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Abstract
Purpose  This study aimed to assess the feasibility of early detection of fatigued gait patterns for older adults through the 
development of a smart portable device.
Methods  The smart device incorporated seven force sensors and a single inertial measurement unit (IMU) to measure 
regional plantar forces and foot kinematics. Data were collected from 18 older adults walking briskly on a treadmill for 
60 min. The optimal feature set for each recognition model was determined using forward sequential feature selection in a 
wrapper fashion through fivefold cross-validation. The recognition model was selected from four machine learning models 
through leave-one-subject-out cross-validation.
Results  Five selected characteristics that best represented the state of fatigue included impulse at the medial and lateral arches 
(increased, p = 0.002 and p < 0.001), contact angle and rotation range of angle in the sagittal plane (increased, p < 0.001), 
and the variability of the resultant swing angular acceleration (decreased, p < 0.001). The detection accuracy based on the 
dual signal source of IMU and plantar force was 99%, higher than the 95% accuracy based on the single source. The intel-
ligent portable device demonstrated excellent generalization (ranging from 93 to 100%), real-time performance (2.79 ms), 
and portability (32 g).
Conclusion  The proposed smart device can detect fatigue patterns with high precision and in real time. Significance: The 
application of this device possesses the potential to reduce the injury risk for older adults related to fatigue during gait.
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Introduction

Neuromuscular fatigue implicates the performance of mus-
cle control and the coordination of multiple joints [1], lead-
ing to a deterioration in gait balance [2–4] and stability [5]. 
The decline in gait performance heightens the risk of injuries 
such as falls, which are a leading cause of injury and the eco-
nomic burden among older adults [6]. Real-time detection 
of neuromuscular fatigue is crucial for implementing effec-
tive interventions to reduce the probability of such injuries. 
While laboratory equipment like motion capture systems and 
force plates offer high accuracy for motion analysis, they 
are not suitable for personal use in outdoor environments. 
Therefore, identifying gait patterns associated with neuro-
muscular fatigue using portable sensors is the most practical 
approach for daily activities and exercise.

Among the many wearable devices used to evaluate neu-
romuscular fatigue, surface electromyography (EMG) [5, 7] , 
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muscle oxygen saturation (SmO2) [8, 9], inertial measurement 
unit (IMU) [10–15], and plantar force sensors [16–18] are the 
most common. However, surface EMG sensors are sensitive 
to skin cleanliness and placement, and their repeatability and 
portability are suboptimal. Measurements of SmO2 such as 
those obtained through near-infrared spectroscopy are sen-
sitive to movement and unsuitable for assessing long-term 
dynamic motion. In contrast, IMUs and plantar force sen-
sor are highly robust. IMUs can be conveniently attached to 
the body (such as the lower back, ankle, and shank) or shoes 
[13, 15], and force sensors can be placed under the foot soles. 
Moreover, IMUs and force sensors have minimal impact on 
normal gait.

Neuromuscular fatigue during walking diminishes the lower 
extremity’s cushioning ability, leading to a more significant 
impact when the foot strikes the ground [19, 20], which can 
be measured by the IMU. Fatigue also alters plantar pressure 
distribution as pronation increases after the fatigue of the plan-
tar intrinsic foot muscles [19, 21, 22], which can be measured 
by plantar force sensors [16, 17]. Therefore, it is a promising 
solution to detect fatigue by measuring plantar loading with 
force sensors and foot dynamics with the IMU. Combining 
biomechanical information with machine learning is the cur-
rent trend in research on exercise and health monitoring. In the 
recognition of fatigue gait pattern during walking, SVM is the 
most widely used model due to its suitability for small samples 
and strong predictive power [11–14], followed by long short-
term memory model [10]. Previous studies have incorporated 
biomechanical data such as segment kinematics [10–14] and 
plantar loading [23], along with machine learning techniques 
including support vector machines [11–14, 23] and long short-
term memory models [10], to achieve fatigue gait recogni-
tion in walking tasks, with accuracies ranging from 62.5 to 
95.71%. While previous studies have measured fatigue using 
various body parts, we posit that the foot's position as the most 
distal segment from the body's center and its initial contact 
with the ground makes it a prime candidate for early detection 
of lower limb muscle fatigue. Consequently, we hypothesize 
that employing an IMU to capture foot kinematics and mul-
tiple pressure sensors to gauge plantar load, in conjunction 
with a machine learning algorithm, will yield a more effective 
method for fatigue detection.

In this study, we aimed to examine the validity of early 
detecting the fatigued gait pattern in older adults through a 
development of smart portable device that combines port-
able sensors and a machine learning model.

Materials and Methods

The research framework was composed of four parts (Fig. 1). 
First, a smart device was designed and developed to meas-
ure the foot’s kinetic and kinematic using a custom plantar 

regional force insole and a single IMU. An experiment 
was then conducted to collect data, followed by the deter-
mination of feature set and recognition model. At last, the 
selected features were interpreted, and the smart device’s 
performance was verified.

Device Development

This smart device measured the foot’s kinetics and kinemat-
ics using a custom plantar regional force measurement insole 
and a single IMU (Fig. 2a). After preliminary processing by 
the microcontroller unit (MCU), the data obtained by force 
and IMU sensors were wirelessly transferred to a custom 
Android application via a Bluetooth module. This custom 
mobile application, which integrated the LIBSVM toolbox 
[24], was developed using a commercial integrated develop-
ment environment (Android Studio 4.2.2, JetBrains, Prague, 
Czech Republic; Google, Menlo Park, California, USA). 
LIBSVM is a mature toolbox that integrates the SVM in 
multiple code sources and can help developers use the SVM 
algorithm more conveniently. The mobile application was 
used to collect, display, analyze, and recognize fatigued gait 
patterns in real time.

The custom insole (Fig. 2b) incorporated seven thin-film 
standard flexible force sensors (FlexiForce A301 & A401, 
Tekscan Inc., Boston, Massachusetts, USA) to collect plan-
tar force at the hallux, medial and lateral metatarsal, pos-
terior of the footpad, medial and lateral arch, and the heel 
regions, based on our previous studies [15–17]. The insole’s 
plantar force measurement layer was covered with a thin, 
soft layer. A nine-axis IMU (MTi-7-T, Xsens Technologies 
B.V., Enschede, Netherlands) was used to collect the triaxial 
acceleration, angular velocity, and rotation angle of the rear-
foot [15]. IMU was connected to the control box via a socket 
and fixed to the posterior heel position of the right shoe.

The control box integrated an MCU (STM32L051R6T6, 
STMicroelectronics, Geneva, Switzerland), a Bluetooth 
module (HC-05, Maker Factory Bluetooth, Shanghai, 
China), two amplifiers (MCP6004-I/ST, Microchip Tech-
nology Inc., Arizona, USA), a rechargeable lithium battery, 
and a printed circuit board to enhance integration and con-
nection stability [25]. As depicted in the hardware installa-
tion diagram, the custom insole and IMU were connected 
to a control box attached to the bottom of the shoe tongue’s 
upper surface to minimize vibration impact.

Participants

Eighteen older adults (11 females and 7 males, 63.4 ± 
4.1 years, 159.0±7.5 cm, and 60.3± 9.7 kg) were recruited 
for this study. All participants were independent walk-
ers without any neuromuscular abnormalities, pains (e.g., 
knee pain), or diseases that could potentially affect their 
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walking patterns. Individuals with obesity (BMI > 30 kg/
m2) or a history of falls within the past six months were 
excluded from the study. The study received approval from 
the University Human Subjects Ethics Sub-Committee (No: 
HSEARS20190919001). Each participant was thoroughly 
informed about the study and provided written consent 
prior to participation. The sample size was determined 
using G*Power 3.1.9.7 (Universität Düsseldorf, Düsseldorf, 
Germany) [26], with an estimated 18 participants based on 
a significance level of 0.05, statistical power of 0.8, and a 
medium effect size of Cohen’s f = 0.32 [27] using the F-test 
within factor with two repeated measures as this study com-
pared gait parameters before and after fatigue using the Wil-
coxon signed-ranks tests.

Procedures

The experiments were conducted on a treadmill (Unisen 
Inc., Tustin, California, USA). Prior to the 60-min walking 
trial, each participant completed a 5-min acclimation walk 
[28]. There was no interruption between the acclimation 
walk and the walking trials. During the acclimation walk, 

the comfortable fast walking speed was determined, with an 
average speed of 3.83 ± 0.52 km/h. Participants completed 
the walking trials at their individual speeds, wearing uni-
form clothes, socks, and a specific type of neutral running 
shoes (BQ1671-002, Nike Inc., Beaverton, USA) to mini-
mize the influence of clothing differences. Plantar regional 
force and IMU data were simultaneously collected using a 
custom smart device at a sampling rate of 110 Hz during the 
60-min walking trial.

Feature Extraction

All features were calculated based on the gait cycle from the 
right foot, with the gait cycle identified using a threshold of 10 
N [29]. The outcome variables included 28 variables based on 
force sensors and 21 variables based on IMU sensor (Table 1). 
The coefficient of variation (CV) is defined as the standard 
variation divided by the mean absolute value. The jerk is the 
first derivative of acceleration with respect to time, it meas-
ures the rate of change of acceleration. The rotation angle was 
defined as the angle of the foot relative to the stationary stance 
phase. The IMU is prone to drift in the vertical axis angle 

Fig. 1   Research framework
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(θTra), which tends to worsen over time. By utilizing the rela-
tively stationary state of the foot during the flat-foot phase, we 
can correct for this drift without concern for the IMU's vertical 
axis angle. Therefore, we subtract the average angle during 
the flat-foot phase (θFlat-foot) from each gait cycle to obtain the 
foot's rotation angle relative to this period, calculated as

Because the corresponding moments of the foot flat and 
heel off events are approximately 10 and 30% of the gait 

(1)�
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cycle [30], 15–25% of the gait cycle was adopted as the 
flat-foot period.

All offline data processing and statistical analyses were 
completed using custom codes, the Signal Processing Tool-
box, and the Statistics and Machine Learning Toolbox on 
MATLAB 2023a (MathWorks Inc., Natick, Massachusetts, 
USA).

Machine Learning and Validation

Dataset

Previous studies have shown that 60 min of fast walking can 
induce fatigued gait pattern in older adults, as evidenced by 

Fig. 2   The design and develop-
ment schematic of the devel-
oped device
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increased self-perceived fatigue levels and gait variability, 
and decreased activity of major lower limb muscles and gait 
stability [15–17, 31, 32]. In this study, the first and last 5 min 
were hypothesized to represent non-fatigue and fatigued 
states, respectively. Each sample was 10 s long. Using a 
sliding window with an 8-s overlap, each state yielded 150 
samples (5 × 60 ÷ (10 − 8)). Therefore, the dataset com-
prised 5400 samples (150 samples/state × 2 states × 18 
participants).

Recognition Model

The optimal feature set for each machine learning model was 
determined using forward sequential feature selection in a 
wrapper fashion, which selects a feature subset by adding 
features sequentially until the selection criteria is met. The 
selection criteria were defined as the misclassification rate 
using fivefold cross-validation no longer decreased when 
new features were added. The misclassification rate refers 
to the number of misclassified samples divided by the total 
number of samples. K-fold cross-validation, also named 
k-fold rotation estimation, first divides the sample into k 
subsets, then uses one subset as the test set, and the remain-
ing k − 1 subsets as the training set. After k times of looping, 
k models and their corresponding errors are obtained. The 
average of these k errors is used as the cross-validation error. 
Because the test set has unknown data in each test, cross-
validation is a good measure of the true predictive power of 
the model and can effectively prevent overfitting.

The optimal recognition model was selected from four 
machine learning models: Naïve Bayes (NB), k-nearest 
neighbor (KNN), decision tree (DT), and support vector 
machine (SVM). The selection criteria for the classifica-
tion model were defined as the minimal misclassification 
rate. The misclassification rate of each recognition model 

was obtained using its corresponding optimal feature set 
through leave-one-subject-out cross-validation (LOSOCV), 
as shown in the lower left corner of Fig. 1. LOSOCV is like 
k-fold cross-validation. The difference is that k-fold cross-
validation randomly divides all samples of all participants 
into subsets, while LOSOCV divides subsets based on par-
ticipant (each test set is all the samples of a certain person). 
LOSOCV was adopted as it can minimize the bias of recog-
nition accuracy. The four models used the same loss function 
and optimizer: the minimal expected misclassification cost 
and the Bayesian optimization.

Interpretation and Validation

To interpret the selected features, each feature in the opti-
mal feature set was compared before and after fatigue using 
the Wilcoxon signed-ranks tests with Bonferroni correction 
at a significance level of α < 0.05. The importance of each 
feature was investigated by calculating its identification 
accuracy using the selected recognition model. The effect 
of signal source and correlations between features within the 
optimal feature set were also examined. Finally, the codes for 
data processing and pattern recognition were transferred to 
a mobile phone. The generalization, real-time performance, 
and portability of the smart device were verified.

Results

Optimal Feature Set

A total of ten features were selected using forward sequen-
tial feature selection, five of which were based on the 
plantar regional force signal and five on the IMU signal 
(Fig. 3a). Compared to the non-fatigue state, six features 

Table 1.   Outcome variables

H heel; Hx hallux; LA lateral arch; LM lateral metatarsal; MA medial arch; MM medial metatarsal; POF posterior of footpad.

Sensors Variables

Force contact time (CT), peak force (PF), impulse (Imp), and the coefficient of variation of force (FCV) at seven regions:
CTHx, CTMM, CTPOF, CTLM, CTMA, CTLA, CTH;
PFHx, PFMM, PFPOF, PFLM, PFMA, PFLA, PFH;
ImpHx, ImpMM, ImpPOF, ImpLM, ImpMA, ImpLA, ImpH;
FCVHx, FCVMM, FCVPOF, FCVLM, FCVMA, FCVLA, FCVH

IMU maximum (Max), root mean square (RMS), and CV of the resultant acceleration (accRes), resultant jerk (jRes), 
resultant angular velocity (ωRes), and resultant angular acceleration (αRes):

accRes, Max, accRes, RMS, accRes, CV;
jRes, Max, jRes, RMS, jRes, CV;
ωRes, Max, ωRes, RMS, ωRes, CV;
αRes, Max, αRes, RMS, αRes, CV
maximum, range, and CV of the angle in the sagittal (Sag), coronal (Cor), and transverse (Tra) planes:
θSag, Max, θSag, RMS, θSag, CV
θCor, Max, θCor, RMS, θCor, CV
θTra, Max, θTra, RMS, θTra, CV
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in the fatigued state showed significant differences. These 
differences included the impulse at the medial and lateral 
arch (p = 0.002 and p < 0.001), the RMS and CV of result-
ant angular acceleration at the posterior heel (p = 0.035 and 
p < 0.001), and the maximum and range of rotation angle 
in the sagittal plane at the posterior heel (p < 0.001 and 
p < 0.001). The recognition accuracy based on each feature 
of the optimal feature set was investigated (Fig. 3b). Five 
features achieved over 80% recognition accuracy, includ-
ing the impulse at the lateral and medial arch region (92 
and 83%, respectively), the maximum and range of rotation 
angle in the sagittal plane at the posterior heel (89 and 88%, 
respectively), and the CV of resultant of angular acceleration 
at the posterior heel (80%).

Machine Learning

In this study, SVM outperformed the other three machine 
learning models, achieving a recognition accuracy of 99% 
for both non-fatigue and fatigue states (Fig. 4a). NB and 
KNN also performed well, with an average accuracy of 96%. 
The recognition accuracy based on dual signals was higher 
than that based on a single signal, either plantar force or 
IMU, 99 vs. 95% (Fig. 4b). Most correlation coefficients 
between features in the optimal feature set were small or 
medium (Fig. 4c). The correlation coefficient was measured 
using the Pearson correlation coefficient r, where r greater 
than 0.5 is regarded as a strong correlation [33].

Validation

The generalization of the proposed smart device was 
assessed using LOSOCV. The recognition accuracy of each 
participant ranged from 93 to 100% (Fig. 5a). The total time 

consumption, including data processing and fatigue recog-
nition, was only 2.79 ms (Fig. 5b). The total weight of the 
smart device developed in this study was 32 g (Fig. 5c).

Discussion

This study examined the validity of early detecting fatigued 
gait patterns in older adults through a developed smart port-
able device. The fatigue effect was significant manifested in 
both gait loading and swing patterns, as measured by seven 
force sensors and a single IMU. The smart device devel-
oped in this study demonstrated high identification accuracy 
(99%), excellent real-time performance (2.79 ms), and port-
ability (32 g) (Fig. 6).

Fatigue resulted in a significantly larger maximum angle 
in the sagittal plane, which could imply a higher risk of falls 
due to the increased likelihood of slipping with a larger foot-
floor contact angle [34–37]. After 60 min of brisk walking, 
the rotation angle range in the sagittal plane also increased, 
possibly due to its high correlation with the maximum angle 
in the sagittal plane. The resultant angular acceleration and 
its coefficient of variation significant decreased compared 
to non-fatigue conditions, potentially due to muscle control 
strategies that pre-adjusted to reduce vibration and impact 
force before the heel strike [38]. The parameters of the swing 
phase, including the maximum angle and rotation range of 
angle in the sagittal plane, and the resultant angular veloc-
ity and its coefficient of variation, all demonstrated a high 
fatigue classification rate. This is likely because gait param-
eters before foot-ground contact play a crucial role in main-
taining postural balance [34]. The impulses recorded at the 
medial and lateral arches in this study were notably lower 
than those reported in previous research [16, 20]. This dis-
crepancy can be attributed to the smaller sensor area used 
in our study. For instance, in our prior work [16], the medial 
and lateral arch areas were approximately 2000 mm2, result-
ing in measured impulses around 30 Ns. In contrast, the cur-
rent study utilized a sensor area of merely 71 mm2 for these 
regions, with corresponding impulses of about 1 Ns. Thus, 
both the arch area and the measured impulses in this study 
are roughly 1/30 of those in the previous study. The impulse 
at the arch region significantly increased after fatigue, 
typically associated with increased pronation foot [20] and 
decreased arch height [16]. These changes are indicative 
of muscle fatigue in the lower extremities [19, 21, 22] and 
could explain the high accuracy of fatigue identification 
based on impulse at the medial or lateral arch.

The recognition accuracy based on plantar regional 
forces in this study (95%) was significantly higher than that 
of ground reaction force (GRF) in previous studies [23]. 
This could be due to the more comprehensive information 
provided by multiple plantar regional forces compared to a 

Fig. 3   Schematic diagram of coordinate system and angle-related 
parameters
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single GRF. The recognition accuracy based on a single IMU 
in this study was 95%, which is higher than that reported in 
previous studies [12, 14]. This could be attributed to the fact 
that previous studies attached the IMU to the lower back, 
thigh, or shank, rather than the foot [12, 14, 39, 40]. Given 
that the foot is further from the body’s center and lacks the 
cushioning of joints, the impact of fatigue on the foot tends 
to be more pronounced. Specifically, the heel appears to be 
more indicative of gait patterns than the toes, as it is the first 
part of the foot to contact the ground and absorb impact [39]. 

Interestingly, while recognition accuracy can be enhanced 
by utilizing multiple IMUs [10, 11, 13] or plantar regional 
forces, the accuracy based on a single source was still lower 
than that based on dual signal sources. This finding aligns 
with the principles of multimodal learning theory [41].

The smart device developed in this study demonstrated 
excellent generalization, with participant identification 
accuracy ranging from 93 to 100%. The total time for data 
processing and pattern recognition was less than 3 ms, well 
within the normal gait cycle, making it suitable for real-time 

Fig. 4   Statistical results and 
recognition accuracy based on 
each single feature. Abbrevia-
tion: CV = coefficient of vari-
ation; FCV = the CV of force; 
Hx = hallux; Imp = impulse; 
MA = medial arch; Max = maxi-
mum; MM = medial metatarsal; 
LA = lateral arch; PF = peak 
force; Ran = range; Res = result-
ant; RMS = root mean square; 
Sag = sagittal
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needs. The total weight of the smart device was approxi-
mately 30 g, significantly lighter than a pair of regular shoes, 
which typically weigh around 500 g. This lightweight design 
ensures that the device does not affect the walking task, as 
the metabolic cost only increases approximately by 1% per 
100 g of mass added to each shoe [42, 43]. Unlike other 
devices that needed to be attached to various body parts, this 
smart device is affixed to the shoe, eliminating the poten-
tial influence of varying installation positions on the smart 
device's performance with each use [10]. Its lightweight and 
installation-free effectively minimize the device’s impact on 
normal gait patterns during walking.

This study has some limitations. It assumed that older 
adults would experience fatigue after long distance brisk 
walking, which may not always be the case, despite the 
observed increase in self-perceived fatigue levels and 
decreased activity of major lower limb muscles and gait 
performance [15–17, 31, 32]. The experiments were con-
ducted on a treadmill at a fixed speed, without considering 
the variations in speed, inclines, declines, and turns that 
occur during daily walking. The forward sequential fea-
ture selection method was employed to optimize the most 
effective set of features, but several features are strongly 
correlated. Future studies should consider these factors, 

Fig. 5   The comparison of dif-
ferent models and signal source, 
and the correlation coefficient 
between features in the optimal 
feature set
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as well as the optimization of the number and location of 
force sensors in the custom insole.

In conclusion, this study developed a portable smart 
device, equipped with seven force sensors and a single 
IMU, to assess the feasibility of early detecting neuro-
muscular fatigued gait pattern in older adults. The fea-
tures most sensitive to fatigue were the increased impulse 
at medial and lateral arches, the increased contact angle 
and rotation range of angle in the sagittal plane, and the 
decreased variability of the resultant swing angular accel-
eration. While the recognition accuracy based on a single 
signal source, either IMU or plantar force, was 95%, it 
increased to 99% when both signal sources were used. The 
smart device demonstrated excellent fatigue identification 
capabilities, real-time performance, and portability. The 
recognition accuracy through LOSOCV reached 99%, the 
processing time was less than 3 ms, and the weight was 
only 32 g.
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