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Abstract
Autonomous equipment is playing an increasingly important role in construc-
tion tasks. It is essential to equip autonomous equipment with powerful 3D
detection capability to avoid accidents and inefficiency. However, there is lim-
ited research within the construction field that has extended detection to 3D.
To this end, this study develops a light detection and ranging (LiDAR)-based
deep-learning model for the 3D detection of workers on construction sites. The
proposed model adopts a voxel-based anchor-free 3D object detection paradigm.
To enhance the feature extraction capability for tough detection tasks, a novel
Transformer-based block is proposed, where the multi-head self-attention is
applied in local grid regions. The detection model integrates the Transformer
blocks with 3D sparse convolution to extract wide and local features while
pruning redundant features in modified downsampling layers. To train and test
the proposed model, a LiDAR point cloud dataset was created, which includes
workers in construction sites with 3D box annotations. The experiment results
indicate that the proposed model outperforms the baseline models with higher
mean average precision and smaller regression errors. The method in the study
is promising to provide worker detection with rich and accurate 3D information
required by construction automation.

1 INTRODUCTION

Autonomous equipment, such as autonomous excavators
(Eraliev et al., 2022) and construction robots (Allinson,
2022;Malewar, 2019), has played an increasingly important
role in construction, greatly improving safety and produc-
tivity through the replacement of workers in dangerous or
repetitive tasks (BusinessResearch, 2023). Due to the grow-
ing demand for automation, intelligent technologies for
sensing the surrounding environment have become more
and more crucial to ensure efficient and safe operations.
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Autonomous equipment that cannot recognize and local-
ize construction workers may become a source of collision
safety accidents (W. Li et al., 2023) and are difficult to be
involved in a human–robot collaboration system (Dogan
et al., 2023). Therefore, it is necessary to provide themwith
sufficient capabilities to detect workers in construction
sites.
Plenty of efforts have been made by researchers to

recognize workers using RGB cameras. For example, sev-
eral studies (M. Park et al., 2023; Son, Choi, et al., 2019)
have proposed deep learning-based frameworks forworker
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detection using cameras, and some have applied them for
worker safety (Son & Kim, 2021; Son, Seong, et al., 2019).
However, they cannot provide enough spatial information
and thus cannot meet the spatial perception requirement
of construction automation. To overcome the limitations
of cameras, some studies tried to estimate spatial informa-
tion from 2D images. However, existing depth estimation
methods still face challenges such as low accuracy and
resolution (Ming et al., 2021), as well as high computa-
tional complexity that hinders real-time operation (Laga
et al., 2020). Although depth cameras can acquire spatial
information, their working distance is often limited (typi-
cally not exceeding 5 m), and they are susceptible to strong
light interference (Al-Naji et al., 2017), which restricts their
application on construction sites.
In light of the successful application of light detection

and ranging (LiDAR) in the field of autonomous driving,
this device is regarded to be promising for spatial percep-
tion and scene understanding. LiDAR has a long period
of application in construction, such as structural monitor-
ing (H. S. Park et al., 2007). It enables real-time scanning
of the 3D surroundings and generates point clouds. With
direct access to spatial information, 3D object detection
can be achieved, which involves predicting the locations,
dimensions, and orientations of objects in 3D space (Mao
et al., 2022). Additionally, LiDAR works well in low light
or dust in air conditions, which gives it a great advantage
over cameras. Therefore, employing LiDAR to facilitate
detecting workers in 3D is considered both promising and
necessary.
Few works inferred 3D detection boxes from images on

construction sites (Shen et al., 2021; X. Yan et al., 2020), and
no research directly detected workers in 3D using LiDAR.
Although many 3D object detection approaches have been
developed in fields such as autonomous driving (Yang
et al., 2018; Zhou & Tuzel, 2018) and indoor detection (Qi
et al., 2019), the primary challenge is that they are difficult
to be directly applied to worker detection on construction
sites. First, different from street scenes where the ground
is usually flat and clean, the surface of construction sites
is rough and uneven, which may contain excavated soil
or under-construction floors. Second, unlike pedestrians
on streets, construction workers exhibit various postures
(Roberts et al., 2020), which can easily blend with the clut-
tered background, posing a challenge to detect. Third, they
were scarcely designed for human detection, mostly con-
centrating on vehicle detection, leading to a relatively low
accuracy of human detection (Y. Guo et al., 2021).
The purpose of this study is to develop a 3D object

detection method that can efficiently and accurately
detect workers in construction sites using LiDAR. We
propose a deep-learningmodel that follows themodern 3D
object detection paradigm, which adopts an anchor-free

voxel-based detection framework. A Local Sparse Trans-
former (LST) block that applies multi-head self-attention
on local voxel features in spatial grids is proposed, which
can increase the model’s capability of feature extraction.
To reduce the computation cost, a downsampling sparse
convolution operation is proposed, which can prune
redundant features and maintain data sparsity. The
backbone network of the model incorporates Transformer
and convolution layers, efficiently processing sparse data.
The contribution of the study can be summarized as
follows:

1. LiDAR point cloud was leveraged to perform 3D
detection for construction workers, which can provide
accurate and rich spatial information about workers.

2. A deep learning model was developed for 3D worker
detection. In the model, the LST block, 3D sparse con-
volution with XY dilation, and the backbone network
combining LST with convolution were proposed to
improve detection.

3. An annotated point cloud dataset with workers in var-
ious poses from construction sites was created. The
method achieves improved performance in testing on
the dataset.

2 RELATEDWORK

2.1 Worker detection methods

Since the surge of deep learning (Martins et al., 2020;
Pereira et al., 2020), numerous studies have investigated
camera-based detection utilizing convolutional neural net-
works (CNNs), such as the early attempt (Fang et al., 2018;
Son, Seong, et al., 2019) and recent refinement (M. Park
et al., 2023; Son & Kim, 2021). However, they can only
generate 2D bounding boxes on the image plane with-
out any 3D clue. Many studies have attempted to infer
spatial information from camera-based detection results,
often relying on stereo vision, projection transformations,
or depth estimation techniques. For instance, the stereo
vision technique could be based on the 2Ddetection results
from a single camera (Lee & Park, 2019). However, it may
struggle to provide precise 3D information when objects
are far from the camera. Projection transformation meth-
ods project each point from a 2D image to a 3D space (Son,
Seong, et al., 2019), but they have inherent drawbacks,
including the challenges of camera calibration and the lim-
itations imposed by the assumption of planar surfaces. In
a quite related study (X. Yan et al., 2020), workers’ depth
and distance information are estimated based on their size
and location in 2D images, but it falls short of true 3D
object detection since the reconstruction is based on 2D
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2992 ZHANG et al.

detection results. In summary, existing worker detection
methods to restore 3D information suffer from errors of
transformation from 2D to 3D and are subject to camera
inaccuracies.

2.2 3D object detection with LiDAR

Since LiDAR has been widely applied for autonomous
driving, numerous 3D object detection frameworks were
proposed based on the street point cloud dataset. The
development of 3D object detection frameworks draws
inspiration from the well-established 2D object detection
techniques (W. Liu et al., 2016; Ren et al., 2017). For
instance, they comprised a backbone and detection head
network.
The backbone serves as the point cloud feature extractor.

Based on how the point cloud is handled, the back-
bones can be categorized into point-based methods and
discretization-based methods. Point-based methods, such
as PointNet (Charles et al., 2017) and PointNet++ (Qi
et al., 2017), directly process raw points. However, they
require appropriate sampling methods, posing a challenge
in balancing computational efficiency and performance.
Discretization-based methods convert point clouds into
discrete cubic voxels, pillars, or bird’s-eye-view (BEV)
images, where CNNs are mainly employed to extract fea-
tures. The voxel-based methods (Zhou & Tuzel, 2018)
mainly employ 3D CNNs as the backbone. SECOND (Y.
Yan et al., 2018) employs 3D sparse convolution layers
that operate solely on effective voxels, which substantially
reduces the computational burden of the 3D backbone.
It significantly advanced voxel-based methods and has
emerged as the backbone network formany subsequent 3D
object detection methods. In contrast, pillar-based (Lang
et al., 2019) and BEV-based (Beltrán et al., 2018; Yang
et al., 2018)methods process coarse features, and thus yield
worse performance than voxels.
For detection heads, anchor-based methods were pop-

ular in the early years (Lang et al., 2019). However,
detection with multiple classes in large scenes requires
many anchors, which can make assigning ground truth
labels to anchors a tedious task. An increasing num-
ber of models have been embracing simple and efficient
anchor-free methods. Anchor-free manner combined with
voxel-basedmethods (Q. Chen et al., 2020; Yang et al., 2018;
Yin et al., 2021) has been investigated recently, where the
detection boxes were generated directly from the voxel fea-
tures. Among these models, CenterPoint (Yin et al., 2021)
is perhaps the most efficient. It directly utilizes a CNN to
generate a heat map that represents the object centers and
regresses object properties from features at the centers.

2.3 Transformer in computer vision

The remarkable success of the Transformer (Vaswani
et al., 2017) in natural language processing has inspired
numerous investigations into the potential of multi-head
self-attention in computer vision. The pioneering work,
ViT (Dosovitskiy et al., 2021), did not solve the unac-
ceptable computational cost of the original Transformer
due to quadratic computational complexity to the input
size. To address this issue, Swin Transformer (Z. Liu, Lin,
et al., 2021) applies the Transformer in non-overlapping
local windows of an image and hierarchically processes
the image, achieving linear computational complexity to
the input size. Furthermore, transformers are well-suited
for capturing long-range dependencies, while CNNs excel
at extracting local features. As a result, some studies have
designed hybrid models that combine Transformers and
CNNs (J. Guo et al., 2022; J. Li et al., 2022), achieving bet-
ter performance than using either Transformers or CNNs
alone.
Several studies have investigated the applicability of

Transformers in point cloud learning. Compared to 2D
computer vision, Transformers in 3D cases are muchmore
computationally intensive, given the larger data size of 3D
data. Some studies have focused on 3D object detection
in indoor scenes (Z.Liu, Zhang, et al., 2021; Misra et al.,
2021). They are only suitable for indoor scenes, which typ-
ically have denser points and smaller scales than outdoor
scenes. Recently, some research has proposed backbones
based on the Transformer encoder for large-scale outdoor
scenes. VoxSeT (He et al., 2022) reduces the computation
of the Transformer by cross-attention for efficient object
detection. VoTr (Mao et al., 2021) proposed a voxel self-
attention method, where each voxel acts as a query and
attendswith its neighboring voxels.However, it also suffers
from large computational costs and requires a significant
amount of memory for training. In this scenario, relying
solely on the Transformer to extract features may not be
the most efficient solution.

2.4 Research gaps

The following research gaps can be identified based on the
above literature review:

1. The prevailing worker detection methods applied on
construction sites are mainly based on cameras and
pose challenges in conducting accurate 3D scene under-
standing due to the limitations of the hardware.

2. The existing LiDAR-based object detection methods
mainly focus on simple scenes such as streets and
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ZHANG et al. 2993

F IGURE 1 The model architecture. BEV, bird’s-eye-view.

indoors, and their performances on construction sites
have not been validated.

3. The Transformer model possesses a powerful fea-
ture extraction capability. However, there is a lack of
research investigating the efficient implementation of
Transformer and combination with CNN on large-scale
complex point clouds.

3 METHODOLOGY

In this section, we present the deep learning model
designed for detecting construction workers in 3D. First,
we introduce the overall architecture of the deep network.
Next, we present the proposed LST block and innovation
in convolution layers. Finally, the evaluation metrics are
introduced.

3.1 Overall architecture

The model’s architecture is illustrated in Figure 1. The
input point cloud goes through voxelization, a 3D back-
bone, a map-to-BEV module, and a detection head in
sequence. The input point cloud contains n raw points
with four-dimensional features (x, y, z, intensity). It is first
cropped into a cubic space and then voxelized into N non-
empty voxels with an initial voxel size (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) and
spatial size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧. The essence of voxelization is
to convert the raw points into a regular cubic grid in the
3D space, determining which points are contained within
each cube. The number of voxels N is not fixed and is lim-
ited by a maximum threshold. The number of points in

F IGURE 2 Convolution residual block.

a voxel is fixed to 𝑛𝑣, with zeros padding the voxel if the
number of points is less than 𝑛𝑣. Each voxel’s feature is
encoded by calculating the mean value of all the points in
it. The resultant features to be fed to the backbone network
is 𝑓v ∈ ℝ𝑁×4.
The 3D backbone of the model expands the feature

channels and downsamples the voxels in several stages.
In each stage, several convolution residual blocks and
LST blocks process voxel features in sequence with a fixed
voxel and channel size. The structure of the convolution
residual block is shown in Figure 2. This block has a resid-
ual connection that bypasses two 3D convolution layers.
The LST blocks apply Transformer encoders to the voxel
feature, and more details will be introduced in Section 3.2.
All stages, except for the first, begin with a downsampling
layer with stride 2 to downsample the voxels and increase
the channels. Each convolution layer is followed by a
batch normalization layer and ReLU activation function.
There are two types of convolutions in the network: stan-
dard sparse convolution in the downsampling layers and
submanifold sparse convolution in the other parts, which
will be described in Section 3.3. Following all stages, the
map-to-BEV module projects all the spatial voxel features
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2994 ZHANG et al.

onto the XY plane by adding voxels with the same (x, y)
coordinates. Thus, the output of the 3D backbone is a 2D
feature map with resolution 𝐿𝑥∕𝑑 × 𝐿𝑦∕𝑑, where d is the
downsampling factor.
The detection head has separate branches to regress

each detection variable, namely, the confidence score of
categories 𝑌̂, location refinement (𝑑𝑥, 𝑑𝑦), Z coordinate
z, object size (w, h, l), and orientation angle (sin(𝜃),
cos(𝜃)). Each branch comprises a separate submanifold
sparse convolution layer with kernel size 3 that main-
tains channel numbers and another convolution layer that
alters the channel number to the output number. Addi-
tionally, a sparse convolution layer shared by all branches
is adopted before separated branches. The anchor-free
heatmap-based method (Yin et al., 2021) is adopted to
regress the bounding box. The confidence score branch
predicts a heatmap in which peaks indicate the presence
of an object for each class.
The loss function comprises the classification loss and

the regression loss of bounding boxes. The classification
loss is a pixel-wise focal loss (Lin et al., 2018) given by:

𝐿𝐶 = −
1

𝑁gt

∑
𝑖

{
(1 − 𝑌̂𝑖)

𝛼
log(𝑌̂𝑖), if𝑌𝑖 = 1

(1 − 𝑌𝑖)
𝛽
𝑌̂𝛼

𝑖
log(1 − 𝑌̂𝑖), otherwise

(1)

where 𝑌̂ is the predicted heat map of confidence score,
and imeans each location on the feature map. 𝛼 and 𝛽 are
hyper-parameters of the focal loss (Law & Deng, 2019).Ngt
is the number of ground truths in a sample. The target heat
map Y is given by:

𝑌(𝑥, 𝑦) = max
𝑖∈𝑜𝑏𝑗𝑒𝑐𝑡𝑠

[
exp

(
−

(𝑥 − 𝑥𝑐,𝑖)
2
+ (𝑦 − 𝑦𝑐,𝑖)

2

2𝜎2
𝑖

)]
(2)

𝜎𝑖 = max(𝑓(𝑤𝑖, 𝑙𝑖), 𝑟) (3)

where (𝑥𝑐,𝑖 , 𝑦𝑐,𝑖) is the center location of a ground truth,
𝜎𝑖 is the Gaussian radius determined by the object size
(𝑤𝑖 , 𝑙𝑖) (Law & Deng, 2019), and the minimum radius r is
adopted to ensure that small objects, like humans, have a
large enough Gaussian peak for training. The regression
loss is calculated by Equation (4) using the L1 loss. Notably,
only the outputs at the ground truth center locations are
taken into account for the regression loss. Finally, the over-
all loss function can be drawn as Equation (5), where 𝜆𝐵 is
a hyper-parameter to balance the losses.

𝐿𝐵 =
1

𝑁gt

∑
𝑏

𝑁∑
𝑖=1

|||𝑏̂𝑖 − 𝑏𝑖
|||
𝑏∈{𝑑𝑥,𝑑𝑦,𝑧,𝑤,𝑙,ℎ,sin(𝜃),cos(𝜃)}

(4)

F IGURE 3 Voxels grouped into grids.

𝐿det = 𝐿𝐶 + 𝜆𝐵𝐿𝐵 (5)

3.2 LST block

Detecting workers in cluttered backgrounds containing
numerous interference items (e.g., pillars, tools, andmate-
rials) that resemble human shapes can be challenging.
Sparse convolution networks, which extract short-range
features and focus on the local geometry of workers,
could lead to poor detection. The model for construc-
tion detection is expected to have a large receptive field
for long-range context modeling to understand the sur-
roundings of a worker. Introducing the Transformer into
the 3D worker detection framework is promising to solve
this problem. The Transformer is supposed to be capa-
ble of attending to the most relevant region in the input
data (Misra et al., 2021) and aggregate global informa-
tion of large scenes (Mao et al., 2021). By connecting
the features across a wide range, the model’s receptive
field can be enlarged. Giving larger weight to the more
task-relevant part of the data may also help the model
distinguish workers from the complicated environment.
However, directly applying the Transformer to the global
voxels is computationally expensive. Inspired by the Swin
Transformer (Z.Liu, Lin, et al., 2021) that computes self-
attention on dense pixels in non-overlapping windows, we
apply the Transformer to sparse voxels in a local spatial
grid to improve detection performance while maintaining
computational efficiency.
The LST block comprises two consecutive Transformer

encoder modules. The voxel space is initially divided into
uniform cubic grids with a size of𝑀𝑥 × 𝑀𝑦 × 𝑀𝑧, and the
sparse voxels are grouped into these grids. It should be
noted that the grid size M represents the number of vox-
els in each direction. Figure 3 illustrates the cubic grid
partition and how the voxels are grouped into these grids.
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ZHANG et al. 2995

Multi-head self-attention is then applied to the voxels in
each grid independently. Each voxel serves as a query and
attends to all the voxels in the same grid. Let H denote the
number of heads, 𝑁𝑘 denote the number of voxels in the
kth grid, and 𝑓v ∈ ℝ𝑁𝑘×𝐶∕𝐻 denote the input voxel fea-
tures in the kth grid of one head. Due to the nonuniformity
of sparse voxels, the 𝑁𝑘 may differ for two grids. Within
each head, themulti-head self-attention first calculates the
query Q, key K, and value V using linear projection:

𝑄 = 𝑓v𝑊𝑄,𝐾 = 𝑓v𝑊𝐾,𝑉 = 𝑓v𝑊𝑉 (6)

where𝑊𝑄,𝑊𝐾 ,𝑊𝑉 are theweightmatrix of the projection
for query, key, and value, respectively. Then, self-attention
fattn can be calculated as a function of Q, K, V:

𝑓attn(𝑄, 𝐾, 𝑉) = Sof tMax(𝑄𝐾𝑇∕
√

𝑑 + 𝑃𝐸)𝑉 (7)

where PE is the relative position encoding calculated from
another linear projection (represented by matrix Wpe) of
two voxels’ coordinates (pi and pj) difference:

𝑃𝐸𝑖𝑗 = (𝑝𝑖 − 𝑝𝑗)𝑊𝑝𝑒 (8)

Each head processes C/H feature channels, and the out-
puts of the H heads are concatenated after self-attention,
which restores the number of channels to C. Either
encoder in the LST block can be formulated as

𝑓′ = MSA(LN(𝑓𝑣), 𝑃𝐸) + 𝑓𝑣

𝑓out = MLP(LN(𝑓′)) + 𝑓′
(9)

where MSA(⋅) stands for the multi-head self-attention
operation as Equations (6) and (7), LN(⋅) represents layer
normalization, and MLP(⋅) represents multi-layer percep-
tron. Note that the above description shows the calculation
of a single grid, and each grid works in the same way as
Equation (9).However, if the grid partition pattern remains
consistent in all blocks, the voxel cannot attend to the
voxels in the neighboring grid. To facilitate information
flow across the voxel space, shifting grids between con-
secutive layers is necessary. Therefore, the first encoder
module of the LST block employs a regular grid pattern
that starts from the voxel with the minimum coordinate,
then the second encoder module shifts the grid pattern by
(𝑀𝑥∕2, 𝑀𝑦∕2, 𝑀𝑧∕2). The whole architecture of the LST
block is illustrated in Figure 4.
Compared to the Transformer on global voxels with a

computation complexity of 𝑂(𝑁2), the LST block reduces
it to 𝑂(𝑁 × 𝑁𝑘), where 𝑁𝑘 is the mean number of vox-
els in each grid. While Swin Transformer computes all
the windows in a batch, this approach is not viable for
the LST block since the number of voxels in each grid
varies. To reduce computations and memory usage for

F IGURE 4 Local Sparse Transformer (LST) block.

the LST block, we opted to compute attention weight
𝑄𝐾𝑇 from all the query voxels in parallel, regardless
of the grids. This involves

∑
𝑘

𝑁2
𝑘
dot products, and the

voxel pairs required in the products can be determined
in advance. After obtaining the attention weight, scatter
Softmax and scatter add (Fey, 2023) can be used to accel-
erate the remaining computation in Equation (7). Despite
the improvements mentioned above, the Transformer still
incurs more computation and memory costs than convo-
lution. Thus, convolution and Transformer are used in the
3D backbone together. In particular, the attention mecha-
nism cannot function effectively without the voxel feature
embedding obtained from convolution (Lai et al., 2022).
Therefore, another benefit of this design is that convolu-
tion can aid in calculating voxel feature embedding before
the LST, which prevents the Transformer from dealing
directly with the raw point feature.

3.3 3D sparse convolution networks

3.3.1 Sparse convolution layers

In the voxel-based approach, directly using 3D convolution
networks (Zhou & Tuzel, 2018) to process voxel features
can be computationally time-consuming. Considering the
sparsity of input data, where a significant proportion of
voxels are empty, 3D sparse convolution (Graham & van
der Maaten, 2017) can efficiently extract voxel features,
compared to traditional convolution. Depending on the
output location, sparse convolution can be classified
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2996 ZHANG et al.

into standard sparse convolution (referred to as sparse
convolution in the rest of the paper) and submanifold
sparse convolution (Graham et al., 2017). In this study,
submanifold sparse convolution constitutes most of the
convolution operations in the backbone, and sparse con-
volution is primarily utilized in the downsampling layers.
Sparse convolution first dilates the input voxels with

spatial locations 𝑉𝑖𝑛 to their neighborhood within the ker-
nel range. The output spatial locations𝑉𝑜𝑢𝑡 is the resultant
voxel locations after dilation. This voxel dilation increases
the number of non-empty voxels and can be expressed as
follows:

𝑉𝑜𝑢𝑡 = ∪
𝑝∈𝑉𝑖𝑛

D(𝑝) (10)

where 𝐷(⋅) means the dilation operation that finds extra
voxels according to a given voxel. In common sparse con-
volution practice, 𝐷(𝑖) finds all the voxels in the kernel
range of a voxel with location p. Sparse convolution will
only compute the output features for these active voxels in
𝑉𝑜𝑢𝑡 as:Li

𝑦𝑗 =
∑

𝑘∈𝐾(𝑗)

𝑤𝑘𝑥𝑗+𝑘, 𝑝𝑗 ∈ 𝑉𝑜𝑢𝑡 (11)

where 𝑦𝑗 is the output at voxel jwith location pj, 𝑥𝑗+𝑘 is the
input voxel at location pj+k,𝑤𝑘 is the kernelweight at offset
k, K(j) is the set of kernel offset. For example, for kernel
size 3 × 3 × 3 the size of K(j) is 27. The term “j + k” means
applying the kernel offset to voxel location pj.
In contrast, submanifold sparse convolution regards a

voxel as active and computes its output feature only if the
voxel is non-empty in the input. The convolution com-
putation is still expressed by Equation (11) except that
𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛, which means it does not have a voxel dilation
operation and thus does not change the non-empty voxel
number.

3.3.2 XY dilation strategy

Employing common sparse convolutions in construction
scenarios is challenging and problematic. The uneven
and cluttered construction surface has been identified
as a major challenge. Moreover, it is discovered that the
point cloud of a construction site has a long span in the
X and Y directions but a short span in the Z direction,
while workers mainly have large Z spans rather than X or
Y. Therefore, the common dilation operation in all three
directions (denoted as XYZ dilation) mainly increases the
voxel number in the Z direction. One remarkable example
is that the construction surface has around a three-time
voxel increase in the Z direction. On one hand, it adds a

F IGURE 5 Dilation in sparse convolution.

significant amount of useless background information to
the scene, which adversely affects the foreground object
detection performance. On the other hand, a dilation
operation is necessary for the sparse convolution in
downsampling layers; otherwise, a significant amount
of voxel information will be lost. However, the dilation
destroys the sparsity of data and increases the number of
non-empty voxels, which leads to high computation costs.
Therefore, a dilation strategy named XY dilation is

proposed to suppress the redundant XY-distributed back-
ground features while maintaining the important Z-
distributedworker features. J. Liu et al. (2022) prune a ratio
of dilated voxels that have small feature magnitude, but
its voxel selection additionally costs computation. Instead,
our XY dilation strategy is quite simple yet efficient, which
only dilates the voxel in the X and Y directions, as illus-
trated in Figure 5. The proposed operation for each voxel at
position pi = (xi, yi, zi) can be formulated as Equation (12),
where xk and yk represent the X and Y components of the
kernel, respectively. The offset component in Z is zero,
which means the voxels do not expand in Z direction.
When this strategy is used in downsampling layers, the
voxel number in subsequent stages becomesmuch smaller,
and themodel can savemuch computation andmemory in
training, particularly when involved with the Transformer.
Furthermore, the XYdilation strategy has no adverse effect
on the detection performance, and more details are shown
in Section 5.2.

DXY(𝑝𝑖) = 𝑝𝑖 ∪ {𝑝𝑖 + (𝑥𝑘, 𝑦𝑘, 0)}, 𝑘 ∈ 𝐾(𝑖) (12)

3.4 Evaluation metrics

The mean average precision (mAP) was used to evaluate
the detection performance of the model. Following the
practice of Nuscenes (Caesar et al., 2020), the predictions
and ground truths are matched using 2D center distance
on the ground plane rather than intersection over union
(IOU). Specifically, a prediction is matched with a ground
truth that has the smallest center distance up to a cer-
tain distance threshold 𝑑𝑇ℎ𝑟𝑒. For each class, precision and
recall can be calculated from the number of assigned posi-
tive labels and ground truth numbers as Equation (13). For
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ZHANG et al. 2997

F IGURE 6 True positive metrics. AOE, average orientation
error; ASE, average scale error; ATE, average translation error.

a given distance threshold the average precision (AP) of
one class is calculated by integrating the precision–recall
curve PR(•) given by Equation (14). The mean AP of all
classes at a given distance threshold x is denoted as APx.
ThemAP is themean value of the APs of all the classes and
distance thresholds. The match threshold distances are set
as 0.1, 0.15, 0.25, and 0.5 m to get metrics under different
task difficulties.
Besides, the distance match does not consider the box

matching degree, so three true positive metrics are intro-
duced to better understand the magnitude of detection
box errors: (1) average translation error (ATE), which
measures Euclidean center distance in meters; (2) average
scale error (ASE), which is calculated as 1 – IOU after
aligning centers and orientations; and (3) average orien-
tation error (AOE), which measures the smallest heading
angle difference between prediction and ground-truth in
radians, as illustrated in Figure 6. To obtain these metrics,
the cumulative mean at each recall is first calculated and
then the average at all recalls. These true positive metrics
are calculated under the distancematch threshold of 0.5m.

⎧⎪⎨⎪⎩
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑁prediction(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒<𝑑thre)

𝑁prediction

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑁prediction(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒<𝑑thre)

𝑁ground truth

(13)

AP = ∫
1

0

PR(𝑟𝑒𝑐𝑎𝑙𝑙)d𝑟𝑒𝑐𝑎𝑙𝑙 (14)

4 EXPERIMENT

4.1 Dataset

In order to train and evaluate the proposed model, a point
cloud dataset was created, where each sample is a scan
of construction sites. The equipment employed for data
collection is Robosense RS-LiDAR-M1 LiDAR (Robosense,
2023) as shown in Figure 7. Its horizontal and vertical field
of view are 120 and 25 degrees (±12.5 degrees), respectively.
Its horizontal and vertical resolution can both reach 0.2
degrees, with a frame rate of 10∼20 Hz. The data were
collected at construction sites in China with various con-
struction types and stages, such as excavation, building

F IGURE 7 LiDAR setup.

F IGURE 8 Examples of point clouds.

foundations, and steel and concrete substructures. There
are complex disturbances in the scene, such as dynamic
equipment, excavated ground, fences, and scattered mate-
rials. During data collection, the LiDAR was installed on
a tripod and moved around manually to scan the varying
areas and angles of the sites. The workers engaged in con-
struction activitieswithout interference, exhibiting various
poses of a construction nature. The workers’ privacy was
protected as their faces were not visible. After data collec-
tion, point cloud frames were carefully selected from the
raw stream to ensure that there are many workers in the
field of view and to cover different construction scenar-
ios as much as possible. Finally, 3040 point-cloud samples
were obtained, which were randomly divided into 2280
frames for training and 760 frames for testing. Figure 8
shows two examples of the point cloud in the dataset.

 14678667, 2024, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13238 by H
O

N
G

 K
O

N
G

 PO
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SIT
Y

 H
U

 N
G

 H
O

M
, W

iley O
nline L

ibrary on [19/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2998 ZHANG et al.

TABLE 1 Sample and object number in the dataset.

Samples All workers Walking worker Stooping worker Squatting worker
Training set 2280 7098 2606 2375 2117
Test set 760 2369 872 795 702
Total 3040 9467 3478 3170 2819

F IGURE 9 Worker postures in the dataset.

F IGURE 10 Point cloud examples for workers in three
postures. LiDAR, light detection and ranging.

The SUSTechPOINTS open-source annotation tool (E.
Li et al., 2020) was utilized to annotate the dataset, which
involves assigning a 3D box and a posture label for each
worker. For each worker’s annotation box, the rotation
needs to be manually adjusted to match the worker’s ori-
entation, and the size needs to be resized to fit profiles.
Each worker is labeled with one of the three postures
walking, stooping, and squatting. These three postures are
representative of construction activities, and they are dis-
tinctive from each other as presented in Figures 9 and 10.
It is worth noting that most construction activities, such
as carrying, bricklaying, plastering, and rebar binding,
can be categorized into one of the three postures by the
relative angle between the torsos and legs. This ensures
that the model can recognize workers in different pos-
tures rather than only detecting the common walking
ones.
The quantity information of the dataset is shown in

Table 1. There are 9467 worker instances in the dataset.
The number of workers in different postures is balanced.
Figure 11 illustrates the distribution of ground truths in
the dataset, including sensing distance, point number, and

heading angle. The heading angle is defined as the angle
between the direction inwhich theworker is facing and the
scanning direction of the sensor as illustrated in Figure 12.
The worker instances cover distance in the range of [5,
35 m] and point number in the range of [10, 1300]. Con-
sidering that longer sensing distance of objects will result
in sparser points and increase detection difficulty, vari-
ous sensing distances were contained in the dataset. The
dataset still contains difficult instances whose range is
beyond 30 m and point number less than 70, which can
help themodel learn to recognizeworkers from very sparse
points. The heading angles of the workers are uniformly
distributed in all directions (from −π to π), which helps
the model to detect workers with different orientations.
The dataset also contains around 200 occluded workers
whose bodies are only partly visible from the sensor. In
a word, the dataset involves a variety of compositions in
terms of sensing distance, point sparsity, heading angle,
and occlusion.

4.2 Implementation details

4.2.1 Network setting

The X direction heads the center of the LiDAR’s field of
view, and the Z direction is vertical up. The cubic range
to crop the point cloud is [6, 42 m], [−18, 18 m], [−2, 1 m]
for X, Y, and Z axes, respectively. The default voxel size
(𝑠𝑥, 𝑠𝑦, 𝑠𝑧) is set as (0.075, 0.075, 0.15 m), resulting in 480
× 480 × 20 voxels. The voxel size follows the optimized
setting of existing methods (Yin et al., 2021), and it is set
smaller due to the higher resolution of the LiDAR. The
maximum number of voxels is 12,000, and no more than
10 points are allowed for each voxel. The detailed network
hyper-parameter settings are listed in Table 2. Three stages
were adopted in the backbone to downsample input by a
factor of 4. As a result, the input spatial size 480 × 480 ×

20 of voxels is changed to 120 × 120 × 5 after the backbone.
The numbers of residual convolution blocks used in the
three stages are {1, 1, 1} while that of LST blocks are {2, 2, 2}.
The channel sizes in stages are {64, 128, 128}, which are the
same for the residual convolution block andLSTblock. The
head numbers of multi-head self-attention are set as {4, 8,
8} for the three stages, and the grid size𝑀𝑥 × 𝑀𝑦 × 𝑀𝑧 for
LST is 10× 10× 10 in all stages. The above hyper-parameter
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ZHANG et al. 2999

F IGURE 11 Distribution of the objects in the dataset.

F IGURE 1 2 Heading angle definition.

setting mainly follows the common practice (Z.Liu, Lin,
et al., 2021; B. Zhu et al., 2019) and is adjusted appropriately
to suit the dataset and worker detection task.

4.2.2 Training setup

During the training process, multiple data augmenta-
tion techniques were employed to improve the model’s
generalization. The data augmentation used includes:

1. Translation with a vector randomly sampled from the
range [−0.5, 0.5 m], [0, 0], [−0.25, 0.25 m] for X, Y, Z
axes.

2. Flip along the Y axis.
3. Scale with a factor sampled from the range [0.95, 1.05].
4. Rotation along theZ axis between the range of [−0.3925,

0.3925 rads].
5. Ground truth augmentation (Y. Yan et al., 2018).

The ground truth augmentation involves placing addi-
tional ground truths into the samples. Before training,
a ground truth database including the annotations and
points of all the ground truths in the training set was cre-
ated. Then, during training, several ground truths were

randomly selected from the database and placed into
the sample. The maximum number of ground truths of
workers in one posture for a sample was set to 10.
The model was implemented with PyTorch (Paszke

et al., 2019), and the 3D sparse convolution network was
implemented by Spconv (Y. Yan, 2023). The model was
trained on an NVIDIA 4090 graphic card for 100 epochs
with a batch size of 8. Adam method was used to optimize
themodel’s parameters. The learning rate was adjusted fol-
lowing a one-cycle policy (Smith, 2018)with amaximumof
0.4, a division factor of 10, and a momentum from 0.95 to
0.85.Weight decay for regularizationwas fixed at 0.01. Loss
balance parameter 𝜆𝐵 was set at 0.25.

5 RESULT AND DISCUSSION

5.1 Test result

5.1.1 Overall result

The main detection performance on the test set is shown
in Table 3, where the AP for a worker posture is the mean
value across all distance thresholds. To demonstrate the
benefits of the LST block, an ablated model that replaces
all the LST blocks with the same number of sparse convo-
lution layers is included. Furthermore, several voxel-based
baseline models were selected for comparison as shown
in Table 3. SECOND (Y. Yan et al., 2018) is the pioneer
of sparse convolution networks; CenterPoint (Yin et al.,
2021) has been a widely recognized benchmark in recent
years; VoxelNeXt (Y. Chen et al., 2023) is the latest model
modified from CenterPoint. These models adopted the
same input voxel setting as the proposed method for a fair
comparison and were trained and tested on the proposed
dataset.
Remarkably, our model achieves a high AP0.5 of 0.885

and an AP0.25 of 0.877. The mAP reaches 0.807, demon-
strating the model’s strong ability to detect workers with
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3000 ZHANG et al.

TABLE 2 Details of network setting.

Stages or branches Operation and parameters Channel size Spatial size
Input / 4 /
Preprocessing Voxelization, mean 4 480 × 480 × 20
Input layer 3D SMSpconv, k = 4 × 64 × (3,3,3), s = 1 64 480 × 480 × 20
Backbone Stage 1 3D SMSpconv, k = 64 × 64 × (3,3,3), s = 1 64 480 × 480 × 20
Backbone Stage 1 LST, g = 10 × 10 × 10, H = 4, C = 64 64 480 × 480 × 20
Backbone Stage 2 3D Spconv, k = 64 × 128 × (3,3,3), s = 2, dil = XY 128 240 × 240 × 10
Backbone Stage 2 3D SMSpconv, k = 128 × 128 × (3,3,3), s = 1 128 240 × 240 × 10
Backbone Stage 2 LST, g = 10 × 10 × 10, H = 8, C = 128 128 240 × 240 × 10
Backbone Stage 3 3D Spconv, k = 128 × 128 × (3,3,3), s = 2, dil = XYZ 128 120 × 120 × 5
Backbone Stage 3 3D SMSpconv, k = 128 × 128 × (3,3,3), s = 1 128 120 × 120 × 5
Backbone Stage 3 LST, g = 10 × 10 × 10, H = 8, C = 128 128 120 × 120 × 5
Map to BEV Feature add 128 120 × 120
Det head shared 2D SMSpconv, k = 128 × 128 × (3,3,3), s = 1 128 120 × 120
Det head heat map 2D SMSpconv, k = 128 × 3 × (3,3,3), s = 1 3 120 × 120
Det head x, y 2D SMSpconv, k = 128 × 2 × (3,3,3), s = 1 2 120 × 120
Det head z 2D SMSpconv, k = 128 × 1 × (3,3,3), s = 1 1 120 × 120
Det head w, l, h 2D SMSpconv, k = 128 × 3 × (3,3,3), s = 1 3 120 × 120
Det head angle 2D SMSpconv, k = 128 × 1 × (3,3,3), s = 1 1 120 × 120

Note: SMSpconv denotes submanifold sparse convolution, and Spconv denotes sparse convolution. k denotes kernel= in channel× out channel× (x, y, z). s denotes
stride. H, g are head number and grid size. Spatial size is in x × y × z or x × y.
Abbreviation: BEV, bird’s-eye-view.

TABLE 3 Detection performance comparison.

Model mAP AP0.1 AP0.15 AP0.25 AP0.5
Walking
AP

Stooping
AP

Squatting
AP

ATE
(cm) ASE

AOE
(rad)

SECOND 0.721 0.538 0.731 0.806 0.811 0.771 0.765 0.629 6.20 0.212 0.168
CenterPoint 0.739 0.560 0.765 0.814 0.819 0.770 0.771 0.678 6.07 0.213 0.173
VoxelNeXt 0.756 0.581 0.788 0.823 0.831 0.774 0.788 0.705 6.09 0.205 0.182
Model without
LST

0.753 0.545 0.775 0.843 0.848 0.810 0.747 0.703 6.16 0.203 0.187

Ours 0.807 0.638 0.827 0.877 0.885 0.831 0.834 0.755 5.68 0.184 0.165

Abbreviations: AP, average precision; AOE, average orientation error; ASE, average scale error; ATE, average translation error; LST, Local Sparse Transformer;
mAP, mean average precision.

both high recall and precision. Since the APs from thresh-
old 0.5 to 0.1 m reflect increasing detection difficulty, there
is a significant drop in AP0.1, compared to other APs. For
different postures, the detection performance of stooping
and walking workers is excellent, while that of detecting
squatting workers is relatively low. Squatting workers have
fewer points than other types of workers and are more
likely to generate false positive predictions. The true pos-
itive metrics (ATE, ASE, AOE) suggest that the matched
predicted boxes have high quality and precisely restore
the location, height, width, and orientation of workers. In
addition to the high performance, the inference time for
one frame is 70ms (14.2Hz) tested on anNVIDIARTX3070

laptop graphics processing unit (GPU) and 36 ms (27.8 Hz)
tested on an NVIDIA RTX 4090 GPU. This reaches near
real-time detection, considering that a LiDAR typically
operates at 10–20Hz (Lang et al., 2019). The results demon-
strate the high efficiency and capability of the proposed
model.
Compared to the other models, the proposed model

achieves the highest mAP and performance at different
matching distance thresholds. It is noteworthy that the
improvement in AP0.1 is larger than that in other distance
thresholds. This indicates that the proposed model has
a greater advantage in difficult detection cases. In addi-
tion to the precision score, the errors of the true positive
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ZHANG et al. 3001

TABLE 4 mAP within different distance range.

Distance/m [4, 12] [12, 20] [20, 28] [28, 36]
mAP 0.792 0.814 0.801 0.687

TABLE 5 mAP within different heading angle range.

Angle/
rad

[−π, −3π/4]
∪[3π/4, π]

[−3π/4,
−π/4]

[−π/4,
π/4] [π/4, 3π/4]

mAP 0.807 0.782 0.797 0.792

detection of the proposed model are slightly lower than in
othermodels. It is worth noting that themodel without the
LST block still achieves slightly better performance than
the baseline models, which suggests the superior perfor-
mance of the optimized network architecture for worker
detection. When the LST block is ablated, the proposed
model experiences a significant drop in all APs, especially
a huge performance drop in detecting stooping and squat-
ting workers. This demonstrates that the LST block can
effectively enhance worker detection performance, espe-
cially in scenarios where worker samples have smaller
sizes and fewer points.

5.1.2 Result in different conditions

The detection performance of the model can be further
evaluated under different conditions, such as object’s dis-
tance, heading angle, and occlusion. The whole distance
and heading angle range are divided into several bins,
and detailed mAPs are computed within the objects in
each range bin. The results of our method are shown in
Tables 4 and 5. The results indicate that, for most dis-
tance ranges, the detection performance remains at the
same level as the overall mAP (Table 3). As the detection
distance increases from 4 to 28 m, there is no decline in
detection performance. However, in the range of the far-
thest detection distance (>28 m), the performance drops
by 11% relative to the overall mAP. As for different head-
ing angles, the detection performance shows no significant
variation across the four intervals of π /4, indicating
that the method can detect workers with various heading
angles.
To better understand the strength of the model under

different conditions, Figure 13 illustrates the prediction
in several samples. In the figure, the blue and orange
boxes represent the proposed model and the model with-
out the LST block, respectively. The green boxes represent
the ground truth. Workers in Figure 13a–c are relatively
close to the LiDAR (<10 m) and have more points, where
both models generate accurate bounding boxes. Workers
in Figure 13d,c,f are far from the LiDAR (>20 m) and
have fewer points. In this case, the model without LST

blocks struggles to predict the accurate orientation and
size, while the predictions of the proposed model still have
high quality. The advantage of the proposed model can
also be revealed where confusing items are involved in
the detection. For example, the ablated model has a large
error (Figure 13g,h) and generates false positive predictions
(Figure 13i), while our model does not make this mistake.
The local Transformer can endow the model with the abil-
ity to perceive a larger range of environmental context,
which is useful for inferring the true result when the input
is ambiguous.
Whenworkers are occluded, only a partial body is visible

in the point cloud, which results in limited information for
the model and poses challenges for accurate worker detec-
tion. Some predictions of the model in case of occlusion
are shown in Figure 14. In Figure 14a, different degrees of
occlusion between workers are included, and the sample
before the occurrence of occlusion is shown for compar-
ison. The results demonstrate that the model is able to
detect workers in most occlusion cases. The impact on
the model’s predictions is minimal when the occlusion is
mild. However, severe occlusion can affect the quality of
the model’s predictions, especially in terms of angle esti-
mation. In extremely severe occlusion scenarios, themodel
maymiss someworkers (Figure 14c). In conclusion, having
sufficient information is crucial for the model’s predic-
tions. When the point cloud of a worker is incomplete,
the model can extract contextual information from the
remaining points and make comprehensive inferences.
Construction sites are one of the most complex and

disorderly scenes in the industry, and each construction
site may be vastly different from another. Therefore, it
is important to evaluate the generalization of the model
across different construction sites. All the above experi-
ments were performed on the randomly separated training
and test set. Here, the data from one specific construc-
tion site were reserved for testing, whereas the data from
the rest of the sites were used to train the model. This
leads to the model encountering previously unseen sce-
narios during the testing phase. In this case, the model
achieved 0.785 mAP in the test. Although the performance
slightly dropped, compared to that in Section 5.1.1, it is
still a remarkable result. This shows that the proposed
model has the potential for generalization across different
construction sites.

5.2 Ablation study

5.2.1 Influence of XY dilation

As introduced in Section 3, an XY dilation strategy is
proposed in sparse convolution downsampling layers to
reduce the redundant voxels that may not contribute to
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3002 ZHANG et al.

F IGURE 13 Detection results of the proposed model and that without LST block. (a), (b), and (c) workers in short distance; (d), (e), and
(f) workers in far distance; (g), (h), and (i) mistakes with confusing items. Points in the ground truth boxes are visualized in red.

TABLE 6 Comparison of the efficiency of the dilation strategy.

Voxel number
Model Dilation Stage 1 Stage 2 Stage 3 mAP Memory (GB)
D1 {XY, XY} 12k 6.2k 2.2k 0.801 3.0
D2 {XY, XYZ} 12k 6.2k 4.3k 0.807 5.1
D3 {XYZ, XYZ} 12k 12.9k 6.4k 0.792 9.5

the prediction. To demonstrate the effectiveness and to
assess the influence on performance, three models with
different dilation were tested and the results are shown
in Table 6. The memory column denotes the GPU mem-
ory cost during training, and {XY, XYZ} refers to the first
downsampling layer using XY dilation, the second down-
sampling layer using XYZ dilation, and so on. All the
models have the same input voxel number (12k).
It is evident that when XY dilation is used, the voxel

number is greatly reduced. When XY dilation is only used
in the first downsampling layer (D2), the memory cost

has already decreased to an adequate degree, meanwhile
achieving the highest performance. Therefore, we consider
XY dilation in the first downsampling layer to be necessary
for effortless training. The performance change demon-
strates that the voxels that are dilated in the Z direction
are less important features and may adversely influence
the detection. Figure 15 further compares the voxels that
are obtained after XY and XYZ dilation. In XYZ dilation,
the voxels representing the ground get a nearly three-fold
increase in the Z direction, which is the majority of the
voxel increase and an unnecessary burden on the data. In
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ZHANG et al. 3003

F IGURE 14 Predictions in case of occlusion.

contrast, in XY dilation, these voxels do not expand in the
Z direction and are likely to be eliminated by the down-
sampling operation. The implication of this section can be
theoretically generalized to the scenes where the majority
of point cloud distribution is in the XY direction.

5.2.2 Influence of grid size

The most critical hyper-parameter of the LST block is
the grid size, which determines the attention range of a
query voxel. The testing results with changed grid size
are shown in Table 7. The grid size (in voxel number)
remains constant in all stages, but the actual attention
range in the real world (in meters) varies due to down-
sampling. The results demonstrate that the performance
does not significantly vary with input sizes, and larger grid
sizes do not always yield better performance. Specifically,
model G3 achieved the highest mAP with a middle grid
size. As the grid size increases from G1 to G3, the per-
formance gradually improves, which could be attributed
to the enlargement of the receptive field. However, when

the grid size increases further to G4 and G5, the perfor-
mance drops. It is probably because the large grids enclose
much-cluttered background information, which may dis-
tract attention from the worker’s features. Thus, the grid
size should be carefully selected to ensure that the model
incorporates the background context within an appropri-
ate range. In addition to the performance drop, another
consequence of large grid size is the unaffordable mem-
ory cost since the attention size in a grid is related to the
cube of the grid size. For instance, G5 costs 12.2 GB of
memory, which is 2.5 times that of G3. Therefore, the pro-
posed model adopts a grid size of 10 × 10 × 10, which
is a compromise between performance and computation
cost.

5.3 Discussion

This study innovatively introduces the Transformer in
the voxel-based deep-learning network to improve the
performance of worker detection with LiDAR. Given
the challenges of using LiDAR for worker detection in
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TABLE 7 Influence of the grid size.

Model Grid size
Grid actual range (m)

mAP
Memory
(GB)Stage 1 Stage 2 Stage 3

G1 5 × 5 × 5 0.375 × 0.375 × 0.75 0.75 × 0.75 × 1.5 1.5 × 1.5 × 3 0.803 2.4
G2 5 × 5 × 10 0.375 × 0.375 × 1.5 0.75 × 0.75 × 3 1.5 × 1.5 × 3 0.805 2.4
G3 10 × 10 × 10 0.75 × 0.75 × 1.5 1.5 × 1.5 × 3 3 × 3 × 3 0.807 5.1
G4 15 × 15 × 20 1.125 × 1.125 × 3 2.25 × 2.25 × 3 4.5 × 4.5 × 3 0.793 9.1
G5 20 × 20 × 20 1.5 × 1.5 × 3 3 × 3 × 3 6 × 6 × 3 0.794 12.2

F IGURE 15 The effect of XY dilation. The voxels at lower
elevation (representing ground) are visualized in blue.

complex construction scenes, the 3D object detector
needs to have strong feature extraction capabilities to
aggregate task-relevant features (i.e., workers) from noisy
inputs (i.e., complex sites). Additionally, computational
efficiency is also a concern in this study due to the large
amount of data in large-scale point clouds. In this context,
the main innovations are summarized in Figure 16, and
our knowledge contributions to the methodology include
the following key components:
First, the innovative LST block is proposed that applies

a Transformer encoder to sparse voxels in a local spa-
tial grid. The LST block can connect all voxel features
in a local grid in one operation. With proper grid size,
it aggregates features of workers and semantic informa-
tion about their surrounding complex environment. This

F IGURE 16 Map of main methodology innovations. CNN,
convolutional neural network.

greatly improves the receptive field of the backbone net-
work and the efficiency of feature extraction. Furthermore,
the multi-head self-attention mechanism in the LST block
allows the model to adjust weights based on the computed
feature similarity, ensuring that task-relevant features are
given more attention. In addition to enhancing feature
extraction capabilities, the proposed LST block reduces the
computational complexity from quadratic to nearly linear
by applying the Transformer in a local region, ensuring the
computational efficiency of the model.
Second, the combination of CNN and Transformer is

introduced at each stage. The Transformer is proficient
at long-range associations but inefficient for extracting
features of individual workers. On the other hand, CNN
excels at short-range modeling, which helps identify the
local geometric features of workers. Therefore, this hybrid
network combines the benefits of capturing both broad
semantic information and local details, which is particu-
larly useful for detecting less obvious workers in complex
scenes. Additionally, as the computational cost of CNN
is much lower than that of the Transformer, the hybrid
network alleviates overall computational overhead.
Third, the proposed XY dilation strategy replaces the

original dilation in sparse convolution operations. The pro-
posed XY dilation only expands voxels in the X and Y
directions. Although this change is simple, it is highly
effective. Since the background of a construction site is
mainly distributed in the X and Y direction, while work-
ers are distributed in the Z direction, XY dilation can
adaptively prune unimportant features belonging to the
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background and promote features belonging to workers
to dominate the task. Furthermore, by suppressing the
growth of redundant features, computational costs are
significantly reduced.
Although initial progress has been achieved in this

study, some limitations are worth noting. When the
distance is large (>28 m), the detection performance
decreases, which is mainly due to the lack of samples with
distances greater than 28 m in the dataset. This problem
can be hopefully improved by increasing the occurrence
of samples from larger distances using dataset resampling
techniques (B. Zhu et al., 2019). Another issue that affects
detection performance is occlusion. In fact, when occlu-
sion is extremely severe, it is difficult to infer full object
information based on the current frame alone. Combining
detection results from different time frames has the poten-
tial to address this issue (Z. Zhu et al., 2017). Last, although
the dataset in this study attempts to cover a wide range of
scenes, it is still relatively preliminary. Increasing the num-
ber of samples will allow fully exploiting the potential of
deep learning. More construction sites of different types
and in different regions need to be included to promote
the applicability of the method. The samples of workers in
far distances and occlusions also need to be expanded to
enhance the robustness of the method.

6 CONCLUSION

This study proposes an improved deep-learning model
for detecting construction workers in 3D with LiDAR.
To enhance worker detection performance in complex
environments by enabling the model to understand con-
textual information surrounding workers, a novel LST
block that applies multi-head self-attention in a local grid
region is proposed. Moreover, to suppress redundant noisy
features in large construction scenes, a novel XY dila-
tion operation in sparse convolution layers is proposed,
which can reduce the computation andmemory cost while
maintaining detection performance. In addition, a hybrid
network architecture is adopted, which includes CNNs
and Transformers, to aggregate local and global feature
extraction while achieving a trade-off in computational
cost. The model’s architecture is also optimized for worker
detection with delicate hyperparameter selection, such
as layers, stages, and resolutions. To train and test the
proposed model, a high-quality point cloud dataset was
established.
The evaluation results indicate that the proposed model

yields promising performance for worker detection over
the baselinemodels. It can generate high-quality detection
boxes with accurate location, size, and orientation predic-
tions, while still maintaining a reasonable inference time.

Compared to the model without LST blocks, the proposed
model achieves better performance with fewer detection
mistakes. Further ablation experiments investigated the
operating principles of the LST block and demonstrated
the effectiveness of XY dilation.
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