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Adaptive spatiotemporal neural networks
through complementary hybridization

Yujie Wu1,2,3,6, Bizhao Shi4,5,6, Zhong Zheng1, Hanle Zheng 1, Fangwen Yu1,
Xue Liu1, Guojie Luo 4,5 & Lei Deng 1

Processing spatiotemporal data sources with both high spatial dimension and
rich temporal information is a ubiquitous need in machine intelligence.
Recurrent neural networks in the machine learning domain and bio-inspired
spiking neural networks in the neuromorphic computing domain are two
promising candidatemodels for dealing with spatiotemporal data via extrinsic
dynamics and intrinsic dynamics, respectively. Nevertheless, these networks
have disparate modeling paradigms, which leads to different performance
results, making it hard for them to cover diverse data sources and perfor-
mance requirements in practice. Constructing a unified modeling framework
that can effectively and adaptively process variable spatiotemporal data in
different situations remains quite challenging. In this work, we propose hybrid
spatiotemporal neural networks created by combining the recurrent neural
networks and spiking neural networks under a unified surrogate gradient
learning framework and a Hessian-aware neuron selection method. By flexibly
tuning the ratio between two types of neurons, the hybrid model demon-
strates better adaptive ability in balancing different performance metrics,
including accuracy, robustness, and efficiency on several typical benchmarks,
and generally outperforms conventional single-paradigm recurrent neural
networks and spiking neural networks. Furthermore, we evidence the great
potential of theproposednetworkwith a robotic task in varying environments.
With our proof of concept, the proposed hybrid model provides a generic
modeling route to process spatiotemporal data sources in the open world.

It is not an exaggeration to say that the hungry demand for data
learning is at the core of the ongoing age of intelligence. Being
able to effectively process multi-scale complex spatiotemporal
information is important for many real-world applications, such
as handling video in self-driving cars, interpreting written text in
mobile reading apps, and managing various types of sensor data
in outdoor robots. However, it remains a significant challenge to
process such complex data accurately, reliably, and efficiently,

particularly in varying environments with different performance
requirements.

In mainstream machine learning, non-spiking recurrent neural
networks (RNNs) serve as a pivotal model for processing spatio-
temporal data. Unlike traditional feedforward architectures, RNNs
incorporate recurrent connections into standard artificial neural net-
work (ANN) models, enabling them to capture temporal patterns.
While RNNs are extensively employed in diverse applications like
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speech recognition1, language modeling2, and state control3, they
cannot learn long temporal dependency due to the gradient vanishing
during backpropagation (BP) learning4. To address this issue, variants
such as long short-term memory (LSTM) networks5 have been devel-
oped. These advanced models, equipped with additional gated units,
excel at capturing long-term temporal dependencies but come at the
cost of increased computational complexity.

Concurrently, there is growing interest in neuromorphic com-
puting as an alternative pathway for developing intelligentmodels that
are both computationally efficient and biologically inspired. Spiking
neural networks (SNNs), regarded as the third generation of neural
networks6, are the most famous family of neuromorphic models. The
behaviors of each spiking neuron are described by the nonlinear
dynamics of the membrane potential and the binary spiking mechan-
ism for the communication between adjacent neurons7. Distinct from
the extrinsic dynamics of RNNs induced by external recurrence, the
dynamics in SNNs intrinsically exist within each neuron. The intra-
neuron temporal dynamics and the spatial dataflow through the net-
workmake SNNswell-suited for processing spatiotemporal data. Up to
now, SNNs have been extensively used for spike stream processing8,
speech recognition9, ECG signal analysis10, state control11, and so forth.

Machine-learning-oriented RNNs use intense matrix multi-
plications for computation and continuous activations for inter-
neuron communication; on the contrary, neuromorphic-computing-
oriented SNNs use sparse matrix accumulations for computation and
binary spikes for inter-neuron communication. Compared to the
continuous activation state space of RNNs, the spike states of SNNs
usually evolve in a discrete space. With these distinctions, RNNs have
been evidenced to achieve higher accuracy on conventional con-
tinuous data sources (e.g., speech signals and language texts) while
SNNs are more suited for discrete data sources12 such as the event
stream collected by dynamic vision sensors (DVS)13. Owing to the
natural filtering effect of the membrane potential leakage along with
the spike firing and reset mechanisms of spiking neurons, SNNs have
demonstrated strong robustness against variations in temporal
resolution12 and adversarial attack14. In addition, owing to the binary
format of spikes and the sparsity of spiking activities, the computa-
tional cost of an SNN model can be much lower than its non-spiking
counterpart under the same network structure12,15.

Based on the above analyses, it can be seen that RNNs and SNNs
present different performance results due to the disparate modeling
paradigms. However, in practical scenarios, the type of data sources
varies, e.g., continuous data or discrete data, and the performance
requirement may also be highly diverse. For example, the high func-
tional accuracy attracts themost attention from cloud users, while the
low computational cost is more important for energy-restricted edge
devices. Furthermore, for many core components in a system, how to
guarantee high robustness against internal noise or external attack
becomes the primary design consideration. Even though we can build
a specific model to accomplish each task, it would be inefficient
because researchers cannot directly apply the experiences accumu-
lated in the modeling exploration when the task changes. To escape
the one-task-one-model dilemma, a unified modeling framework to
realize adaptive accuracy, robustness, and efficiency is highly expected
for processing spatiotemporal data in various scenarios.

Here we report a unified modeling framework that creates hybrid
spatiotemporal neural networks (HSTNNs) by synergistically combin-
ing RNNs and SNNs for processing spatiotemporal data sources. To
make the hybridmodel learnable, ourwork builds on a unified learning
methodology, backpropagation through time (BPTT) augmented with
a surrogate function, which works for both RNNs and SNNs and thus
opening the possibility for hybridization. Furthermore, we exploit a
classical pruningmethod16,17 to realize neuron selection from RNN and
SNN populations and further develop a neuron-aware three-stage
hybridization solution to create HSTNNs. It leverages the Hessian

gradient information and enables automatic learning of a hybrid
structure during the training phase. On several typical spatiotemporal
dataset benchmarks, HSTNNs demonstrate better adaptive ability in
balancing different performance metrics in terms of accuracy,
robustness, and efficiency by tuning the configuration between two
types of neurons, and usually outperform conventional single-
paradigm RNNs and SNNs. With a robotic place recognition task, we
evidence the great potential of HSTNNs in varying environments.
Overall, the proposed HSTNNs provide an attractive way to adaptively
process variable spatiotemporal data sources in the open world.

Results
Creating HSTNNs
Generally, RNNs and SNNs adopt different strategies in neural
coding, computation, and communication, leading to varying
performance and application suitability on specialized devices.
How to incorporate the distinct features of RNNs and SNNs and
integrate their complementary advantages is an open but fore-
most issue for designing HSTNNs. Recent progress in the neuro-
morphic field has seen a surge of interest in a hybrid approach
that converts non-recurrent neural networks into spiking
networks18–22. Several studies23,24 have explored integrating non-
recurrent ANNs and SNN modules at the layer level. However,
elaborating on specifying fixed heterogeneous networks in
advance for each specific task is required, and a hybrid approach
supporting effectively integrating diverse temporal dynamics and
handling spatio-temporal data flows is still lacking.

To maintain the features of different neurons, we take a decou-
pling strategy to preserve the diverse spatiotemporal dynamics of
different neurons and allow hybrid information transmission at the
neuron level. The general structure of HSTNNs is shown in Fig. 1a. Each
hybrid layer contains two neuron populations, an RNN one with arti-
ficial neurons and an SNN one with spiking neurons. Both populations
receive the samemixed inputs from the previous layer, independently
update the respective spatiotemporal dynamics, and synergistically
send mixed outputs by concatenating both RNN and SNN outputs.
Within each hybrid layer, each neuron only connects to the neurons
belonging to the same population.

To generate optimal dynamics between spiking neurons and non-
spiking artificial neurons, we expect the hybrid network can be auto-
matically learned. RNNs are usually trained with the classical BPTT
algorithm, while SNNs are widely trained with bio-plausible synaptic
plasticity rules, e.g., spike timing dependent plasticity (STDP)25,26,
which is incompatible with BPTT. Fortunately, BPTT has been adapted
to SNNs recently by addressing the training convergence problems
and the issue of the non-differentiable spiking activities. This progress
in the SNN domain lays the foundation for hybridizing RNNs and SNNs
under a unified learning framework. Based on BPTT, we propose a
three-stage hybrid learningmethodology to create HSTNNs, whichwill
be detailed in the following sections.

The core idea of the learning methodology is an evolution-
inspired strategy, which combines a unified BPTT learning algorithm
and a neuron-aware selectionmechanism to select prominent neurons
from two redundant neuron populations for building a hybrid net-
work. As shown in Fig. 1b, to explore the optimal structure of the
hybrid network, we generate two types of neuron populations in each
layer, which represent a redundant number of candidate neurons for
constructing the HSTNN. Each population is independent of the other
within the layer and the outputs are combined before injecting into the
next layer. We adopt BPTT with the surrogate gradient technique to
pretrain this initial network to a good point with inter-population
interactions. Next, wedevelop a neuron-aware selectionmechanism to
measure the importance of different types of neurons, which guides
the selection of prominent neurons from the two redundant popula-
tions by invalidating unimportant neurons and their connections.
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Finally, we retrain the resulting compact hybrid network after neuron
selection until convergence. Notice that the ratio between two types of
neurons is given at the beginning, while which neurons to select is
automatically determined during learning.

The proposed HSTNNs demonstrate several advantageous fea-
tures benefiting practical usages, as depicted in Fig. 1(c). First, the
proposed hybridization approach adopts a unified adaptation strategy
to create redundant neuronpopulations nomatterwhat the target task
is, thereby easing its usage. Second, HSTNNs enable a flexible balance
between accuracy, cost, and robustness according to the actual need
by customizing the ratio of different types of neurons, which is able to
satisfy variable performance requirements in practice. Third, HSTNNs

exhibit better accuracy and robustness compared to single-paradigm
networks with appropriate neuron configurations. Last, although
HSTNNs represent a novel paradigm, they can be deployed on existing
neuromorphic hardware, especially on the ones with hybrid comput-
ing architectures11,27,28, which promises the construction of efficient
application systems.

Three-stage hybrid learning
HSTNNs use a three-stage learning methodology to generate the
hybrid network, including Adaptation, Selection, and Restoration
stages. The three stages gradually extract a compact hybrid network
from an initialized redundant network in an evolutionary manner.

Fig. 1 | Methodology of creating HSTNNs. a TheHSTNN architecture. Each hidden
layer of an HSTNN contains two types of neurons and their outputs are combined
before being injected into the next layer. b The three-stage learning process for
creating an HSTNN. In the Adaptation stage, we create two redundant populations
of neurons in each hidden layer and apply the unified BPTT learning algorithm to
warm the connection weights. In the Selection stage, we propose a neuron-aware
selection mechanism to measure the importance of neurons and select important

neurons. In the Restoration strategy, we shrink the network by invalidating unse-
lected neurons and their connections and retrain the compact model until con-
vergence. c HSTNNs exhibit several advantageous features: an HSTNN can be
conveniently initializedunder a unifiedAdaptation stagenomatterwhat the specific
task scenario is; it enables a flexible balancebetween accuracy, cost, and robustness
to satisfy variable performance requirements in practice; it can be deployed on
neuromorphic hardware for constructing an efficient application system.
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In the Adaptation stage, an HSTNN first expands redundant neu-
ron pools with different types of neurons at each hidden layer. The
neurons in each pool are governed by their respective spatiotemporal
dynamics and the output representations are merged and then pro-
pagated to the next layer. The surrogate gradient technique12,29 is used
to handle the derivative of the non-differentiable spiking function, and
the BPTT learning algorithm is then applied to warm the connection
weights.

The Selection stage aims at identifying critical neurons and prun-
ing the unimportant neurons to satisfy a target neuron configuration.
To quantitatively describe the neuron configuration, in the following,
we introduce the SNN ratio as the ratio of the number of spiking
neurons to the total number of hidden neurons after the three-stage
learning. To produce an effective selection mechanism, we get
inspiration from the OBS method16, a classical network pruning
method for shallow feedforward networks, and extend it for the
selection of important neurons in hybrid recurrent networks. Parti-
cularly, we use the second-order gradient information of synaptic
connections around the local minimum of the loss function as the
basic measurement for importance, collect the importance scores of
different afferent connections for eachneuron, and finally evaluate the
neuron importance according to the accumulated gradients spanning
the temporal domain. Because of the different types of gradient
information of spiking and non-spiking neurons, we introduce a
grouping selection mechanism that ranks the same type of neurons
across all layers and constrains the overall number of neurons
according to the specific SNN ratio. By doing so, the Selection stage
invalidates unimportant neurons and shrinks the redundant structures
to an expected compact level.

Since the selection process is independent of the adaptation
stage, this learnable architecture is quite efficient and flexible to meet
the actual need without the guidance of expertise to tailor a network
architecture for each specific task. Given the compact network struc-
ture, the Restoration stage finally fine-tunes the remaining neural
interactions to get the final HSTNN.

The three-stage learning methodology employs the surrogate
gradient technique to approximate the first- and second-order gra-
dient information of the non-differentiable spiking activities, which
potentially influences the learned interaction between spiking and
non-spiking activities. Our empirical analysis is shown in Supplemen-
tary Fig. 2 that the specific format of the surrogate function proves to
have little impact on the learning performance of the HSTNN. HSTNNs
can learn a similar profile of neuron importance under different sur-
rogate functions (see Supplementary Fig. 2b, c), leading to a compe-
titive learning performance at the end of the third stage (see
Supplementary Fig. 2d, e). This indicates that the proposed hybridi-
zation approach demonstrates stability against various hyper-
parameters of the surrogate functions during the learning process.

Comprehensive performance in terms of task performance and
the computational cost
TheHSTNNpresents a general hybrid strategy for integrating different
network paradigms, suitable for various sequential learning tasks. We
first evaluate its comprehensive performance in terms of both task
accuracy and the computational cost in four different types of tasks, as
shown in Fig. 2. For tasks on PTB, S-MNIST, and N-MNIST datasets,
HSTNNs with two hybrid fully-connected hidden layers are imple-
mented. For the more challenging DVS-Gesture dataset, a nine-layer
convolutional-based network structure is employed (see Methods).

As depicted in Fig. 2a–d, single-paradigm networks, SNNs, and
RNNs, exhibit variable performance on different datasets: RNNs per-
form better on traditional deep-learning-oriented datasets like
S-MNIST and PTB datasets, while SNNs excel on neuromorphic-
computing-oriented datasets like N-MNIST and DVS-Gesture. This
prominent difference may result from the radical difference in neural

coding and computationproperties of the two networks. Compared to
SNNs, the high-precision neural representation of RNNs is advanta-
geous in handling continuous-value-based text analysis tasks like PTB.
Conversely, the natural filtering effect of the membrane potential
leakage and the spike rate coding schemes may enhance the robust-
ness of SNNs against input fluctuations, leading to better performance
of SNNs on neuromorphic datasets, as evidenced by the results on
N-MNIST and DVS-Gesture.

Combining Fig. 2a–h can further derive three key conclusions
about HSTNNs. First, HSTNNs with suitable neuron configurations can
outperform both single-paradigm SNNs and RNNs. This improvement
is likely due to the hybrid information representation of non-spiking
and spiking neural networks with richer neuronal computation
mechanisms, which increases learning nonlinearity and integrates the
complementary strengths of SNNs and RNNs in addressing specific
tasks. For instance, such integration can increase the representation
precision of single-paradigm SNNs on the non-spiking PTBdataset and
enhance the robustness of single-paradigm RNNs against input fluc-
tuations on the spiking N-MNIST dataset.

Second, Fig. 2e–h shows that HSTNNs demonstrate adaptive bal-
ance in accuracy and the computational cost between SNNs and RNNs.
The computational cost gradually decreases as the SNN ratio grows
owing to the high efficiency of SNNs dominated by sparse accumula-
tion operations. In Fig. 2i, we further take the N-MNIST dataset as an
example to evaluate the correlation between accuracy and computa-
tional cost. The lighter color of a bubble indicates a larger SNN ratio
with a lower computational cost. Results show thatHSTNNs are able to
produce a better comprehensive performance solution with higher
accuracy and a lower computational cost, demonstrating the effec-
tiveness of the proposed HSTNN model.

Third, HSTNNs provide an effective hybridization method com-
paredwith thedirect hybridizationmethod. Toevidence the superiority
of our three-stage hybridization, we build a baseline model for com-
parison. This baselinemodel, named the directly-hybridmodel, trains a
hybrid model from scratch under a given SNN ratio without employing
the three-stage learning process. As shown in Fig. 2a–d, HSTNNs per-
form better than the directly-hybrid models. Furthermore, as observed
in Fig. 2j, the improvement of HSTNNs over directly-hybrid models
becomes more pronounced when constructing smaller-size hybrid
neural networks, a practical constraint commonly considered in real-
world edge systems with limited resources. These comparisons reflect
the effectiveness of the elaborate three-stage learning methodology:
expanding the representation dimension initially and thenmeticulously
selecting important neurons from the hybrid redundant populations,
rather than directly training a compact hybrid network from scratch.

Robustness analysis against noise, frame-loss, and
adversarial attack
Wenext examine the robustness of sole SNNs, sole RNNs, andHSTNNs
on the deep-learning-oriented S-MNIST and the neuromorphic-
computing-oriented N-MNIST dataset. We evaluate the model
robustness in three aspects including randomnoise robustness, frame-
loss robustness, and adversarial attack robustness. For the random
noise robustness, considering the diverse data characteristics of dif-
ferent datasets, we add the Gaussian noise into the testing samples of
S-MNIST and the salt-and-pepper noise into the testing samples of
N-MNIST. For the frame-loss robustness, we randomly mask some
sequence information of each frame of the testing sample. For the
adversarial attack robustness, we generate untargeted adversarial
samples with a small level of perturbation on the raw samples (see
Methods). Three selected digits are shown in Fig. 3a to illustrate dif-
ferent formats of testing samples in robustness experiments. All
models are trained on standard training sets while evaluated on pre-
processed testing sets with testing samples described above. We
record theperformanceofHSTNNs compared to that of sole RNNs and
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SNNs in the three types of noise tests in Fig. 3b. Note that for the noise
and frame-loss robustness experiments, higher recognition accuracy
indicates better robustness, while for the adversarial attack robustness
experiments, a lower attack success rate implies better resistance to
adversarial attacks.

We observe two prominent phenomenons in Fig. 3b–c. First, as
presented in Fig. 3b, in both noise robustness and frame loss robust-
ness experiments, HSTNNs perform comparably to the best single-
paradigm models, i.e., RNNs or SNNs. In the adversarial attack
robustness experiment, HSTNNs even demonstrate better robustness
thanbothRNNs and SNNs. Second,weobserve in Fig. 3c thatRNNs and
SNNs exhibit different robustness performances in noise and frame
loss experiments. As the noise level increases, measured by the stan-
dard variance of the Gaussian noise or the frame loss probability on S-
MNIST, it is noted that HSTNNs perform closer to the single-paradigm

models with stronger robustness in different robustness tests and
achieve significantly higher accuracy than the other single-paradigm
networks. This implies this hybridization enables to inherit the
robustness advantages of single-paradigms of models.

Scalability of HSTNNs in integrating different neuron modules
and architectures
The proposed neuron-wise hybridization approach facilitates the easy
incorporation of more complex neuronal models and deeper network
structures. We have demonstrated in Fig. 2 that the proposed hybrid
approach enables applying to different shallow network structures in
solving various sequential learning. Now we further quantitatively
analyze the scalability of HSTNNs in integrating different neuronal
models, including vanilla RNN (vRNN), LSTM, LIF, and adaptive LIF
(ALIF), and applying thehybrid approach todeepernetwork structures.

Fig. 2 | Comprehensive evaluationofHSTNNs in terms of taskperformance and
the computational cost. Impact of the SNN ratio on accuracy (upper) for (a) S-
MNIST, (b) PTB, (c) N-MNIST, and (d) DVS-Gesture datasets. Impact of the SNN
ratio on the number of operations (lower) for (e) S-MNIST, (f) PTB, (g) N-MNIST,
and (h) DVS-Gesture datasets. A two-hidden-layer network structure is adopted for
PTB, S-MNIST, and N-MNIST, and a convolutional structure for DVS-Gesture (see
Methods). Note that task performance on the PTB dataset is measured by per-
plexity (ppl), where lower is better. S-MNIST is a variant of the standard MNIST

dataset in which the images are input into themodel sequentially, one column at a
time. i Comprehensive analysis of the trade-off between accuracy and the com-
putational cost for the N-MNIST dataset, where the computational cost is mea-
sured by the total number of multiplication and addition operations. j Analysis of
average accuracy improvement by HSTNNs compared to directly hybrid models,
measured by the ratio of remaining hidden neurons in the Restoration stage to
those in the Adaptation stage. All error bars represent the standard deviation over
five repeated trials.
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Figure 3d shows the results of building HSTNNs with different
neuronal models on DVS-Gesture. When comparing the second to
fourth groups of bars with the first group, it becomes evident that
including more complex neuronal dynamics enhances the overall task
performance of single-paradigm spiking and non-spiking neural net-
works. Notably, one can see that the improvements of HSTNNs for the
third and fourth groups are more prominent compared to those for
the first and second groups, where the spike-based models

demonstrate overwhelmingly better performance. This suggests that
the effectiveness of HSTNNs in exploring a complementary and
superior solution depends on the original performance difference
between single-paradigm networks. Namely, in the case where two
single-paradigm networks perform comparably, the HSTNN has a lar-
ger chance to produce a better hybridization solution. In addition to
DVS-Gesture, we also test the scalability of the proposed approach in
deep convolutional network structures (seeMethods) onN-MNIST and

Fig. 3 | Validating the robustness and scalability of HSTNNs. a Illustration of
three-digit samples in varied formats for different robustness experiments. Fol-
lowing the training phase, we introduce distinct noise types into the testing sam-
ples and report the average accuracy across the entire testing dataset.
b Comparison of noise robustness, frame-loss (FL) robustness, and adversarial
attack (AA) robustness between HSTNNs under the optimal ratios and single-
paradigmnetworks on S-MNIST andN-MNISTdatasets. cAnalysis of the robustness
with increasing noise levels (left) and frame loss probability (right). It is observed

that RNNs and SNNs exhibit distinct robustness advantages for the two types of
noises, whileHSTNNs demonstrate a complementary robustness profile.dHSTNNs
are scalable for integrating neuron models with various types of temporal
dynamics, evidenced by accuracy improvements when incorporating more com-
plex neuronal computation features. The HSTNNs with the optimal SNN ratios are
reported here for comparison. Error bars represent the standard deviation, and the
numbers above the yellow bars denote the best accuracies of HSTNNs over
five runs.

Table 1 | Comparison with advanced models on neuromorphic datasets

Model Dataset Network Structure Best Acc. (%) Mean ± SD (%)

SNN model8 N-MNIST 5-layer SCNN 99.35 N/A

SNN model44 7-layer SCNN 99.40 N/A

RNN model (our work) 6-layer RCNN 99.55 99.51 ± 0.04

SNN model (our work) 6-layer SCNN 99.56 99.54 ± 0.02

Hybrid model (our work) 6-layer hybrid CNN 99.63 99.61 ± 0.02

SNN model45 DVS-Gesture 14-layer SCNN 97.22 N/A

SNN model46 14-layer SCNN 97.57 N/A

RNN model (our work) 9-layer RCNN 88.54 87.73 ± 0.87

SNN model (our work) 9-layer SCNN 95.49 94.90 ±0.53

Hybrid model (our work) 9-layer hybrid CNN 98.26 97.11 ± 1.06

SNN model47 CIFAR10-DVS 9-layer SCNN N/A 67.22 ± 0.43

SNN model48 ResNet-19 67.80 N/A

SNN model46 VGG11 74.80 N/A

RNN model (our work) 13-layer RCNN 72.50 72.30 ±0.20

SNN model (our work) 13-layer SCNN 77.00 76.10 ± 0.79

Hybrid model (our work) 13-layer hybrid CNN 78.40 77.47 ± 0.81

Bestaccuracy,mean, andstandarddeviationswere computed for each single-paradigmmodel andourhybridmodelwith theoptimal SNNratio over three trials. Sourcedata areprovidedas aSource
Data file.
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CIFAR10-DVS. The results, displayed in Table 1, show that integrating
convolutional neuron models can consistently enhance the perfor-
mance of single-paradigm networks and surpass other advanced
models. This underscores the potential of combining heterogeneous
neuron types within a single hybrid network to improve task
performance.

Adaptability of HSTNNs in varying environments
In addition to evaluating HSTNNs on standard datasets, we further
assess their adaptability with a robotic place recognition task in real-
world varying environments. To conduct the experiments, we utilize a
robot platform developed by our previous study30, as depicted in
Fig. 4a, where the robot navigates in different environments. The
objective of this task is to accurately recognize the specific placebased
on event-based and frame-based vision inputs, as illustrated in Fig. 4b.
The entire path is divided into 100 classes representing distinct places,
and we collect event-based and frame-based data using a DVS camera
and an RGB-D camera from three different environments: (i) an indoor
environment with adequate lighting condition (env1), (ii) an outdoor
environment with varying lighting condition (env2), and (iii) an indoor
environment with low lighting condition (env3).

The results obtained from these place recognition experiments
highlight the flexible adaptability of HSTNNs to varying environmental
conditions. Figure 4c–g presents a comparative analysis of HSTNNs
with varying SNN ratios, including single-paradigm RNNs and SNNs
across the three environments. The results indicate that the optimal
recognition accuracy varies across different SNN ratios and demon-
strate the suitability of different hybrid paradigms for specific envir-
onmental conditions. This adaptability enables HSTNNs to perform
effectively in variable scenarios. Figure 4h further provides a com-
prehensive comparison between HSTNNs and single-paradigm RNN/
SNN models in terms of accuracy and computational cost. Notably,
HSTNNs outperform the single-paradigm models, demonstrating the
superiority of the hybridmodeling paradigm. Figure 4h also highlights
the trade-off between accuracy and the computational cost, as the best
accuracy achieved by HSTNNs corresponds to different numbers of
operations. This flexibility empowers practical users tomake informed
decisions based on their specific requirements.

The performance adaptability, robustness to varying environ-
ments, and consideration of the computational cost make HSTNNs a
promising approach for processing spatiotemporal data sources in the
open world. The findings from the above robotic place recognition
experiments evidence the great potential of HSTNNs in achieving
improved accuracy compared to single-paradigm models and pro-
viding a flexible solution for different application environments.

Hardware deployability of HSTNNs
Applying neural network models in practice depends on efficient
hardware. In current intelligentmachines, general-purpose processors
such as GPUs are the mainstream platforms for running neural net-
works. Although they can perform ANNs efficiently, there exists a big
performance gapwhen executing SNNs. Neuromorphic processors are
another family of hardware that can perform SNNs efficiently but
support RNNs inadequately. Therefore, our HSTNNs with hybrid
computation of both RNNs and SNNs are not suited for these single-
paradigm-oriented hardware platforms. Fortunately, hybrid-paradigm
neuromorphic chips31–33 emerged in recent years, which show pro-
mising performance no matter running RNNs or SNNs. To validate the
application potential of HSTNNs, we select a recent hybrid neuro-
morphic chip, TianjicX34, as the platform for execution efficiency
analysis.

We have implemented RNNs, SNNs, and HSTNNs with different
SNN ratios on the TianjicX chip. All the networks contain three layers
running in a pipeline on the chip as illustrated in Fig. 5a. We employed
twomapping strategies, namely fixed-coremapping and variable-core

mapping, for different hybrid layers, as presented in Fig. 5b. The small
layers are mapped to two fixed cores respectively used for computing
SNN and RNNmodules, i.e., the fixed-coremapping strategy, while the
larger layers are mapped to more cores where the computational
resources for SNN and RNN modules are proportional to the number
of neurons, i.e., the variable-core mapping strategy. The choice of the
strategy depends on the potential for parallel execution of the layer
across multiple cores, which will be detailed in Methods.

To minimize the effect of the mismatch between the network
structure and the hardware architecture, we add extra restrictions to
HSTNNs. First, the input size of neuron populations is set to multiples
of 16 while the output size is set tomultiples of 32 so that the networks
can exploit parallelism within each core. Second, we fix the total
number of neurons in each layer for HSTNNswith different SNN ratios.
This restriction solves the problem that the Selection stage with only a
global constraint on the entire network might generate a variable
number of neurons in each layer, which makes the hardware mapping
unfriendly and causes unfairness in comparing execution
performance.

Figure 5c shows that, in general, the higher the ratio of SNN
neurons in the network, the shorter the execution latency, as recurrent
connections in the RNN consume additional computation. The
execution latency of the sole SNN on S-MNIST is significantly higher
than that of the HSTNN at the SNN ratio of 0.75 because the sole SNN
only utilizes a single SNN core for computation in the fixed-core
mapping strategy while the hybrid HSTNN can use both cores. By
measuring both the execution latency and dynamic power consump-
tion on the chip, we calculate the dynamic energy consumed by RNNs
(SNN ratio 0), SNNs (SNN ratio 1), and HSTNNs for inferring one
sample. As given in Fig. 5c, the energy consumption and the SNN ratio
of HSTNNs are negatively correlated on both S-MNIST and N-MNIST
datasets, regardless of the mapping strategy. These results are con-
sistent with the previous analysis of the computational cost and once
again demonstrate the flexibility of HSTNNs. As the SNN ratio increa-
ses, the heavy computation of RNNs is reduced, which results in lower
energy consumption. More details of the mapping strategies and
experimental results are available in Methods and Supplemen-
tary Fig. 3.

Discussion
We presented a generic hybridization approach that canmaintain and
integrate the complementary features of RNNs and SNNs, promising a
unified effectiveway to processdifferent types of spatiotemporal data.
Weobserved thatRNNs and SNNs have showndivergent performances
across six distinct types of tasks. By leveraging their complementary
features through our hybrid models, we demonstrated that the
HSTNNs not only surpass single-paradigm models in comprehensive
performance but also exhibit superior robustness against noise, frame
loss, and adversarial attack. Furthermore, the adaptability of HSTNNs
to diverse environmental conditions was evidenced in the robot place
recognition task. The flexible hybrid paradigm yielded optimal
recognition accuracy in a variety of lighting conditions, indicating its
potential for handling the complexity and variability of real-world
applications. Even though HSTNNs integrate two types of neurons,
they can be deployed on emerging neuromorphic chips with the
hybrid architecture for efficient execution.

Interestingly, HSTNNs exhibit intriguing similarities to the coding
strategies and integration of continuous and spiking activities
observed in the human brain for information processing. The brain,
renowned as a hybrid learning system, employs diverse types of neu-
ron populations and a range of coding schemes to tackle complex
spatiotemporal tasks. HSTNNs can actually achieve similar function-
ality by leveraging different coding strategies of SNNs and RNNs. We
observed that the interaction between continuous and spike-based
neural activities can alter the spiking activities of the spiking neuron
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population (see Supplementary Figs. 5, 6). This amalgamation of var-
ious neuronal dynamics and coding strategies in HSTNNs embraces
the diversity and richness of the brain’s own computational strategies,
an aspect that has been underscored by contemporary neuroscientific

research35,36. These parallels not only highlight the relevance and
potential of HSTNNs for handling diverse real-world applications but
also provide hints to understanding the design of more robust and
adaptable systems for artificial intelligence.

Fig. 4 | Validating the adaptability of HSTNNs with a robotic place recognition
task in varying environments. a Experimental setup for data collection. b The
HSTNNs are tested in three different environments: (i) env1, an indoor environment
with adequate lighting conditions; (ii) env2, an outdoor environment with varying
lighting conditions; and (iii) env3, an indoor environment with low lighting con-
ditions. The HSTNNs simultaneously receive inputs from a dynamic vision sensor
(DVS) device (the first column) and an RGB-D camera (the second column). c The

best place recognition accuracy in different environments is achieved at different
SNN ratios. d–f Accuracy of the HSTNNs in the three environments, with error bars
representing the standard deviation over three trials. g The overall number of
operations performed by the HSTNNs in this task.hComprehensive comparison of
performance results between SNN/RNN models and the HSTNNs with the optimal
SNN ratio. Acc.: accuracy and opts.: operations.
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How to determine an optimal SNN ratio in HSTNNs and thereby
achieve the balance between task performance and the computa-
tional cost is a crucial but open issue. This optimal SNN ratio is highly
context-dependent and varies according to specific user require-
ments, as the weights assigned to accuracy and the cost differ across
different environments. We show a heuristic method in Supplemen-
tary Information to address this challenge and provide an optimal
SNN ratio automatically searched in specific tasks. By formulating the
optimization problem and employing approximation optimization
methods such as subgradient descent, we demonstrate in Supple-
mentary Fig. 7 the feasibility of finding the optimal solution of the
SNN ratio. It allows users to customize the model based on their
specific needs and achieve an optimal trade-off between accuracy
and cost. The practical implications of this optimization process are
significant, as it facilitates real-world applications of HSTNNs in
practical environments for effective and efficient processing of
spatiotemporal data.

Hybrid neural networkmodels gainmore andmore interests from
different fields due to the rapid development of neuroscience and the
breakthrough of deep learning23,31. Several advantages of layer-wise
hybridization have been demonstrated in references23,24. These layer-
wise hybridization approaches focus on integrating non-recurrent
ANN and SNN modules using layer-wise strategies, providing efficient
solutions for practical applications such as optical flow estimation and
high-speed tracking tasks. In contrast, the proposed neuron-wise
hybridization approach in this work offers a finer-grained method of
hybridization, enabling real-time interaction of the coding and com-
putational features of different types of neurons. Moreover, the neu-
ron selection strategy employed in the Selection stage represents a
more general solution that encompasses layer-wise hybridization as a
specific case. We demonstrate in Supplementary Fig. 4 that the pro-
posed hybridization model can be applied to optical flow estimation,
yielding comparable results to those of specially designed single-
paradigm networks.

The proposed HSTNN is a very initial effort to bridge dynamic
models in machine learning and neuromorphic computing. As

aforementioned, HSTNNs have presented great potential in task per-
formance, model robustness, and computational cost, which provides
a flexible trade-off to satisfy variable environments and user require-
ments under a unified modeling and learning framework. The models
showcased in this work are relatively simple, offering considerable
scope for further enhancement. For instance, HSTNNs could be
enhanced with advanced transformer architectures and create deeper
and larger models, enabling the processing of more complex spatio-
temporal data. Furthermore, intelligent machines equipped with
neuromorphic chips can incorporate HSTNNs to process spatio-
temporal information collected by various sensors such as cameras,
microphones, electroencephalogramelectrodes, and so forth.We look
forward to inspiring more investigations for taking complementary
features and advantages of computer-science-oriented models and
neuroscience-oriented models.

Methods
Establishment of HSTNN
The HSTNN contains an input layer, one or multiple hidden hybrid
layers, and a readout layer. Each hybrid layer has a population of non-
spiking recurrent neurons and a population of spiking neurons. The
size of each population can be adaptively changeable during the
training process. To facilitate efficient training of hybrid models, non-
spiking recurrent neurons are simulated with synchronized timing as
spiking neurons. At each time step, neurons in the two populations
receive the same mixed inputs from the previous layer and their out-
puts in the previous time step, and then update the neural dynamics
and generate their respective outputs (rt or st). These outputs are
combined before being forwarded to the next processing layer. The
combined output ynt of the n-th hybrid layer at the t-th time step is
formalized as:

ynt =Concat SNN snt�1, y
n�1
t k θn

SNN

� �
, RNN rnt�1, y

n�1
t k θn

RNN

� �� �
,n=2,:::,N � 1, ð1Þ

where N denotes the number of layers. A detailed illustration of the
propagation of hybrid information in HSTNN is provided in

Fig. 5 | Comparing the efficiency ofRNNs, SNNs, andHSTNNs onneuromorphic
hardware. a Implementation of HSTNNs on the TianjicX chip. Two three-layer
neural networks on S-MNIST and N-MNIST datasets aremapped onto the chipwith

different mapping strategies. b Illustration of the two-layer mapping strategies.
c Execution latency and energy consumption of RNNs, SNNs, and HSTNNs with
different SNN ratios.
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Supplementary Fig. 1. To support diverse spike decoding schemes,
the HSTNN uses a generic parametric decoder d(x∣ω) capable of
decoding rate-based or timing-based information from the
output spike train fsN1 , sN2 ,:::, sNt g into a vector representation. The
parameter ω represents the weight matrix assigned to the output
spike train in the specific decoding scheme. The decoded spiking
information is concatenated with the RNN’s outputs to produce a
final output via a readout weightW N. This process can be formalized
as follows:

yNt =WNConcat rNt ,d sN1 , s
N
2 ,:::, s

N
t

��ω� �� �
: ð2Þ

In our experiments, we instantiate d(*) in a straightforward
form: di =

Pt
t0 = 1 ωi,t 0s

N
i,t0 , where di(*) represents the ith component

of d(*). In the neuromorphic dataset including N-MNIST,
DVS-Gesture, and CIFAR10-DVS, we decode the rate-based informa-
tion from output spike trains by setting an equal entry for
ωi,t0 =

1
t ,8i, t0; in the text analysis tasks, we employ the spike timing

information at the last time step by setting ωi,t = 1 and ωi,t0 =0
for t0 < t.

Neuron models for HSTNN
The HSTNN facilitates the integration of various non-spiking RNN
modules and spiking modules. In this work, we primarily instantiate
two representative RNN modules, including vanilla RNN and
LSTM, as well as two SNN modules, LIF and ALIF37, for constructing
the HSTNN. The behaviours of a vanilla RNN module can be descri-
bed by

rnt = σ W n,r
in yn�1t +W n

recr
n
t�1

� � ð3Þ

where rn denotes the hidden state, W n,r
in is the input weight matrix,

W n
rec is the recurrent weight matrix, and σ( ⋅ ) is the sigmoid( ⋅ ) func-

tion. The LSTM module consists of four gates and one continuous
variable, called cell state, which can be formulated as

in,rt = σ W n,r
in,iy

n�1
t +W n

rec,ir
n
t�1

� �
f nt = σ W n,r

in,fy
n�1
t +W n

rec,fr
n
t�1

� �
on
t = σ W n,r

in,oy
n�1
t +W n

rec,or
n
t�1

� �
gn
t =ϕ W n,r

in,gy
n�1
t +W n

rec,gr
n
t�1

� �
cnt = c

n
t�1 � f nt + int � gn

t

rnt =o
n
t � ϕ cnt

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4Þ

where i, f, andodenote the states of the input gate, the forgetting gate,
and the output gate, respectively.g, c, rdenote the candidate state, the
cell state, and the hidden state, respectively. ϕ( ⋅ ) denotes the tanhð�Þ
function and ⊙ is the Hadamard product. The LIF neuron simulta-
neously receives signals from the previous layer and the current layer
for updating its membrane potential u. When a neuron’s membrane
potentialui exceeds afiring thresholduth, the neuronfires a spike si and
resets its membrane potential to u0. The behaviours of the LIFmodule
can be written as

τ dunðtÞ
dt = � unðtÞ+W n,s

in yn�1ðtÞ
sni ðtÞ= 1& un

i ðtÞ=u0, if un
i ðtÞ≥uth

sni ðtÞ=0, otherwise

(
8>><
>>: ð5Þ

whereW n,s
in is the input weight matrix. To make the continuous neural

dynamics friendlier for programming the gradient-descent learning
approaches, we further convert Eq. (5) into an explicitly iterative

version8 as

un
t = e

�dt
τ un

t�1 � 1� snt�1
� �

+Wn,s
in yn�1t

snt =H un
t � uth

� �
,

(
ð6Þ

where H( ⋅ ) is the Heaviside function that satisfies H(x) = 1 when x ≥0
and H(x) = 0 otherwise. Here we assume u0 = 0.

Unlike the fixed firing threshold of the LIF neuron, the ALIF neu-
ron further introduces adaptive thresholds. The evolution of the firing
thresholds of the ALIF neuron, η, can be described as

bn
t = ρ

nbn
t�1 + ð1� ρnÞsnt

ηn
t =0:1 +α

nbn
t ,

(
ð7Þ

where ρn denotes the learnable parameters that control the update
rate of the adaptive thresholds. The parameter αn is a constant that
controls the size of adaptation of the thresholds, set to 0.2 by
default.

Details of the three-stage learning for HSTNN
We develop a three-stage learning methodology to create the HSTNN
progressively, including Adaptation, Selection, and Restoration stages.

Adaptation stage. To learn the optimal hybrid connections, the
adaptation stage expands each hybrid layer by two redundant neu-
ron populations. In particular, to generate a hybrid layer with M
neurons, it first introduces an SNN pool with M neurons and an RNN
pool withM neurons. Each pool works in its respective dynamics and
different types of signals are mixed by Eq. 1 before sending to the
next layer. The synaptic weights are trained by the BPTT learning
algorithm, producing a better starting point for the following Selec-
tion stage. In this way, the adaptation stage provides greater flex-
ibility in exploiting the hybrid structure and integrating the distinct
dynamic behaviours of RNNs and SNNs into a unified optimization
framework.

Selection stage. To select the optimal structure from the abundant
pools, the Selection stage identifies and ranks the importance of
neurons.

The neuronal importance is evaluated by aggregating the impor-
tance scores of its afferent weights. The weight score is evaluated
based on a classical parameter saliency measure16,38, which accesses
the saliency of a parameter through calculating the smallest change of
the loss function ΔL caused by perturbing the specific parameter.

Next, we will formulate the smallest change of the loss function
caused by the perturbation as an optimization problem16 and employ a
neuron-wise pruning strategy to adapt the saliency measure for the
hybrid model. A key relationship exists between the parameter per-
turbation and neuron pruning: pruning an unimportant neuron can be
formalized asperturbing themodel such that all weights connecting to
theunimportant neuronbecomezero (i.e.,Δw = −w, whereΔwdenotes
the weight perturbation). On this basis, the change of ΔL, expressed in
the Taylor expansion form, is governed by

L= ∇wLðwÞTw +
1
2
wTHw + Oðk wk3Þ: ð8Þ

Based on the OBS16, we assume that a trained neural network
model (i.e., the HSTNN established by the Adaptation stage) has con-
verged to a local minimum of the loss function L, where the gradient
yields ∇wL(w) = 0, and the Hessian matrix H is positive semidefinite.
Thus, ΔL can be primarily associated with the second-order term
containing the Hessian matrix ΔwTHΔw.
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We then formulate the process of finding the smallest change of
the loss function ΔL while removing the specific weight parameter wu

as an optimization problem:

min
Δw

1
2
ΔwTHΔw=

1
2

Δwu

Δwi

� �T Hu,u Hu,i

Hi,u Hi,i

� �
Δwu

Δwi

� �
s:t:Δwu +wu =0,

ð9Þ

where wu and wi denote the weight groups of unimportant and
important neurons, respectively. The Hessian matrix H can be further
written as a block matrix. Given the importance of wu is measured by
how its removal influences the smallest change in the loss function, we
set Δwu = −wu. Solving the above optimization problem using the
Lagrangian method yields:

Hi,iwi +Hi,uwu =0: ð10Þ

Substituting Δwi by wi =H
�1
i,i Hi,uwu results in a solution16 to Eq. (9):

1
2
wTHw=

1
2
wT

u

�
Hu,u � Hu,iH

�1
i,i Hi,u

�
wu: ð11Þ

By employing the Schur complement of the inverse matrix, we have

1
2
wT

u

�
Hu,u � Hu,iH

�1
i,i Hi,u

�
wu =

1
2
wT

u

	
H�1


�1
u,uwu: ð12Þ

The original OBS requires measuring the perturbation estimation for
all parameters separately and calculating the matrix inverse of the
Hessian matrix, which leads to an intolerable computational cost in
large-scale neural networks. Instead, we focus on evaluating the
comprehensive impact of a group of afferent weights connecting to
the same neuron. Therefore, we develop a neuron-wise strategy based
on the structural pruning method17. Specifically, we first group all
weight parameters connecting to a specific output neuron and
compute the corresponding perturbation when this group of weight
is pruned. Additionally, followingprevious studies17,38,39, we assume the
main saliency features are contained within the diagonal blocks.
Therefore, the Hessian matrix H can be approximated by a diagonal
block matrix where each block includes a diagonal operator:

1
2
wT

u

	
H�1


�1
u,uwu ≈

1
2
wT

uHu,uwu ≈
1
2
wT

u
TrðHu,uÞ

u
wu =

TrðHu,uÞ
2u

k wuk22
ð13Þ

where Tr(Hu,u) denotes the trace of the block diagonal Hessian of the
unimportant group. The above equation effectively avoids the com-
putation of the inverse of the Hessian matrix by using the trace of
Tr(Hu,u). Furthermore, we employ the Hutchinson method40,41 for cal-
culating the trace, which employs stochastic vectors to effectively
estimate the Hessian operator (see Eqs 6, 7 in reference41 for
implementations).

Consequently, the neuronal importance score, measured by the
above smallest perturbation, can be evaluated by the above Hessian
trace estimation with only a moderate computational cost. Consider-
ing the distinct neuronal dynamics and representation manners
between RNNs and SNNs, we rank the importance scores of spiking
and non-spiking neurons, separately. Specifically, we collect the same
types of neurons from all layers and uniformly sort them according to
the important scores. Given the ranking results, we select a certain
percentage of neurons from each pool as important neurons accord-
ing to the predefined SNN ratio.

Restoration stage. Given the ranking results, the Restoration stage
further prunes redundant neurons and their inactive connections and

fine-tunes the resulting compact network. To this end, we create the
corresponding binary mask matrix for the specified input weight
connections,W n,r

in and W n,s
in , and the recurrent weight connections of

RNNs, W n
rec, based on the indices of selected neurons.

Formally, let the total number of neurons in layernbe ln, the index
set of selected artificial neurons be RðnÞ : = fin1 ,:::, inkg and the index set
of the selected spiking neurons be SðnÞ : = fjn1 ,:::, jnk0 g. Let 1i be a column
unit vector with the i-th element being 1. The size of R(n) and S(n) are
denoted as ∣R(n)∣ and ∣S(n)∣, respectively. The mask matrix mn,r 2
Rln�1 × jRðnÞj for non-spiking neurons can be formalized using unit vec-
tors and ordering the indices in R(n) following an ascending order:

mn,r = ½1in1 ,:::, 1ink �, in1 ,:::, i
n
k 2 RðnÞ: ð14Þ

Similarly, themaskmatrixmn,s 2 Rln�1 × jSðnÞj for spiking neurons can be
formalized in a similar way:

mn,s = ½1jn1 ,:::, 1jnk0 �, jn1 ,:::, j
n
k0 2 SðnÞ: ð15Þ

We can then derive the concatenated mask matrix
mn�1 2 Rln�1 × ðjSðnÞj+ jRðnÞjÞ for both W n,r

in and W n,s
in

mn�1 =
mn�1,s 0

0 mn�1,r

 !
: ð16Þ

Given mn,r, mn,s, and mn−1, we derive the shrinked weights,
W 0n,r

in ,W 0n,s
in ,W 0n

rec in the n-th layer after the Restoration stage by

W 0n,r
in  ðmn,rÞTW n,r

in mn�1

W 0n,s
in  ðmn,sÞTW n,s

in mn�1

W 0n
rec  ðmn,rÞTW n

recm
n,r

8>><
>>: : ð17Þ

After that, we retrain the final compact HSTNN to fine-tune the
parameters.

Details of the learning algorithm for HSTNN. BPTT4 is a powerful
learning algorithm for RNNs and recently has been adapted to train
SNNs by addressing the convergence problem and the non-
differentiable spiking activities8,12,29. The training approaches for
both RNNs and SNNs share several core features, including the back-
propagation of gradients through spatial (layer-wise) and temporal
(time step-wise) dimensions, and the subsequent update of para-
meters based on these gradients across all time steps. Given these
similarities,we employ a unifiedBPTTmethodology, incorporating the
surrogate function for spiking activities, to train the HSTNN. We
introduce the notation δ for the gradient regarding the loss function L,
for example, δo= ∂L

∂o. For a vanilla RNN module, we have

δrnt =
�
W n+ 1,r

in

�T�
σ0 � δrn+ 1

t

�
+
�
W n

rec

�T�
σ0 � δrnt + 1

� ð18Þ

where σ0 represents the gradient of the activation function. For the LIF-
based SNN module, we have

δsnt = W n+ 1,s
in

� �T
δun+ 1

t � e�
dt
τ un

t � δun
t + 1

δun
t =H

0 � δsnt + e
�dt

τ

�
1� snt

�� δun
t + 1

8<
: ð19Þ

where H0 is the gradient of the Heaviside function, which is actually
non-differentiable. To solve this problem, we use the surrogate
function to approximate its gradient29. An empirical analysis of the
effect of specific surrogate function formats on theHessian trace, used
in the Selection stage, is provided in Supplementary Fig. 2. The gradient
expressions for more complex neuronal modules are similar to those
in Eqs. 18, 19 and thus are omitted here for clarity.
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Details of parameter configurations and model comprehensive
evaluation
We used consistent network structures for SNNs, RNNs, directly-
hybridmodels, and HSTNNs in Fig. 2. On N-MNIST, S-MNIST, and PTB
datasets, the network structures of [input-800-800-10], [input-800-
800-10], and [input-650-650-10,000] were employed, respectively,
to compare the task performance of different models. On the above
three datasets, the HSTNNs were built based on vanilla RNN and LIF
models. Please note that in our experiments, the network structure
consistently refers to the network structure after the three-stage
learning. By default, an equal number of spiking and non-spiking
neurons are utilized in the selection stage unless stated otherwise.
On DVS-Gesture, the network structure of [input-128C3-AP2-256C3-
AP2-384C3-AP2-256-11] was adopted, using recurrent convolutional
neural network (RCNN) and LIF-based spiking convolutional neural
network models for HSTNN construction. The implementation of
RCNN and RSNN followed the formulations in Eqs. 3–6 but with the
simple operation of weighted sum replaced by the convolutional
operation. For RCNN and RSNN, we adapted the selection process by
using a structural grouping strategy that selects the most important
output featuremap channels based on cumulative importance scores
across all neurons within the same feature map. The selected feature
maps are then maintained to create a reduced network structure for
retraining in the Restoration stage. The SGD optimizer was chosen for
the PTB dataset, while Adamwas for the S-MNIST, N-MNIST, andDVS-
gesture datasets. Detailed parameter configurations are provided in
Supplementary Table 1.

We employed the consistent loss functions across three learning
stages on all datasets. For the language modeling task, we utilized a
cross-entropy-based loss function, which can be formalized by

L = � 1
T

XT
t = 1

XlN
i= 1

gt,i log ŷNt,i
� �

ð20Þ

where gt is a one-hot vector that denotes the real distribution of
vocabularies and ŷNt = softmaxðyNt Þ denotes the predicted distribution
at the t-th time step. The most recent spiking temporal information
was used in Eq. 2 for computing yNt,i. For S-MNIST, a similar cross-
entropy loss was used:

L = �
XlN
i= 1

yi log yNT ,i
� �

: ð21Þ

where the rate coding was used in Eq. 2 for computing yNT ,i.
For classification tasks on neuromorphic datasets including

N-MNIST and DVS-Gesture, we used the Mean Squared Error loss
function:

L =
1
lN

XlN
i= 1

yi � yNT ,i
� �2

: ð22Þ

where lN denotes the number of neurons in the layer N and the rate
coding was used for computing yNT ,i.

The computational costwas evaluated at the operation level. For a
vanilla RNNmodule withMi input neurons andMo output neurons, the
computational cost can be estimated as:

CRNN ≈
�
MiMo

�
Cmul +Cadd

�
+MoMo

�
Cmul +Cadd

��
T

=
��
MiMo +MoMo

��
Cmul +Cadd

��
T

ð23Þ

where Cmul and Cadd denote the basic computational costs of a multi-
plication operation and an addition operation, respectively, and T
denotes the number of time steps. In order to provide an intuitive and
concise comparison, herewemainly estimated the computational cost
of matrix operations, which produces a great impact on the hardware

execution energy, and ignored the computation of the vector or scalar
operations. For our implementation of the LIF-based SNN module,
there is no recurrent matrix computation, and the multiplication
operations can be replaced with sparse accumulation operations
benefiting from thebinary spike format.We thereby evaluated the cost
of a LIF-based SNN module by

CSNN ≈ sCaddMiMoT ð24Þ

where s denotes the average spike rate during the entire inference
stage (normalized within [0, 1]). As with RNNs, the computational cost
of the vector or scalar operations is omitted for clarity. Sincemore and
more neuromorphic chips11,28 efficiently support the hybrid execution
between non-spiking computation and spiking computation, the
computational cost of a hybrid layer can be derived based on the
results of single-paradigm RNN or SNN modules. Assuming that there
are Mi1 non-spiking inputs, Mi2 spiking inputs, Mo1 RNN output
neurons, and Mo2 SNN output neurons, the computational cost of an
HSTNN layer yields

CHSTNN ≈ ½ðMi1ðMo1 +Mo2Þ+Mo1Mo1ÞðCmul +CaddÞ+ sMi2ðMo1 +Mo2ÞCadd �T
ð25Þ

where CHSTNN is smaller than CRNN owing to the insertion of the SNN
with a much lower computational cost. The estimation for other more
complicated neuron models is similar by incorporating more matrix
operations and we omit them for clarity.

Details of experimental setup for the robustness evaluation
HSTNNs were constructed using the optimal SNN ratio reported in
Fig. 2 for comparison: SNN ratiosof 0.25, 0.95, and0.75 for S-MNIST,N-
MNIST, and DVS-Gesture datasets, respectively. All models were
trained on standard training sets and evaluated on preprocessed
testing sets. Three types of model robustness were evaluated:
random noise robustness, frame-loss robustness, and adversarial
attack robustness. On the S-MNIST datasets, the network structures
[input-400-400-10] were employed. The same structures for N-MNIST
and DVS-Gesture as those used in Fig. 2 were employed in the
comparison.

In Fig. 3b, for the random noise robustness, we added the Gaus-
sian noise with a zero mean and a 0.05 standard deviation into each
testing sample of S-MNIST and added the salt-and-pepper noise into
each testing sample of N-MNIST with a probability of 0.1. For the
frame-loss robustness, we randomly masked some sequence infor-
mation of each frame of the testing sample with a probability
of 0.1. For the adversarial attack robustness, we generated the untar-
geted adversarial sample (x0) by adding an imperceptible perturbation
(δ) into the raw testing sample (x)42. The perturbation can be defined
by

argminδk δ k2, s:t:, f ðx +δÞ≠ f ðxÞ, ð26Þ

where f(x) generally refers to the output of the victim model. To solve
the above optimization problem, we followed the prior work42 and
took an iterative strategy to calculate the gradient with respect to the
spike input sample (xs) as follows:

δsi = xsi
Lðθ,xsi, yoriginalÞ, ð27Þ

where δsi represents the input gradient at the ith iteration. Since the
elements in δsi are continuous values, in order to generate the spike-
based adversarial input xs0i, we used a two-stage method proposed by
Liang et al.14, called gradient-to-spike (G2S) and restricted spike flipper
(RSF). Specifically, the G2S technique was used to convert the
continuous gradient into a ternary one (i.e., { − 1, 0, 1}) via probabilistic
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sampling from the normalization version of δsi:

δs0i = signðδmask � δsiÞ, Pðδmask = 1Þ
= normðjδsijÞ, Pðδmask =0Þ= 1� normðjδsijÞ,

ð28Þ

where δmask is a binary mask and norm( ⋅ ) is a scaling normalization
function that normalizes each element into the range of [0, 1]. Then an
overflow-aware transformation was utilized to avoid the overflow of
the resulting xsi, i.e., keeping the resulting xs0i as a binary spike within
{0, 1}. The entire G2S process can be described as

xs0i = transformðδs0i,xsiÞ: ð29Þ

The RSF technique was used to address the gradient vanishing pro-
blem.Whenmeeting all-zero input gradients, the spiking inputs can be
flipped randomly with a control of the turnover rate. We ran 20
iterations to generate each adversarial sample.

Details of the experimental setup for the scalability evaluation
In Fig. 3d, we demonstrated the combinations of vRNN&LIF,
vRNN&ALIF, and LSTM&LIF using the same network structure (i.e.,
[input-400-400-10]). For the RCNN&SCNN, we applied the network
structure as utilized in Fig. 2d. An optimal SNN ratio of 0.75, which
yielded the best classification accuracy, was selected for constructing
the HSTNNs. In Table 1, a network structure of [input-128C3-AP2-
256C3-AP2-384C3-256-10] was used for N-MNIST, and a structure of
[input-128C3-128C3-AP2-128C3-128C3-AP2-256C3-256C3-AP2-512C3-
512C3-512C3-512C3-10] was employed for CIFAR10-DVS. Optimal SNN
ratios of 0.875 for both N-MNIST and CIFAR10-DVS were adopted for
the construction of HSTNNs. We provided other parameter settings
and training details in Supplementary Table 1.

Details of experiments on the robot place recognition
We conducted robot navigation in three different environments: an
indoor environment with adequate lighting (env1), an outdoor envir-
onment with varying lighting conditions (env2), and an indoor envir-
onment with low lighting (env3). The robot traversed a predefined
path six times in each environment, collecting event-baseddata using a
DVS camera and frame-based data using an RGB camera. The path was
divided into 100 segments representing distinct places, and the
objective was to recognize the current scenario within these 100
classes. For data preprocessing, we utilized a pre-trained four-layer
CNN and a four-layer SCNN, as described in prior work30, to handle the
inputs from the RGB and DVS cameras, respectively, used for robot
place recognition. The CNN used for RGB images, processed inputs of
size 240 × 180 × 3 to include three RGB channels. The SCNN processed
event images with an input size of 240 × 180pixels, incorporating both
positive and negative polarity information. The parameters of both
pre-trained CNN and SCNN were fixed in our simulations. Outputs
from the CNN and SCNN models were combined and fed into a three-
layer HSTNN with a network structure of [input-500-500-100]. Due to
the different resolutions of DVS and RGB cameras, we used nine con-
secutive event images and three corresponding RGB images as a
training sample. The HSTNN was then constructed through our three-
stage hybrid approach, learning to recognize the correct place from
among 100 candidates. The training process involved 150 epochs for
the Selection stage and 100 epochs for the Restoration stage. We
employed the Adam optimizer and a cross-entropy loss function for
the three-stage learning stage. To evaluate computational cost, we
analyzed the overall number of operations performed by the hybrid
modules by utilizing Eqs. 23–25.

Details of implementation on neuromorphic hardware
TianjicX is a hybrid neuromorphic chip that can flexibly allocate
computing resources and schedule execution time for multiple

neural network tasks, including both ANNs and SNNs34. However,
the flexibility of the chip also complicates the deployment
of neural networks. We describe the mapping details when
deploying HSTNNs on TianjicX from a top-down perspective as
follows.

At the network level, layers were first grouped and mapped to
core groups, where the number of cores depends on the structure
and the computational cost of the layers. In the experiment, we
assigned a core group for each layer in HSTNNs. Core groups can run
in a pipeline manner on the TianjicX chip as depicted in Supple-
mentary Fig. 3b. The reported results were collected in the scenario
of running a single sample. The layer-level mapping strategies are
illustrated in Fig. 5b. We applied different mapping strategies for
different layers considering the layer size. In the fixed-core mapping,
a layer was mapped onto a core group containing a small fixed
number of cores dedicated to computing the RNN or SNN module,
respectively. The workload for each core varies according to the SNN
ratio. We used this strategy for small layers, such as those on S-
MNIST, and fixed both the core numbers for SNN or RNNmodules to
one. This is because partitioning a small layer cannot fully utilize the
parallelism of multiple cores but brings additional data transfer,
which can result in resource wastage and excessive power con-
sumption. In contrast, larger layers can utilize the resources
of multiple cores better, so we used more cores with a fixed
workload for each and allocated them for the SNN or RNN module
according to the SNN ratio. The TianjicX chip supports a primitive
instruction set that covers a wide range of operations. To perform
computation of the layers, we configured the primitive sequence for
each core. The operations required by HSTNNs were listed in Sup-
plementary Fig. 3c. We used 8-bit integers for the outputs of both
RNN and SNN populations, thus simplifying the output concatena-
tion in each layer.

Following the mapping steps above, we successfully imple-
mented HSTNNs on the TianjicX development board (see Supple-
mentary Fig. 3d). The execution latency and energy consumption
results shown in Supplementary Fig. 3a validated the efficiency and
flexibility of HSTNNs. It is worth mentioning that the execution
latency of HSTNNs can be shorter than that of the sole SNN. For the
networks on S-MNIST, we noticed that although a sole SNN (with the
SNN ratio of 1) has the least computational workload, it doesn’t
achieve minimal latency due to the utilization of only a single core.
Conversely, for hybrid models, as the SNN ratio decreases, the
latency of the SNN core shortens, and that of the RNN core length-
ens. The total latency is the maximum of the latencies consumed by
the two cores, thus achieving the minimum value when their laten-
cies are equal. In the case of the networks on N-MNIST, we found that
the latencies at SNN ratios of 0.75 and 1 were almost identical, pos-
sibly because the minimal additional latency of the small RNN
module in the first layer at the SNN ratio of 0.75 may be offset by the
data transfer latency and the off-chip measurement we adopted
might introduce errors.

Data availability
All data used in this paper are publicly available. The S-MNIST and
MNIST datasets are available at http://yann.lecun.com/exdb/mnist/.
The PTB dataset is available at https://catalog.ldc.upenn.edu/docs/
LDC95T7/. The DVS-Gesture dataset is available at https://ibm.ent.box.
com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8. The CIFAR10-DVS data-
set is available at https://figshare.com/articles/dataset/CIFAR10-DVS_
New/4724671/2. The N-MNIST dataset is available at https://www.
garrickorchard.com/datasets/n-mnist. TheNeuroGPRdataset, used for
place recognition tasks, can be accessed at https://zenodo.org/record/
7845007/. The Multi Vehicle Stereo Event Camera (MVSEC) dataset is
available at https://daniilidis-group.github.io/mvsec/. Source data are
provided with this paper.
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Code availability
Source codes for reproducing the results in this paper are available at
https://github.com/shibizhao/hstnn-demo, with Zenodo link https://
zenodo.org/records/1316681843.
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