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ABSTRACT

Contemporary sequential recommendation systems predominantly
leverage statistical correlations derived from user interaction his-
tories to predict future preferences. However, these correlations
often mask implicit challenges. On the one hand, user data is fre-
quently plagued by implicit, noisy feedback, misdirecting users to-
wards items that fail to align with their actual interests, which is
magnified in sequential recommendation contexts. On the other
hand, prevalent methods tend to over-rely on similarity-based at-
tention mechanisms across item pairs, which are prone to utiliz-
ing heuristic shortcuts, thereby leading to suboptimal recommen-
dation.

To tackle these issues, we put forward a causality-driven user
modeling approach for sequential recommendation, which pivots
towards a causal perspective. Specifically, we involves the appli-
cation of a causal graph to identify confounding factors that give
rise to spurious correlations and to isolate conceptual variables
that causally encapsulate user preferences. By learning the rep-
resentation of these disentangled causal variables at the concep-
tual level, we can distinguish between causal and non-causal as-
sociations while preserving the inherent sequential nature of user
behaviors. This enables us to ascertain which elements are criti-
cal and which may induce unintended biases. The framework of
our method can be compatible with various mainstream sequential
models, which offers a robust foundation for reconstructing more
accurate and meaningful user and item representations driven by
causality.
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1 INTRODUCTION

Sequential recommendation systems have become indispensable
in filtering and personalizing the content for users across various
digital platforms. These methods are traditionally designed to pre-
dict future interactions by learning from the sequence of histori-
cal data that encapsulates user actions, item properties, and other
contextual features, such as user profiles, item attributes, and so-
cial relationships [3, 13]. The effectiveness of these systems has
been hinged on the premise of accurately representing this rich
information to foresee user preferences.

Recent advancements in sequential recommendation have yielded
various methods that exploit the rich statistical associations present
in users’ historical interactions. These techniques aim to effec-
tively model user preferences, thereby improving the accuracy of
recommendations. Attention mechanisms [21] and Recurrent Neu-
ral Networks (RNNs) [5] are frequently used to capture various
aspects of user engagement and sequential dependencies. Mean-
while, Graph Neural Networks (GNNs) [16] and hybrid models [17]
are employed to discern complex co-occurrence relations and high-
order structural dependencies inherent in sequential data. Nev-
ertheless, these sophisticated approaches often share a common
shortfall: they presume that the occurrence of user profiles and
item exposures are independent within the observational data. This
assumption, while convenient for certain analyses, does not ade-
quately reflect the complex dynamics of user behavior across time.
Interactions within a user’s history are interconnected, influenced
by a variety of factors that can introduce confounding biases or
spurious correlations. Sequential data, especially when spanning
extensive periods, may be riddled with implicit, noisy feedback,
leading users to interact with items that do not genuinely pique
their interests, such as due to the influence of item popularity or
caption biases [4], thereby potentially distorting the recommenda-
tion outcomes. In addition, many state-of-the-art models utilize
similarity-based attention mechanisms [1, 14] that concentrate on
the correlation between pairs of items. This focus can inadver-
tently cause an over-reliance on what might be termed ‘shortcut
paths’, neglecting the intricate sequence of interactions and the
consequential dependencies. Consequently, these models might
fail to discern the actual reasons behind a user’s interaction with
an item, ultimately leading to suboptimal recommendations.

To tackle these challenges, our innovative approach utilizes a
causal graph to model sequential recommendations from a causal
perspective. The causal graph is instrumental in identifying and
separating the exogenous variables that can lead to undesired cor-
relations and biases. By discerning the true causal factors that in-
fluence user interests and item exposure over time, we can better
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understand and predict user behaviors. Specifically, a causality-
driven user modeling technique is built upon the causal graph.
By treating user interaction histories as observational data, we au-
tonomously identify valid causal factors at the conceptual level and
mitigates the influence of potential biases without depending on
explicitly predefined features. Furthermore, our method leverages
the latent causal factors that underlie user preferences throughout
the interaction sequence, as well as the immediate item interac-
tions. The former aids in mitigating bias from short-cut features
and capturing pertinent information across the sequence, while
the latter maintains essential context that causally influences item
interactions at each timestep, without exacerbating potential real-
time confounding biases. Last but not least, with these identified
causal concepts, we can generate causality-driven representation
for user preference modeling, which can be integrate into the base
matching model to provide refined predictions for user interac-
tions. The principal contributions of this paper are as follows:

e We implement a causal graph to model sequential recom-
mendations, enhancing the understanding of user behavior
and improving prediction accuracy.

e We develop a causality-driven technique for user modeling
over time, which can autonomously identify causal factors
from user interaction data, reducing reliance on predefined
features and mitigating biases.

e Our learned latent causal concepts can be utilized to miti-
gate confounding bias and preserve critical context, leading
to more refined predictions of user interactions.

2 RELATIVE WORK
2.1 Causal Recommendation

Recent research has begun leveraging causal analysis in recom-
mendation systems to address confounding bias, with popular ef-
forts aimed at disentangling specific biases in practical applica-
tions [8, 9, 19]. For example, some works [2] treat exposure rates
as confounding factors that influence both the propensity of user
engagement and the assessment of user satisfaction to mitigate ex-
posure bias. Causal interventions have been used to decouple item
popularity from user representations [20], addressing popularity-
induced confounding bias. Other methods employ instrumental
variables from external querying contexts [10], regressing user rep-
resentations on these contexts to sidestep confounding effects. How-
ever, these strategies often rely on predefined objectives and as-
sumed causal variables within standard recommendation frame-
works, highlighting the need for more adaptive techniques to un-
cover implicit causal variables in sequential recommendation.

3 METHODOLOGY

3.1 Problem Formulation

In sequential recommendation systems, we define a set of users
U = {uy,uy,.. .,u|U|} and a set of items I = {iy, i, ..., i }, where
uj € U represents an individual user and ij € I represents an in-
dividual item. For any given user u, we represent their interaction
sequence as Sy = (i'f, ilz‘, ...,i%), where the sequence of n inter-
acted items is ordered chronologically and i} € I signifies the item
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Figure 1: Causal graph of sequential recommendation.

interacted with by user u at time ¢. Both users and items are typ-
ically initialized as id embeddings in a d-dimensional space. The
primary objective of sequential recommendation is to predict the
next item, i;41 that a user u is likely to engage with. More precisely,
we aim to compute the conditional probability Yz = P(if,[Su)
for the subsequent item. Items are then recommended to the user
in descending order of this predicted probability.

3.2 Viewing from Causal Graph

To predict the next item a user will interact with, it is crucial to un-
derstand the reasons behind a user’s interaction at each timestep,
thereby learning accurate and robust representations of user be-
havior. Existing approaches often rely on user-item correlation
matching, operating under the assumption that the co-occurrence
of users and exposed items are independent within the observa-
tional data. For instance, at a given timestep ¢, conventional think-
ing suggests that the user’s behavior of interacting with item i¥ is
exclusively driven by their preferences, implying the absence of a
confounding back-door path between user u and item i;. However,
this assumption often fails to hold in complex, real-world scenar-
ios.

By framing the sequential recommendation task from a causal
perspective, we can address these discrepancies. We propose the
use of a causal graph, as depicted in Figure 1, for modeling user
preferences. This graph helps to identify exogenous variables that
create undesired correlations between user preferences and the
items they interact with instantaneously. Specifically, the path
i « Z;j(t) — u can be seen as conveying bias information that
misguides the user to interact with item i;‘ at timestamp ¢, such
as popularity bias, while i} < Z, — u may represent a shortcut
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bias that overlooks sequential dependencies and intermediate in-
teractions. Our aim is to discern the true causal factors, Z;, and Z;,
which directly influence user interests and the real-time exposure
of items.

3.3 The Base Matching Model

Our proposed method is model-agnostic in a way, and it can be
integrated into multiple existing matching models for sequential
recommendation. Since many models for sequential recommenda-
tion share similar architecture, we regard it as the base model and
implement our method over it. Generally speaking, a matching
model includes a user encoder fs(u, S,) € Rd, which takes the user
profile u and the user interaction sequence S, = (i}, i}, ..., 14) as
input and outputs one d-dimensional vector to represent the user
interaction sequence, and an item encoder fy (i) € R4 represent-
ing the item in the same vector space as fs(u, S,). The matching
score is generally calculated by maximizing the likelihood of the
next interacted item given the interaction sequence:

1
Liase = =777 2., 108 Poli s (. 5u)), (1

uelU

3.4 Causality-Driven User Modeling

Existing de-biasing techniques in the realm of sequential recom-
mendation commonly rely on precisely identified confounding fac-
tors or supplementary contexts [9, 10, 20], such as user search
queries, to serve as proxy variables. These proxies are instrumen-
tal in uncovering the genuine causal factors that reflect user inter-
ests. In this section, we treat users’ sequential interaction histories
as observational data. Our objective is to autonomously discern
valid causal factor across both the interaction sequence and the
immediate interaction, at the conceptual level. Additionally, we
aim to mitigate the influence of potential back-door paths present
at each timestep, and we strive to achieve this without depending
on explicitly predefined biases. Our causality-driven user model-
ing method can be depicted as Figure 2.

Initially, we leverage Graph Attention Networks (GATs) [11] to
encode user and item interaction representations, aiming to extract
sophisticated features from all observed interaction sequences:

EQ = freadout (Attn (WL, A)), (2)

where W is a trainable weight matrix and A denotes the adjacency
matrix that encapsulates the structure of interaction sequences.
Attn(.) signifies a multi-head attention mechanism [12] which serves
to assess the significance of neighboring behaviors and enhance
the representation of item interactions at each timestep. And f;.qd0ur
refers to a readout function that propagates item-level features i}/
to generate a graph-level representation Eg, and the representa-
tion u for encapsulating user preference can be obtained by in-
putting the corresponding interaction sequence from the graph.

3.4.1 Causal Concept Representation over the Interaction Sequence.
To effectively represent the latent variables Z;, that causally im-
pact user interests at a conceptual level, our primary approach is
to identify aspects of the historical interaction sequence that meet
two criteria: first, they must be relevant to the user representation
u; second, they should be exclusive to the real-time item engage-
ment i except through u.
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Assuming there are K latent conceptual prototypes Z, € RKX4,

We first address the relevance of these prototypes to user inter-
ests. Inspired by the work of causal inference [18], to isolate po-
tential aspects of the sequence S, correlating with the user repre-
sentation u for inclusion in the prototype matrix Z;,, we employ a
variational distribution qg, (u|Zy) to approximate the conditional
distribution of u given Z;,. This approximation is facilitated by a
two-layer multi-layer perceptron (MLP). The variational distribu-
tion qg, (u|Zy) is derived by maximizing the likelihood estima-
tion:

eru = _ﬁ Z log 0z, (u|WruZu), )
uelU
where W, denotes a linear transformation of the causal concepts
Zy. Subsequently, by means of maximizing the mutual informa-
tion between u and Z,, the causal connection of the conceptual
prototypes on user interests can be strengthened:

L
, 1 1
Ly =—— > = > (logqy,, (ulWruZu)-loggs,, (' |WruZu)),
“ |U| uelU L Jj=1
(@)

where u denotes the positive sample, whereas u;. signifies a nega-
tive sample that has been randomly selected, and L is the number
of negative samples selected. By maximizing the discrepancy be-
tween positive and negative samples, we can meet the relevance
condition for causal concepts in relation to user interests, thereby
enabling a more precise depiction of user preferences for items.

As previously noted, a user’s historical sequence of interactions
over time can create shortcut paths. For example, a user might di-
rectly jump from an initial item i{ to a distant item i}, bypassing
intermediate items. If the model relies solely on similarity-based
statistical correlations, it may overstate the direct connection be-
tween two items and discard sequential dependencies. This short-
cut perspective could prevent the model from capturing a true rep-
resentation of user preference through the paths u « Z, — i}
andu « Z,, — ilt‘, making the reason behind a user’s item choice
more obscure. Therefore, it is crucial to block the back-door path
u « Zy — iy over time to mitigate the influence of these shortcut
views. This can be accomplished by excluding the concepts Z;, as-
sociated with the interaction at a specific time, thereby extracting
valid insights that accurately reflect real user preferences based on
sequential dependencies, rather than an immediate interaction’s
shortcut view. To satisfy the exclusion condition, we can apply
methods similar to those used for maintaining the relevance con-
dition. Initially, the variational distribution g4, (if|Zy) is used
to approximated the conditional distribution of each i}’ over time
given Zy,. The corresponding loss function for negative maximum
log-likelihood estimation is:

n
L5, = —ﬁ D D logay,, (it WeuZu), 5)

ueU t=1
where W,,, denotes the trainable weights. Then, to ensure that the
causal concept representations Z;, from the user’s perspective are
not influenced by the shortcut views of items at one or two time
steps, it is imperative to minimize the mutual information between
iy and Zy. This can be optimized by minimizing the difference in
mutual information between the positive sample (u, if') and the
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Figure 2: The architecture of our framework. Left: integration of Causality-Driven User Modeling within the standard sequen-
tial recommendation matching Scheme. Right: detailed implementation of Causality-Driven User Modeling.

negative sample (u’, i;%):

L n

Z Z Z(sim(u, u’)x

ueU j=1t=1

1

Ly = —
v U
. ©)

(log ¢, (i | WewZu)—

log 94z, (i;u [WeuZu))).

Unlike that in keeping relevance condition, the causal concept
representations can not be absolutely irrelevant with the imme-
diate interaction, for the reason that they are actually indirectly
causally connected through the path Z,, — u — i}’. The exclusion
requirement should be fulfilled only when conditioning on the user
preference. Therefore, sim(u, u’) is employed to describe the simi-
larity between the positive and negative ones, i.e., u and u’. When
they are similar to each other, the weight of the discrepancy about
log-likelihood between the positive and negative samples should
be large. Otherwise, the weight should be small. In other words,
users with similar interaction sequences should be concentrated
more on minimizing the mutual information. And the similarity
sim(u, u’) is calculated by:

™

3.4.2 Causal Concept Representation across Immediate Interactions.
While mitigating the impact of shortcut features within the causal
concepts throughout the interaction sequence is crucial for reduc-
ing bias, it’s important to recognize that these features are still
valuable. They encompass contextual information that has a causal
effect on item interactions at each timestep, which is vital for en-
hancing the performance of recommendations. Consequently, it’s
necessary to also discern the causal concepts Z; from the viewpoint

sim(u,u’) = softmax (e~ 14~ #Ily,
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of the immediate interaction. Given that the causal concepts under-
lying each item interaction tend to evolve over time, we introduce a
set of K concept prototype embeddings Z;(t) € RK xd designated
to capture the causal concepts relevant to each timestep.

In a manner analogous to the method employed for learning Z,,,
we utilize the variational distribution 99, (if'1Z;(t)) to uncover the
latent information that causally influences the immediate item in-
teractions, which can be achieved by minimizing the negative log-
likelihood function:

1

] ®

1 n
Ly, =7 D 2 logday, (i [WhiZi(1),

uelU  t=1

where W, is a trainable weight matrix. Subsequently, the distance
between the log-likelihood expectations of positive sample i} and a
negative sample i; are required to be far away as possible. By min-
imizing E.q. (9), the relevance between the real-time item choice
i and its causal concepts Z;(t) can be kept to a further extent:

1

1 n
0T 2 2,008 ez, (' WriZi(0)=log day, (i WriZi (1),

uelU  t=1
©)

through the optimization of which, we preserve the critical short-
cut features within the immediate causal concept representation
Zi(t).

However, we must also be vigilant of the potential back-door
path if < Z;(t) — u, which could introduce confounding bias.
Such bias might mislead users into clicking on items that do not
align with their genuine interests. For instance, the popularity of
an item might increase its likelihood of being exposed to users,
prompting clicks on the item due to its popularity rather than its

ro_
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relevance to the users’ preferences. Therefore, we need remove the
spurious correlation with the user representation u to learn instru-
mental Z;. To be specific, the relevance between u and Z;(t) can
also be captured with the variational approximation via estimating
the maximum likelihood of the distribution:

n

L5 = =17 2 o DB de,, WIWaZi(1). (10)
uelU =1

where We; represents a linear transformation.Then, similar to the

operation in E.q. (6), the immediate causal concepts Z;(t) are only

allowed to be correlative with the user representation u when re-

gressing on iy':

;o1 z
£y = o D7D (simi ig)x

uel t=1
(logqp,, (ulWeiZi(t))-
logqg, (u'[WeiZi(1)))),

where i and u” denotes the representations of randomly selected
negative samples, and sim(i;‘, i;“) is implemented with the softmax
function as E.q. (7).

To date, we have pinpointed the latent causal concepts Z,, and
Z; that pertain to the interaction sequence and real-time item inter-
actions, respectively. The representation driven these causal con-
cepts aids in deciphering the user preferences driven by causality,
where biases, including those from shortcut and popularity bias,
have been mitigated. This approach is instrumental in achieving
superior recommendation outcomes.

(11)

3.5 Model Optimization

The latent causal concept representations Z;, and Z; are integrated
into the base matching model to forecast the user’s subsequent in-
teractions. These predictions take the form fs(Zy, [Zi(1), ..., Zi(t)])
for the sequence. The comprehensive optimization objective that
we strive to minimize is expressed as follows:

Loverall = Lbase+a( Ly +Ly +LG +LG J+p(LYy + Ly +LE +LY),

(12)
where the hyperparameters o and f balance the significance of the
variational approximation loss and the mutual information con-
straint loss, respectively. These parameters are fine-tuned using
the validation set. The loss function of the base model is priori-
tized as the primary objective, given that our ultimate aim is to ac-
curately predict the user’s next item of interaction based on their
profile and interaction history. This base model framework is ver-
satile and can be adapted to most current mainstream models with
similar structures.

4 EXPERIMENT
4.1 Datasets and Experimental Settings

To evaluate the effectiveness of our proposed method for sequen-
tial recommendation, we conducted experiments using three pub-
licly available datasets: Diginetica', MovieLens?, Books-Crossing>:

Ihttps://competitions.codalab.org/competitions/11161
Zhttps://grouplens.org/datasets/movielens/
3http://www2.informatik.uni-freiburg.de/ cziegler/BX/
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¢ Diginetica. This dataset originates from an e-commerce
platform and includes instances of users’ purchase records.

e MvoieLens. This is a popular dataset for movie recommen-
dations, featuring data on users’ movie-watching behavior.

¢ Books-Crossing. A classic dataset containing book ratings
from the Book-Crossing community.

In our experiment, we arrange the items within the interaction
sequences chronologically. To augment the number of instances
for each user, we use each interaction sequence multiple times. For
example, from the sequence of interactions iy — iy — i3 — ig, We
generate three training instances: iy, iy — iz, and iy — iz —
i3. The labels for these instances are the subsequent items with
which the user interacted next. In alignment with established pro-
tocols [15, 22], we reserve users’ last interactions for testing, the
second-to-last for validation, and use remaining data for training.
We evaluate our model using NDCG and F1, comparing the top 5
recommended items with actual user interactions. For tuning, grid
search refines hyperparameters on the validation set: « and f for
loss components at 0.1 and 0.15, and we set latent concepts K to
12 and negative samples L to 8 for learning Z,,. Baseline model
parameters are set to previously reported optimal values.

4.2 Baselines

Our proposed framework is designed to enhance existing models
for sequential recommendation that have a base structure analo-
gous to the one described in Section 3.3. To demonstrate the effi-
cacy of our method, we have implemented and integrated it with
four established baseline models:

e STAMP [7] A model leverages an attention mechanism to
emphasize short-term user preferences while also capturing
their long-term interests.

e SASRec [15]. A model based on self-attention mechanisms
that captures the relationships between items in the entire
sequence.

e SRGNN [6]. A GNN-based model that represents each se-
quence as a graph to effectively model the complex transi-
tions between items.

e GES-SASRec [22]. A framework that applies graph convo-
lutions in the context of embedding smoothing for sequen-
tial recommendation, leveraging semantic item relationships
derived from inherent item attributes.

4.3 Main Results

Our experimental results encompass four baseline models across
three datasets, with the findings presented in Table 1. We have
enhanced the baseline models STAMP, SASRec, SRGNN, and GES-
SASRec, by integrating our method, denoting the augmented ver-
sions as CD-STAMP, CD-SASRec, CD-SRGNN, and CD-GES-SASRec,
respectively. Here, “CD-" stands for “Causality-Driven”.

Our examination of the results reveals that, compared to the
original baselines, the enhanced versions exhibit improvements
across all datasets. This underscores the efficacy of the causal con-
cepts we have incorporated for learning accurate representations.
The datasets span a broad spectrum of recommendation domains,
and the observed enhancements underscore the generality and ro-
bustness of our causality-driven representations.
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We note that the performance gains with CD-GES-SASRec are
less substantial than those achieved by the other enhanced mod-
els. We attribute this to the fact that GES-SASRec necessitates ad-
ditional item attributes as inputs. Our approach has not yet disen-
tangled the causal concepts related to these item attributes, which
might include implicit noisy feedback, leading to potential nega-
tive effects. While our method is capable of extracting potential
causal concepts from item attributes, doing so could necessitate
modifications to the base model’s framework, which is beyond our
current scope.

Despite this, it is evident that our causality-driven method posi-
tively influences the performance, even though the causal concepts
within item attributes have not been fully disentangled. This sug-
gests that our approach contributes beneficially, albeit with room
for further refinement in terms of causal concept analysis within
item attributes.

Table 1: Comparative main results between the baseline
models and our causality-driven methods.

Datasets Diginetica MvoieLens | Books-Crossing
metric (@5) NDCG F1 | NDCG F1 | NDCG F1
STAMP 14.67 7.01 9.07 4.50 1.65 0.78
CD-STAMP 15.89  7.82 9.33 4.82 2.60 1.06
SASRec 16.29  8.03 8.57 4.50 1.69 0.80
CD-SASRec 16.96  8.62 8.80 4.62 1.92 1.12
SRGNN 16.55 8.23 8.75 4.72 1.74 0.91
CD-SRGNN 16.98 8.71 8.99 4.83 1.96 1.15
GES-SASRec 17.14  8.66 9.02 4.79 1.92 1.02
CD-GES-SASRec | 17.35 8.94 9.13 4.86 2.03 1.12

4.4 Confounding Bias Alleviation

To evaluate the effectiveness of our causality-driven representa-
tions in reducing confounding bias, we examine the role of item
popularity. Popularity bias exists because frequently exposed items
tend to receive more user engagement, regardless of the users’ true
preferences. We quantify item popularity by the item interaction
frequency and divide the training and evaluation sets accordingly,
labeling the top 20% items as popular and the rest as unpopular.
We present comparative results using the NDCG@5 and F1@5
metric on the Diginetica dataset to underscore the differences in
performance between popular and unpopular items, as shown in
Figure 3 and Figure 4. A notable disparity in performance favor-
ing popular items would suggest a significant presence of popular-
ity bias. Note that GES-SASRec is excluded from this comparison
because it necessitates additional item attributes. The results in-
dicate that incorporating our causality-driven modeling method
significantly narrows the performance gap between popular and
unpopular items, which shows the effectiveness of our method in
alleviating popularity bias. In contrast, the original baseline mod-
els all demonstrate a marked decline in performance when mov-
ing from the popular to the unpopular group. In some instances,
the performance within the popular group even exceeds that prior
to data partitioning, suggesting that popularity bias is prevalent
in sequential recommendation systems. Our causality-driven user
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Figure 3: Results highlighting popularity bias (NDCG@5).
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Figure 4: Results highlighting popularity bias (F1@5).

modeling methods can alleviate such implicit bias by uncovering
the latent causal concepts within user interaction sequences.

5 CONCLUSION

In conclusion, our causality-driven user modeling approach for se-
quential recommendation notably improves prediction accuracy
and reduces bias. Unlike conventional methods based on statistical
correlations, our approach employs a causal graph to redefine the
recommendation process. By analyzing user interaction histories
as observational data, our method independently identifies causal
factors that reflect user preferences at the conceptual level, bypass-
ing the need for predefined features. Additionally, we leverage la-
tent causal factors within user interactions to eliminate back-door
paths that could lead to spurious correlations. This ensures the
preservation of pertinent information across user sequences. Sim-
ilarly, we also captures the causal concepts across immediate item
interactions, thus mitigating real-time confounding biases. By in-
corporating these causal concepts into user preference modeling,
we enhance various prevalent matching model, leading to more
precise predictions of user interactions.
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