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Advancing UAV-based Inspection System: The 
USSA-Net Segmentation Approach to Crack 

Quantification
Kwai-Wa Tse, Rendong Pi, Student Member, IEEE, Wenyu Yang, Xiang Yu, and *Chih-Yung Wen 

Abstract—In the realm of crack inspection for complex 
infrastructures, traditional methods have primarily relied on 
expensive structural health monitoring instruments and labor-
intensive procedures. The emergence of Unmanned Aerial 
Vehicle (UAV) technology brings about effective and innovative 
solutions for bridge inspection. To advance the technology, this 
study presents a novel crack inspection system that employs 
LiDAR scanning to construct a 3D model of the target structure. 
A path planner   is then developed to ensure complete coverage of 
all crack points on the structure being inspected. Through 
extensive testing, the proposed system demonstrates successful 
detection and localization of various types of cracks. 
Furthermore, our improved deep crack segmentation model, U-
Net with Spectral block and Self-Attention module, surpasses the 
performance of the original U-Net model, exhibiting a 3.2% 
higher Dice coefficient and a 3.3% higher mean Intersection over 
Union (mIoU) evaluation metric on our self-established crack 
dataset. In the case of the Crack500 public dataset, our model 
outperforms the original U-Net model by 10% in Dice coefficient 
and 14% in mIoU. Moreover, our USSA-Net outperforms other 
latest state-of-the-art models on the DeepCrack500 dataset, 
surpassing the PAF-Net and PHCF-Net by approximately 5% in 
Dice coefficient and 2.7% in mIoU. For crack size estimations, 
our proposed system accurately estimates the horizontal and 
vertical dimensions of cracks, achieving a root-mean-square 
error of 9.9 mm and 6.2 mm, respectively. Overall, the system 
achieves mm-level crack size estimation accuracy. Moreover, our 
system is characterized by its low-cost nature and lightweight 
design. Experimental results showcase the system's robustness 
and effectiveness in executing real-world crack inspection tasks, 
even within complex environments. 

Index Terms—Crack segmentation, crack size estimation, crack 
detection, autonomous inspection, UNET, spectral block, 
attention module, deep learning, unmanned aerial vehicles, UAS.  

I. INTRODUCTION
RADITIONAL inspection methods for infrastructures, 
including bridges, power plants, and buildings have 
historically faced challenges due to their high costs and 

risks to inspectors. However, the demand of rapid, accurate 
and cost-effective infrastructure health inspection is 
consistently growing, especially in densely populated areas 
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Fig. 1. UAV Flight experiment in laboratory environment. 
like Hong Kong. With the advancements in flight controllers 
and airborne sensors, Unmanned Aerial Vehicles (UAVs) 
have opened new opportunities for revolutionizing 
infrastructure inspection technologies, overcoming the 
limitations of traditional inspection methods and enhancing 
their performance and efficiency. 

In recent years, extensive research has been conducted to 
design autonomous UAV systems that incorporate various 
payload sensors for inspection tasks [1]. A comprehensive and 
automated bridge inspection typically involves three key steps: 
Coverage Path Planning (CPP) of the structure, defect 
detection, and defect size estimation. Once the inspection 
trajectory is planned, the UAV autonomously follows the 
designated path, ensuring visibility of all crack points on the 
inspection target [2], [3]. With the advancement of lightweight 
light detection and ranging (LiDAR) technology, embedding a 
lightweight LiDAR on the aerial vehicle enables the 
acquisition of a point cloud of the inspection target. This 
facilitates the optimization of the inspection path, covering the 
entire inspection target while considering the energy 
consumption of the aerial vehicle. 

Moreover, progress made in the edge computing 
technology, facilitates an accurate identification and 
classification of cracks in real-time using aerial images 
through AI-assisted crack detection [4], [5]. By detecting and 
localizing cracks, a crack map can be created, enabling 
inspectors to conduct post-inspection health analysis based on 
the crack images. However, existing AI-powered crack 
detection models have their limitations. Some models are 
computationally demanding, making them unsuitable for 
onboard deployment on UAVs. Other models may lack the 
required robustness, leading to unsatisfied detection accuracy. 
Hence, there is ample room for the development of AI-based 
crack detectors. 
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Lastly, accurate estimation of crack size is crucial for 
maintenance and decision-making purposes. Image semantic 
segmentation [6], [7] provides an innovative approach that 
eliminates the requirement for additional specialized 
instruments. Many researchers have explored segmentation 
techniques to obtain accurate segmented crack images based 
on RGB images captured by stereo cameras on the UAV. 
Subsequently, integrating the segmented crack contours with 
depth images of the crack assists in precise crack size 
estimation. 

The objectives of this research are to improve the 
generation of complete coverage inspection paths, enhance 
crack segmentation models, advance crack detection 
capabilities, and refine crack size estimation techniques. These 
objectives collectively contribute to the establishment of a 
more efficient and reliable bridge inspection system utilizing 
UAVs, as illustrated in Fig. 1. The main contributions of this 
article are summarized as follows:  

1) Development of USSA-Net for Crack 
Segmentation: We have introduced USSA-Net, a
novel crack segmentation model customized for UAV-
based inspection. This model significantly enhances
segmentation accuracy by incorporating spectral and
self-attention mechanisms which effectively 
differentiate crack features from complex 
backgrounds. USSA-Net achieves a Dice coefficient of
0.968 and an mIoU of 0.939, demonstrating a
substantial improvement over the original U-Net
model. Notably, it outperforms the latest state-of-the-
art models such as PAF-Net [8] and PHCF-Net [9] on
the DeepCrack500 dataset.

2) Integration of Spectral Blocks and Attention
Mechanism: USSA-Net incorporates two spectral
blocks, SPB1 and SPB2, strategically placed to
process image data at different levels, enhancing
feature detection. Additionally, an advanced self-
attention module increases precision by focusing on
relevant crack features, significantly boosting
segmentation accuracy in complex scenarios.

3) Quantitative Crack Measurement Techniques:
Advanced techniques, including the sliding window
and minimum area rectangle methods, are used with
RGB and depth imagery to measure crack dimensions
accurately. These techniques achieve an RMSE of 9.9
mm for horizontal and 6.2 mm for vertical crack
thickness, crucial for structural health assessments.

4) Validation through UAV Flight Tests: The efficacy
of USSA-Net was demonstrated through UAV flight
experiments focused on structural inspections,
confirming its robustness and reliability in real-world
conditions, and establishing its utility for structural
health monitoring.

II. RELATED WORKS

A. Coverage Path Planning for Inspection
The objective of coverage path planning is to determine the

most efficient path while ensuring complete coverage of the 

inspection target, taking into account the specifications of the 
UAV and its onboard sensors [10]. Airborne cameras and 
IMUs are lightweight and easily deployable on UAVs. 
Various localization and mapping methods such as ORB-
SLAM [11], OpenVINS [12], and FLVIS [13] have been 
widely employed in UAV applications. However, these 
methods face challenges in outdoor environments with 
significant illumination changes and limited feature points, 
especially in complex structures like cross-sea bridges. While 
GPS can be used for positioning in open areas during terrain 
inspection, it becomes unreliable in dense building clusters or 
underneath bridges. In such cases, UAVs rely on onboard 
sensors for positioning. Commonly used onboard sensors for 
UAV navigation include cameras and Inertial Measurement 
Units (IMUs). Recently, Light Detection and Ranging 
(LiDAR), previously used in autonomous driving, has 
emerged as a viable option for UAVs [14]. 

LiDAR-based SLAM systems offer greater robustness in 
various lighting conditions. Initially, LiDAR was unsuitable 
for UAV onboard systems due to its large size and high power 
consumption. However, recent technological advancements 
have led to the availability of lightweight LiDAR systems, 
making onboard LiDAR increasingly popular. Classic LiDAR 
odometry and mapping algorithms, such as LOAM [15], has 
been developed. LiDAR can also be combined with IMU 
sensors to enhance localization accuracy, as demonstrated by 
works like Lio-Sam [16] and Fast-Lio2 [17]. 

Once the 3D model of the structure is obtained, viewpoint 
planning (VPP) aims to generate a set of viewpoints that cover 
the building according to specific requirements. Sampling 
methods, often based on the Art Gallery Problem (AGP) [18], 
are commonly employed to solve the Viewpoint Planning 
Problem. It has been observed that viewpoint generation 
methods that closely consider the target's geometry are better 
suited for crack inspection applications. 

After generating the required viewpoints, the algorithm 
needs to determine the optimal sequence for visiting them. 
Many approaches formulate this as a Traveling Salesman 
Problem (TSP) [19], [20]. In view of a trade-off between 
computational speed and finding the optimal solution, we 
employ a two-step approach using VPP and TSP in sequence 
to generate a complete coverage inspection path planning in 
our system. 

B. Crack Detection, Segmentation and Quantification
Park et al. [21] introduced a scheme to detect surface cracks

and quantify their thickness and length by employing airborne 
structured light. However, this method's payload is costly, 
rendering it a non-lightweight solution. Other approaches have 
been developed to measure crack widths by enhancing the 
resolution of crack images [22]. From segmentation 
perspective, Weng et al. [23] introduced a segment-based 
method for the quantification of pavement cracks. With an 
average accuracy of 93.7% for pixel-wise crack width, this 
method robustly quantifies various types of cracks. These 
findings demonstrate the feasibility of achieving crack 
quantification in millimeter-scale precision if precise 



3 
TIM-24-00421 

segmented crack images can be obtained from UAV 
inspection tasks. 

To obtain accurate evaluations of crack conditions, a range 
of innovative deep learning methods have been employed for 
crack detection and segmentation [24]. Liu et al. [25] were 
among the pioneers to adopt the U-Net architecture for 
concrete crack segmentation. Similarly, Ju et al. [26] 
approached crack segmentation as a pixel-level detection task 
and proposed a U-shaped neural network specifically designed 
for crack detection in pavements. Building upon this 
foundation, Han et al. [27] introduced a novel model called 
CrackW-Net, which incorporated a ski-level round-trip 
sampling module to enhance the neural network's ability to 
extract crack pixel-level features. To further enhance crack 
segmentation performance, the attention mechanism was 
introduced. Chu et al. [28] tackled pavement crack 
segmentation by incorporating channel and spatial attention 
into the residual network. Additionally, researchers have 
extended their focus to crack segmentation in UAV aerial 
images. Hong et al. [29] and Sun et al. [30] developed deep 
learning models with attention modules specifically tailored 
for crack segmentation in UAV aerial images. 

In summary, the works reviewed in this chapter lay a solid 
foundation for this study. However, a fully autonomous 
pipeline for crack inspection on UAVs from a lightweight 
perspective is currently lacking. Therefore, the primary 
objectives of this work are to develop a fully autonomous 
building inspection solution, encompassing three major areas: 
1) Coverage inspection path planning. 2) Crack detection and 
crack segmentation on aerial image data. and 3) A precise 
crack size estimation based on the segmented crack images. 

III. METHODOLOGY 

A. Coverage Path Planning for Inspection 
To address the inspection coverage path planning problem, 

we adopt a two-stage approach, as explained in previous 
Section I. Specifically, the Viewpoint Planning (VPP) 
algorithm [31] first generates a set of viewpoints that 
completely cover the inspection target structure and the 
Travelling Salesman Problem (TSP) solver determines the 
order to visit all the generated viewpoints. 

In simulation and flight tests in the laboratory environment, 
we preset the orientation of UAV’s pose as level or horizontal. 
This indicates that the UAV is maintaining a stable and flat 
flight position without any tilting or rotation along its lateral 
(roll) or longitudinal (pitch) axes, namely, both the roll and 
pitch angles of the UAV are assumed to be equal to zero. 
Under this configuration, the state of the UAV can be 
represented by ξ =  (𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝜓𝜓)𝑇𝑇  where (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the vehicle 
position, and 𝜓𝜓  is the yaw angle. For different inspection 
tasks, the distance between the building surface and the UAV 
may vary. With a minimum viewing distance 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  and the 
camera intrinsic matrix 𝒦𝒦 the coverage area of the camera at 
one viewpoint can be determined. The viewpoints are sampled 
under the constraints of the building 3D model ℳ , the 
minimum viewing distance 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 , and the camera intrinsic 

matrix 𝒦𝒦 . To combine with the LiDAR odometry and 
mapping module, the building 3D model in this paper is of the 
point cloud format. Algorithm 1 shows the viewpoint 
generation procedure: 

 
Algorithm 1: Viewpoint Planning 
Input: 3D model of the structure ℳ, minimum 
inspection distance 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚, camera intrinsic 𝒦𝒦 
Output: The coverage viewpoints 𝒱𝒱 
1: Initialization of viewpoints 𝒱𝒱 ←  ∅ 
2: VOXEL = Voxelize(ℳ, 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚, 𝒦𝒦) 
3: for 𝑖𝑖 = 1 to VOXEL.size() do 
4:  Compute surface normal vector 𝑛𝑛𝚤𝚤���⃗  
5: end for 
6: 𝒱𝒱 ← downsample (𝑛𝑛𝚤𝚤���⃗ ) 
7: check uncovered surface patch 𝒮𝒮 
8: return viewpoint 𝒱𝒱 

 
In Algorithm 1, the viewpoint sampling procedure 

encompasses several key steps: viewpoint initialization, 
viewpoint optimization, updating resampled viewpoints, and 
obtaining the essential viewpoints. Specifically, to achieve 
viewpoint down sampling, we remove adjacent viewpoints 
based on the inspection distance and camera intrinsic 
parameters provided as input. Our down-sampling method 
involves removing adjacent viewpoints that are within a 
threshold value, typically 1 meter. Additionally, we set the 
viewpoint visibility overlap area ratio to 0.1, ensuring that two 
image planes from two viewpoints do not share more than 
10% of the voxels within the rectangle of camera visibility. By 
following this viewpoint sampling method, we obtain the 
minimum essential viewpoints for the inspection. The 
viewpoint sampling results will be further discussed in the 
Chapter V, section A. 

Once the essential viewpoints have been obtained, they are 
organized and arranged in a specific order using the TSP 
algorithm [2] to determine the minimum travelling distance. 
To mitigate the risks associated with steering and potential 
collisions, the UAV’s yaw angle is carefully controlled and 
restricted. This ensures that the UAV follows a path that 
minimizes the likelihood of encountering obstacles or 
hazardous situations while crossing the bridge piers. By 
incorporating these measures, we aim to enhance the safety 
and efficiency of the UAV’s flight during the inspection 
process, reducing the potential risks and ensuring smooth 
navigation along the optimal access path. The modified TSP 
with n viewpoints can be expressed as: 

 

𝑚𝑚𝑖𝑖𝑛𝑛� � 𝑑𝑑𝑚𝑚𝑖𝑖  ×  𝑦𝑦𝑚𝑚𝑖𝑖

𝑚𝑚

𝑚𝑚≠𝑖𝑖,𝑖𝑖=1

𝑚𝑚

𝑚𝑚=1

  

𝑠𝑠. 𝑡𝑡. � 𝑦𝑦𝑚𝑚𝑖𝑖 = 1, 𝑗𝑗 = 1, … ,𝑛𝑛;
𝑚𝑚

𝑚𝑚=1,𝑚𝑚≠𝑖𝑖

 (1) 

� 𝑦𝑦𝑚𝑚𝑖𝑖 = 1
𝑚𝑚

𝑖𝑖=1,𝑖𝑖≠𝑚𝑚

,    𝑖𝑖 = 1, … ,𝑛𝑛,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦𝑚𝑚𝑖𝑖 ∈  {0 , 1}  
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where 𝑦𝑦𝑚𝑚𝑖𝑖  is the logical variable that represents the path that 
travels from viewpoint 𝑖𝑖 to 𝑗𝑗, and 𝑑𝑑𝑚𝑚𝑖𝑖  represents the Euclidean 
distance between viewpoint 𝑖𝑖 and 𝑗𝑗. In our TSP solution, there 
should be only one designated starting point and one 
designated destination point. 

B. U-Net with Spectral block and Self-Attention module 
(USSA-NET) 

The main objective of crack segmentation is to accurately 
identify and segment the small cracks on the bridge, as 
mentioned previously. Like previous studies in crack 
segmentation, our proposed system builds upon the U-Net 
architecture [32] as a foundation. To enhance the feature 
extraction and refinement capabilities of the neural network 
without overwhelming computational resources, we focus our 
enhancements solely on the encoder portion of the original U-
Net. 

To extract both high-level and low-level information from 
the crack images, we introduce two improvements to the 
original U-Net model. First, we propose a novel attention 
module called the Spectral Module, which operates in the 
frequency domain and utilizes the Feature Fusion Pyramid 
Network (FFPN) to capture the profile and detailed 
information of the cracks. The second modification involves 
adding a self-attention module to the last layer of the encoder, 
further enhancing the neural network's ability to extract high-
level semantic information. In summary, our proposed model, 
named USSA-Net, is based on the U-Net framework, and 
incorporates the Spectral Module and Self-Attention Module. 
The architecture of our proposed crack segmentation model is 
illustrated in Fig.  2. The model takes 3-channel RGB crack 
images as the input and produces the predicted crack 
segmentation mask as the output. 

Due to their small size, the tiny cracks on the bridge pose a 
challenge for accurate segmentation by the neural network. It 
is difficult to distinguish between the cracks and the 
background in the spatial domain. Inspired by [33] and [34], 
we leverage the spectral module to extract crack information 
in the frequency domain. This enables the neural network to 
separate the foreground and background based on the 
frequency differences in the image components. The structure 
of the spectral module is depicted in Fig.  2. 

The spectral module can convert the image information 
from the Euclidean space to the Fourier space by the Fast 
Fourier Transform (FFT). Before feeding into the Fourier 
space, layer normalization is used to normalize each channel. 
Given a feature map 𝓍𝓍 ∈  ℝ𝐻𝐻 ×𝑊𝑊×𝐶𝐶, H denotes the height, W 
denotes the width and C denotes the channel of the input 
image, then the operation in Fig.  2 can be described as: 

 
𝓍𝓍′ = ℱ( 𝐿𝐿𝐿𝐿 (𝓍𝓍) )  ∈  ℂ𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶  (2) 

 
where LN means layer normalization, ℱ  means 2-

dimensional FFT operation, and 𝓍𝓍′denotes the output feature 
map after layer normalization and FFT operation. 

 
 

Fig.  2. The architecture of our improved modules in USSA-Net. 
 

Within our enhanced USSA-Net, we incorporate two 
spectral blocks: SPB1 and SPB2, Although SPB1 and SPB2 
utilize the same mathematical transformations as depicted in 
(2), they are strategically placed in different locations within 
the network architecture, as shown in Fig.  2. SPB1 is 
positioned following the first down-sampling module and is 
designed to enhance initial crack pattern detection by applying 
the transformations in (2). SPB2, on the other hand, is located 
in a later down-sampling module. It processes a broader range 
of spectral features, reducing the spatial dimensions of the 
input image while increasing the feature channel count. The 
strategic use of SPB1 and SPB2 collectively improves the 
overall performance of our crack segmentation model, 
enabling it to effectively distinguish between crack features 
and similar textural patterns in the background, thereby 
enhancing the robustness of crack detection under varied 
imaging conditions. 

Then a learnable weight parameter 𝒲𝒲 is employed to help 
the spectral module to capture the critical frequency parts 
which is beneficial for the crack segmentation process, and the 
introduction of 𝒲𝒲 can be described as: 

 
𝓍𝓍′′ =  𝒲𝒲 ⨂ 𝓍𝓍′ (3) 

 
To be noted, the learnable parameter in the spectral module 

contains gradient information, allowing for updates during the 
training process through backward propagation. This feature 
ensures learning capability of the crack segmentation module. 

In addition, the inverse Fast Fourier Transform (IFFT) is 
utilized to restore the image information from the Fourier 
space to the Euclidean space. Following the IFFT operation, a 
layer normalization technique and a Multi-Layer Perceptron 
(MLP) are employed to extract and refine the high-level 
semantic information related to cracks. To enhance the crack 
information flow, a residual connection is introduced, enabling 
shortcut connections that directly transmit crack information 
to deeper layers. The formulation of this process can be 
expressed in (4), where 𝓍𝓍� denotes the feature map obtained 
after spectral module: 
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𝓍𝓍� = 𝓍𝓍 + ( 𝑀𝑀𝐿𝐿𝑀𝑀 ( 𝐿𝐿𝐿𝐿 ( ℱ−1 (𝓍𝓍′′) ) ) ) (4) 

 
The self-attention module considers the characteristics 

observed in bridge crack images, where cracks typically 
exhibit a long and narrow shape. However, due to the limited 
receptive field range of convolutional neural networks, these 
cracks are prone to being segmented into smaller, disjointed 
fragments, resulting in a lack of continuity across the entire 
crack. To enhance the ability of the model to capture the 
crack-continuity among pixels in the images, the self-attention 
module is introduced in the encoder following the last layer. 
Fig.  3 below illustrates the structure of the self-attention 
module. As the common self-attention module does [35], we 
obtain the attention map by conducting matrix multiplication 
for crack feature map itself. Then we employ the softmax 
operation to normalize the output as the attention map. Thus, 
the important information in the crack images can be obtained 
by computing the weighted sum of the crack feature maps. 
Furthermore, a residual connection is employed to take the 
original feature maps as a supplementation to the self-attention 
computing results. Overall, the self-attention module can be 
described in (5), where 𝓍𝓍 denotes the crack feature map and ⨂ 
denotes the matrix multiplication:  

 
𝐴𝐴 = 𝑥𝑥 + 𝑥𝑥 ⨂ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑚𝑚𝑠𝑠𝑥𝑥(𝑥𝑥 ⨂ 𝑥𝑥) (5) 

 

 
Fig.  3. The structure of the self-attention module. 
 

The loss function, also known as the objective function, 
plays a crucial role as a fundamental mathematical component 
in neural networks. It serves as a guide for the model 
optimization process, providing the direction for minimizing 
errors and improving performance. The commonly adopted 
loss functions in the field of image segmentation are dice loss 
function, cross-entropy loss function, and Intersection Over 
Union (IoU) loss function. In our study, the cross-entropy loss 
function is employed, and it can be expressed as: 

 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = −
1
𝐿𝐿
�𝑦𝑦𝑚𝑚 log(𝑝𝑝𝑚𝑚) + (1 − 𝑦𝑦𝑚𝑚)log (1 −
𝑁𝑁

𝑚𝑚=1

𝑝𝑝𝑚𝑚) 

 

(6) 

Where 𝑦𝑦𝑚𝑚  denotes the ground truth label (0 or 1) and 𝑝𝑝𝑚𝑚 
denotes the predicted results (between 0 and 1). The loss is 
computed for each sample in the dataset, and the goal is to 
minimize this loss value during the training process. 
Minimizing the cross-entropy loss helps the model learn to 

make accurate predictions in crack classification tasks. 

C. Crack Detection and Localization 
Our system employs a pre-trained YOLOv4 with channel-

based attention modules Squeeze-and-Excitation Networks 
(SENets) [36] as crack detector to identify cracks during UAV 
online inspection. Specifically, in the backbone network of 
YOLOv4, we integrate the channel-based attention modules 
[37] into the origin YOLOv4 to enhance the performance of 
crack detection. First, the global spatial information is 
collected in the squeeze module by global average pooling. 
Then, the excitation module captures channel-wise 
relationships and outputs an attention vector using fully 
connected and non-linear layers. Finally, each channel of the 
input feature is scaled by multiplying the corresponding 
element in the attention vector. 

 

 
 

 

  
Fig.  4. RGB and depth image pairs of cracks. 
 

In our proposed crack inspection system, one of the primary 
objectives is to provide the precise location of the 3D defect 
position, while also ensuring a collision-free environment 
around the defect region. To achieve this, we leverage 
streaming depth images, as shown in Fig.  4. Once we have 
detected crack images, we can transform the pixel coordinates 
into metric units (meters) for the 3D point clouds using 
camera intrinsic parameters. The intrinsic parameters describe 
the properties of the imaging system used to capture the depth 
frame. In (7), the variables 𝛼𝛼 and 𝛽𝛽 denote the focal length of 
the camera along the x-axis and y-axis, respectively. 
Additionally,  𝑐𝑐𝑥𝑥  and 𝑐𝑐𝑦𝑦  denote the principal points of the 
camera along the x-axis and y-axis, accounting for scaling and 
transition between pixel coordinates and the camera 
coordinates. The camera intrinsic matrix 𝒦𝒦 is denoted as: 

 

𝒦𝒦 = �
𝛼𝛼 0 𝑐𝑐𝑥𝑥
0 𝛽𝛽 𝑐𝑐𝑦𝑦
0 0 1

� (7) 

 
The conversion from pixel coordinates (u, v) to 3D point 

clouds ( 𝑋𝑋�𝑐𝑐 , 𝑌𝑌�𝑐𝑐 , �̂�𝑍𝑐𝑐 ) in camera coordinates can be 
mathematically described in (8) and (9) as follows:  

 



6 
TIM-24-00421 

u = 𝛼𝛼𝑋𝑋
�𝑐𝑐
𝑍𝑍�𝑐𝑐

 + 𝑐𝑐𝑥𝑥 (8) 

  

v = 𝛽𝛽𝑌𝑌
�𝑐𝑐
𝑍𝑍�𝑐𝑐

 + 𝑐𝑐𝑦𝑦 (9) 

 
Moreover, to convert the coordinates from the pixel frame 

to the world frame, extrinsic parameters are introduced [37]. 
𝑒𝑒𝑚𝑚𝑖𝑖  serves as rotation matrix, �̂�𝑍𝑐𝑐 denotes the depth value of the 
crack point and 𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦 , 𝑡𝑡𝑧𝑧  serve as translation parameters. 
These extrinsic parameters facilitate the transformation of the 
pixel coordinates to the world coordinates  (𝑋𝑋�𝑊𝑊 , 𝑌𝑌�𝑊𝑊 , �̂�𝑍𝑊𝑊 ), 
providing a spatial representation of the crack in a world 
frame reference system. This conversion can be formulated as: 

  

�̂�𝑍𝑐𝑐 �
𝑢𝑢
𝑣𝑣
1
� = 𝒦𝒦 �

𝑒𝑒11
𝑒𝑒21
𝑒𝑒31

  
𝑒𝑒12
𝑒𝑒22
𝑒𝑒32

  
𝑒𝑒13
𝑒𝑒23
𝑒𝑒33

  
𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦
𝑡𝑡𝑧𝑧
�

⎣
⎢
⎢
⎡𝑋𝑋
�𝑊𝑊
𝑌𝑌�𝑊𝑊
�̂�𝑍𝑊𝑊
1 ⎦
⎥
⎥
⎤
 

 

(10) 

Equation (10) represents the mathematical transformation 
from pixel coordinates to 3D point clouds. By applying this 
conversion to the pixel coordinates of interest in the depth 
map, our system retrieves the metric values in meters for the 
corresponding points in the point clouds. This enables the 
crack size estimation with computer vision technique 
described in the next section.  

D. Crack Size Quantification 
After training a crack segmentation model described in 

section B in this chapter, we now can obtain accurate pixel-
level segmentation contours from the aerial image with crack. 
Based on the segmented crack contours, we employ the sliding 
windows method to estimate the size of cracks in both 
horizontal and vertical directions. Leveraging computer vision 
techniques, we scan each individual crack contour in the 
segmented image in both horizontal and vertical directions. By 
iterating over the contours of the crack image, we can identify 
the maximum horizontal thickness (max_w), and maximum 
vertical thickness (max_h) of the crack as illustrated in Fig. 5. 
(a). When the maximum width values are obtained, the 
starting and ending points of the edge can be determined. The 
starting pixel coordinate in the horizontal direction is recorded 
as start_w, and the ending pixel coordinate is recorded as 
end_w. Similarly, the starting pixel coordinate in the vertical 
direction is recorded as start_v, and the ending pixel 
coordinate is recorded as end_v. Subsequently, we can 
combine this information with the depth frame obtained 
during the inspection, to convert the pixel coordinates in the 
depth map to a 3D point cloud world coordinate. Finally, by 
subtracting the transformed starting and ending world 
coordinates we can derive the desired dimensions of the crack 
in the world frame.  

Some cracks may possess microscopic inner thickness, but 
the expansion of the crack can significantly impact the 
structural health, as illustrated in Fig. 5. In this case, toward

 

 
(a)  

 
(b)  

 
(c)  

Fig. 5. Comparison between bounding box method and minimum area 
rectangle method. (a) Segmented crack area. (b) Bounding box method. (c) 
Minimum area rectangle method. 
 
giving another interpretation for the size of the crack, 
bounding box representation is also used to describe the size 
for a whole crack pattern. It is remarkable that the yellow area 
in Fig. 5 (a), which represents the ground truth segmented 
crack area, serves as the most fitting region for crack size 
estimation. In contrast, the pink bounding box area is inferred 
by our deep learning crack detector, an improved YOLOv4 
model. Our detector is robust on crack detection and 
localization but is not ideal for accurately compute the width 
and height of the crack size. This is because the width of 
bounding box (box_w), and the height of bounding box (box_h) 
often overestimate the actual size of crack width and length as 
depicted in Fig. 5 (b). The box_w and box_h are much greater 
than horizontal thickness (max_w) and vertical thickness 
(max_h) in Fig. 4 (a) respectively. To derive another precise 
interpretation of crack size, we utilize the minimum area 
rectangle method, which introduces the green bounding box 
corresponding to the minimum area rectangle of the crack 
defect as shown in Fig. 5 (c). By calculating the difference 
between the maximum and minimum values of the sides of a 
rectangle, we can determine the width (minRect_w) and height 
(minRect_h) of the minimum area rectangle. It is important to 
emphasize that this method of obtaining the minimum area 
rectangle relies on having a precisely segmented image that 
enables the identification of four corner points for each crack 
contour. Consequently, until robust crack segmentation 
models are developed, relying solely on the bounding box 
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method from object detectors for accurate crack size 
estimation has been proven to be inadequate. 

Moreover, through our analysis of various types of cracks, 
area of the crack is equally important as the thickness whereas 
we find that the interpretation of crack criticality can be 
implicitly presented by their area, while the cracks are in 
irregular shapes, as exemplified in Fig.  6. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig.  6. Different types of cracks (a) Expansion concrete crack. (b) Heaving 
crack. (c) Settling concrete crack. (d) Concrete crack caused by premature 
drying. (e) Shrinkage crack. (f) Long and flattening crack. 
 

In our proposed segmentation method, the segmented image, 
as presented in Fig.  7, provides implicit parameters for 
calculating the crack area. Specifically, Figure 7 showcases 
the contours of the segmented crack area, which encompass 
the total number of image pixels within the crack area. 
Additionally, by combining depth images, as discussed in 
chapter III (C), we have the capability to convert pixel 
coordinates to world coordinates for each pixel point, enabling 
the aggregation of all pixels within the crack area. This allows 
for a comprehensive understanding of the crack's size and 
spatial coverage.  
 

 
Fig.  7. Comparison between traditional bounding box method (the pink box), 
and the proposed minimum rectangle area method (the green rectangle). 
 

In summary, our proposed USSA-Net segmentation method 

represents a significant advancement in providing precise and 
valuable information including crack area information, 
surpassing the limitations of traditional bounding box methods. 

IV. EXPERIMENTAL IMPLEMENTATION 

A. System Overview 
 

 
Fig.  8. UAV with RGB-D Camera. 

 
The aircraft utilized in this study is equipped with an Nvidia 

Jetson TX2 onboard computer, shown in Fig.  8, which 
efficiently handles the online modules of the UAV inspection 
system. These modules consist of a perception module, a 
localization module, and a control module, as illustrated in 
Fig.  10. To perceive the environment, the proposed system 
relies solely on the Intel RealSense D455 Depth camera. 
Within the perception module, the AI detector uses 
compressed depth aligned RGB images from the D455 camera 
to identify cracks. Each pixel is assigned a depth value 
calculated by the camera, and a depth-to-color-align frame, 
referred to as the depth frame, is generated. This depth frame 
is subsequently used for real-time crack position calculation as 
well as offline crack size estimation. 

Furthermore, when comparing our overall UAV solution to 
systems like DJI M300 and ICGT aircraft [38], our proposed 
system stands out as much lighter, as depicted in Fig.  9. These 
solutions also incorporate LiDAR and RGB cameras, but our 
system offers a significant weight advantage from both 
hardware and the neural network model perspective. 
Additionally, the computational efficiency analysis will be 
discussed in detailed in Chapter V, Section D. 

 

  
 

(a) (b) (c) 
 
Fig.  9. UAV hardware comparison. (a) ICGT inspection UAV. [38] (b) DJI 
M300 inspection UAV. (c) Our proposed lightweight inspection UAV. 
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It is important to note that the crack localization component 
is primarily influenced by the camera and aircraft pose, 
independent of the UAV inspection trajectory. Extensive 
verification of the proposed system has been conducted using 
diverse trajectories, yielding promising crack localization 
results as reported in our previous work [37]. Consequently, 
the system is not constrained by predetermined paths and 
demonstrates robustness in various applications. In the 
experiment environment, the VICON motion tracking system 
provides the aircraft pose, which enables the transformation of 
crack coordinates from the camera frame to the world frame. 
Additionally, the aircraft pose serves as critical information 
for the path planning kit. Furthermore, the proposed system 
incorporates a collision-checking technique. Leveraging the 
long-range capabilities of the onboard D455 camera, which 
operates effectively within a range of 0.6m to 6m, depth 
information is derived and utilized for collision checking 
during inspection scenarios.  

 

 
Fig.  10. The software architecture of the UAV inspection system. 

 
In this proposed crack inspection system, three additional 

innovative modules are introduced: a UAV-based structural 
data acquisition module, an inspection path-planning module, 
and a deep learning-based crack size estimation module. Our 
system employs a LIVOX MID-360 LiDAR mounted on a 
UAV, as shown in Fig. 11, to acquire point cloud data of the 
inspection target, enabling the creation of a 3D model. 

To employ LiDAR technology for acquiring point cloud 
data and constructing the 3D model of the inspection target 
structure, three main steps are involved: point-cloud data 
acquisition, point-cloud data processing, and 3D model 
construction. Using the FAST-LIO odometry system [17], our 
UAV flies around the experimental scenes, as shown in Fig.  
12, capturing point cloud data of the inspection model from 
desired locations. The data acquisition process starts by 
triggering the LiDAR scanner while the UAV flies around the 
target area, capturing different perspectives and angles to 
ensure comprehensive coverage of the experimental bridge 
pier scene. This process is iterated until we have collected 
sufficient point cloud data to represent the desired object area. 

The constructed 3D model is then fed into the path planning 
kit to generating a coverage inspection path that incorporates 
collision avoidance techniques. Finally, a deep learning model 
with UNET incorporating a spectral block and self-attention 

module, named USSA-Net, is applied for crack segmentation. 
The detected aerial crack image serves as the input to the pre-
trained USSA-NET, resulting in a segmented crack image 
with only crack contours. By combining the depth image of 
the detected crack, we can estimate the physical size of the 
crack in the world coordinate frame. 

 

 
Fig. 11. The UAV with a LiDAR MID-360. 

B. Experimental Scene Setup 
The entire system, as illustrated in Fig.  10, is initially tested, 

and validated in the Robot Operating System (ROS) and 
Gazebo Simulation environment before conducting real flight 
experiments. We develop a simulation platform within Gazebo 
specifically designed to replicate the inspection of a double-
gate-shaped structure, which serves as a representative model 
for a bridge pier—a common shape encountered in bridge 
structures. In our simulation, we utilize the 3DR IRIS drone 
model and the PX4 firmware as the underlying controller. To 
ensure stable and maneuverable flight, we implement a 
cascade PID controller for trajectory tracking control. 

In addition to the simulation environment, we conduct real-
world experiments using a custom-built DJI F450 airframe 
with an Nvidia TX2 serving as the onboard computer. The 
real-world setup, along with the simulation environment and 
the point cloud map of the real-world setup, are illustrated in 
Fig.  12. These experiments involve the coverage of nine crack 
points on the inspection target structure. 

C. Dataset Preparation and Augmentation 
Based on the experiment settings and aircrafts described 

above, we collect 201 raw crack images. The resolution of 
each image is 1280 × 720 pixels. Subsequently, we perform 
data augmentation on the raw crack images. Data 
augmentation has been proved to be a simple yet effective 
method to enhance the generalization ability of the neural 
network by increasing the amount of the training data. There 
are many ways to augment data, like random rotation, vertical 
or horizontal clip, and random mirroring etc. In this study, we 
employ image scaling with scaling factor is between 0.5 and 
1.5, random rotation with rotation angle between -10° and 
+10°, and random mirror to perform the augmentation during 
the training process. After that, we obtain 764 crack images in 
total, where 688, 38, and 38 images are allocated for training, 
validation, and testing respectively. 

Apart from the self-established dataset above, we also 
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employ Crack500 dataset to evaluate the performance of our 
proposed crack segmentation model. This dataset is collected 
at the Temple University using a smartphone. It has 500 
pavement crack images with the resolution 2000 × 1500 
pixels. Since the image resolution is high, each crack image is 
cropped into sub-images with non-overlapped regions to 
facilitate the efficient model training. Consequently, there are 
3368 images from Crack500 dataset in total, therein 1896, 348, 
and 1124 images are allocated to training, validation, and test 
respectively. 

 

  
(a) (b) 

  
(c) (d) 

Fig.  12. Bridge inspection environment setup. (a) A real double-gate shape 
bridge. (b) Simulation environment in Gazebo. (c) Visualization of point 
cloud map. (d) Real-world scenario setup in our laboratory.   

 

D. The Implementation of Our USSA-Net Segmentation Model 
The segmentation model USSA proposed in this study is 

trained from scratch without any pre-trained weights on a 
workstation with a single Graphics Processing Unit (GPU), 
NVIDIA RTX 3090. Deep learning framework PyTorch 
Lightning is used to simplifies the process of training and 
organizing the model. Each benchmarking model is trained for 
500 epochs which is sufficient for the model to converge. 
Besides, the Adam Optimizer is selected to speed up the 
convergence. The initial learning rate is set to 0.0001. Notably, 
the batch size for training and validation is set to 12 while the 
batch size for test is set to 1 to replicate our work. 

V. RESULTS AND DISCUSSION 

A. Coverage Path Planning for Inspection 
In the context of UAV building inspection, the settings can 

be adjusted to meet specific mission requirements, as outlined 
in section A, Chapter II. The variance of UAV inspection 
distance between the UAV's camera and the inspection target 
plays a crucial role. This adjustment is primarily influenced by 
two main considerations: 1) The resolution of the employed 
RGB-D camera, and 2) the size of the crack to be detected on 
the inspection target. To accurately compare the results of 
coverage path generation for different crack sizes, it is 
necessary to vary the minimum inspection distance and 
evaluate the performance of the inspection system. This 
variation in inspection distance allows for a comprehensive 
coverage evaluation. Table I presents the parameters and their 
corresponding inspection coverage rates, with VP denoting the 
viewpoint. Figure 13 displays the results of viewpoint 
generation for a variety of inspection distance settings, where 
the arrows denote the camera viewpoints. 

 

   
(a) (b) (c) 

Fig.  13. Viewpoint generation with different inspection distance setting. (a) 
Result of 1-m inspection distance. (b) Result of 1.5-m inspection distance. (c) 
Result of 2-m inspection distance. 

 
TABLE I 

COVERAGE PATH PLANNING EVALUATION 
 

Inspection Distance Number of VP Coverage Rate 
1.0 (m) 25 97.8 % 
1.5 (m) 12 96.4 % 
2.0 (m) 10 93.5 % 

 
Given that the 3D model of the structure and the camera 

intrinsic matrix remain fixed, the inspection distance serves as 
the sole variable in the coverage path planning module of our 
proposed system. As the minimum inspection distance 
increases, two notable observations arise: 1) the number of 
viewpoints tends to decrease, while the inspection distance 
increases. 2) The coverage rate changes slightly, while the 
inspection distance increases. These observations demonstrate 
the reliability of the coverage path planning module 
incorporated in our proposed inspection system. 

Various flight tests are conducted in this study. In the real-
world experiment, we build the bridge structure with obstacles 
in the laboratory as shown in Fig.  12 (d). We can completely 
collect the point clouds of the bridge model incorporating 
Fast-lio2 [17], and then the point clouds data further serves as 
the input for coverage path planning module. Subsequently, 
the UAV executes the flight mission by following the 
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generated coverage trajectory. During the flight tests, we 
successfully detected all cracks situate on the bridge surface, 
and the detected crack aerial images are further analyzed in 
both the crack segmentation module and crack size estimation 
module. The corresponding results will be presented in the 
chapter V, section (E). 

 

B. The Performance of Our USSA-Net Segmentation Model 
The evaluation metrics used in this study are the same as 

many previous segmentation-related studies, Dice Coefficient 
(also known as Dice) and mean Intersection over Union 
(mIoU) are used to evaluate the performance of our proposed 
model. |𝑋𝑋| represents the number of the pixels belong to the 
ground truth, and |𝑌𝑌| represents the number of pixels belong 
to the inference. Then Dice efficient and mIoU evaluation 
metrics can be described as follows: 

 

𝐷𝐷𝑖𝑖𝑐𝑐𝑒𝑒 =
2|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌| 

(11) 

  

𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚 =
|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋 ∪ 𝑌𝑌| 

(12) 

 
Figures 14 shows the result of crack segmentation based on 

our USSA-Net. The proposed model can accurately segment 
the cracks on the UAV aerial images. The segmented cracks 
are continuous and complete. Table II shows the comparison 
between the proposed method and some State-Of-The-Art 
(SOTA) models on self-established dataset. Our model 
achieves a Dice coefficient 96.8%, and a mIoU 93.9% on the 
self-established dataset. 

 
 

 
Fig.  14. Crack segmentation generated by our proposed USSA-Net model. 
 

 
Fig.  15. Crack segmentation with various SOTA models. 
 

TABLE II 
PERFORMANCE COMPARISON ON SELF-ESTABLISHED 

DATASET 
 

Baseline models Performance Metric 
Dice mIoU 

U-Net [32] 0.936 0.906 
Segnet [39] 0.894 0.811 
PSPNet [40] 0.879 0.789 

USSA-Net (Ours)* 0.968 0.939 
 

Our USSA-Net outperforms the SOTA models both in Dice 
and mIoU metrics. Besides, the performance of our proposed 
model is evaluated with the Crack500 dataset as illustrated in 
Fig.  16. As depicted in Table III, our model still obtains the 
best performance than other SOTA models on Crack500 
dataset. In comparison, our model outperforms the original U-
Net model by 10% in Dice coefficient and 14% in mIoU, on 
the Crack500 dataset. 
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Fig.  16. Crack500 segmentation dataset. 

 
 

TABLE III 
PERFORMANCE COMPARISON ON CRACK500 DATASET 

 

Baseline models Performance Metric 
Dice mIoU 

U-Net [32] 0.668 0.527 
Deeplab v3+ [41] 0.686 0.542 

PSPNet [40] 0.678 0.537 
DMA-Net [30] 0.699 0.559 

SegCrackNet [42] N/A 0.496 
USSA-Net (Ours)* 0.776 0.670 

 
TABLE IV 

PERFORMANCE COMPARISON ON DEEPCRACK500 DATASET 
 

Baseline models Performance Metric 
Dice mIoU 

Deeplab v3+ [41] 0.794 0.822 
PSPNet [40] 0.815 0.841 
PAF-Net [8] 0.915 0.902 

PHCF-Net [9] 0.907 0.903 
USSA-Net (Ours)* 0.963 0.930 

 
In addition to the previously compared models such as 

Segnet [39], PSPNet [40], Deeplab [41], and DMA-NET [30], 
we include the more recent state-of-the-art crack segmentation 
models SegCrackNet [42], PAF-Net [8], and PHCF-Net [9], 
which were published in 2023 and 2024. These models are 
chosen as baseline models for performance evaluation. We 
conduct a fair comparison using and publicly available crack 
segmentation datasets, namely DeepCrack500, as displayed in 
Fig.  17. The performance comparison results are presented in 
Table III and Table IV. It surpasses the PAF-Net and PHCF-
Net by approximately 5% in Dice coefficient and 2.7% in 
mIoU. These findings highlight the advancement of our 
proposed USSA-Net in the field of crack segmentation.  

  

  
Fig.  17. DeepCrack500 segmentation dataset.  
 

C. Ablation Experiment 
We adopt the original U-Net model as the baseline in our 

ablation studies. Please note "SPB1" indicates that only the 
first spectral block has been integrated into the baseline model; 
"SPB2" denotes the integration of only the second spectral 
block; and "SPBs" refers to the addition of both spectral 
blocks. Additionally, "Baseline+Att" represents the scenario 
where only the self-attention module is added to the baseline 
model. The specific locations of these modules are illustrated 
in Fig  2. As shown in Table V, the inclusion of the spectral 
blocks or the attention module individually and in 
combination significantly enhances the model’s performance. 
However, the highest performance gains were observed when 
both spectral blocks and the attention module were combined, 
underscoring their collective impact on enhancing crack 
segmentation. Specifically, our model "Baseline+SPBs+Att" 
demonstrates a notable improvement, increasing the Dice 
coefficient by 2.2% and the mIoU by 3.7%. This 
comprehensive set of ablation studies illustrates that 
incorporating spectral blocks and self-attention modules to 
capture detailed profile information significantly enhances 
crack segmentation performance. 

 
TABLE V 

ABLATION EXPERIMENT OF OUR PROPOSED USSA-NET ON 
DEEPCRACK500 PUBLIC DATASET 

 

Ablation Configuration Performance Metric 
Dice mIoU 

Baseline 0.941 0.893 
Baseline+SPB1 0.948 0.904 
Baseline+SPB2 0.959 0.923 
Baseline+SPBs 0.954 0.915 
Baseline+Att 0.955 0.918 

Baseline+SPBs+Att (Ours*) 0.963 0.930 
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D. Computational Efficiency Analysis 
Though the performance of the model is important, the 

model complexity is also a key factor to affect the 
segmentation computing efficiency on crack images. The 
complexity analysis among some crack segmentation models 
is shown in Table VI. From this table, it reveals that the 
addition of the proposed optimization blocks (spectral and 
attention blocks) has slightly increased the model complexity. 
However, it can still meet the requirements of the task for 
UAV crack segmentation. 

 
TABLE VI 

NETWORK COMPLEXITY ANALYSIS OF CRACK SEGMENTATION 
MODELS 

 

Model 
Performance Metrics 

Parameters(M) Inference time 
(s) 

U-Net [32] 2.2 0.42 
PSPNet [40] 4.9 0.64 
Segnet [30] 2.9 0.63 

USSA-Net (Ours)* 3.1 0.50 

 
In addition to the computational analysis on crack 

segmentation task, we also evaluate the size and real-time 
detection speed of the proposed crack detection neural 
network. The table VII below summarizes our findings on 
real-time crack detection speed, and these results confirm that 
our proposed system is lightweight in terms of neural network 
size, while still achieving real-time detection capabilities. 

 
TABLE VII 

CRACK DETECTION SPEED ANALYSIS 
 

Real-time detection Network input 
size 

Inference frame 
per second (FPS) 

Our method* 

320 x 320 25 
416 x 416 17 
512 x 512 13 
608 x 608 9 

 

E. Crack Detection Under Various Scenario 
To assess the performance and generalization ability of our 

crack detection and segmentation models, we conduct tests 
under various crack scenarios including concrete wall, wooden 
boards, asphalt pavement road, experimental bridge pier scene 
etc. Below, we outline some scenarios and present the 
corresponding experimental results in Fig.  18 and Fig.  19. 

 

  

  
Fig.  18. Crack detection tests with wooden boards background. 
 

   
Fig.  19. Crack detection performance on asphalt pavement scene.  
 

F. Crack Size Quantification 
In this study, we utilize our USSA-NET to obtain 

segmented crack images for crack size estimation using depth 
image pairs. The crack sizes are estimated through the sliding 
window method and minimum area rectangle method, as 
illustrated in Fig.  20. The ground truth values in metrics (mm) 
have been pre-measured. Table VII presents the ground truth 
values, estimations, and errors for max_w, max_h, minRect_w, 
and minRect_h, respectively. Here, gt refers to the ground 
truth data, est represents the estimated sizes, err denotes the 
estimation errors, and the bolded entries in Table VII indicate 
the outstanding performance among the compared methods. 

Overall, our crack size estimations closely align with the 
ground truth values. Notably, our approach achieves minimal 
errors in crack size estimation. Additionally, we evaluate the 
both the width (minRect_w) and height (minRect_h) of the 
minimum area rectangle method. Root-Mean-Square errors 
(RMSE) are employed to evaluate the crack size estimation 
performance of our model. Table VII displays the RMSE 
errors of 9.9 mm, 6.2 mm, 8.1 mm, and 12.8 mm for max_w, 
max_h, minRect_w, and minRect_h metrics, respectively.
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Fig.  20. A visualization of crack segmentation and quantification results. 
 

TABLE VII 
CRACK SIZE QUANTIFICATION RESULTS 

 
Metrics max_w max_h minRect_w minRect_h 
(mm) (gt) (est) (err) (gt) (est) (err) (gt) (est) (err) (gt) (est) (err) 

Crack 1 62 62.72 0.72 105 105.09 0.09 236 230.61 -5.39 110 99.82 -10.18 
Crack 2 75 80.76 5.76 35 41.52 6.52 270 266.51 -3.94 53 51.17 -1.83 
Crack 3 50 44.38 -5.62 100 111.63 11.63 190 177.45 -12.55 160 135.83 -24.17 
Crack 4 15 23.98 8.98 50 51.39 1.39 240 225.96 -14.04 30 31.90 1.90 
Crack 5 30 38.66 8.66 20 22.03 2.03 275 261.95 -13.06 25 27.11 2.11 
Crack 6 150 167.91 17.91 150 147.60 -2.40 225 225.66 0.66 120 116.10 -3.91 
Crack 7 200 183.07 -16.93 35 36.14 1.14 200 196.79 -3.21 45 42.56 -2.44 
Crack 8 105 112.69 7.69 100 112.38 12.38 250 248.24 -1.76 150 177.37 27.37 
Crack 9 110 107.82 -2.18 30 29.23 -0.77 300 302.80 2.80 70 72.37 2.37 
RMSE 9.96 (mm) 6.19 (mm) 8.08 (mm) 12.8 (mm) 

 

VI. CONCLUSION 
In this article, we have presented a novel technique for 

crack inspection based on UAVs and an autonomous path 
planner for complete inspection coverage, representing a 
significant advancement in the field of crack inspection. To 
further enhance the performance of our system, we have 
developed a robust deep learning crack segmentation model 
called USSA-Net, which has shown significant improvement 
in performance metrics, achieving a Dice coefficient of 0.968 
and mIoU of 0.939. Comprehensive flight tests, both in 
simulation and real-world scenarios, have demonstrated the 
feasibility and effectiveness of our proposed system for 
accurately estimating and measuring horizontal and vertical 
dimensions of concrete crack achieving a root-mean-square 
error of 9.9 mm and 6.2 mm, respectively, solely relying on an 
onboard RGB-D camera. The results highlight the system’s 

potential to effectively handle structural inspection tasks in 
complex environments. The entire workflow of the proposed 
system, together with its confirmed robustness, has been 
meticulously detailed. This research could contribute to the 
broader development of crack inspection methodology, 
providing valuable insights to the field. 

APPENDIX 
A demonstration video of this study is available at 

https://youtu.be/Vho1Cx1tErQ. The crack segmentation 
dataset in this work is available at https://polyu.hk/iUqfJ. And 
the source code of our proposed segmentation model and 
crack size estimation methods is available at 
https://github.com/everskyrube/uav-crack-segmentation. 
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