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Target-oriented proactive dialogue systems aim at leading conversations from a dialogue context toward a

pre-determined target, such as making recommendations on designated items or introducing new specific

topics. To this end, it is critical for such dialogue systems to plan reasonable actions to drive the conversa-

tion proactively, and meanwhile, to plan appropriate topics to move the conversation forward to the target

topic smoothly. In this work, we mainly focus on effective dialogue planning for target-oriented dialogue

generation. Inspired by decision-making theories in cognitive science, we propose a novel target-constrained

bidirectional planning (TRIP) approach, which plans an appropriate dialogue path by looking ahead and look-

ing back. By formulating the planning as a generation task, our TRIP bidirectionally generates a dialogue

path consisting of a sequence of <action, topic> pairs using two Transformer decoders. They are expected

to supervise each other and converge on consistent actions and topics by minimizing the decision gap and

contrastive generation of targets. Moreover, we propose a target-constrained decoding algorithm with a bidi-

rectional agreement to better control the planning process. Subsequently, we adopt the planned dialogue

paths to guide dialogue generation in a pipeline manner, where we explore two variants: prompt-based gen-

eration and plan-controlled generation. Extensive experiments are conducted on two challenging dialogue

datasets, which are re-purposed for exploring target-oriented dialogue. Our automatic and human evaluations

demonstrate that the proposed methods significantly outperform various baseline models.
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1 INTRODUCTION

Human-machine dialogue systems have made significant progress in chatting with users for en-
tertainment, e.g., open-domain dialogues [57, 58, 70], and assisting users in accomplishing specific
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Fig. 1. An illustrative example from the re-purposed DuRecDial [29] dataset. Given a pre-determined tar-

get and a dialogue context, our objective is to generate utterances that proactively and smoothly lead the

conversation to achieve the target.

tasks, e.g., task-oriented dialogues [32, 56, 61]. Despite passively responding to users, dialogue
systems can also take a more proactive role [2, 62] to introduce new interesting topics to users.
Such a target-oriented proactive dialogue system looks more intelligent, sociable, and capable of
directing the users toward topic areas that the system knows how to talk about [8]. However, pre-
vious studies [8, 41, 47, 62] mainly focus on the scenario of open-domain dialogues. They define
the target as a commonsense topic and explore bridging an initial dialogue context and the given
topic. Such a scenario is difficult to be generalized to real-world applications.
In this work, we take a further step toward amore challenging target-oriented dialogue scenario,

where the target is defined as an <action, topic> pair, such as providing recommendations for a
specific topic that possibly attracts users. It requires the system to take more engaging actions
to achieve the target, such as social chitchat, user exploration, topic elicitation, recommendation,
and so on. As an example shown in Figure 1, suppose there is an explicit target, i.e., to recommend
a specific movie named “Dearest”, the system (i.e., Bot) is required to lead the conversation (e.g.,
“greeting”→ “ask user”→ “chat about the star”→ “movie recommendation”) so as to recommend
the targetmoviewhen appropriate. It needs to consider the pre-determined target, dialogue history,
and grounding domain knowledge (and user profile, if any). Particularly, the grounding domain
knowledge associated with domain-specific topics and relevant attributes, is crucial to enable mul-
tiple topic transitions (e.g., warm-up chitchat→ “Get in, and Go”→ “Bo Huang”→ “Dearest”). It is
non-trivial to solve target-oriented dialogue generation for two reasons: (1) The system needs to
keep the conversation engaging and proactively drive the conversation; (2) The system is desired
to move the conversation forward to the target topic coherently and arouse the user’s interest in
the target topic to be recommended.
To address the above challenges, we observe that effective dialogue planning [54, 55] is essential

for target-oriented dialogue generation. In order to achieve its target, the system needs to plan rea-
sonable actions and appropriate topics to smoothly move the conversation forward to the target
topic before generating each system utterance.1 According to decision-making theories [14, 50] in

1We use the term “system utterance” in this article rather than “response” used in a lot of related work since the system

needs to proactively lead the conversation in most cases.
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cognitive science, humans tend to look ahead (forward) and look back (backward) when making
decisions to achieve a long-term goal. Such bidirectional thinking alleviates short-sighted cogni-
tion and drives people to think about the complete decision pathmore. Similarly, in target-oriented
proactive dialogue, the target has been designated in advance and should be bounded at the end
of the dialogue path to be planned, backward path planning is effective in leveraging target-side
information but insensitive to the coherence of the dialogue context. In contrast, forward path plan-
ning is more effective in generating a starting path point that is coherent with the dialogue context,
while lacking the target-driven ability to enable the target to be bounded at the end of the dialogue
path to be planned. With this in mind, we propose a TaRget-constrained bIdirectional Planning
(TRIP) method. The key point is to plan dialogue paths from both look-ahead (i.e., present-to-
target) and look-back (i.e., target-to-present) directions. Generally, it is more appropriate when
the look-ahead decision path is consistent with the look-back decision path. By formulating the
planning as a generation task, our TRIP bidirectionally generates dialogue paths consisting of a
sequence of <action, topic> pairs (see Figure 1) based on an encoder-decoder architecture. Con-
cretely, we first take widely-used pre-trained language models, e.g., BERT [4], to encode complex
input texts efficiently. Then, we employ two individual Transformer [53] decoders for dialogue
path generation, with one to generate a dialogue path in the target-to-present direction and the
other to generate one in the present-to-target direction. By minimizing the decision gap between
the two directions, the two decoders are expected to provide supervision to each other and con-
verge on a consistent dialogue path. In addition, we propose a contrastive generation mechanism
(see Section 4.2) to enhance TRIP with the ability to better distinguish between the given tar-
get and non-targets. It enables TRIP to be more robust in generating the necessary target in the
planned dialogue path accordingly. During inference, we propose a target-constrained decoding
algorithm (see Section 4.3) with a bidirectional agreement, which reduces the gap between infer-
ence and training and facilitates themodel to generate an appropriate dialogue path as the ultimate
output.
Since each planned dialogue path outlines how to achieve the pre-determined target step by step,

it is expected to help a dialogue system distill necessary knowledge and steer the system to gen-
erate more proper utterances with control. We adopt the planned dialogue path to guide dialogue
generation in a pipeline manner, where we explore two variants: prompt-based generation (see
Section 5.1) and plan-controlled generation (see Section 5.2). As part of this work, we re-purpose
two existing recommendation-oriented dialogue datasets, namely DuRecDial [29] and DuRecDial
2.0 [28], for target-oriented dialogue generation through automatic target construction. Extensive
experiments are conducted to show the effect of planning and the performance of different dia-
logue generation methods. Both automatic and human evaluations demonstrate that our proposed
methods significantly outperform various baseline models.
Overall, our contributions are summarized as follows:

—We introduce the target-oriented dialogue generation task and discuss its relation and dif-
ference (Sections 2 and 3) compared to existing works.

—We propose a novel target-constrained bidirectional planning (TRIP) approach (Sec-
tion 4) for target-oriented proactive dialogue systems. Our TRIP plans a dialogue path con-
sisting of a sequence of <action, topic> pairs that outline how to achieve the designated
target proactively and smoothly.

—We investigate both the prompt-based and plan-controlled methods (Section 5) to leverage
planned dialogue paths to guide dialogue generation effectively.

— Experimental results show that our method achieves state-of-the-art performance in both
automatic and human evaluations. Our extensive analysis provides some new insights into
how planning affects target-oriented dialogue generation.
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2 RELATEDWORK

Our work is mainly related to target-oriented dialogue, recommendation-oriented dialogue, and
content planning for natural language generation. We briefly review related work and clarify key
differences compared with our work as follows.

2.1 Target-oriented Dialogue

Target-oriented dialogue systems work on the task of generating responses guided by the given
target. According to the variety of the target, previous works have mainly focused on using a
keyword [39, 47, 72], a topic [41, 62], and a concept or a sentence [8] as the guided target. For
example, [47] introduced some coarse-grained keywords to control the intended content of the re-
sponses in open-domain dialogues, while [72] leveraged external commonsense knowledge graphs
for keyword transitions. As a follow-up study, steering a dialogue toward a given keyword, or di-
alogue strategy learning, has also been explored in past work, including graph grounded policies
[64, 65] and conversational lines [6]. For topic-guided dialogues, [62] investigated using an en-
tity over a factual knowledge graph as the target topic, which requires the system to achieve a
smooth transition from an initial topic to the given target topic. A new dataset called OTTers [41]
was collected to explore one-turn topic transitions for open-domain response generation. More
recently, [8] proposed to identify a bridging path of commonsense knowledge concepts between
the dialogue context and the target sentence using data augmentation. Our work is more related
to prior settings [25] on target topics and target sentences. However, existing works mainly fo-
cus on the scenario of open-domain target-guided dialogue, where they mainly consider guid-
ing chitchat conversations to the target with transitions on commonsense topics. In compari-
son, we work on a more challenging setup that aims at achieving the target action for a des-
ignated target topic. It requires the system to take more engaging dialogue actions, such as so-
cial chitchat, user exploration, topic elicitation, and recommendation, to attract users so as to
complete the target. We also clarify that existing studies on goal-oriented dialogue [7, 44] fo-
cus on the user-side goal or task, while our work explores the system-side target (or a specific
goal).

2.2 Recommendation-oriented Dialogue

As a special type of task-oriented dialogue system, a recommendation-oriented dialogue system is
desired to make recommendations through natural conversations with users. It was the emergence
of various recommendation-oriented dialogue datasets that helps push forward the research in
this area, such as GoRecDial [15], TG-ReDial [74], INSPIRED [9], and DuRecDial [29]. As follow-
up studies, CR-Walker [30] was proposed to perform tree-structured reasoning over knowledge
graphs, which can then be mapped into hierarchical dialogue acts to guide both item and response
generations.MGCG [29] and KERS [68] explored the transition policy from a non-recommendation
dialogue to a recommendation-oriented one. There is another similar research area called conver-
sational recommender systems (CRS) [22, 26, 46]. Compared with recommendation-oriented
dialogue systems, the main task of CRS lies in discovering user preferences [63, 66], asking clarify-
ing questions about item attributes [19, 23], and searching for optimal candidate items [24, 69, 73].
In addition, [3] unified item recommendation and response generation into the same sequence-
to-sequence (Seq2Seq) paradigm using prompt-based learning. Nonetheless, most existing sys-
tems passively respond to a user, where they provide recommendations according to the user’s
expressed interests or requirements. Our work aims at endowing a dialogue system with a more
proactive role that can attract the user’s interests and naturally lead user-engaged dialogues to
achieve a pre-determined target.
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2.3 Content Planning for Language Generation

There is a line of work [12, 33, 38, 45] that separates natural language generation into content

planning and surface realization. Content planning mainly focuses on selecting the key contents
(e.g., key phrases and entities) and arranging their orderings [33, 38], followed by a neural gen-
eration stage that focuses only on realization. Different strategies have been explored for con-
tent planning. For example, [43] proposed a hierarchical variational model for planning-based
data-to-text generation, where a global latent variable models the diversity of planning and a se-
quence of local latent variables controls sentence realization. [13] presented a planning framework
with iterative refinement to leverage large pre-trained language models for argument generation
and article writing. For long-form text generation tasks, several studies [10, 11] conducted dy-
namic content planning while generating the output based on mixed language models to bridge
the gap between content planning and sentence realization. Compared to these prior studies, our
work is more related to planning for dialogue generation [54, 67]. We aim at addressing a more
challenging dialogue generation task, where we propose a novel target-constrained bidirectional
planning method to guide pre-trained language models to generate dialogue utterances more
effectively.

3 PRELIMINARIES

In this section, we aim at providing preliminaries about the problem formulation and introduce
essential sub-tasks accordingly. Then, we briefly introduce our proposed method with respect to
addressing the problem effectively.
Suppose we have a target-oriented dialogue corpusD = {(Ki ,Pi ,Hi )}

N
i=1, where N denotes the

number of dialogue samples.Ki = {ki, j }
NK

j=1 denotes a set of domain knowledge facts relevant to i-

th dialoguewith each elementki, j in form of a 〈subject, relation, object〉 triple.Hi = {(Xi,t ,Yi,t )}
T
t=1

denotes dialogue content with a total number ofT turns. Pi = {(ai,l , zi,l )}
L
l=1

denotes an annotated
dialogue path for ith dialogue, each path span specifies an action-topic pair (a dialogue action ai,l
and a dialogue topic zi,l ). L is the number of unique action-topic pairs. Here, the dialogue topics
are mainly constructed upon the domain knowledgeKi , and each action/topic may affect multiple
turns of dialogue. In some scenarios, there also exists a user profileUi grounded on the ith dialogue,
which can be personal attributes or certain preferences.

Given a target G
′
= (aT ′ , zT ′ ) consisting of a target action aT ′ and a target topic zT ′ , a dialogue

historyH
′
, and a set of relevant domain knowledgeK

′
(and a user profileU

′
, if any), our objective

is to generate coherent utterances to engage the user in the conversation so as to achieve the target
G
′
when appropriate. Due to the complexity of the problem, it can be decomposed into three sub-

tasks: (1) action planning, i.e., plan actions to determine where the conversation should go to lead
the conversation proactively; (2) topic planning, i.e., plan appropriate topics to move forward to
the target topic smoothly; (3) dialogue generation, i.e., generate an appropriate utterance to
achieve the planned action and topic at each turn.
To address the above tasks, we propose a target-constrained bidirectional planning method to

guide dialogue generation in a pipeline manner. The target-constrained bidirectional planning
aims at simultaneously solving sub-tasks of action planning and topic planning, which plans a
reasonable dialogue path consisting of a sequence of dialogue actions and topics with proper or-
derings. At each turn, the planned path drives the system to distill necessary knowledge from
the grounding domain knowledge and meanwhile guides the system to generate a proper utter-
ance. We describe the details of the target-constrained bidirectional planning in Section 4 and
plan-guided dialogue generation in Section 5, respectively.
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Fig. 2. Overview of our target-constrained bidirectional planning (TRIP).

4 TARGET-CONSTRAINED BIDIRECTIONAL PLANNING

In this section, we propose aTaRget-constrained bIdirectionalPlanning (TRIP) model to facilitate
the system lead the conversation to achieve the pre-determined target. The overview of our TRIP
is shown in Figure 2. Our TRIP is built with an encoder-decoder architecture, where we adopt two
encoders to represent complex input texts and two individual decoders (i.e., a backward decoder
and a forward decoder) to complete bidirectional planning.

4.1 Input Encoding

To efficiently represent various types of input, we take thewidely-used pre-trained languagemodel
BERT [4] as our basic encoder. As shown in Figure 2, we concatenate the domain knowledge K
and dialogue history H (and the user profile, if any) as the context. We separate them with a
special token [SEP], which is consistent with the processing in BERT. Then, the context sequence
is encoded using a BERT encoder, denoted as EC . For the given target consisting of a target action
aT ′ and a target topic zT ′ , we refer to the concatenated text of aT ′ and zT ′ as the target T . We adopt
two new special tokens [A] and [T] to differentiate aT ′ and zT ′ , e.g., “[A]Movie Recommendation

[T] Dearest”. Then, the target T is encoded using another BERT encoder ET . Briefly, the encoding
of input is formulated as follows:

HC = BERT Encoder EC ([K ;H]), (1)

HT = BERT Encoder ET (T ), (2)

where HC = (h1, h2, · · · , hL) ∈ R
d×L , HT = (h1, h2, · · · , hL′ ) ∈ R

d×L
′

, L and L
′
denote context

length and target length respectively, d is the hidden size. Here, both HC and HT are token-level
hidden representations. To maintain full input information for the subsequent planning, we con-
catenate HC and HT as the final input representation, denoted asM = [HC ;HT ].

4.2 Backward-forward Path Generation

Our TRIP aims at planning a reasonable dialogue path consisting of a set of dialogue actions and
topics with proper orderings, and this planning process performs in a generation-based manner.
We let TRIP generate a forward (present-to-target) path and a backward (target-to-present) path,
respectively. It should be noted that the target actionaT ′ and target topic zT ′ are bounded at the end
of the path to be planned. For example, at t th turn, a forward dialogue path is “at |zt → at+1 |zt+1 →

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 124. Publication date: April 2024.
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· · · → aT ′ |zT ′ ” while its backward dialogue path is “aT ′ |zT ′ → aT ′−1 |zT ′−1 → · · · → at |zt ”.
Planning a dialogue path from two opposite directions provides supervision to each other during
training, and is expected to derive more reasonable dialogue action-topic pairs that compose the
ultimate dialogue path, imitating humankind’s bidirectional thinking.
In detail, our TRIP generates the two paths based on the Transformer [53] decoder architecture.

We adopt two individual Transformer decoders DB and DF to generate the backward and forward
paths, respectively. Both two decoders take the encoded hidden representationM as input and then
output a dialogue path token by token, i.e., “[A]a1a2 · · · [T]t1t2 · · · [EOS]”, in an autoregressive
manner. Here, ai denotes an action token, ti denotes a topic token, [A] and [T] are two special
tokens shared with the encoder ET to differentiate an action and a topic, [EOS] denotes the end of
the path sequence. For the backward decoderDB , suppose the output dialogue path y is represented
in token level, i.e., y = (y1,y2, · · · ,yT ) with a sequence length of T , and it is conditioned on the
input text sequence (denoted as x), the conditional distribution is approximated as follows:

pθ (yt |y<t , x) = softmax(WhBt + b), (3)

hBt = DB (yt−1,M), (4)

where W ∈ Rd×d , b ∈ Rd denote trainable parameters. We train the backward decoder DB by
minimizing the negative log likelihood for given N observations {(x(i), y(i))}Ni=1 as follows:

LB
д (θ ) = −

N∑
i=1

p(y(i)) logpθ (ŷ
(i) |x(i)), (5)

wherep(y(i)) is the distribution of the ground-truth path sequence, whilepθ (ŷ
(i)) is the distribution

of the approximated output path sequence, θ denotes all trainable parameters. Similarly, we train
the forward decoder DF following the above equations, with the loss function denoted as LF

д .

Reducing Gap between Backward-Forward Paths. Although the backward and forward
paths are different, agreement on the dialogue actions and topics derived from the two paths is
necessary since the two paths are planned for the same dialogue. By minimizing the decision gap
between the backward path and the forward path, the two decoders (i.e., DB and DF ) are expected
to provide supervision to each other and converge on consistent dialogue actions and topics. In
detail, we adopt the composition of a linear transformation with the ReLU [34] activation function
and an average pooling to obtain the fixed-sized representation of a path, given by

h̄B = f (VB ), h̄F = f (VF ), (6)

f (V) = AvgPool([v1 · · · vT ]),where vt = ReLU(W1ht + b1), (7)

where W1 ∈ R
d×d , b1 ∈ R

d denote trainable parameters, ht stands for decoder hidden state.
h̄B ∈ Rd and h̄F ∈ Rd are fixed-sized representation of the backward path and the forward path,
respectively. Then, we reduce the gap between the two paths by minimizing L2 distance between
h̄B and h̄F as follows:

Ld = | |h̄
B − h̄F | |2, (8)

where the distance Ld is added to the training loss as a regularization term.

Contrastive Generation of Targets. Since our dialogue path generation model is trained with
teacher forcing and never exposed to incorrectly generated actions or topics during training, it
is insufficient to distinguish between the given target action/topic and other actions or actions.
Hence, the model may struggle to constrain the given target generated in the path. To remedy
such a situation, we propose a contrastive generation framework (see Figure 2) to expose themodel
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to various incorrect output targets for a given input target T . Following the contrastive learning
framework [18] for conditional text generation, we train the model to learn the representations
of the ground-truth dialogue path by contrasting the positives with the negatives. The critical
difference is that, we construct the perturbed negative examples by replacing the target topic in
the ground-truth path with multiple randomly sampled topics {zk }

K
k=1
(zk � zT ′ ) from the domain

knowledge K , such that the training paths are difficult for the model to distinguish correctly. By
identifying which features make the output path negative, these perturbed negative examples are
expected to leverage encoders and decoders to learn an adequate representation of the target. It
tries to enable our model to generate the necessary target in the path accordingly.
In detail, for the text span consisting of the target action aT ′ and topic zT ′ separated with the spe-

cial tokens [A] and [T] in the two decoders, we project their hidden representations into the latent
space following Equation (6) and Equation (7), obtaining fixed-sized target representations h̄B

T
′ and

h̄F
T
′ respectively. Similarly, for the constructed negative examples, we also project those negative

targets into the latent space following Equation (6) and Equation (7), obtaining corresponding neg-
target representations. Since the pre-determined target T is encoded by the encoder ET , we pull
the ground-truth target representations in the decoders to the encoded target representation while
pushing the neg-target representations in the decoders far away from the encoded target represen-
tation (see Figure 2). Then, we maximize the similarity between the pair of the encoder-decoder
targets, while minimizing the similarity between the negative pairs as follows:

LB
CL = − log

exp(sim(h̄E , h̄B
T
′ )/τ )∑

h̄B
k
∈SB exp(sim(h̄

E , h̄B
k
)/τ )
, (9)

LF
CL = − log

exp(sim(h̄E , h̄F
T
′ )/τ )∑

h̄F
k
∈S F exp(sim(h̄

E , h̄F
k
)/τ )
, (10)

where h̄E denotes the averaged representation of the target T in the encoder ET after transforma-
tion following Equation (6) and Equation (7), h̄B

T
′ and h̄F

T
′ are the ground-truth target representa-

tions in the two decoders, respectively. SB and SF stand for a set of neg-target representations in
the two decoders, respectively. sim(·, ·) is a cosine similarity function, τ is a temperature coefficient.
Furthermore, we use the averaged result between LB

CL and L
F
CL as the contrastive generation loss:

LCL =
1

2

(
LB
CL + L

F
CL

)
. (11)

Training. During training, we train our TRIP model by minimizing all the losses introduced
above. We use two hyperparameters β and γ to control the importance of gap reducing and con-
trastive generation, given by

L = LB
д + L

F
д + βLd + γLCL . (12)

4.3 Target-constrained Decoding

After training is done, our TRIP model can be directly used to generate a dialogue path consisting
of a set of dialogue actions and topics during inference. Alternatively, we can either use the forward
decoder DF to generate a path from the present to the target (denoted as “forward generation”),
or use the backward decoder DB to generate a path from the target to the present (denoted as
“backward generation”). In order to take advantage of the bidirectional decoders, we propose a
simple yet effective target-constrained decoding algorithm with a bidirectional agreement based
on the widely-used beam search decoding algorithm.

ACM Trans. Inf. Syst., Vol. 42, No. 5, Article 124. Publication date: April 2024.
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Fig. 3. Illustration of our target-constrained beam search decoding with bidirectional agreement.

First, each dialogue path is desired to be generated with lexical constraints, i.e., the target action
and the target topic should be generated at the end of the path for “forward generation” while
generated at the beginning of the path for “backward generation”. To this end, we adopt two ad-
ditional strategies to fulfill the lexical constraints. For the forward decoder DF , we employ the
dynamic beam allocation (DBA) [37] algorithm with a beam size of k to perform lexically con-
strained decoding, where the required constraint is defined as the given target action and topic.
For the backward decoder DB , we directly take the target tokens (i.e., a text span consisting of the
target action and topic separated with the special tokens [A] and [T]) as the beginning input of
the decoder, and then employ vanilla beam search decoding with the same beam size of k .
Second, after the two decoders finish the search process, we obtain k backward candidates (i.e.,

path sequences) and k forward candidates. As shown in Figure 3, to select the best one path se-
quence as the decoding output, we rank the backward candidates by the following scoring function:

Yb = argmax
Y
(i )

b
∈S

Pθb

(
Y (i)
b

)
+ λ ·

(
−
1

k

k∑
j=1

Ld

(
h̄
(
Y (i)
b

)
, h̄

(
Y (j)
f

)))
, (13)

where S denotes a set of backward candidates, Pθb (Y
(i)

b
) denotes the likelihood of the candidate

Y (i)
b
. Ld (·, ·) denotes L2 distance between a backward candidate and a forward candidate, which

is obtained by passing each pair of backward-forward candidates into the model and computed
following Equation (8). Intuitively, the above scoring function ranks the backward candidates
by likelihood and gives a partial reward to candidates that satisfy higher agreement (i.e., shorter
distance) with the forward candidates, which reduces the gap between inference and training and
facilitates the model to select a better one. Here, λ is a hyperparameter controlling the weight
of the reward term. Note that we can also select the best one path sequence from the forward
candidates using a similar scoring function, which performs a little inferior in most cases in our
preliminary experiments. Therefore, by default, we select the best dialogue path sequence from
the backward candidates as the ultimate planning output using Equation (13).

5 PLAN-GUIDED DIALOGUE GENERATION

As mentioned in the preliminaries, we adopt the planned dialogue path (denoted as “plan path”
P for short) to guide dialogue generation in a pipeline manner. We expect these plan paths can
help a dialogue system distill necessary knowledge and steer the system to generate more proper
utterances with control. To achieve plan-guided dialogue generation, we devise two variants and
describe them below.

5.1 Prompt-based Generation

Motivated by previous works that employ prompt-based learning for dialogue systems [31, 71],
we regard each plan path P as the natural language prompt and then adopt a pre-trained gen-
erative language model (LM), e.g., GPT-2 [40], for dialogue generation. The overview of our
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Fig. 4. Overview of our prompt-based dialogue generation.

prompt-based dialogue generation is shown in Figure 4. Formally, the plan path P is concatenated
into the given dialogue historyH and domain knowledge K (and the user profile, if any), formu-
lating the input context X as follows:

X = [K ;H ;P], (14)

where “;” denotes concatenation. Here, the plan pathP provides essential information that outlines
how to achieve the target step by step. With the power of pre-trained LMs, the plan path P aims at
distilling necessary knowledge from both input context and LMs. In particular, the input contextX
is fed into the pre-trained GPT-2 [40] model to generate the system utterance Y = {yt }

n
t=1, where

yt is given by

yt = GPT-2(y<t ,X ). (15)

We fine-tune GPT-2 for a few epochs using ground-truth plan paths in the dataset during training,
while we adopt the plan paths generated by our TRIP model during inference.

5.2 Plan-controlled Generation

Considering that the plan path P outlines how to achieve the target step by step with a sequence
of dialogue actions and topics, we expect to better leverage such critical information to control
the attribute (e.g., switching or target topics) of dialogue generation. Inspired by plug-and-play
language models for controllable language generation [1], we propose a plan-controlled dialogue
generation method (see Figure 5). Built upon the pre-trained LM p(y), e.g., GPT-2, we employ a
simple plan model p(a |y) to act as the attribute controller, which guides the generation of the LM
p(y) through gradients. Considering that the generation of system utterances follows the condi-
tional form of p(y |a) ∝ p(y) ·p(a |y), we shift the hidden states of generation in the direction of the
sum of two gradients: one toward higher log-likelihood of the unmodified LM p(y) and one toward
higher log-likelihood of the attribute a under the conditional plan model p(a |y). Combining the
two factors together makes it controllable to guide dialogue generation in a given direction (i.e.,
the plan path P) with specified strength.
Concretely, as shown in Figure 5, we take the concatenated context X following Equation (14)

as input and employ the pre-trained GPT-2 (denoted as LM p(y)) for dialogue generation. Let us
define the cached hidden representationsHt of the LM p(y) as all key-value pairs from the past, i.e.,

Ht = [(K
(1)
t ,V

(1)
t ), · · · , (K

(l )
t ,V

(l )
t )], where (K

(i)
t ,V

(i)
t ) corresponds to the key-value pairs from the

ith layer generated at all time-steps from 0 to t . Efficient computations of the LM p(y) to generate
the next token yt+1 using the cached Ht are summarized as

ot+1,Ht+1 = LM(yt ,Ht ), (16)

yt+1 ∼ p(yt+1) = softmax(Wot+1), (17)

where W is a linear transformation that maps the hidden vector ot+1 to a vector of vocabulary
size. On top of that, we build a simple plan model (denoted as p(a |y)) using a Transformer [53]
decoder. The planmodelp(a |y) aims at re-generating the given plan pathP conditioning on hidden
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Fig. 5. Overview of our plan-controlled dialogue generation.

vectors {o0, o1, · · · , ot } of the LM p(y) across all time-steps from 0 to t . Here, the plan model
p(a |y) performs as a generative discriminator that gives the LM p(y) a higher reward for having
the desired generation direction, i.e., the plan path P. During training, we jointly train the plan
model p(a |y) and fine-tune the LM p(y) by maximizing log-likelihood.

During inference, we use the plan model p(a |y) to control the output of the LM p(y) at every
generation step t , following [1]. As shown in Figure 5, a forward pass is performed first through
the LM p(y) to compute the unmodified likelihood. In step 2, a backward pass updates the cached
key-value pairs Ht with gradients from the plan model p(a |y). Let ΔHt be the update to Ht , such
that the generation with (Ht + ΔHt ) shifts the distribution of the generated utterance so that it is
more likely to satisfy the plan path P. ΔHt is initialized at zero and updated as follows:

ΔHt ← ΔHt + α
∇ΔHt

logp(a |Ht + ΔHt )

‖∇ΔHt
logp(a |Ht + ΔHt )‖

, (18)

where α is the step size. This updating step can be repeated multiple times while in practice we
update once for computational efficiency. Subsequently, we use the updated key-value pairs to
recompute the perturbed hidden vector õt+1, given by

õt+1,Ht+1 = LM(yt , H̃t ),where H̃t = Ht + ΔHt . (19)

The perturbed õt+1 is then used to generate the next token yt+1 following Equation (17).

6 EXPERIMENTAL SETUP

6.1 Datasets and Processing

Datasets. The task of target-oriented dialogue generation is still relatively under-explored. Al-
though many publicly available dialogue datasets exist, we find the DuRecDial [29] and DuRecDial
2.0 [28] are the most suitable datasets for this task to the best of our knowledge. The system of-
ten leads the dialogue proactively instead of passively responding to users in the DuRecDial and
DuRecDial 2.0 datasets, with rich interactive actions such as chitchat, question answering, rec-
ommendation, and so on. We first briefly introduce the two datasets and then introduce how we
re-purpose the datasets for target-oriented dialogue generation.
The original DuRecDial and DuRecDial 2.0 datasets were collected from crowdsourced human-

to-human dialogues. One person was defined as the seeker (the user’s role) and the other as the
recommender (the system’s role) in a dialogue. The recommender was required to proactively lead
the dialogue and make recommendations by introducing new topics. Each seeker was equipped
with a user profile containing user attributes (e.g., name, age range) and his/her past preference
information. In order to perform smooth conversations with the seeker, the recommender has a
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Fig. 6. Statistics of the system’s dialogue actions on the re-purposed (a) DuRecDial and (b) DuRecDial 2.0

datasets.

domain knowledge graph consisting of domain-specific topics (e.g., movies, music, and food) with
related attributes. More importantly, a dialogue path composed of dialogue actions and topics was
annotated for the recommender (or the system) from the beginning to the end of the dialogue. The
original DuRecDial dataset contains about 10 k multi-turn Chinese dialogues and 156 k utterances,
while the DuRecDial 2.0 dataset has 8.2 k dialogues aligned across English and Chinese languages.
In this work, we adopt the DuRecDial dataset in Chinese and the DuRecDial 2.0 dataset in English
for experiments.

Data Processing. Since no explicit targets are annotated in the original DuRecDial and DuRec-
Dial 2.0 datasets, we re-purpose the two datasets through automatic target construction for target-
oriented dialogue generation, following [54]. For all those dialogues that are proactively led by the
system, we treat the topic that the user has accepted at the end of each dialogue as the target topic,
and view the system’s corresponding action (e.g., movie recommendation, point-of-interest recom-
mendation) as the target action. We filter out those dialogues without introducing any new recom-
mendation topic. In addition, we discard all user reviews in the original domain knowledge triples
because user reviews do not belong to domain knowledge. We further enrich existing grounding
domain knowledge triples corresponding to each dialogue with more knowledge triples sampled
from the triples within two hops of the target topics in the dataset. Hence, it is more challenging
for knowledge selection and topic planning. Note that each target topic is guaranteed to ground
on the domain knowledge triples corresponding to the dialogue. Statistics of all the system’s di-
alogue actions on the re-purposed DuRecDial and DuRecDial 2.0 datasets are shown in Figure 6.
The total numbers of topics are 640 (including a NULL topic) and 628 (including a NULL topic) in
the DuRecDial and DuRecDial 2.0, respectively.
Following the splitting criterion in [29, 54], we split the re-purposed DuRecDial dataset

into the train/dev/test sets with 4,440/633/1,266 dialogues, respectively. Similarly, we obtain the
train/dev/test sets of the DuRecDial 2.0 dataset with 4,256/608/1,216 dialogues, respectively. To in-
vestigate the performance of different methods for target-oriented dialogue generation, we further
use the processed datasets with two types of splits for the test set: (1) In-Domain (ID) split and
(2) Out-Of-Domain (OOD) split, similar to [8, 41]. The OOD split ensures that none of the target
topics in the test set are present in the train set. In the ID split, the target topics in the test set are
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Table 1. Statistics of the Re-Purposed DuRecDial and DuRecDial 2.0 Datasets

Dataset #Dial. #Utter.
Plan Path

#Avg.

Dial. Turn Knowledge Triples

#Max. #Avg. #Max. #Avg.

DuRecDial

Train 4,440 72,466 4.4 13 8.2 47 35.1
Dev 633 10,467 4.5 12 8.3 46 35.2
Test-ID 780 12,633 4.4 13 8.1 45 34.8
Test-OOD 486 7,500 4.3 14 7.7 43 34.1

DuRecDial 2.0

Train 4,256 68,781 4.4 13 8.1 69 55.0
Dev 608 9,677 4.3 14 8.0 68 55.4
Test-ID 770 12,299 4.3 13 8.0 69 55.0
Test-OOD 446 7,962 4.8 12 8.9 68 56.0

Here, “Dial.” denotes “dialogue”, “Utter.” denotes “utterance”, “ID” and “OOD” are short for “In-Domain” and

“Out-Of-Domain”, respectively.

allowed to appear in the train set. In total, statistics of the two re-purposed datasets are reported
in Table 1. We can observe an average of 4.3 ∼ 4.8 action-topic transitions (i.e., the average length
of the plan path) from the beginning toward the target.

6.2 Baseline Methods

Dialogue Generation. To validate the effectiveness of our proposed two variants for target-
oriented dialogue generation, we first compare themwith the following dialogue generation meth-
ods based on pre-trained language models:

—DialoGPT [70]: It is an autoregressive generation model pre-trained using large-scale dia-
logue corpora for conversational response generation. We adopt the pre-trained model2 for
fine-tuning the dataset in English. For fine-tuning the dataset in Chinese, we adopt the Chi-
nese version [59] pre-trained model.3

— GPT-2 [40]: It is a pre-trained autoregressive generation model for language generation. We
use the publicly available GPT-2 base4 model and Chinese GPT-2 base5 model for fine-tuning
the English and Chinese datasets, respectively.

— BART [20]: It is an encoder-decoder pre-trained language model with denoising for natural
language generation. We use the publicly available BART-base6 model and Chinese BART-
base7 model for fine-tuning the English and Chinese datasets, respectively.

Note that these models concatenate all parts of input texts described in the problem definition as
the model input and are fine-tuned to generate system utterances directly.
We also compare our plan-guided dialogue generationmethods with several competitive models

that are closely related to target-oriented dialogue generation, where they follow the predict-then-
generate paradigm or planning-enhanced generation paradigm:

—MGCG_G [29]: It employs the predicted next dialogue action and next topic to guide system
utterance generation. Following our problem setting, we re-run the officially released code8

on the two re-purposed datasets.

2https://huggingface.co/microsoft/DialoGPT-small
3https://github.com/thu-coai/CDial-GPT
4https://huggingface.co/gpt2
5https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
6https://huggingface.co/facebook/bart-base
7https://huggingface.co/fnlp/bart-base-chinese
8https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-DuRecDial
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— KERS [68]: It has a knowledge-enhanced mechanism for recommendation dialogue genera-
tion built upon Transformer [53] architectures. Similarly, we re-run the officially released
code9 on the two re-purposed datasets.

— TCP-Dial [54]: It proposes a target-driven conversation planningmethod to explicitly extract
necessary knowledge and then guides dialogue generation built upon various backbonemod-
els. We adopt the GPT-2 [40] as the backbonemodel for comparisons in this work, and re-run
the officially released code10 on the two re-purposed datasets.

Dialogue Planning. To explore the performance of planning for target-oriented dialogue sys-
tems, we compare our TRIP model with the following dialogue planning methods:

—MGCG [29]: It employs a convolutional neural network [16] to conduct multi-task predic-
tions for the next dialogue action and the next topic. However, it assumes that ground-truth
historical dialogue actions and topics are known for a system. In this work, we only provide
the target (i.e., a target action paired with a target topic), while the system itself should plan
all interim dialogue actions and topics to achieve the target. For a fair comparison, we take
the same input as our problem definition to conduct multi-task predictions.

— KERS [68]: It aims at generating the next dialogue action and the next topic based on a
Transformer [53] network. Similarly, we take the same input as our problem definition for
KERS.

— BERT [4]: Based on the intuition of multi-task predictions, we fine-tune the widely-used pre-
trained language model BERT [4] by adding two fully-connected layers to jointly predict the
system’s next dialogue action and topic. We use the publicly available BERT-base-uncased11

model and the Chinese BERT-base12 model for fine-tuning the English and Chinese datasets,
respectively.

— TCP [54]: It is a target-driven planning framework that aims at planning a path consisting
of dialogue actions and topics in a generation-based manner. To the best of our knowledge,
TCP is the most related work to ours on dialogue planning for the target-oriented dialogue
generation task.

6.3 Evaluation Metrics

Automatic Evaluation. Following many previous studies [29, 54] in dialogue generation, we
adopt widely-used metrics for automatic evaluation as follows:

— Perplexity (PPL) and distinct (DIST ) [21]: The perplexity and distinct measure the fluency
and the diversity of generated system utterances, respectively.

— F1: The F1 score estimates the precision and recall of each generated utterance at the word
level (the character level if evaluating Chinese datasets).

— BLEU [36]: The BLEU score calculates n-gram overlaps between generated utterances and
gold utterances.

—Knowledge F1 (Know. F1) [29]: It evaluates the performance of generating correct knowl-
edge (e.g., topics, attributes) from the domain knowledge triples. However, there is no labeled
knowledge annotated in gold system utterances in the datasets. We first conduct strict string
matching to search for the entities from the domain knowledge that also occur in each gold
system utterance as the knowledge label. Since some knowledge entries (object in the triple

9https://github.com/z562/KERS
10https://github.com/iwangjian/Plan4RecDial
11https://huggingface.co/bert-base-uncased
12https://huggingface.co/bert-base-chinese
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〈subject, relation, object〉) are in form of long texts (e.g., topic-associated attributes) and they
can be paraphrased during conversations, we then compute word-based recall scores be-
tween knowledge entries and gold system utterances. We take the knowledge entries whose
recall scores are greater than a threshold of 0.55 as the pseudo label. For evaluating knowl-
edge F1, we take the same threshold (i.e., 0.55) to examine whether a knowledge entry is hit
in the generated utterances.

—Goal success rate (Goal Succ.): It is essential to validate a model of how well it achieves the
pre-determined target, where the target topic can be used for automatic evaluation. Similar
to [54], we choose the dialogues at the target turn in the test dataset to compute the ratio of
generating the target topic correctly for each model as the goal success rate.

To evaluate dialogue planning, we adopt the following metrics:

— F1: It estimates the micro-averaged precision and recall of the predicted action or topic. For
generation-based models, we take the generated action or topic at the evaluating turn for a
fair comparison.We report dialogue action F1 and topic F1 scores in the experimental results,
respectively.

— Bigram F1 (Bi. F1): Due to the nature of dialogues, multiple temporary planning strategies
can be reasonable before completing the target. Following [75], we also expand gold labels
by taking the system’s actions and topics within the previous turn and the following turn
into account, formulating the bigram F1.

Human Evaluation. Similar to [29], we conduct human evaluation from both turn-level and
dialogue-level aspects. For turn-level evaluation, we randomly select 50 samples from the test-
ID dataset and 50 samples from the test-OOD dataset and ask each model to produce system ut-
terances. Three well-educated annotators are required to mark scores for different models from
the aspects of both (i) appropriateness and (ii) informativeness. The appropriateness measures if a
generated system utterance can complete the current plan and respond to the dialogue context
appropriately, and the informativeness measures if a model can make full use of the grounding do-
main knowledge to generate an informative utterance. For fairness, all model names are masked
to annotators during the evaluation process.
For dialogue-level evaluation, we let each model interact with human annotators, which indi-

cates that a model’s generated utterance in the current turn will be further used as a part of the
dialogue history in the next turn. To ensure that the evaluation covers a wide range of targets, we
randomly sample 5 different target actions from the test sets, with each action consisting of 10
different target topics. In total, 50 different dialogue targets are evaluated. To examine whether a
model can lead the conversation to achieve the pre-determined target proactively and smoothly,
we do not expose the target to human annotators during human-model interactions. Besides, hu-
man annotators are asked to be consistent with each given user profile, if any. All human-model
dialogues are limited to no more than 15 turns. At the end of each dialogue, we will expose the
pre-determined target to human annotators and ask each annotator to mark scores for different
models from (i) proactivity, which measures if a model can proactively lead new actions and topics
in the conversation, (ii) coherence, whichmeasures the overall fluency and naturalness of the whole
dialogue generation, and (iii) goal success, which estimates how well the pre-determined target is
achieved.
For all the above metrics, human evaluation scores are settled from {0, 1, 2}, where a higher

score denotes better performance. The agreement among the annotators is measured by Fleiss’s
kappa [5]. The averaged score of different human annotators is reported as the ultimate human
evaluation result for each model.
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6.4 Implementation Details

Our TRIP model and plan-guided generation methods are implemented by PyTorch. During plan-
ning, we adopt the BERT-base model (12 layers, 768 dimensions, 12 heads, and 110 M parameters)
and the Chinese BERT-base model released in Huggingface’s Transformers [60] library as input
encoders for the DuRecDial 2.0 dataset and the DuRecDial dataset, respectively. Both the back-
ward and forward decoders are stacked to 6 layers with 8 attention heads. The hidden size is set
to be consistent with BERT encoders, i.e., 768. The embeddings of the two decoders are randomly
initialized, with the vocabulary size consistent with the BERT encoders. For the contrastive gener-
ation of targets, we randomly sample 3 negatives. The temperature coefficient τ is set to 0.1. The
two hyperparameters β and γ are set to 0.1 and 1.0, respectively. We set the batch size to 6 due to
memory constraints and train our TRIP model with a maximum of 10 epochs. We adopt the Adam
[17] optimizer with an initial learning rate of 2e-5 and warm up over the first 3,000 training steps
with linear decay. We select the best model based on the performance of the validation set. For the
target-constrained decoding, the beam size is set to 3, with a maximum decoding length of 80. The
hyperparameter λ that controls the weight of the agreement reward is set to 1.0.
For our plan-guided dialogue generation, we fine-tune the GPT-2 base model and Chinese GPT-

2 base model released in Huggingface’s Transformers [60] library on the DuRecDial 2.0 dataset
and the DuRecDial dataset, respectively. The length of the concatenated input text is limited to
512. In addition, the plan model p(a |y) in the plan-controlled generation employs a lightweight
Transformer decoder with 3 layers and 8 attention heads. The embeddings of p(a |y) are copied
from the embeddings of the LM p(y) (i.e., GPT-2). The step size α is set to 0.01. Both variants
employ greedy search decoding during generation, with a maximum decoding length of 100. All
the experiments are conducted on a single NVIDIA GeForce 3,090 GPU machine. Our code and
data are available at https://github.com/iwangjian/TRIP.

7 EXPERIMENTAL RESULTS

Our experiments and detailed analysis aim at answering the following research questions:

— RQ1: How is the performance of the proposed planning for generation on the end task of target-
oriented dialogue generation compared to existing methods?

— RQ2: How is the performance of the proposed TRIP model on each sub-task, including action
planning and topic planning, compared to existing methods?

— RQ3: How does each proposed component or strategy contribute to the overall performance?
— RQ4: What are the merits and limitations of the pipelined approach in this work?

7.1 Evaluation Results of Dialogue Generation (RQ1)

Our automatic evaluation results of dialogue generation on the DuRecDial and DuRecDial 2.0
datasets are reported in Table 2 and Table 3, respectively. The best result in terms of the corre-
sponding metric is highlighted in boldface. As shown in Table 2, MGCG_G and KERS are capable
of obtaining better results than DialoGPT on the in-domain (ID) test set in terms of F1, BLEU,
and DIST. Considering that the twomodels are trained without using pre-trained language models,
their competitive performance mainly benefits from the prediction of the next dialogue action and
topic, which guides the model to generate more informative and reasonable utterances. However,
MGCG_G, KERS, and DialoGPT obtain poor goal success rates, which drop sharply on the out-of-
domain (OOD) test set in particular. It shows that they still struggle to lead dialogues to reach
the target when necessary. In comparison, GPT-2 and BART perform much better than other base-
line models over various metrics when evaluated on both ID and OOD test sets. We note that in
terms of DIST-1/2 scores, BART is significantly better than other baselines because BART seldom
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Table 2. Evaluation Results of Dialogue Generation on the DuRecDial Dataset

Model PPL (↓) F1 (%) BLEU-1 / 2 DIST-1 / 2 Know. F1 (%) Goal Succ. (%)

Test-ID

MGCG_G 17.81 40.07 0.352 / 0.273 0.012 / 0.058 41.14 37.22
KERS 12.39 38.24 0.356 / 0.277 0.011 / 0.047 45.04 44.16
DialoGPT 5.64 34.25 0.314 / 0.237 0.009 / 0.045 33.90 38.55
GPT-2 4.42 39.57 0.370 / 0.297 0.012 / 0.062 45.84 59.97
BART 5.01 38.68 0.341 / 0.268 0.013 / 0.075 43.84 68.31
TCP-Dial 4.41 39.10 0.379 / 0.303 0.011 / 0.058 49.90 69.88

Ours (prompt) 4.38 42.34∗ 0.387∗ / 0.312∗ 0.011 / 0.059 53.12∗ 77.40∗

Ours (controlled) 4.40 43.11∗ 0.388∗ / 0.312∗ 0.012 / 0.062 53.69∗ 77.55∗

Test-OOD

MGCG_G 18.57 36.72 0.339 / 0.257 0.012 / 0.045 32.24 10.24
KERS 14.06 36.28 0.340 / 0.262 0.010 / 0.042 38.38 14.07
DialoGPT 5.57 35.52 0.325 / 0.252 0.010 / 0.041 35.16 37.16
GPT-2 4.48 40.90 0.388 / 0.317 0.013 / 0.055 47.42 58.60
BART 5.04 40.04 0.360 / 0.288 0.015 / 0.067 46.62 65.45
TCP-Dial 4.46 34.65 0.358 / 0.279 0.012 / 0.055 32.29 16.72

Ours (prompt) 4.46 41.90∗ 0.396∗ / 0.322∗ 0.012 / 0.054 48.32∗ 78.30∗

Ours (controlled) 4.45 42.40∗ 0.397∗ / 0.322∗ 0.013 / 0.055 48.93∗ 79.80∗

Significant improvements over baseline models are marked with ∗ (t-test, p < 0.05).

Table 3. Evaluation Results of Dialogue Generation on the DuRecDial 2.0 Dataset

Model PPL (↓) F1 (%) BLEU-1 / 2 DIST-1 / 2 Know. F1 (%) Goal Succ. (%)

Test-ID

MGCG_G 25.32 35.13 0.316 / 0.211 0.016 / 0.053 39.53 20.51
KERS 20.15 31.27 0.288 / 0.196 0.017 / 0.061 41.18 28.75
DialoGPT 5.26 35.12 0.304 / 0.212 0.023 / 0.076 42.71 30.09
GPT-2 5.33 36.86 0.314 / 0.222 0.024 / 0.081 43.62 31.64
BART 6.46 36.11 0.279 / 0.181 0.030 / 0.096 43.33 33.05
TCP-Dial 5.88 34.46 0.293 / 0.201 0.027 / 0.091 45.75 29.49

Ours (prompt) 5.17 37.40∗ 0.326∗ / 0.233∗ 0.026 / 0.083 47.03∗ 36.13∗

Ours (controlled) 5.23 37.48∗ 0.331∗ / 0.238∗ 0.025 / 0.080 47.44∗ 38.67∗

Test-OOD

MGCG_G 28.21 30.84 0.276 / 0.167 0.015 / 0.046 20.53 5.65
KERS 24.35 27.91 0.259 / 0.160 0.016 / 0.058 26.88 11.06
DialoGPT 5.37 31.27 0.283 / 0.176 0.021 / 0.068 30.75 26.57
GPT-2 5.86 31.26 0.266 / 0.193 0.023 / 0.077 28.79 26.30
BART 8.09 32.38 0.244 / 0.149 0.026 / 0.081 30.02 28.10
TCP-Dial 8.24 29.24 0.255 / 0.165 0.027 / 0.089 21.36 6.97

Ours (prompt) 5.63 33.05∗ 0.292∗ / 0.198∗ 0.025 / 0.079 31.81∗ 31.17∗

Ours (controlled) 5.59 33.30∗ 0.297∗ / 0.202∗ 0.024 / 0.078 32.82∗ 33.44∗

Significant improvements over baseline models are marked with ∗ (t-test, p < 0.05).

generates repeated words, making the generated utterances more diverse in many cases. However,
GPT-2 performs better in most cases in generating n-gram overlapped utterances (see BLEU-1/2)
with correct knowledge (see Know. F1). We employ GPT-2 as our backbone model due to its strong
generation ability and ease of incorporation in our plan-controlled generation. For the TCP-Dial,
the goal success rate deteriorates remarkably on the OOD test dataset (16.72%) compared to the
ID test dataset (69.88%). It is because TCP-Dial explicitly extracts topic-centric knowledge triples
according to the planned topic, which may discard necessary domain knowledge when the target
topic is not correctly planned especially on the OOD test dataset, making it difficult to generate a
proper utterance containing the target topic.
Compared to baseline methods, our proposed plan-guided generation methods achieve signif-

icant improvements over most evaluation metrics. For example, our prompt-based generation
method achieves much better knowledge F1 scores, i.e., 53.12% and 48.32% on the ID and OOD
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Table 4. Experimental Results of Dialogue Planning on the DuRecDial Dataset

Model

Test-ID Test-OOD

Action Topic Action Topic

F1 Bi. F1 F1 Bi. F1 F1 Bi. F1 F1 Bi. F1

MGCG 87.30 93.16 71.21 76.99 88.29 91.75 44.50 49.88
KERS 92.13 94.08 80.34 82.60 90.34 91.88 41.25 44.36
BERT 94.82 95.99 83.37 84.43 92.73 93.65 48.70 50.97
TCP 91.76 94.17 85.71 87.26 92.41 94.86 46.63 47.46

Ours (TRIP) 95.84∗ 97.28∗ 90.23∗ 91.39∗ 95.61∗ 96.87∗ 69.76∗ 70.48∗

Significant improvements over baseline models are marked with ∗ (t-test, p < 0.05).

test sets (see Table 2). It shows that our model is more likely to generate correct knowledge (e.g.,
topics, attributes) from the domain knowledge triples. In terms of the goal success rate according
to Table 2, our prompt-based generation method obtains a much higher score of 77.40%, which
significantly outperforms existing baseline models. It indicates that we successfully stimulate the
potential of the existing pre-trained language model (i.e., GPT-2) to generate more proper utter-
ances for target-oriented dialogue generation by enriching appropriate dialogue paths as prompts.
More importantly, our model is still able to maintain a high goal success rate when evaluated on
the OOD test set. In contrast to GPT-2, our model mainly benefits from our dialogue planning,
which verifies the effectiveness of the proposed planning for generation on the end task of target-
oriented dialogue generation. Moreover, our plan-controlled generation method further improves
the performance of the prompt-based generation method, demonstrating that each planned dia-
logue path can further steer the model by controlling the generation process of each utterance.
We observe similar trends in Table 3 regarding automatic evaluation results on the DuRecDial

2.0 dataset. Both our prompt-based generation and plan-controlled generation methods outper-
form existing baseline models over most evaluation metrics. We note that all baseline models and
our methods perform inferior to that on the DuRecDial dataset in terms of the goal success rate.
It is because, in the DuRecDial 2.0 dataset, the domain knowledge triples grounding on each di-
alogue are noisier than that in the DuRecDial dataset, making it non-trivial for these models to
distinguish the target topic and to generate the target topic in the utterance accordingly when nec-
essary. Nonetheless, our methods still achieve better goal success rates, especially when evaluated
on the OOD test set. Overall, experimental results reported in Table 2 and Table 3 demonstrate
that compared to existing methods, our proposed two variants are effective in generating more
appropriate utterances on the end task of target-oriented dialogue generation.

7.2 Evaluation Results of Dialogue Planning (RQ2)

To validate the performance of dialogue action planning and topic planning, we compare our pro-
posed TRIP model with existing dialogue planning models. The automatic evaluation results on
the DuRecDial and DuRecDial 2.0 datasets are reported in Table 4 and 5, respectively. As shown
in Table 4, it is more difficult for all models to predict or generate dialogue topics correctly than
dialogue actions because the total size of the topics is much larger than that of the actions in the
dataset. For example, MGCG and KERS achieve comparable F1 and Bi. F1 scores on action planning
while they perform much inferior on topic planning compared to other baseline models (i.e., BERT
and TCP) that employ pre-trained language models. More obviously, we find that all models obtain
much lower F1 and Bi. F1 scores in terms of topic planning when evaluated on the OOD test set.
Since the target topics in the OOD test set are not allowed to appear in the train set, all models are
challenging to capture the semantics of the target topics and predict or generate the target topics
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Table 5. Experimental Results of Dialogue Planning on the DuRecDial 2.0 Dataset

Model

Test-ID Test-OOD

Action Topic Action Topic

F1 Bi. F1 F1 Bi. F1 F1 Bi. F1 F1 Bi. F1

MGCG 90.26 92.47 74.93 79.24 82.30 87.25 36.03 42.00
KERS 90.33 91.54 77.85 80.35 84.21 86.39 34.20 37.85
BERT 91.68 92.37 79.21 81.22 92.23 94.19 46.55 52.12
TCP 92.25 93.82 85.77 87.25 89.93 92.09 44.49 50.71

Ours (TRIP) 94.49∗ 95.89∗ 91.83∗ 93.51∗ 93.27∗ 95.18∗ 70.65∗ 74.47∗

Significant improvements over baseline models are marked with ∗ (t-test, p < 0.05).

Table 6. Ablation Study Results of our TRIP Model on the DuRecDial Dataset

Model

Test-ID Test-OOD

Action Topic Action Topic

F1 Bi. F1 F1 Bi. F1 F1 Bi. F1 F1 Bi. F1

TRIP (full) 95.84 97.28 90.23 91.39 95.61 96.87 69.76 70.48
w/o DF 93.71 95.55 86.26 87.40 92.09 93.17 46.52 50.22
w/o DB 92.89 94.68 85.89 87.02 91.16 92.87 45.09 48.67
w/o Ld 95.33 96.81 88.15 90.06 94.03 95.11 68.12 69.80
w/o LCL 95.45 96.90 88.76 90.13 93.15 94.09 67.30 68.22
w/o LC 91.31 93.08 84.20 85.66 91.02 93.23 51.34 53.06
w/o BA 92.06 94.35 85.46 86.89 91.15 93.20 52.49 54.13

correctly. In contrast, our TRIP model achieves substantial improvements in both dialogue action
planning and topic planning. Particularly, TRIP improves the topic F1 score from 70%–80% to over
90% on the ID test set. It still maintains a much higher topic F1 score of 69.76% on the challenging
OOD test set. Similar trends are also observed in Table 5 when all these methods are evaluated on
the DuRecDial 2.0 dataset. We can conclude that our TRIP is able to plan a dialogue path consisting
of more accurate dialogue actions and more reasonable topics. It is our effective dialogue planning
that makes it possible to steer the system to lead the conversation toward the target proactively
and smoothly.

7.3 Ablation Study of TRIP (RQ3)

To explore why our TRIP achieves superior performance in dialogue planning, we conducted an
ablation study to verify the effectiveness of the modules and mechanisms proposed in TRIP. We fo-
cus on the following settings for ablation experiments: (1) without the forward decoder (w/o DF ),
which denotes that only the backward decoder is employed to generate the dialogue path from
the target turn to the present turn, followed by vanilla beam search decoding (the proposed target-
constrained decoding algorithm is invalid in such a case); (2) without the backward decoder (w/o
DB ), which denotes that only the forward decoder is employed to generate the dialogue path from
the present turn to the target turn, followed by vanilla beam search decoding similarly; (3)without
reducing the gap between backward-forward paths (w/o Ld ); (4) without the contrastive gener-
ation of targets (w/o LCL); (5) without the lexical constraints in the target-constrained decoding
(w/o LC); (6) without the bidirectional agreement in the target-constrained decoding (w/o BA).

From the ablation study results shown in Table 6, we observe that each module or mechanism
contributes to dialogue planning. The performance of TRIP sharply droppedwhen removing either
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Fig. 7. Quantitative results by varying the value of different parameters.

the backward decoder DB or the forward decoder DF . In particular, the topic F1 score decreased
from 69.76% to 46.52% (w/o DF ) and 45.09% (w/o DB ) on the OOD test set. Such ablation results
prove that our basic idea of employing two decoders for bidirectional planning is viable and ef-
fective. We also observe that the absence of DB performs worse than that of DF . It is because DB

directly takes the target as the beginning input of the decoder and generates the dialogue path in
a target-to-present direction, which is of benefit to leverage the target-side information to guide
planning more effectively. For the ablation results without Ld and LCL , both reducing the gap
between backward-forward paths and contrastive generation of targets can benefit the model in
planning as we expect. In terms of the target-constrained decoding, we find that the ultimate per-
formance deteriorated rapidly when removing the lexical constraints (w/o LC) or bidirectional
agreement (w/o BA), especially the topic F1 score decreased from 69.76% to 51.34% (w/o LC) and
52.49% (w/o BA) on the OOD test set. It indicates that our target-constrained decoding performs a
vital role in dialogue planning since it controls the model’s attention to the target-side information
during inference even when handling out-of-domain target topics.

7.4 Analysis of Parameters (RQ3)

We quantitatively analyzed some critical parameters of our methods, including (1) the hyperpa-
rameter λ that controls the weight of the bidirectional agreement reward in the planning stage
and, (2) the step size α that controls the updating step in the plan-controlled dialogue generation.

Impact of the hyperparameter λ. To investigate the impact of the hyperparameter λ in the
planning stage, we conducted target-constrained decoding by varying λ in {0, 0.5, 1.0, 1.5, 2.0}. Ex-
perimental results are shown in Figure 7(a). We observe that our model achieves the best action F1
and topic F1 scores when λ = 1.0 and a smaller value of λ results in lower action F1 and topic F1
scores. Particularly, the model performs much inferior without any reward of bidirectional agree-
ment, i.e., λ = 0, indicating that our target-constrained decoding with a bidirectional agreement is
crucial in generating a more reasonable dialogue path.

Impact of the step size α . To investigate the impact of the step size α in the plan-controlled
dialogue generation, we varied α by selecting its value in {0, 0.001, 0.003, 0.01, 0.1, 0.3, 1.0}. Exper-
imental results are shown in Figure 7(b). We observe that the step size α mainly affects the goal
success rate while it has a slighter impact regarding the knowledge F1 score. If no updating step is
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Fig. 8. Human evaluation results of different models. κ denotes Fleiss’s kappa.

performed during plan-controlled dialogue generation, i.e., α = 0, the dialogue generation model
(i.e., LM p(y)) has no control of the output distribution, especially for those utterances that the
target topics should explicitly appear. By default, we choose 0.01 as the most proper step size since
neither a larger value nor a smaller one will bring any performance gain.

7.5 Human Evaluation Results (RQ4)

We selected several representative models for human evaluation, includingMGCG_G, GPT-2, TCP-
Dial, and ours. The evaluation results are shown in Figure 8. The Fleiss’s kappa scores are mainly
distributed in [0.4, 0.6], denoting moderate inter-annotator agreement. For turn-level evaluation,
we observe that GPT-2, TCP-Dial, and ours obtain comparable scores in informativeness since they
utilize powerful pre-trained language models and thus can generate informative utterances. In
terms of appropriateness, our method obtains the highest human score on average, demonstrating
the ability to generate more appropriate system utterances in response to dialogue context. On
the other hand, dialogue-level evaluation (i.e., proactivity, coherence, and goal success) is more
challenging for all models because errors might be propagated as the dialogue goes on. We find
that our method obtains better results on average compared to all baseline models. Notably, our
method achieves the highest proactivity and goal success scores, indicating that our method is
more likely to drive the dialogue to reach the target successfully.

7.6 Case Study (RQ4)

To illustrate the quality of different methods for target-oriented dialogue generation, we conducted
some case studies. We selected the same target with the same initial dialogue context and inves-
tigated the generated utterances by three different models from dialogue-level human evaluation,
including MGCG_G, GPT-2, and ours (plan-controlled generation). Here, we show some generated
cases in Figure 9. As shown in Figure 9(a), we observe that MGCG_G is incapable of generating
fluent and coherent utterances. Although MGCG_G conducts planning first to predict the next
dialogue action and topic, it fails to predict a correct topic when necessary, causing the model fails
to achieve the target (i.e., recommend the movie “The Art of Action: Martial Arts in Motion Picture”)
at the end of the dialogue. For the case of GPT-2 shown in Figure 9(b), we find that GPT-2 is able to
generate more fluent and informative utterances in general. However, it fails to achieve the target
since it has no dialogue planning, making it not proactive enough to lead the dialogue towardthe
pre-determined target. In such cases, GPT-2 is not effective to generate the target topic as the di-
alogue goes on. In contrast, the case shown in Figure 9(c) demonstrates that our TRIP model can
plan a dialogue path with reasonable actions and appropriate topics that outlines how to achieve
the target step by step. With the guidance of the planned path, our plan-controlled generation
method can know when and what to talk about to move the dialogue forward proactively. More
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Fig. 9. Illustrative cases from the dialogue-level human evaluation. The bot’s utterances are generated by (a)

MGCG_G, (b) GPT-2, and (c) Ours (plan-controlled generation), respectively. The topics and topic-related

attributes that also appear in the domain knowledge are marked with underlines.

importantly, our method succeeds in achieving the target since our TRIP plans a correct topic (i.e.,
the target topic “The Art of Action: Martial Arts in Motion Picture”) when appropriate.

7.7 Additional Discussions (RQ4)

According to the human evaluation results and case study, our proposed methods effectively
plan reasonable dialogue paths to guide dialogue generation. The advantages of such a pipelined
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framework are: (1) It provides our model with better explanations because each planned dialogue
path tells the dialogue generationmodel how to achieve the target step by stepwith specific actions
and essential topics. (2) It is controllable for the end task of target-oriented dialogue generation.
Our methods divide the complicated end task into two stages, making it more flexible to improve
the overall performance stage by stage. Therefore, our methods are more practical and can be ex-
tended to real-world applications. After analyzing those cases with low human evaluation scores,
we also identify some limitations and discuss the potential solutions: (1) Our pipelined framework
has error propagation, which might be a typical issue of most existing pipelined methods. We find
that the performance of dialogue generation is prone to drop once our TRIP model fails to plan
a dialogue path appropriately. We intend to alleviate this issue by introducing some techniques
in the cascaded generation, such as noisy channel models [27, 42]. (2) Our plan-guided dialogue
generation method is still not robust enough. Although we have achieved significant good plan-
ning results with a large margin compared to baseline models on both datasets, we observe that
the performance gain in terms of the goal success rate is much less prominent on one dataset than
on another. One possible direction is to study how to improve dialogue generation with adaptive
control when it is the turn with the target action and the target topic.

8 CONCLUSION AND FUTURE WORK

In this work, we explore the task of target-oriented proactive dialogue and focus on effective di-
alogue planning for dialogue generation. We propose a novel TRIP approach to plan dialogue
paths from both backward and forward directions. Our TRIP formulates planning as a generation
task and bidirectionally generates dialogue paths consisting of reasonable actions and appropri-
ate topics. To better control path generation, we devise a novel target-constrained decoding algo-
rithm to achieve bidirectional agreement. We adopt the planned dialogue paths to guide dialogue
generation in a pipeline manner, with two explored variants: prompt-based generation and plan-
controlled generation. Experimental results on two re-purposed datasets show that the proposed
methods achieve state-of-the-art performance on all sub-tasks. Extensive analysis and discussions
demonstrate the advantages of our methods.
We observe that the emergence of large languagemodels (LLMs) [35, 48, 49] has unprecedent-

edly boosted the research field of dialogue systems. LLMswill generally perform better for dialogue
generation in terms of some aspects, such as fluency, informativeness, and human likeness. How-
ever, for the target-oriented proactive dialogue generation task, more critical dimensions should be
considered, including proactivity, coherence, and target achievement success rate. Ourwork shows
that dialogue planning plays a vital role in improving dialogue generation performance in these
dimensions. Recent studies [51, 52] indicate that the planning capabilities of LLMs are still far from
that of humans. In the future, we intend to incorporate our proposed bidirectional approach based
on LLMs for dialogue planning and generation since our methods are model-agnostic to backbone
models. We are also interested in empowering the planning capabilities of LLMs to solve other
complex tasks.
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