned research works is that they 
only focus on the Quadratic Unconstrained Binary Optimization (QUBO) problem, and do not consider the 
more intricate Polynomial Unconstrained Binary Optimization (PUBO) problem. This is largely due to the cur-
rent hardware’s limitations and error-proneness in implementing multi-qubit gates. However, the power system 
fault diagnosis problem is normally formulated as a PUBO  problem10 and this issue should be overcome. Less 
research has been conducted on using QAOA to solve the PUBO problem. Herrman et al.33 uses a global vari-
able substitution method to convert the PUBO problem into a QUBO problem by adding auxiliary qubits, and 
then solves the Boolean satisfiability problem through QAOA. However, the algorithm requires a considerable 
number of qubits and results in a complex equivalent circuit.

Aiming at the above problems, this paper proposes a quantum computing based power system fault diagnosis 
method using QAOA and gate decomposition method. Four major contributions of this paper are summarized as 
follows. First, a quantum computing-based power system fault diagnosis framework is proposed. To the best of 
our knowledge, we are among the first to apply quantum computing to the power system fault diagnosis problem. 
Compared with the classical higher-order solver provided by D-Wave, the proposed method has potential to 
obtain the same optimal results with shorter computational time for large-scale power systems. Second, the Ising 
model considering PR and CB failed/mal operation and contradictory logic is proposed to express the Hamilto-
nian of power system fault diagnosis, and the quantum logic gate corresponding to the Hamiltonian is derived. 
Third, the Symmetric Equivalent Decomposition (SED) of the multi-z-rotation  gate34,35 is utilized to efficiently 
solve the QAOA-based PUBO problem. Compared with the global variable substitution method using auxiliary 
qubits, the proposed method requires less qubits, and shows better performance with lower complexity. Fourth, 
a quantum circuit simplifying method is proposed by using the small probability event characteristic (SPEC) of 
power system faults, which reduces the high-order terms in the Hamiltonian. Simulation results shows that the 
proposed method can improve both operating speed and accuracy.

Results
Fault hypothesis
The fault hypothesis (FH) describes the fault assumptions in a fault-tolerant system, and in this paper, we consider 
suspicious faulty component and the related PR and CB as hypothesis  conditions36. Suppose that there are nd 
suspected faulty components in the faulty region, and the number of related PR and CB are nr and nc , respectively. 
Then, the FH can be expressed as follows:

where D =
(

d1, . . . , di , . . . , dnd
)

 is the set of suspected faulty components. di = 1 means that the i th component is 
fault, while di = 0 means normal. R =

(

r1, . . . , ri , . . . , rnr
)

 is the set of PRs. ri = 1 means that the i th PR operates, 
while ri = 0 means not operates. C =

(

c1, . . . , ci , . . . , cnc
)

 is the set of CBs. ci = 1 means that the i th CB is tripped, 
while ci = 0 means not tripped. F =

(

fr1 , . . . , frnr , fc1 . . . , fcnc
)

 is the set of failed operation information. If ri or ci 
has performed a failed operation, then fri or fci equals to 1. Otherwise, it is 0. M =

(

mr1 , . . . ,mrnr ,mc1 . . . ,mcnc

)

 
is the set of mal operation information. If ri or ci has performed a mal operation, then mri or mci equals to 1. 
Otherwise, it is 0.

Fault diagnosis problem formulation
The fault diagnosis problem can be formulated as a combinatorial optimization problem. The objective function 
describes the criteria and factors for judging the expected fault  diagnosis37,38. Based on the work of Liu et al.12, 
this paper completely preserves the coupling relationship between the faulty components and the operation of 
PR and CB. Considering the failed/mal operation of PR and CB, as well as the contradictory logic, the objective 
function is formulated as:

(1)H = (D,R,C, F,M)
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where ri , r∗i  , r′i , pri represent the actual state, expected state, alarm, and action expectation of PR, ci , c∗i  , c′i , pci 
represent the actual state, expected state, alarm, and action expectation of CB. ⊕ is exclusive-or operator. · is 
NOT operator. ω1 , ω2 , ω3 , ω4 represent the weight of each term, which must satisfy ω4 ≫ ω1,ω2,ω3, since the 
logic constraint is a strong constraint condition.

The first two terms 
nr
∑

i=1

(

ri ⊕ r∗i
)

 and 
nc
∑

i=1

(

ci ⊕ c∗i
)

 describe the difference between the actual state and the 

expected state of PR and CB, respectively. The third and fourth terms 
nr
∑

i=1

(

ri ⊕ r′i
)

 and 
nc
∑

i=1

(

ci ⊕ c′i
)

 describe the 

difference between the actual state and the alarm state of PR and CB, respectively. The terms 
∑nr

i=1

(

fri +mri

)

 
and 

∑nc
i=1(fci +mci ) describe the failed/mal operation of PR and CB, respectively. The last two terms 

∑nr
i=1

(

frimri + rifri + rimri + primri + pri fri
)

 and 
∑nc

i=1(fcimci + cifci + cimci + pcimci + pci fci ) describe the 
number of contradictions that do not satisfy the action logic of PR and CB. The contradictory logic of the last 
two terms includes: failed operation with mal operation, operate with fail to operate, no operation with mal 
operation, incentive (expected to operate) with mal operation, no incentive with failed operation.

Action logic model
The action logic model is used to describe the expected state according to the protection principle. The action 
logic for PR and CB in this paper is shown as follows.

(1) Action logic of main PR

Let ri be the main PR of the component dn . If dn is failed ( dn = 1 ) and ri does not fail to operate, or there is a 
mal operation on ri , then ri should operate. The action expectation and expected state of main PR are:

(2) Action logic of first back-up PR

Let ri be the first back-up PR of the component dn , if dn is failed and its main PR rj does not operate, then ri 
should operate. Consider the failed/mal operation, the action expectation and expected state of first back-up 
PR are:

(3) Action logic of second back-up PR

Let ri be the second back-up PR of the component dn , D(ri , dn) be the set of neighboring devices of dn within 
the protection range of ri , C(ri , dm) be the CBs on the path from dm to dn . If the component dm ∈ D(ri , dn) is 
failed and there is no ct ∈ C(ri , dm) trips, then ri should operate. Considering the failed/mal operation, the action 
expectation and expected state of second back-up PR are:

(2)

min E(H) = ω1

nr
∑

i=1

(

ri ⊕ r∗i
)

+ ω1

nc
∑

i=1

(

ci ⊕ c∗i
)

+ ω2

nr
∑

i=1

(

ri ⊕ r′i
)

+ ω2

nc
∑

i=1

(

ci ⊕ c′i
)

+ ω3

nr
∑

i=1

(

fri +mri

)

+ ω3

nc
∑

i=1

(

fci +mci

)

+ ω4

nr
∑

i=1

(

frimri + rifri + rimri + primri + pri fri
)

+ ω4

nc
∑

i=1

(

fcimci + cifci + cimci + pcimci + pci fci
)

(3)pri = dn

(4)r∗i = dnfri

∨

mri

(5)pri = dnrj

(6)r∗i = dnrjfri

∨

mri

(7)pri =
∨

dm∈D(ri ,dn)

(dm
∧

ct∈C(ri ,dm)

ct)

(8)r∗i = (
∨

dm∈D(ri ,dn)

(dm
∧

ct∈C(ri ,dm)

ct))fri

∨

mri



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16991  | https://doi.org/10.1038/s41598-024-67922-w

www.nature.com/scientificreports/

(4) Action logic of CB

Let R(ci) be the set of PRs which can trigger ci . If any ri ∈ R(ci) operate, then ci should trip. Considering the 
failed/mal operation, the action expectation and expected state of CB are:

QAOA-based fault diagnosis framework
The proposed QAOA-based fault diagnosis framework is shown in Fig. 1. In our proposed framework, the 
coupling relationship between the suspected faulty components and the operation of PR and CB is completely 

(9)pci =
∨

ri∈R(ci)

ri

(10)c∗i = (
∨

ri∈R(ci)

ri)fci

∨

mci

Figure 1.  The QAOA-based fault diagnosis framework.
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preserved and the failed/mal operation of PR and CB, as well as the contradictory logic, is considered. To reduce 
the dimensionality of the original problem, the small probability event characteristic of power system failure 
is utilized, which can reduce the number of qubits to be used and simplify the quantum circuit. Additionally, 
the SED method of the multi-z-rotation gate is proved, which enables QAOA to solve the power system fault 
diagnosis problem in PUBO form.

The QAOA-based power system fault diagnosis framework consists of two main components: mathematical 
model construction and SED-QAOA. In the first part, the mathematical model of power system fault diagnosis 
problem is generated, and then, the model is reformulated into the form of the Ising model and cost Hamiltonian 
in turn. In the SED-QAOA part, the quantum circuit is created using the SED method of the multi-z-rotation 
gate, then the problem can be solved with QAOA. The specific procedure of each component is as follows.

In the mathematical model construction part, the power outage area is first identified to determine the 
suspected faulty components and related PRs and CBs, using the real-time information of the CB. The tie-line 
analysis method is used to identify the system topology before and after the fault, and find the difference between 
the two topology  structures39. The mathematical model is then constructed, taking into account small probability 
event characteristics and alarms from control center. After the mathematical model is reformulated into the Ising 
model, the cost Hamiltonian of the fault diagnosis problem is determined.

In the SED-QAOA part, the quantum circuit is first generated with the cost Hamiltonian HC , mixer Hamil-
tonian HB , and the SED of the multi-z-rotation gate. The quantum circuit is equivalent to a parametric unitary 
transformation U(HC , HB , −→γ  , 

−→
β  , k ), which is in the following form:

where −→γ = (γ1, . . . , γk) and 
−→
β = (β1, . . . ,βk) are parametric vectors, and k is the number of alternations, also 

known as the level of the circuit. U(HC , γi) and U(HB,βi) are two parametric unitary transformation correspond 
to the cost Hamiltonian and mixer Hamiltonian, which can be expressed as:

The HC is generated from the Ising model, which is attained from the mathematical model of the problem. 
The derivation method is introduced in the next subsection. The mixer Hamiltonian is 

∑N
n=1Xn , where N  is 

the number of qubits, and Xn is the Pauli-X operator acting on qubit n , which means that an RX gate on the n 
th qubit in the corresponding quantum circuit. The mathematical equation of the RX gate is shown as follows:

After the construction of the quantum circuit, the quantum initial superposition state is prepared as |+�⊗N . 
Through the quantum circuit, the quantum final state can be obtained:

The quantum final state is measured by standard calculation basis and the expected value is:

According to the above formula, the smaller the expected value Fk
(

−→γ ,
−→
β

)

 is, the higher the probability of 
the eigenstate corresponding to lower eigenvalue is. An eigenstate is a stable state of the quantum system that 
corresponds to a particular eigenvalue and refers to a possible solution in the context of QAOA. Therefore, the 
optimal solution of the problem can be obtained with the highest probability. The above process can be imple-
mented with quantum processor.

And then, the expected value is minimized using classic processor:

The solution to the fault diagnosis problem is obtained upon the convergence of the expectation of cost 
Hamiltonian. Otherwise, it is required to come back to generate a new quantum circuit that incorporates the 
updated parameters, and to repeat the process iteratively until convergence.

Ising formulation of fault diagnosis problem
The binary optimization problem can be transformed into the quantum Ising model by the spin variable quantity, 
and the Hamiltonian of the quantum system can be expressed by the quantum Ising  model40,41. In this section, 
the quantum Ising model of the power system fault diagnosis problem is deduced according to the mathematical 
model in Sect. 2. The deduced Ising model contains higher-order terms, such as 

sir s
n
d s

i
fr
simr

8
 in ri ⊕ r∗i  , which leads 

fault diagnosis to the PUBO problem. The Ising model of each term in the objective function is introduced in 
detail below.

Assume the index of ri , dn , fri , mri in FH is tir , tnd , tifr , t
i
mr

 . By substituting the binary variable ri , dn , fri , mri ∈ {0,1} 
with spin variable quantity sir , snd , sifr s

i
mr

∈ {−1,1} , that is:

(11)U
(

HC ,HB,
−→γ ,

−→
β , k

)

= U(HB,βk)U(HC , γk) · · ·U(HB,β1)U(HC , γ1)

(12)

{

U(HC , γi) = e−iγiHC

U(HB,βi) = e−iβiHB
, i = 1, 2, . . . , k

(13)RX(θ) =

[

cos( θ
2
) −isin( θ

2
)

−isin( θ
2
) cos( θ

2
)

]

(14)|ψk� = U(HC ,HB,
−→γ ,

−→
β , k)|+�⊗N

(15)Fk

(

−→γ ,
−→
β

)

= �ψk|HC |ψk�

(16)
(

−→γ
∗
,
−→
β

∗
)

= argmin−→γ ,
−→
β
Fk

(

−→γ ,
−→
β

)
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• The Ising model for the first term ri ⊕ r∗i

(a) If ri is the main PR of dn . Then, we have:r∗i = dnfri
∨

mri . Therefore:

  Then, the quantum Ising model is obtained:

(b) If ri is the first back-up PR of dn . Consider rj is the main PR of dn . Then, we have: r∗i = dnrjfri
∨

mri . 
Therefore:

  Then, the quantum Ising model is obtained:

(c) If ri is the second back-up PR of dn . Then, we have: r∗i = (
∨

dm∈D(ri ,dn)

(dm
∧

ct∈C(ri ,dm)

ct))fri
∨

mri . Therefore:

  Then, the quantum Ising model is obtained:

• The Ising model for the second term cj ⊕ c∗j
  We have: c∗j = (

∨

ri∈R(cj)

ri)fcj
∨

mcj . Therefore:

  Then, the quantum Ising model is obtained:

• The Ising model for the third term ri ⊕ r′i
  If the alarm r′i = 1 , we have:ri ⊕ r′i = ri
  Therefore, the quantum Ising model:

  If the alarm r′i = 0 , then the quantum Ising model:

• The Ising model for the fourth term cj ⊕ c′j

(17)ri =
1− sir
2

, dn =
1− snd

2
, fri =

1− sifr
2

,mri =
1− simr

2

(18)ri ⊕ r∗i = ri
(

1− dnfri
)

mri + ri(1− (1− dnfri )mri )

(19)ISING1 =
1

2
+

sir
8
−

3sir s
i
mr

8
+

sir s
i
fr

8
−

sir s
n
d

8
+

sir s
i
fr
simr

8
−

sir s
n
ds

i
fr

8
−

sir s
n
ds

i
mr

8
−

sir s
n
ds

i
fr
simr

8

(20)ri ⊕ r∗i = ri
(

1− dnrjfri
)

mri + ri(1−
(

1− dnrjfri
)

mri )

(21)

ISING1 =
1

2
+

sir
16

−
7sir s

i
mr

16
+

sir s
i
fr

16
+

sir s
j
r

16
−

sir s
n
d

16
+

sir s
i
fr
simr

16

+
sir s

j
r s
i
fr

16
+

sir s
j
r s
i
mr

16
−

sir s
n
ds

i
fr

16
−

sir s
n
ds

i
mr

16

−
sir s

n
ds

j
r

16
+

sir s
j
r s
i
fr
simr

16
−

sir s
n
ds

i
fr
simr

16
−

sir s
n
ds

j
r s
i
fr

16

−
sir s

n
ds

j
r s
i
mr

16
−

sir s
n
ds

j
r s
i
fr
simr

16

(22)ri ⊕ r∗i = rimri (1− fri (1−
∧

dm∈D(ri ,dn)

(1− dm
∧

ct∈C(ri ,dm)

ct)))+ ri(1−mri (1− fri (1−
∧

dm∈D(ri ,dn)

(1− dm
∧

ct∈C(ri ,dm)

ct))))

(23)ISING1 =
1− sir s

i
mr

2
+

sir + sir s
i
fr
+ sir s

i
mr

+ sir s
i
fr
simr

4
(1−

∏

dm∈D(ri ,dn)

(1−
1− smd

2

∏

ct∈C(ri ,dm)

1+ stc
2

))

(24)
cj ⊕

∗
j = cjmcj (1− fcj (1−

∧

ri∈R(cj)

ri))+ cj(1−mcj (1− fcj (1−
∧

ri∈R(cj)

ri)))

(25)ISING2 =
1− s

j
cs
j
mc

2
+

s
j
c + s

j
cs
j
fc
+ s

j
cs
j
mc + s

j
cs
j
fc
s
j
mc

4
(1−

∏

ri∈R(cj)

1+ sir
2

)

(26)ISING3 =
1+ sir
2

(27)ISING3 =
1− sir
2
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  If the alarm c′j = 1 , we have:cj ⊕ c′j = cj
  Therefore, the quantum Ising model:

  If the alarm c′j = 0 , then the quantum Ising model:

• The Ising model for the fifth term fri +mri
  The quantum Ising model:

• The Ising model for the sixth term fcj +mcj
  The quantum Ising model:

• The Ising model for the seventh term frimri + rifri + rimri + primri + pri fri

(a) If ri is the main PR of dn . Then, we have:pri = dn . Therefore:

  Then, the quantum Ising model:

(b) If ri is the first back-up PR of dn . Consider rj is the main PR of dn . Then, we have: pri = dnrj  . Therefore:

  Then, the quantum Ising model:

(c) If ri is the second back-up PR of dn . Then, we have: pri =
∨

dm∈D(ri ,dn)

(dm
∧

ct∈C(ri ,dm)

ct) . Therefore:

  Then, the quantum Ising model:

• The Ising model and Hamiltonian for the eighth term fcjmcj + cjfcj + cjmcj + pcjmcj + pcj fcj
  We have: pcj =

∨

ri∈R(cj)

ri . Therefore:

  Then, the quantum Ising model:

(28)ISING4 =
1+ s

j
c

2

(29)ISING4 =
1− s

j
c

2

(30)ISING5 =
1− sifr

2
+

1− simr

2

(31)ISING6 =
1− s

j
fc

2
+

1− s
j
mc

2

(32)frimri + rifri + rimri + primri + pri fri = frimri + rifri + rimri + dnmri + dnfri

(33)ISING7 =
1

4
(5− 3sifr − 3simr

+ sifr s
i
mr

+ sir s
i
fr
− sir s

i
mr

+ snds
i
mr

− snds
i
fr
)

(34)frimri + rifri + rimri + primri + pri fri = frimri + rifri + rimri + dnrjmri + (1− dnrj)fri

(35)ISING7 =
1

8
(10− 7sifr − 5simr

+ 2sifr s
i
mr

+ 2sir s
i
fr
− 2sir s

i
mr

+ snds
i
mr

− s
j
r s
i
mr

+ s
j
r s
i
fr
− snds

i
fr
+ snds

j
r s
i
mr

− snds
j
r s
i
fr
)

(36)
frimri + rifri + rimri + primri + pri fri = frimri + rifri + rimri

+mri

∨

dm∈D(ri ,dn)

(dm
∧

ct∈C(ri ,dm)

ct)+ fri (1−
∨

dm∈D(ri ,dn)

(dm
∧

ct∈C(ri ,dm)

ct))

(37)ISING7 =
5

4
−

sifr
2

− simr
+

sifr s
i
mr

4
+

sir s
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The Hamiltonian of the problem can be simply obtained according to deduced Ising model, by replacing the 
spin variable quantity to the quantum operator. In this paper, the Pauli-Z operator is utilized to construct the 
cost Hamiltonian. By summing the above-mentioned terms, the cost Hamiltonian of fault diagnosis problem 
considering the failed/mal operation of PR and CB, as well as the contradictory logic, is constructed.

Experiments settings
In this paper, case studies are conducted on the test system used by  Wen39, as shown in Fig. 2. The system consists 
of 28 components, 40 CBs and 84 PRs:

• 28 components: A1, …, A4, B1, …, B8, T1, …, T8, L1, …, L8.
• 40 CBs: CB1, CB2, …, CB40.
• 84 PRs: 36 main PRs (A1m, …, A4m, B1m, …, B8m, T1m, …, T8m, L1m, …, L8m), 48 back-up PRs (T1p, 

…, T8p, L1Sp, L1Rp, …, L8Sp, L8Rp, L1Ss, L1Rs, …, L8Ss, L8Rs)

where A and B represent the busbar, T represents the transformer, L represents the line, S and R represent 
the beginning and end of the line respectively (from top to bottom and from left to right), m represents the 
main protection, p represents the first back-up PR, s represents the second back-up PR. The hyper-parameters 
of objective functions are ω1 = 1,ω2 = 1,ω3 = 1,ω4 = 40.

Consider the hardware limits of quantum computer, complex cases cannot be tested using the completed 
model presented in the Sect. 2. Therefore, this paper also conducted cases based on a simplified model, which 
do not consider the failed/mal operation information and contradictory logic  explicitly42. The simplified model’s 
objective function is:

In this way, the number of qubits is equal to the number of suspected components, which greatly reduces the 
number of qubits required, allowing us to analyze cases with larger number of components.

The quantum simulation environment is PennyLane’s “default.qubit” device, which provides a pure state 
simulation of a qubit-based quantum circuit architecture. The classical solver provided by D-Wave, which can 
accurately solve the PUBO problem and serve as a  benchmark43.

Feasibility analysis of proposed method—completed model
In this test, two fault diagnosis cases are simulated to verify the feasibility of proposed method. The first case 
considering the failed operation on CB. Suppose a failed operation occurs on a CB. The alarm information is the 
main PR A1m of busbar A1 operates, CB1 and CB3 trip.

Using topological analysis, the suspected component is the busbar A1, denoted by D = (d0) . The related PR 
is A1m, denoted by R = (r1) . The related CBs are CB1, CB2 and CB3, denoted by C = (c1, c2, c3) . The received 
alarm information includes r1, c1, c3 . Therefore, the observed states of PRs and CBs are R′ = (1),C′ = (1, 0, 1). 
According to the small probability event characteristic: fr1 = 0 , fc1 = 0 , mc2 = 0 , fc3 = 0 . The fault hypothesis 
H is ( d0 , r1 , c1 , c2 , c3 , fc2 , mr1 , mc1 , mc3 ). The level of QAOA is set to be 10 and the number of iterations is 100.

The test result of proposed method is shown in Fig. 3. The abscissa is the probability of occurrence of each 
fault hypothesis, and the ordinate is the bit string of fault hypothesis. The optimal fault hypothesis H∗ is ( 1 , 1 , 1 , 

(40)minE(H) =

nr
∑

i=1

(

ri ⊕ r∗i
)

+

nc
∑

i=1

(

ci ⊕ c∗i
)

Figure 2.  The test system which consists of 28 components, 40 CBs and 84 PRs.
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0 , 1 , 1 , 0 , 0 , 0 ), which means the busbar A1 is faulty, the main PR A1m operates, CB1 and CB3 are tripped, CB2 
is failed to trip. The output result is reasonable and consistent with the classical solver.

The second case considering the failed operation on PR. Suppose a failed operation occurs on a PR. The alarm 
information is the first back-up PR of transformer T1 operate, CB2 and CB4 trip.

Using topological analysis, the suspected component is the transformer T1, denoted by D = (d0) . The 
related PR is T1m and T1p denoted by R = (r1, r2) . The related CBs are CB2 and CB4, denoted by C = (c1, c2) . 
The received alarm information includes r2, c1, c2 . Therefore, the observed states of PRs and CBs are 

Figure 3.  Top 32 probable fault hypotheses of Case 1 using proposed method.

Figure 4.  Top 32 probable fault hypotheses of Case 2 using proposed method.
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R′ = (0, 1),C′ = (1, 1) . According to the small probability event characteristic: mr1 = 0 , fr2 = 0 , fc1 = 0 , fc2 = 0 . 
The fault hypothesis H is ( d0 , r1 , r2 , c1 , c2 , fr1 , mr2 , mc1 , mc2 ). The level of QAOA is set to be 10 and the number of 
iterations is 130.

The test result of proposed method is shown in Fig. 4. The abscissa is the probability of occurrence of each fault 
hypothesis, and the ordinate is the bit string of fault hypothesis. The optimal fault hypothesis H∗ is ( 1 , 0 , 1 , 1 , 1 , 1 , 
0 , 0 , 0 ), which means the transformer T1 is faulty, the main PR T1m is failed to operate, the first back-up PR T1p 
operates. CB2 and CB4 are tripped. The output result is also reasonable and consistent with the classical solver.

Analysis of small probability event characteristic
To verify that the SPEC method can help to reduce the number of quantum calculations required while ensuring 
the accuracy, comparison between the proposed model with and without SPEC is conducted under case 1. The 
result of the model with SPEC is shown in the previous part. When SPEC is not used, the fault hypothesis H 
becomes: ( d0 , r1 , c1 , c2 , c3 , fr1 , fc1 , fc2 , fc3 , mr1 , mc1 , mc2 , mc3 ), which requires 13 qubits. However, in our proposed 
model with SPEC, only 9 qubits are required. In addition, as shown in Table 1, the circuit depth and number of 
quantum gates of the model with SPEC are 59 and 83, while that of the model without SPEC are 163 and 198, 
which is much larger. Next, the result of the model without SPEC is obtained through our proposed framework. 
The level of QAOA is set to be 10 and the number of iterations is 100.

The result of the model without SPEC is presented in Fig. 5. The result is also reasonable, however, the prob-
ability of the optimal solution obtained by our proposed model is about 4 times that of the model without SPEC. 
In addition, the probability of this optimal solution in our model is obviously greater than other fault hypotheses, 

Table 1.  Using SPEC vs. not using SPEC for Case 1.

Method Qubits Circuit depth Quantum gates Simulated time (s)

SPEC 9 59 83 51.47

Without SPEC 13 163 198 182.48

Figure 5.  Top 16 probable fault hypotheses of Case 1 with SPEC and without SPEC.
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while for the results without SPEC, there are many interference solutions with similar probabilities. Besides, 
the simulated time for the model with SPEC and without SPEC is 51.47 and 182.48 s respectively, as shown in 
Table 1. Our model is obviously faster than the model without SPEC.

Feasibility analysis in different problem complexities—simplified model
In order to prove that the proposed framework can obtain accurate fault diagnosis results under problems of 
different complexity, this paper has conducted 30 tests for different complexities of the test system shown in 
Fig. 2 using the proposed simplified model. Due to space limitations, only six cases are listed, as shown in Table 2.

We compared three tests (test 1, 3 and 6) of different complexities (Low, Medium, High) in Table 2. The num-
ber of qubits, circuit depth, quantum gates and simulated time of these three tests are shown in Table 3. The results 
of these tests using the proposed framework are shown in Fig. 6. For all these tests, the optimal solution has high 
probability and is significantly higher than the other solutions, which shows the feasibility and robustness of our 
proposed framework under different complexity and the diagnosis results are consistent with the classic solver.

Table 2.  Test cases using simplified model.

Test number Alarms Diagnosis results

1 A4m, T7p operate; CB34, 36, 37, 38 are tripped A4, A7 are faulted

2 B1m, L2Rs, L4Rs operate; CB4, 5, 7, 12, 28 are tripped B1 is faulted

3 B2m, B6m, L4Rs operate; CB6, 7, 8, 10, 26, 28, 30 are tripped B2, B6 are faulted

4 A3m, B6m, L4Sm, L4Rp, L3Ss operate; CB 9, 10, 21, 22, 23, 28, 30 are tripped A3, B6, L4 are faulted

5 A3m, T5p operate; CB21, 22, 23, 24, 25 are tripped A3, T5 are faulted

6 B5m, B7m, B8m, L6Ss, L7Ss operate; CB20, 24, 25, 26, 27, 29, 32, 34, 35, 40 are tripped B5, B7, B8 are faulted

Table 3.  Comparison of different problem complexities.

Test number Problem complexity Qubits Circuit depth Quantum gates Simulated time (s)

1 Low 2 6 9 4.28

3 Medium 4 20 29 10.66

6 High 5 59 71 32.63

Figure 6.  The results of test 1 (Low Complexity), test 3 (Medium Complexity) and test 6 (High Complexity).
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Comparison between symmetric equivalent decomposition and global variable substitution
In order to verify that the utilized SED method can reduce the complexity of the quantum circuit and improve 
the efficiency while ensuring the accuracy of the results, we use the SED method to solve test 3 in Table 2 as 
an example, and compared the results with that obtained by using an existing method called Global Variable 
Substitute (GVS)33, which is also used to solve the PUBO problem with QAOA. From Fig. 7 and Table 4, we find 
that the number of qubits and quantum gates used in our model is about half of that in the GVS-based model, 
and the depth of our model is also obviously smaller. In addition, the running time of our model on the simula-
tor is 10.66 s, while that of the GVS-based model is 21.71 s, which is about two times larger than our method. 
In fact, the advantage of our method becomes more pronounced as the problem size grows larger, since the 
quantum gates required by our decomposition-based method are only linear with the number of qubits and do 
not require any additional auxiliary qubits, whereas the GVS method requires many auxiliary qubits to satisfy 
the mathematical constraints.

The results of the two models are shown in Fig. 8. The optimal fault diagnosis of SED-based method is 
‘0110’, which means components B2 and B6 are faulty, while that of GVS-based method is ‘01101001’, which 
corresponds to the same diagnosis result. Although both getting the correct solution, our utilized SED-based 
model has significantly better performance. First, the probability of the correct optimal solution in our model is 
obviously greater than other invalid solutions. However, in the results of the GVS-based model, there are many 
interference solutions with similar probabilities, such as ‘11110000’, which is not a reasonable diagnosis result. 
Besides, the results of the GVS model are affected by more penalized hyperparameters. Therefore, the utilized 
SED-based method is much more efficient and robust.

Computational time analysis
To analyze the computational time needed for QAOA in the real-world physical devices, this paper follows the 
time analysis method  in19. In our simplified model, the number of the required qubits is equal to the number of 
suspected components and the circuit size is linear with the action expectation of the related protective relays 
(PRs) and circuit breakers (CBs). But the computational time of QAOA will grow nonlinearly with the size of 
the problem. The optimization run using QAOA is composed of hundreds of iterations, and for each iteration, 
thousands of repetitions of the same quantum circuit are required to have enough statistic to estimate the cost 
 expectation44. Specifically, in this test, the total number of repetitions required is given by (100 iterations per 
run) × (10,000 repetitions for statistics). The time used of a single repetition Tsr is depending on the complexity 
of the quantum circuit and considered to be:

(41)Tsr = TP +
(

circuitdepth
)

× TG + TM

Figure 7.  The quantum circuit of test 3 using Symmetric Equivalent Decomposition (SED) and Global Variable 
Substitution Method (GVS). The upper figure shows the circuit using SED, while the lower figure shows the 
circuit using GVS.

Table 4.  Comparison between symmetric equivalent decomposition and global variable substitution.

Method Qubits Circuit depth Quantum gates Simulated time (s)

sed 4 20 29 10.66

gvs 8 33 56 21.71
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Figure 8.  The results of test 3 using SED and GVS method. The upper figure shows the results with SED-based 
model, while the lower figure shows the results with GVS-based model (only top 16 probable fault hypotheses 
are presented due to the space limit).

Figure 9.  Computational time analysis with different amounts of qubits. Blue markers correspond to the 
classical baseline (D-Wave’s ExactSolver) while red and green marks correspond to the experimental time 
required by the quantum algorithm QAOA, with p = 6 and p = 10 respectively. The red and green areas are 
associated with a 95% confidence interval for the prediction of the QAOA computational time per instance.
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where TP is the time to prepare the initial state, TG is the average duration of a quantum gate, and TM is the time 
required to measure the qubits. The time scales used in this paper reflect realistic projections for state-of-the-art 
devices based on superconducting circuits: TP + TM = 1 μs, TG = 10 ns44–46. For the classical solver, the actual 
running time in classic processor is recorded.

The time needed to solve a single instance is calculated by averaging the results from 5 instances at each 
problem size, which corresponds to a single marker in Fig. 9. For QAOA, the considered problem sizes are (2, 
4, 5, 7, 10). For classic solver, the considered problem sizes are (4, 5, 7, 10, 12), which is not exactly same as that 
for QAOA to avoid flat baseline and show the actual  trend19.

Following the method  in19, this paper uses an exponential function to fit the relation between cost time and 
the number of qubits or binary variables. The inference drawn from this extrapolation should be considered as 
indicating a qualitative trend, given the uncertainty involved in extrapolating from systems of relatively small 
sizes. Note that exponential curves, as well as smooth curves in general, appear as straight lines in local regions, 
making it challenging to rule out alternative functional forms for the extrapolation. Nevertheless, it is widely 
accepted that quantum computers will not be capable of solving NP-hard problems in polynomial time. From 
Fig. 9, we can find that when the number of qubits to be used reaches about 20, our algorithm is faster than the 
classical method based on the 95% confidence interval. However, since the method  in19 makes some assumptions, 
the result can only be viewed as an estimate.

Conclusions
Quantum computing offers a new computing paradigm with the potential to efficiently solve large-scale combi-
natorial optimization problems. This development could prove to be highly valuable in the field of power systems, 
especially for large-scale systems. In this paper, we proposed a quantum computing-based power system fault 
diagnosis framework. The mathematical model is defined with PUBO formulation and then reformulate to the 
Ising model and Hamiltonian, which can be solved using QAOA. To the best of our knowledge, we are among the 
first to apply quantum computing to the power system fault diagnosis problem. Furthermore, a gate decomposi-
tion method and the small probability event are utilized to reduce the complexity of the proposed QAOA-based 
solving method. Case studies based on the test system demonstrate the ability of the proposed method to obtain 
the same results as the classical solver. Moreover, the QAOA-based method has the potential to solve large-scale 
fault diagnosis problems at a faster rate. Future work would focus on extending the application of the algorithm 
to larger problems and more realistic scenarios, such as reducing the depth of quantum circuits, addressing the 
noise in quantum circuits, and performing error correction of qubits.

Methods
Symmetric equivalent decomposition of multi-z-rotation gate
As mentioned in the Introduction, the power system fault diagnosis problem can be formulated as a PUBO 
problem, which can be easily implemented with multi-qubit gates. However, due to the limitations of current 
hardware, the implementation of multi-qubit gates is difficult and more error-prone.

To address this issue, this paper utilizes a method called symmetric equivalent decomposition (SED), which 
decomposes an n qubits z-rotation gate into 2(n− 1) CNOT gates and 1 RZ gate. The detailed structure of SED 
is shown in Fig. 10. The mathematical formula for n qubits-z-rotation gates is 

∏⊗
n σ

i
z , which is a tensor product 

⊗ of n Pauli-Z operators σ i
z acting on qubit i . The mathematical formulas of CNOT gate and RZ gate are shown 

as follows:

The mathematical induction is used to prove the SED.
For n = 2 , according to 17, a double-qubit z-rotation gate can be decomposed into 2 CNOT gates and 1 RZ gate.

(42)CNOT =







1 0
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0 0

0 0

0 0

0 0
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(43)RZ =
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e−i θ
2 0

0 ei
θ
2

]

Figure 10.  The symmetric equivalent decomposition of the multi-z-rotation gate.
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For n = k , we need to prove that the inductive step holds, i.e. a k + 1-qubit z-rotation gate can be decomposed 
into 2 CNOT gates and a k-qubit z-rotation gate, as shown in Fig. 11.

Let the formula of (k + 1) qubits z-rotation gate be:

where A =







a1
. . .

a2k−1






 is a diagonal matrix. The value of a1, a2, · · · , a2k−1 are 1 or −1.

The formula of right figure in Fig. 3 is CNOT ⊗ I⊗(k−1) ⊗ I ⊗ σ⊗k
z ⊗ CNOT ⊗ I⊗(k−1)

Since

where Ik , Ik−1 are identity matrix with dimension 2k and 2k−1 , 0k , 0k−1 are zero matrix with dimension 2k and 
2k−1 . Therefore, the following equation holds.

It means that a k + 1-qubit z-rotation gate can be decomposed into 2 CNOT gates and a k-qubit z-rotation 
gate. Based on mathematical induction, the SED can decompose an n qubits z-rotation gate into 2(n− 1) CNOT 
gates and 1 RZ gate.

Small probability event characteristic of fault diagnosis
The proposed objective function in this paper considers the failed/mal operation of PR and CB, which results in a 
high dimension of the corresponding FH and a large number of qubits in the problem Hamiltonian. For example, 
a defective scenario comprising of 4 components, 14 PRs, and 8 CBs would require 70 qubits, a capacity beyond 
the capabilities of the state-of-the-art quantum processor Sycamore developed by Google, which can handle up 
to 63 qubits. To address this problem, this paper proposes a dimensionality reduction method based on the small 
probability event characteristics of power system fault diagnosis. By using the proposed method, the mentioned 
case would only need 48 qubits, which is possible to be handled by the current hardware.

In power system fault diagnosis, small probability events refer to the events that very rarely occur at the same 
time, and this probability can be normally ignored. For example, for one PR or CB, a mal operation occurs and 
the alarm information is missed, or the alarm information is falsely reported and the operation is failed. These 
small probability events fix the relationship of certain variables and can be used to reduce the dimension of the 
problem. The following two small probability events are applied in this paper:

(44)σ⊗(k+1)
z =







A
−A

−A
A







(45)CNOT ⊗ I⊗(k−1) =

[

Ik 0k

0k
0k−1 Ik−1

Ik−1 0k−1

]

(46)I ⊗ σ⊗k
z =







A
−A

A
−A







(47)CNOT ⊗ I⊗(k−1) ⊗ I ⊗ σ⊗k
z ⊗ CNOT ⊗ I⊗(k−1) =

�

Ik 0k

0k
0k−1 Ik−1

Ik−1 0k−1

�

⊗







A
−A

A
−A







(48)⊗

�

Ik 0k

0k
0k−1 Ik−1

Ik−1 0k−1

�

=







A
−A

−A
A






= σ⊗(k+1)

z

Figure 11.  Transformation diagram of inductive step.
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As a result, some failed/mal operation variables can be removed from the corresponding FH.
The following is a simple example. Consider the case where the suspected components are d0 and d1 , the related 

PRs are r1 and r2 , the related CBs are c1, c2, c3, c4 and c5. The received alarm information includes r1, c1, c3, c4. 
Therefore, the observed states of PRs and CBs are R′ = (1,0) and C′ = (1,0, 1,1, 0) . The fault hypothesis H without 
using small probability event characteristic is ( d0 , d1 , r1 , r2 , c1 , c2 , c3 , c4 , c5 , fr1 , fr2 , fc1 , fc2 , fc3 , fc4 , fc5 , mr1 , mr2 , mc1 , 
mc2 , mc3 , mc4 , mc5) ,  requires 23 qubits. By using small probability event characteristic (SPEC), fr1 = 0 , fc1 = 0 , 
fc3 = 0 , fc4 = 0 , mr2 = 0 , mc2 = 0 , and mc5 = 0 , the fault hypothesis H becomes ( d0 , d1 , r1 , r2 , c1 , c2 , c3 , c4 , c5 , fr2 , 
fc2 , fc5 , mr1 , mc1 , mc3 , mc4 ), which only requires 16 qubits. This paper has proved through experiments that the 
performance of the processed model will be better.
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