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Abstract
Accurate sector-based air traffic flow predictions are essential for ensuring the safety and efficiency of the air traffic

management (ATM) system. However, due to the inherent spatial and temporal dependencies of air traffic flow, it is still a

challenging problem. To solve this problem, some methods are proposed considering the relationship between sectors,

while the complicated spatiotemporal dynamics and interdependencies between traffic flow of route segments related to the

sector are not taken into account. To address this challenge, the attention-enhanced graph convolutional long short-term

memory network (AGC-LSTM) model is applied to improve the short-term sector-based traffic flow prediction, in which

spatial structures of route segments related to the sector are considered for the first time. Specifically, the graph convo-

lutional networks (GCN)-LSTM network model was employed to capture spatiotemporal dependencies of the flight data,

and the attention mechanism is designed to concentrate on the informative features from key nodes at each layer of the

AGC-LSTM model. The proposed model is evaluated through a case study of the typical enroute sector in the central–

southern region of China. The prediction results show that MAE reduces by 14.4% compared to the best performing GCN-

LSTM model among the other five models. Furthermore, the study involves comparative analyses to assess the influence of

route segment range, input and output sequence lengths, and time granularities on prediction performance. This study helps

air traffic managers predict flight situations more accurately and avoid implementing overly conservative or excessively

aggressive flow management measures for the sectors.

Keywords Air traffic management � Attention-enhanced graph convolutional LSTM network (AGC-LSTM) �
Sector-based air traffic flow predictions � Spatiotemporal dependency

1 Introduction

The Aviation industry faces challenges of air traffic con-

gestion and reduced flight operation efficiency [1]. These

issues stem mainly from the demand for flights surpassing

the capacity of available airspace and airport accommo-

dation [2]. As an essential component of air traffic man-

agement (ATM), air traffic flow management (ATFM) is

designed to achieve demand–capacity balancing (DCB)

[3]. Conceptually, ATFM encompasses three distinct
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phases based on the time of implementation [4]: (1)

strategic planning (a few months ahead) involving mea-

sures such as runway expansion [5] and shorter separation

standards [6]; (2) pre-tactical planning (1 day ahead) that

includes traffic flow and sector splitting [7]; and (3) tactical

planning (on the day of implementation) that entails air-

craft sequencing and re-sequencing during flight operations

[8]. The traditional ATFM methods include group delay

programs [9, 10], airport surface management [11–13],

flight rerouting [14, 15], flight scheduling [16, 17], and

flight sequencing [18, 19].

Air traffic flow is an important indicator for smooth

flight operation. Therein, accurate traffic flow prediction

can help identify air traffic operation bottlenecks and serve

as the prerequisite and basis for effective ATFM [20].

Traditional air traffic flow prediction methods refer to the

approaches used before the advent of modern data-driven

and machine learning techniques, which rely on analytical

and statistical approaches to forecast air traffic flow, such

as time-series analysis, regression analysis, exponential

smoothing, moving averages, seasonal decomposition, and

historical averages [21–24]. Generally, traditional methods

are valuable for predicting air traffic flow when historical

data are limited, and simpler models are preferred due to

ease of implementation and interpretability. However,

traditional methods may be less capable of capturing

complex patterns and relationships present in large and

dynamic datasets due to the simplified linear relationship

assumptions [25]. In contrast, data-driven and machine

learning techniques have revolutionized air traffic flow

prediction, allowing for more accurate and adaptive fore-

casts. These methods utilize historical data, real-time

information, and various features to learn patterns and

relationships in air traffic flow. Notably, deep learning

neural networks, including convolutional neural networks

(CNN), recurrent neural networks (RNN), and long short-

term memory (LSTM) networks, are commonly used for

air traffic flow prediction [26–30]. These models can cap-

ture complex spatiotemporal dependencies and have shown

promising air traffic flow prediction.

Airspace is divided into sectors based on various factors,

such as geographical location, traffic density, and com-

plexity of the airspace. The sector capacity determines the

number of aircraft that can be safely handled within a

sector at a given time, depending on factors such as air-

space configuration, available resources, and controller

workload [31]. Airspace sector management plays a crucial

role in flow management, especially during high-traffic

periods or in congested areas. Clearly, air traffic flow

prediction in sectors is crucial for managing airspace

capacity, balancing traffic flows, ensuring safety, optimiz-

ing sector utilization, and enabling collaborative decision-

making among stakeholders [32]. Accurate predictions can

help authorities proactively manage air traffic, enhance

operational efficiency, and maintain a safe and orderly flow

of aircraft through the airspace. Figure 1 shows the sche-

matic diagram of the air traffic flow management.

However, sector-based traffic flow prediction is a com-

plex task that comes with several challenges. First, air

traffic flow in sectors can be highly variable and is influ-

enced by factors such as weather conditions, peak travel

times, special events, and unforeseen incidents. Predicting

the flow of traffic under such dynamic conditions requires

robust models that can adapt to changing patterns. Then, air

traffic flow exhibits nonlinear dependencies, where the

relationships between input features and traffic flow can be

complex and nonlinear. Traditional linear models may not

capture these intricate dependencies effectively, necessi-

tating the use of more sophisticated machine learning

techniques. Additionally, there are temporal dependencies

due to the sequential nature of flight operations. Capturing

these dependencies accurately requires specialized model-

ing techniques. Last, the location and size of sector

boundaries and the complicated and unique internal airway

structure within the sector can also affect the flow of traffic.

The traffic flow of one sector is also impacted by interac-

tions with adjacent downstream and upstream sectors.

Designing sector-specific prediction models that take into

account the topological structure characteristics and traffic

flow patterns of the sector and tailor predictions for indi-

vidual sectors is an area that requires exploration. These

challenges arise due to the dynamic and generally unpre-

dictable nature of air traffic, as well as the need for accurate

and timely forecasts several steps ahead to ensure safe and

efficient airspace and air traffic flow management [33].

The utilization of deep learning technologies, specifi-

cally those rooted in graph neural networks, has found

extensive applications across diverse domains. These

include but are not limited to natural language processing

[34, 35], computer vision [36, 37], recommendation sys-

tems [38, 39], graph analysis [40, 41], and traffic prediction

[42, 43].

Within the realm of both road traffic and air traffic

domains, to comprehensively model the spatiotemporal

correlation features of the prediction target, graph convo-

lutional network (GCN) combined with long short-term

memory (LSTM) methods find application in forecasting

traffic metrics such as flow, speed, and traffic complexity.

Li et al. [44] integrate GCN and LSTM models to extract

spatial–temporal traffic features and then implement a soft

attention mechanism to make final road traffic flow pre-

diction. He et al. [45] validated the effectiveness of GC-

LSTM in capturing spatial and temporal characteristics,

intra-station correlations, and exogenous factors for pas-

senger flow forecasting in high-speed rail networks. Guo

et al. [46] combined GCN and LSTM and build the
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Seq2Seq model to predict multi-step road traffic speed. Du

et al. [47] employed a fusion of GCN and gated recurrent

units (GRU) for forecasting traffic flow across multiple

airports. Li et al.[48] combined graph convolutional mod-

ules with attention-based temporal convolutional modules

to formulate a prediction model for airspace complexity.

Within the realm of sector traffic prediction, graph

neural networks showcase substantial versatility, forming

the core of our investigation. In response to the afore-

mentioned research challenges, we proposed a cutting-edge

attention-enhanced graph convolutional long short-term

memory network (AGC-LSTM) model for short-term

multi-step-ahead sector flow prediction, combining the

attention mechanism with the graph convolution layer and

capturing temporal dependencies of flight data using the

LSTM layer.

The major contributions and highlights of this study can

be summarized as follows:

(1) The topological structures of spatial route segments

both within and beyond a sector are considered by

the study. These structures are used as inputs to

construct a graph representation, owing to the

spatiotemporal correlations observed in traffic flow

data between the adjacent route segments inside the

sector, as well as those upstream and downstream of

the focal sector. By utilizing the traffic data from

those related route segments, a comprehensive

representation and prediction of sector traffic flow

are achieved. This approach effectively captures the

influence of both traffic complexity and sector

airspace structure complexity on sector-level traffic

flow, consequently enhancing the accuracy of pre-

dictions at the sector-wide level traffic flow.

(2) The AGC-LSTM model integrates the attention-

enhanced graph convolutional network and the long

short-term memory network. The graph convolu-

tional layer employs the multi-head attention mech-

anism to capture the multiple spatiotemporal

dependencies of sector-based traffic flow, and the

LSTM layer is applied to capture the temporal

dependencies.

(3) We evaluate our approach using the typical sector

traffic datasets. The proposed model can generate

more accurate predictions on air traffic flows than the

baseline models, which has the potential to help air

traffic control officers (ATCOs) manage air traffic

flow efficiently.

The rest of this paper is organized as follows. Section 2

reviews the related studies on air traffic prediction. Sec-

tion 3 proposes the AGC-LSTM model for airspace sector-

based traffic flow prediction. Section 4 introduces the flight

data and generates the network graphs and demonstrates

the experimental results of the proposed model. Section 5

discusses the limitations and contributions of this study,

and also the scalability of the model to enable the expan-

sion of application to relevant field. Finally, Sect. 6 pro-

vides a summary of the research conducted in this paper

and outlines future research directions.

2 Related works

Air traffic flow prediction constitutes a crucial component

of ATFM [49]. This section briefly reviews the related

works from two aspects, i.e., airport-based traffic flow

prediction and sector-based traffic flow prediction.

2.1 Airport-based traffic flow prediction

Airport-based traffic flow prediction is of significant

importance for efficient air traffic management and airport

operations [50]. Airports have a limited capacity to handle

a certain number of flights and passengers within a given

timeframe [51]. Airport flow prediction allows airport

operators to allocate resources optimally such as runways,

shuttles, gates, and taxiways [52]. Consequently, airport

flow prediction directly impacts the passenger experience.

By accurately estimating the flow of flights, airports can

provide real-time information about expected wait times,

gate changes, and potential disruptions. This allows pas-

sengers to plan their journeys better, manage their time,

and navigate the airport more efficiently, reducing stress

Fig. 1 Schematic diagram of air traffic prediction and air traffic flow management
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and enhancing the overall passenger experience [53, 54].

Additionally, many busy airports use slot management

systems to schedule and allocate arrival and departure slots

to airlines. Airport flow prediction plays a crucial role in

determining the availability of slots and optimizing their

allocation [55]. By accurately predicting the flow of flights,

airport authorities can make informed decisions about slot

assignments, reducing delays and maximizing the utiliza-

tion of available slots [56]. Besides, air traffic control

officers (ATCOs) rely on accurate arrival flow prediction to

maintain safe separation between arriving aircraft [57]. By

knowing the estimated arrival times and sequence of

flights, controllers can plan and execute the necessary air

traffic control instructions, including sequencing, spacing,

and vectoring of aircraft for a safe and orderly flow of

arrivals [58].

In recent years, there has been a surge in research

focused on air traffic flow prediction at airports, with

machine learning and deep learning models gaining pop-

ularity due to their superior prediction accuracy and

learning capabilities [59]. Li and Wang [60] utilized the

stacked automatic coding machine model, the long and

short memory network (LSTM) model, and the control gate

recursion model to predict short-term traffic flow at capital

airports. Similarly, LSTM-based air traffic flow prediction

has been explored for Diyarbakır Airport [61]. Recognizing
the impact of meteorological conditions, Yang et al. [62]

proposed a combined LSTM and extreme gradient boosting

method for predicting airport flight arrival flow. Zhu et al.

[63] introduced a novel graph attention RNN model to

forecast short-term airport throughput over a national air

traffic network. Building on the strength of residual neural

networks, GCN, and LSTM, Zang et al. [27] developed a

deep learning architecture for predicting the spatiotemporal

distribution of traffic flow at the airport network level.

Considering the influence of the topological airport net-

work, Yan et al. [64] introduced an airport traffic flow

prediction network designed to capture spatial–temporal

dependencies of historical airport traffic flow (departure

and arrival) for multiple step situational (network-level)

arrival flow predictions. To model network-wide spatial

dependencies among airports based on flight duration and

flight schedule factors, a multi-view attention-based spa-

tial–temporal network was presented [65]. Addressing

heterogeneous and dynamic network dependencies, Yan

et al. [66] proposed a novel large-range air traffic flow

prediction model to improve airport arrival flow prediction.

2.2 Sector-based traffic flow prediction

Air traffic flow prediction at sectors is essential for efficient

air traffic management and ensuring the safe and orderly

flow of aircraft through specific airspace sectors. Each

sector within the airspace has a limited capacity to handle a

certain number of aircraft at a given time [67]. Therefore,

accurately predicting the flow of air traffic in sectors can

help prevent traffic congestion, flight delays, and airspace

saturation, ensuring that aircraft can flow smoothly and

safely through sectors. In addition, sector flow prediction

can contribute to balancing the flow of air traffic among

different sectors. By forecasting the expected demand and

traffic volume in each sector, ATCOs can adjust the flow of

aircraft [68], distribute the workload evenly [69], and

detect potential aircraft conflicts [70, 71]. Besides, sector

flow prediction can help authorities optimize the utilization

of available airspace capacity by opening or closing certain

routes or sectors, adjusting sector boundaries, or imple-

menting flow management measures to accommodate the

predicted traffic flows effectively [72].

Airspace operation complexity evaluation is significant

for ensuring flight safety [73], optimizing airspace capacity

[74], improving traffic flows [75], and supporting decision-

making [76]. By evaluating and understanding complexity,

authorities can implement measures and strategies that

contribute to efficient and safe airspace operations.

Accordingly, Shi-Garrier et al. [77] adopted a novel

encoder–decoder LSTM neural network to predict ATC

tasks based on the presented intrinsic complexity metric.

Furthermore, a novel end-to-end learning framework was

introduced by Xie et al. [78] to assess sector operation

complexity. This approach employed a deep CNN to

transform air traffic data into images, marking the first

application of this technique for comprehensive complexity

analysis. Subsequently, Sui et al. [79] extended the study

by abstracting the multi-sector airspace scenario as an

undirected graph. They then introduced a spatiotemporal

GCN model to capture the correlations between changes in

sector operational conditions over time and space. Xu et al.

[80] proposed a Bayesian ensemble graph attention net-

work for predicting stochastic traffic density near the ter-

minal. Their model accounted for the intricate spatial–

temporal variations in traffic patterns and considered the

inter-dependencies within air traffic networks.

Currently, sector flow prediction has been carried out

based on GCN [81], supervised learning [82], machine

learning algorithms, RNN, and LSTM [83]. Moreover,

researchers have explored various approaches to capture

meaningful spatiotemporal correlations within high-di-

mensional feature space for traffic flow prediction. These

methods include an end-to-end deep learning-based model

[26], a three-dimensional CNN [84], and several machine

learning models [85]. In the context of traffic flow coor-

dination at major intersections, the flow-centric paradigm

has been utilized to aid controllers in effectively managing

intersecting traffic movements [86]. In line with this,

Delahaye et al. [87] presented a transformer neural network
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model for flow prediction at coordination points. Addi-

tionally, studies have approached air traffic flow prediction

from the perspective of air traffic flow networks. For

instance, in enroute airspace, a dynamic network-based

approach has been employed to achieve short-term air

traffic flow prediction, characterizing the topological

structure of airspace and the dynamics of air traffic flow

[88]. Zhang et al. [89] proposed a hybrid model based on

fuzzy c-means and GCN to capture the upstream and

downstream dependencies within air traffic flow networks.

Similarly, Cai et al. [90] introduced a temporal attention

aware dual-graph convolution network for predicting air

traffic flow, considering the airspace structure and routes of

air traffic flows. Unlike these studies, this article will apply

the AGC-LSTM method taking into account multiple

spatial–temporal dependencies including spatial adjacency,

and long-term and short-term temporal dependencies. The

graph is constructed with route segments inside both the

focal sector and its surrounding upstream and downstream

sectors to capture the complex impact of inner traffic flow

and airspace structure dependency characteristic on the

sector traffic flow.

3 Methodology

Firstly, this section provides an introduction to the method

of spatiotemporal feature extraction. Following that, a

comprehensive explanation of the AGC-LSTM model is

presented.

3.1 Spatiotemporal feature representation
and graph modeling

This study aims to predict the traffic flow within the sector

for future time intervals. To achieve this, the task involves

learning a mapping function that calculates the traffic flow

Y for the upcoming Q time steps, based on the topological

structure G of the flight route segment network and the

feature matrix X of the preceding P time steps. The sche-

matic diagram of this process is depicted in Fig. 2, and the

model function is expressed as follows:

Ytþ1; � � � ; YtþQ;½ � ¼ f G; Xt�Pþ1; � � � ;Xt�1;Xtð Þð Þ ð1Þ

The spatial relationship between segments is trans-

formed into an adjacency matrix An�n as shown in (2),

where n is the number of flight route segments, and the

values in the matrix represent the connectivity between

segments. The topological structure of the neural network

G is established based on An�n. This matrix was con-

structed to describe the features of each node in G. Each

row of the matrix represents a flight route segment, and

each column represents the time dimension. Vector

rsij; raij;wij

� �
in each element of the matrix represents

features for each flight route segment at different time

intervals, where rsij and raij represent the scheduled and

actual traffic flows of the route segments, respectively, and

wij representing weekly periodicity of the flight schedules.

Ultimately, a comprehensive input feature matrix Xn�t�3 is

obtained as shown in (3), where t is the number of the time

slot, and 3 is the number of input features in our model.

The output target variable vector Y1�ðt�PÞ is shown in (4),

where k is the input sequence length.

A ¼

a11 a12 � � � a1n
a21 a22 � � � a2n

..

. ..
.

an1 an2

. .
.

� � �
..
.

ann

2

6664

3

7775
ð2Þ

X ¼

rs11; ra11;w11ð Þ rs12; ra12;w12ð Þ � � � rs1t; ra1t;w1tð Þ
rs21; ra21;w21ð Þ rs22; ra22;w22ð Þ � � � rs2t; ra2t;w2tð Þ

..

. ..
.

rsn1; ran1;wn1ð Þ rsn2; ran2;wn2ð Þ
. .
.

� � �
..
.

rsnt; rant;wntð Þ

2

6664

3

7775

ð3Þ
Y ¼ sr1;Pþ1 sr1;Pþ2 � � � sr1;t½ � ð4Þ

3.2 AGC-LSTM prediction model

To better explore spatiotemporal dependencies of sector

traffic flows, we propose the AGC-LSTM model. Figure 3

illustrates the architecture of the AGC-LSTM model,

comprising five layers, namely, the input layer, the multi-

head attention-based graph convolutional layer, the dropout

layer, the LSTM layer, and the output layer.

The input layer receives feature dataset X and target label

dataset Y. The subsequent graph convolutional layer cap-

tures spatial dependencies within the data, enhancing feature

extraction. It employs a multi-head attention mechanism to

capture diverse relationships and feature importance in the

graph structure. After the graph convolutional layer, a

dropout layer randomly discards some output, promoting

network learning on different subsets for robustness. The

resulting sequence is input to the LSTM layer, which cap-

tures temporal dependencies and extracts temporal features.

High-level features from the previous layers are propagated

through fully connected layers to predict sector traffic flow

effectively. This comprehensive approach enables the AGC-

LSTM model to explore both spatiotemporal dependencies

and accurately predict traffic flow.

3.2.1 Graph convolutional layer with a multi-head
attention mechanism

In recent years, GCN has been introduced to handle graph-

structured data. They capture spatial features between
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vertices by constructing filters in the Fourier domain,

which act on vertices and their first-order neighbors. The

multi-head attention mechanism is an extension based on

attention mechanisms used for sequential data [91]. It

expands the single attention head in the attention mecha-

nism to multiple parallel attention heads, thereby enhanc-

ing the expressive and modeling capabilities of the model.

The operation process of the entire multi-head attention

mechanism graph convolutional layer can be represented

by the following equations:

H1 ¼ Concatenate r D�1
2A1D

�1
2XW1

� �
;

h

r D�1
2A2D

�1
2XW2

� �
; � � � ; r D�1

2AKD
�1

2XWK

� �i ð5Þ

AK ¼ softmaxðeKÞ ð6Þ

eij ¼ LeakyReLU aTK ½WKXijjWKXj�
� �

ð7Þ

where H1 is the output of the multi-head attention graph

convolution layer, and K represents the number of attention

heads in the multi-head attention mechanism, where each

head has its attention weight matrix and linear transfor-

mation matrix. Ak denotes the attention weight matrix of

the Kth head, WK represents the linear transformation

matrix of the Kth head, D is the node degree matrix, X is the

feature matrix, and rð�Þ denotes the activation function. eK
represents the attention weights between all nodes in the

Kth attention head, which are normalized using the softmax

function to ensure that the attention weights of each node

sum up to 1. eij represents the attention weight between

node i and node j, while aK denotes the parameter vector of

the Kth attention head. Xi;Xj represent the feature vectors

of node i and node j, respectively, jj represents the con-

catenation operation of vectors, and LeakyReLU represents

the rectified linear activation function with a leaky slope.

3.2.2 Dropout layer

In the context of deep learning, dropout has been demon-

strated to be effective in preventing overfitting in deep

neural networks [92]. It is a commonly used regularization

technique that randomly sets a portion of neuron outputs to

zero during the training process of a neural network to

prevent overfitting. The dropout operation can be seen as

an ensemble learning technique that enhances the robust-

ness of the network to small perturbations in the input by

randomly dropping the outputs of neurons. In the con-

structed model, the formula for dropout can be expressed as

follows:

H2 ¼ M � H1 ð8Þ

where H1 represents the input vector of the dropout layer,

and M is a binary mask vector with the same shape as H1,

indicating which neurons should be dropped. � denotes

element-wise multiplication, and H2 represents the output

vector after dropout.

3.2.3 LSTM layer

By leveraging the aforementioned steps, we effectively

extract spatial structural features from the data. Subse-

quently, the LSTM layer is employed to capture the tem-

poral dependencies. Due to the limitations of traditional

RNNs, such as the vanishing gradient and exploding gra-

dient problems, the LSTM model [93] was proposed as a

variant that can address these issues. As illustrated in

Fig. 4, the core idea of LSTM is to control the flow of

information through gate units, including the forget gate,

input gate, and output gate.

These gates utilize learnable parameters to selectively

retain and discard information, enabling the capture and

propagation of important information within the sequence.

Below are the formulas that describe the implementation of

the LSTM layer. H2 is required to be inputted sequentially,

and the input gate determines the information that needs to

be updated. It processes the input and the previous hidden

state using the Sigmoid activation function to obtain a

value between 0 and 1, representing the importance of each

input. Equation (9) defines it as the activation value of the

input gate, which controls the importance of the current

Fig. 2 Graph to sequence learning for multi-step sector traffic flow prediction

Neural Computing and Applications

123



Fig. 3 AGC-LSTM architecture

diagram
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input. bi is the bias vector, and xt represents the current

input sequence. Similarly, the forget gate uses the Sigmoid

activation function to determine the degree of retention for

each previous hidden state. Equation (10) represents ft as

the activation value of the forget gate, which controls the

degree of forgetting the previous hidden state. Equa-

tion (11) defines ~ct as the candidate value for the update,

generated by the hyperbolic tangent (tanh) activation

function to produce a new candidate hidden state. ct rep-

resents the cell state, responsible for transmitting and

storing information, which is updated and stored at each

time step. ot represents the activation value of the output

gate, and ht represents the current hidden state, which is the

output of the LSTM model. W and b represent the weight

matrix and bias matrix for the respective time step.

it ¼ rðWxi � xt þWhi � ht�1 þ biÞ ð9Þ
ft ¼ rðWxf � xt þWhf � ht�1 þ bf Þ ð10Þ

~ct ¼ tanhðWxc � xt þWhc � ht�1 þ bcÞ ð11Þ
ct ¼ ft � ct�1 þ it � ~ct ð12Þ
ot ¼ rðWxo � xt þWho � ht�1 þ boÞ ð13Þ
ht ¼ ot � tanhðctÞ ð14Þ

By incorporating the gate mechanism in the LSTM layer,

selective retention and forgetting of information can be

achieved. This design addresses the challenge of capturing

long-term dependencies in traditional RNN and enables

better extraction of temporal features from air traffic data.

3.2.4 Loss function

Within the proposed model, we utilize L2 regularization as

the loss function for the regression model’s mean squared

error. The formula for the L2 regularization is as follows:

loss ¼
Pð ŷi � yiÞ2

n
þ kLreg ð15Þ

where ŷi and yi represent the actual value and predicted

value, respectively. k denotes the L2 regularization coef-

ficient, and Lreg represents the trainable weights of the

regression model.

3.2.5 Evaluation metric

Four metrics were utilized to evaluate the predictive per-

formance of AGC-LSTM: mean absolute error (MAE),

root-mean-square error (RMSE), symmetric mean absolute

percentage error (SMAPE), and coefficient of determina-

tion (R2). The formulas are as follows:

MAE ¼ 1

n

Xn

1

jŷi � yij ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1

ðŷi � yiÞ2
s

ð17Þ

SMAPE ¼ 1

n

Xn

1

jŷi � yij
ð ŷij j þ jyijÞ=2

� 100 ð18Þ

R2 ¼ 1�
Pn

1ðŷi � yiÞ2
Pn

1ðyi � yÞ2
ð19Þ

where ŷi represents the predicted value, yi represents the

true value, y denotes the mean of the true values, and n

represents the number of samples. MAE and RMSE

quantify the differences between the predicted and true

values, SMAPE measures the magnitude of relative errors,

and R2 evaluates the extent to which the predictive model

explains the total variability.

4 Experiments and results

Following the introduction of the AGC-LSTM model for

sector-based traffic flow prediction, this section first

introduced the experiment datasets, selecting two key

sectors in the central–southern region of China to conduct a

case study. Subsequently, graph structures are constructed,

taking into account the actual internal routes and traffic

flow patterns within these selected sectors. Then to verify

the feasibility and validity of the model, we made com-

parative experiments of AGC-LSTM with five baseline

models to evaluate the prediction performance at a time

granularity of 15 min for the single-step ahead. Addition-

ally, comparative experiments were conducted to evaluate

Fig. 4 Principle diagram of

LSTM
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the prediction results at different statistical time granular-

ities for a single time interval of 15, 30, 45, and 60 min.

Furthermore, prediction results of different look-ahead

time steps were compared.

4.1 Datasets

The Automatic Dependent Surveillance-Broadcast (ADS-

B) data are adopted to extract the spatiotemporal features

of air traffic flows. The ADS-B is based on the Global

Navigation Satellite System (GNSS) and can provide

comprehensive datasets including flight ID, timestamp,

latitude, longitude, altitude, aircraft type, etc. Detailed

information about ADS-B can refer to [94, 95]. The two

selected sectors, namely, ZGGGAR11 and ZGGGAR22,

are situated in the central–southern region of China. They

act as crucial junctions connecting numerous airports,

including those in the Greater Bay Area and the southwest

region of China. In comparison with other airspace sectors,

ZGGGAR11 and ZGGGAR22 accommodate a higher

volume of flights and play a more significant role in air

traffic management. Figure 5 provides a detailed spatial

depiction of these two sectors. Both sectors share identical

horizontal extents, but they differ in their vertical ranges

(ZGGGAR11: 9200–12,500 m; ZGGGAR22:

6000–9200 m).

This study utilizes ADS-B data from March 2019,

obtained from Variflight (http://www.variflight.com). The

dataset comprises 72,512 records from a total of 34,167

flights, encompassing 20 flight route segments within the

two airspace sectors (ZGGGAR11 and ZGGGAR22). For

each segment, both the scheduled and actual traffic flows

were determined, using the scheduled arrival time and the

ADS-B arrival time, respectively. However, it was

observed that while calculating the overflying times of the

waypoints using the original ADS-B data, certain abnormal

data arose due to inconsistencies in the adjustments of

entry/exit times for each segment and sector. To address

this issue, a set of criteria were applied to clean the flight

data and ensure its reliability and accuracy. Following the

application of these selection criteria, which involved

considering the flying time of each route segment to be

between 2 and 6 min, a dataset containing valid flight route

segment data was derived. This dataset comprised 70,276

records originating from 33,942 flights. Subsequently, an

examination of the entry/exit times for each flight route

segment enabled the calculation of air traffic flow for the

32 one-way flight route segments present in sector

ZGGGAR11/ZGGGAR22. These calculations were per-

formed for specific time intervals, each corresponding to a

node in the subsequent graph network to be constructed.

Fig. 5 a Screenshot of the overview of flight routes in the central–southern region of China. The dots denote airport locations. Especially, b and

c depict the vertical view and horizontal view of the ZGGGAR11/ZGGGAR22 sectors, respectively
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4.2 Graph generation

This section presents the principle of graph generation

through a series of transformations as depicted in Fig. 6.

Especially, Fig. 6a illustrates the flight route segment net-

work within the sectors ZGGGAR11/ZGGGAR22,

comprising 32 flight route segments listed on the right side

of the figure. To represent the topological structure of the

network, this network is converted into a directed graph

denoted as G ¼ ðV;EÞ, where V denotes the nodes (flight

route segment), and E denotes the edges (waypoint). For

further clarity, Fig. 6b depicts the correspondence between

Fig. 6 Graph structure of ZGGGAR11/ZGGGAR22
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the route segment structure of the main air route ONEMI-

VQ-MAMSI-ENKUS within the sector and G. Similarly,

Fig. 6c shows the correspondence between the route seg-

ment structure of NODOG-QP-MAMSI-SJG-AKNAV-

ELKAL and G.

4.3 Experimental settings

In the experiment, 70% of the data was used as the training

set, while 30% of the data was allocated for the test set.

These datasets were utilized to predict the sector traffic

flow for multiple subsequent time series. The AGC-LSTM

model undergoes training with a learning rate set at 0.001

for a total of 300 epochs, using a batch size of 64. The

number of attention heads in the graph convolutional layer

is set to 2. Given the significant impact of hyperparameters

on model predictive accuracy, we conducted hyperparam-

eter tuning to enhance model performance. The optimized

hyperparameter involved the hidden neurons in the GCN

layer, the hidden neurons within the LSTM layer, and the

dropout ratio. Figure 7 illustrates the prediction error

results for different values of the hyperparameter. In par-

ticular, Fig. 7a and b depicts the application of binary

search to identify the optimal number of hidden neurons in

both the GCN and the LSTM layers. Meanwhile, Fig. 7c

illustrates the prediction error result for each of the dropout

ratio values. The resulting hyperparameters are presented

in Table 1.

To gain a comprehensive understanding of the AGC-

LSTM model, an analysis of the algorithmic complexity is

conducted. Let Ak k0 represents the number of nonzero

elements in the adjacency matrix, N denotes the number of

nodes, F represents the feature dimensionality, and L

indicates the number of GCN layers. Within each GCN

layer, forward propagation involves feature propagation

and aggregation operations, while backward propagation

requires gradient computation and parameter updates,

resulting in an overall complexity is OðL Ak k0F þ LNFÞ.
Upon incorporating a multi-head attention mechanism into

the GCN, with K denoting the number of attention heads,

the overall complexity of the GCN with a multi-head

attention mechanism can thus be expressed as

O LKð Ak k0F þ NFÞ
� �

. For LSTM, with an input sequence

length of T and a hidden state dimensionality of h, the

complexity is Oð4Thþ 4TFhÞ. Therefore, the total com-

plexity of the AGC-LSTM model is

O LK Ak k0F þ NF2
� �

þ 4Th2 þ 4TFh
� �� �

.

To evaluate the performance of the AGC-LSTM model,

the comparison was made with five baseline models: (1)

Historical average (HA) is a forecasting method that pre-

dicts future values by taking the average of past observa-

tions. (2) Autoregressive integrated moving average

(ARIMA) is a time-series prediction technique. (3) Support

vector regression (SVR) is a regression method that utilizes

a linear support vector machine for series prediction. (4)

LSTM is a specialized variant of recurrent neural network

(RNN) commonly used for sequential prediction tasks. (5)

GCN-LSTM is a model designed to leverage the advan-

tages of both graph-based and sequential data modeling.

The proposed AGC-LSTM is compared with five base-

line models to evaluate the prediction performance at a

time granularity of 15 min for the single-step ahead.

Additionally, comparative experiments were conducted to

evaluate the prediction results at different statistical time

granularities for a single time interval of 15, 30, 45, and

60 min. Furthermore, we conducted experiments to com-

pare the results of multi-step ahead predictions. All the

Fig. 7 Process of hyperparameter tuning and results

Table 1 Hyperparameter values obtained through hyperparameter

tuning

Hyperparameter Optimal parameter value

Hidden neurons in GCN 4

Hidden neurons in LSTM 640.6

Dropout ratio 0.6
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Table 2 Performance

comparison of the six prediction

methods for single-step ahead

prediction with features of

15-min time granularity

Methods Input_seq_length MAE RMSE SMAPE R2

HA – 4.3461 5.1697 0.5136 -5.4588

ARIMA 2 2.6075 3.3309 0.3438 0.6004

3 2.6084 3.3326 0.3456 0.5930

4 2.6093 3.3331 0.3463 0.5925

5 2.6099 3.3336 0.3458 0.5921

6 2.6104 3.3342 0.3453 0.5916

7 2.6108 3.3346 0.3449 0.5913

8 2.6116 3.3352 0.3450 0.5910

SVR 2 2.4169 3.1025 0.3234 0.6476

3 2.3759 3.0445 0.3180 0.6604

4 2.3567 3.0262 0.3153 0.6641

5 2.3309 3.0060 0.3126 0.6684

6 2.3093 2.9830 0.3101 0.6731

7 2.2777 2.9449 0.3068 0.6813

8 2.2537 2.9230 0.3049 0.6859

LSTM 2 2.4008 3.0425 0.3221 0.6537

3 2.3805 3.0435 0.3181 0.6538

4 2.4534 3.1713 0.3338 0.6243

5 2.2811 2.9289 0.3068 0.6799

6 4.3535 5.1820 0.5140 -0.0008

7 4.3513 5.1810 0.5135 -0.0008

8 4.3525 5.1831 0.5136 -0.0008

GCN- LSTM 2 1.9488 2.4822 0.2662 0.7490

3 1.9094 2.4588 0.2613 0.7533

4 1.9433 2.4954 0.2697 0.7528

5 1.9934 2.5542 0.2749 0.7444

6 2.0594 2.6458 0.2812 0.7300

7 1.9376 2.4850 0.2672 0.7524

8 1.9346 2.4758 0.2681 0.7528

AGC- LSTM 2 1.6678 2.1612 0.2401 0.8068

3 1.7006 2.1722 0.2409 0.8094

4 1.6656 2.1568 0.2397 0.8115

5 1.6827 2.1865 0.2412 0.8132

6 1.6340 2.1120 0.2347 0.8283

7 1.7017 2.1993 0.2432 0.8143

8 1.7002 2.2099 0.2432 0.8115

AGC-LSTM (expand the graph space range) 2 1.6159 2.0876 0.2190 0.8193

3 1.6945 2.1964 0.2315 0.8099

4 1.6583 2.1404 0.2288 0.8185

5 1.6462 2.1368 0.2273 0.8220

6 1.6467 2.1318 0.2263 0.8247

7 1.6803 2.1752 0.2279 0.8189

8 1.6629 2.1431 0.2280 0.8205
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experiments are conducted on a machine with NVIDIA

GeForce GTX1050 (2 GB memory), i7-7700HQ CPU (2.80

GHz), and 8 GB of RAM.

4.4 Experimental results

4.4.1 Single-step ahead prediction results compared
to baseline models

The training time of the AGC-LSTM model is 0.91 s per

epoch, and the iteration number is 8700. When applied to

the test dataset, the model demonstrates a runtime of 0.39 s

on average. AGC-LSTM is compared with five baseline

models for the single-step ahead prediction of the sector-

based traffic flow. Table 2 provides a detailed comparison

of model performance for each prediction method under

different input sequence lengths. The ‘‘Input_seq_length’’

represents the input sequence length, and the best values

under different feature sequence lengths for each model are

highlighted in boldface. The results indicate that the AGC-

LSTM model demonstrates improved predictive perfor-

mance across multiple metrics, including MAE, RMSE,

Fig. 8 Expanded route segment network constructed with route segment inside and out of the sector ZGGGAR11/ZGGGAR22 (route segment in

red indicates the expanded segment)

Fig. 9 a Real and predicted

sector-based traffic flow in a

typical day and b absolute error

values of a prediction made by

AGC-LSTM and GCN-LSTM
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SMAPE, and R2. Compared to the best-performing model

GCN-LSTM among the other five models, the AGC-LSTM

model reduces the MAE by 14.4%, RMSE by 14.1%,

SMAPE by 10.2%, and increases R2 by 9.96%. These data

indicate that the AGC-LSTM model is more accurate in

predicting. This is primarily attributed to the fact that while

the GCN-LSTM model only extracts spatiotemporal fea-

tures, the AGC-LSTM model incorporates the multi-head

attention mechanism in the graph convolutional layer to

fully exploit the spatial correlations in the data and focuses

on critical node information within the flight route segment

network to better learn the topological structure of the

entire graph network. Additionally, as sector traffic flow

exhibits significant fluctuations in a short period, the AGC-

LSTM model mitigates the impact of these perturbations

by incorporating the dropout layer, thereby enhancing the

robustness of the predictions.

Another phenomenon can be observed that the predic-

tion accuracy of the model initially improves and then

deteriorates as the number of input time sequence lengths

increases. It is speculated that during the process of

increasing the data dimension, the quantity of input fea-

tures related to the predicted results gradually increases,

leading to optimal prediction accuracy. However, as the

input data dimension continues to increase, the data spar-

sity increases, making it more difficult for the model to

capture effective patterns and trends, thereby affecting the

model’s performance.

To assess the impact of the space range of route seg-

ments on the prediction results, Table 2 also includes the

results of using the extended segment network shown in

Fig. 8 to construct the spatial network structure of the

AGC-LSTM model. The results indicate that the AGC-

LSTM model using the expanded spatial network reduces

the MAE by 1.1%, RMSE by 1.2%, and SMAPE by 6.7%

when compared with the AGC-LSTM model using a net-

work constructed only with route segment in the focused

sector.

The features have a time granularity of 15 min and vary

in input sequence length. Figure 9a presents the real and

Table 3 Performance

comparison of prediction under

different time granularities for

single-step ahead prediction

with AGC-LSTM model

Time granularity (min) Input_seq_length MAE RMSE SMAPE R2

15 2 1.6678 2.1612 0.2401 0.8068

3 1.7006 2.1722 0.2409 0.8094

4 1.6656 2.1568 0.2347 0.8115

5 1.6827 2.1865 0.2412 0.8132

6 1.6340 2.1120 0.2397 0.8283

7 1.7017 2.1993 0.2432 0.8143

8 1.7002 2.2099 0.2432 0.8115

30 2 2.7647 3.5599 0.1768 0.8656

3 2.6993 3.5115 0.1716 0.8711

4 2.8271 3.6463 0.1724 0.866

5 2.7137 3.5015 0.1666 0.8662

6 2.7632 3.5379 0.1739 0.8623

7 2.7899 3.567 0.1713 0.8575

8 2.8581 3.6321 0.1714 0.8415

45 2 3.5479 4.5997 0.1326 0.9005

3 3.6096 4.6509 0.1323 0.8966

4 3.6113 4.6754 0.1381 0.8849

5 3.6505 4.7876 0.1399 0.8748

6 3.7330 4.8008 0.1325 0.8648

7 3.8516 4.9013 0.1280 0.8388

8 4.1220 5.1949 0.1247 0.7537

60 2 4.1785 5.5343 0.1156 0.9086

3 4.411 5.8432 0.1330 0.898

4 4.3497 5.854 0.1139 0.8896

5 4.6918 6.1113 0.1196 0.8631

6 4.8483 6.1677 0.1107 0.8163

7 5.2693 6.8249 0.1098 0.5746

8 5.0751 6.3418 0.1019 0.6689
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predicted sector-based traffic flow by AGC-LSTM and

GCN-LSTM. Figure 9b shows the absolute prediction

errors for each time slot of the whole day. For the fore-

casted time slots 1–20 (0–5 h), where the actual values are

relatively low, the AGC-LSTM model exhibits errors

within 2, with most errors being within 1. In contrast, the

GCN-LSTM model has errors ranging mostly more than 2

for the same time series, with the highest error up to 6.

Ordinally, 5–10% of sector capacity is reserved to take care

of all ‘‘non-adherence issues’’ caused by the low traffic

predictability in the pre-tactical and tactical stages [96].

Sectors in the central–southern region of China ordinally

have the maximum traffic flow not exceeding 21, the

improvement of 1–2 flights in the forecasting accuracy has

a significant impact. Furthermore, for the subsequent time

slot beyond 20 (5–24 h), it can be observed that the AGC-

LSTM model achieves a higher fit, with smaller absolute

prediction errors for the majority of the time slot.

4.4.2 Single-step ahead prediction results under different
time granularities

To analyze the impact of different time granularities of the

input and output features on the prediction performance,

we extracted features at time granularities of 15 min,

30 min, 45 min, and 60 min to predict the traffic flow of

the next time step. The experimental results are presented

in Table 3.

It can be seen that when the time granularity increases,

the model’s prediction performance decreases according to

MAE and RMSE, while the SMAPE values tend to

decrease, and R2 continues to increase. The decrease in

prediction performance may be attributed to the reduction

in the number of input time series due to the increase in

time granularity, resulting in a decrease in data volume and

an increase in outliers, thereby disrupting the model’s

learning process. This aligns with the characteristic that

mean absolute error is less sensitive to outliers, while root-

mean-square error amplifies the error of outliers. The

Table 4 Performance

comparison for 2–5 steps ahead

prediction with AGC-LSTM

model

Predict_seq_length Input_seq_length MAE RMSE SMAPE R2

2 2 2.0107 2.5635 0.2715 0.7441

3 1.9492 2.4971 0.2711 0.7525

4 1.9875 2.5534 0.2760 0.7453

5 1.9755 2.5309 0.2726 0.7530

6 2.0004 2.5586 0.2712 0.7499

7 2.0130 2.5744 0.2704 0.7467

8 1.9684 2.5184 0.2605 0.7537

3 2 2.1018 2.7225 0.2883 0.7059

3 2.0915 2.6856 0.2830 0.7176

4 2.1261 2.7318 0.2824 0.7119

5 2.1109 2.7129 0.2782 0.7189

6 2.1110 2.7111 0.2765 0.7211

7 2.1053 2.6911 0.2746 0.7200

8 2.1287 2.7036 0.2769 0.7145

4 2 2.2083 2.8295 0.2957 0.6872

3 2.1294 2.7434 0.2843 0.7099

4 2.1209 2.7227 0.2816 0.7160

5 2.1140 2.7216 0.2788 0.7167

6 2.1257 2.7282 0.2774 0.7145

7 2.1564 2.7309 0.2769 0.7095

8 2.1331 2.7427 0.2796 0.7039

5 2 2.2113 2.8696 0.2919 0.6842

3 2.2121 2.8354 0.2931 0.6936

4 2.1819 2.7985 0.2846 0.7045

5 2.1859 2.7661 0.2798 0.7079

6 2.1886 2.7713 0.2827 0.7073

7 2.1031 2.7210 0.2757 0.7085

8 2.1657 2.7685 0.2777 0.7018
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increase in R2 may be due to the smoothing effect of sta-

tistical data as the time granularity increases.

The statistical time granularity has an impact on TFM

monitoring and implementation. The Enhanced Traffic

Management System in the US typically uses a 15-min

flow statistics time interval, while the Air Traffic Flow

Control Management (ATFCM) system in Europe typically

uses a 1-h time interval. Additionally, the intervals can be

manually adjusted [97, 98].

4.4.3 Multi-step ahead prediction results under different
output sequence lengths

To analyze the performance of the AGC-LSTM model in

multi-step ahead predictions at a 15-min granularity, we

conducted experiments using different input sequence

lengths to predict the sector-based traffic flow for different

output sequence lengths. For tactical air traffic flow man-

agement operations, when the prediction look-ahead time

(LAT) is more than 1 h, the flow prediction is often less

accurate [99, 100], so a two to five steps ahead output

sequence length is used here. The experimental results are

presented in Table 4. The ‘‘Predict_seq_length’’ column

indicates the number of time steps ahead that were pre-

dicted. The table highlights in boldface the optimal results

for each prediction of different time steps.

The prediction results demonstrate that as the number of

forward prediction sequence lengths increases, the AGC-

LSTM model experiences slight performance degradation.

Results indicate that the optimal length of the input

sequence increases with the prediction time steps. This can

be attributed to the long-term memory characteristics of the

LSTM layer, where the AGC-LSTM model retains less

information loss during the transmission of longer time

series, thereby maintaining high prediction accuracy in

long-term forecasting scenarios.

5 Discussion and implications

The model presented retains certain limitations, for

instance, the impact of weather conditions on sector traffic

flow is significant, and weather-related features have not

been incorporated. Additionally, given the disparate roue

segment structure related to the sectors, the current

methodology outlined in this research necessitates the

reconstruction of graph structures and the retraining of

networks to predict traffic flow accurately across different

sectors.

Nevertheless, this research offers several noteworthy

contributions. Firstly, the utilization of the innovative

AGC-LSTM model for sector traffic flow prediction based

on sector-related flight segments demonstrates exceptional

performance. Secondly, an exploration into the optimal

input sequence length and granularity of time intervals for

prediction markedly enhances prediction accuracy. Fur-

thermore, the proposed model holds promise in aiding

ATCOs in efficiently managing traffic flow and mitigating

their operational burdens in practical settings. In practice,

this entails a process of selecting the target region for

prediction, followed by rigorous data collection, feature

extraction, and model training. Subsequently, the model’s

real-time application enables precise sector traffic flow

prediction in a short time, facilitating controllers in eval-

uating airspace congestion and implementing effective

management strategies. The practical application frame-

work for the proposed AGC-LSTM method is shown in

Fig. 10.

Fig. 10 Practical application

framework for the proposed

AGC-LSTM method

Neural Computing and Applications

123



Regarding the scalability of the model, the enhancement

of its performance can be pursued through the exploration

of diverse attention mechanisms. Beyond conventional

self-attention mechanisms, the incorporation of multi-scale

attention and positional attention, among others, can aug-

ment the model’s adaptability to various focal points.

Moreover, the enrichment of graph data representation by

integrating additional node features, edge features, or

subgraph structural information holds promise for further

amplifying the model’s efficacy. In essence, the AGC-

LSTM model exhibits commendable extensibility, permit-

ting subsequent refinements and expansions tailored to

specific task exigencies to elevate both performance and

applicability.

6 Conclusions and future work

Data-driven and machine learning techniques offer the

advantage of adaptability and flexibility, allowing models

to learn from data and adjust predictions based on changing

patterns in air traffic flow. These advanced approaches

have significantly improved the accuracy and effectiveness

of air traffic flow prediction, supporting safer and more

efficient airspace operations. In this paper, we presented an

innovative AGC-LSTM model for sector-based traffic flow

prediction, which combines graph convolution networks

with attention mechanisms. The traffic flow in the sector is

influenced not only by the number of planned flights but

also by the airspace complexity within the sector. To

address this, our model integrates the multi-head attention

mechanism into GCN, effectively capturing the sector’s

topological structure and focusing on critical nodes. Fur-

thermore, the LSTM model is incorporated to capture

temporal dynamics in node attributes, allowing the

extraction of essential spatiotemporal features from the

data. Through comprehensive comparisons with the five

baseline models, our proposed method demonstrates

superior performance across all evaluation metrics. Nota-

bly, the AGC-LSTM model reduces the MAE to 1.6 which

is of significance to the sector-based traffic flow manage-

ment. The prediction performance can still be improved

when the AGC-LSTM model is constructed with an

expanded graph space range. Additionally, we explore the

optimal input sequence length and time interval granularity

variables for prediction, leading to significant improve-

ments in prediction accuracy. The AGC-LSTM model also

proves highly adept at accurately predicting long input

sequence lengths. All the results highlight the effectiveness

of our AGC-LSTM approach in predicting sector traffic

flow and showcase its potential for real-world applications

in the aviation domain. Specifically, the proposed model

has the potential to help ATCOs manage traffic flow effi-

ciently and reduce the workload.

Based on the analysis of real aviation datasets, the fol-

lowing observations can be made regarding the proposed

method. (1) The proposed method outperforms the GCN-

LSTM model, showing superior predictive ability, partic-

ularly in high-flow scenarios. (2) The prediction accuracy

of the model initially improves with an increase in the

length of the input time sequence. However, there comes a

point where a further increase in the length of the input

sequence leads to a deterioration in prediction accuracy. (3)

The model’s prediction performance improves when

extending the route segment range beyond the current

sector to include the neighboring sectors. (4) The model’s

prediction performance is negatively affected as the time

granularity increases. In other words, when dealing with

coarser time intervals, the model’s accuracy decreases. (5)

Extending the prediction time steps beyond a certain point

does not significantly impact the prediction performance of

the model. This verifies the stability performance of GCN-

LSTM.

However, it is crucial to recognize that the research

findings presented in this paper come with certain limita-

tions and open avenues for future investigations in novel

directions. Firstly, although the input features for predic-

tion encompass periodicity and historical traffic flow,

incorporating additional factors such as weather conditions

might have the potential to further enhance prediction

performance. Secondly, the current method proposed in

this study necessitates reconstructing the graph structure

and retraining the network when predicting the traffic flow

for a different sector, which could be a subject for

improvement in the future research. Exploring approaches

that allow for more flexible and generalized predictions

without the need for complete restructuring would be

beneficial. Thirdly, it is worth noting that different sectors

may exhibit unique spatial structural characteristics and

traffic flow patterns, which can impact sector traffic flow

differently. Investigating the extraction of universal input

features that can accommodate diverse sector characteris-

tics would further enhance the robustness and applicability

of the prediction model. In summary, while this research

lays a foundation for sector traffic flow prediction,

addressing these limitations and exploring new research

directions will contribute to advancing the accuracy, flex-

ibility, and generalization of the prediction model.
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