
Learning-based correction with Gaussian constraints 
for ghost imaging through dynamic scattering media 
YANG PENG1 AND WEN CHEN1,2,* 
1Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China 
2Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong, China 
*owen.chen@polyu.edu.hk 

In this Letter, we propose a learning-based correction 
method to realize ghost imaging (GI) through dynamic 
scattering media using deep neural networks with 
Gaussian constraints. The proposed method learns the 
wave scattering mechanism in dynamic scattering 
environments, and rectifies physically-existing dynamic 
scaling factors in the optical channel. The corrected 
realizations obey Gaussian distributions, and can be used 
to recover high-quality ghost images. Experimental 
results demonstrate effectiveness and robustness of the 
proposed learning-based correction method, when 
imaging through dynamic scattering media is conducted. 
In addition, only the half number of realizations is 
needed in dynamic scattering environments, compared 
to that used in the temporally-corrected GI method. The 
proposed scheme provides a novel insight into GI, and 
could be a promising and powerful tool for optical 
imaging through dynamic scattering media.  

The theory of ghost imaging (GI) was proposed in quantum 
domain [1]. It was further verified that GI can also be realized with 
classical light source [2]. In a typical GI setup, the illumination 
beam is split into two spatially correlated beams. One of the beams 
illuminates the object, and is detected by a single-pixel detector 
(SPD) without spatial resolution. The other beam does not interact 
with object, and impinges on a pixelated detector. The object 
information can be resolved by correlating the two sets of 
measurements. Later, spatial light modulator (SLM) is applied to 
modulate the light beam by controlling the pre-computed intensity 
pattern. Then, GI can be performed with only one beam [3]. Much 
effort has also been made to improve signal-to-noise ratio (SNR) of 
GI and shorten acquisition time, e.g., differential GI (DGI) [4], 
normalized GI [5], iterative GI [6], compressive sensing-based GI 
[7–9] and deep learning-based GI [10–14].  
      It has been demonstrated that GI with SPD has the capability 
against the destruction of light intensity distributions caused by 
scattering media. GI could achieve better performance than 
pixelated-sensor-based optical imaging techniques [15,16] in some 
environments, e.g., turbulence [17], underwater [18] and biological 

tissues [19]. To date, most GI algorithms have been restricted to 
the experiments in static scattering media [10–14,17–19]. In a 
strongly dynamic scattering environment, dynamic scaling factors 
in the optical channel could induce remarkable correlation 
mismatches between illumination patterns and the realizations. 
Therefore, it is a great challenge to realize high-quality GI through 
dynamic scattering media. Recently, temporally corrected GI 
(TCGI) was studied [20], when the scattering medium is complex 
and dynamic. The number of realizations should be doubled in 
optical experiments, which dramatically increases acquisition time 
and prevents GI from developing into a more promising technique 
in dynamic and complex scenarios. It is desirable to develop novel 
strategies to correct dynamic scaling factors when taking the 
acquisition efficiency into consideration.  
      In this Letter, we propose a learning-based correction method 
to rectify dynamic scaling factors and recover high-fidelity ghost 
images in dynamic scattering media. Unlike current learning-based 
algorithms dedicated to mainly mitigating the impact of static 
scattering media, the proposed method learns dynamic scattering 
mechanism in turbid water via a digital way. A Gaussian constraint 
is also developed to correct the realizations to obey Gaussian 
distribution and effectively eliminate the influence of dynamic 
scaling factors. The simulated data generated for model training 
are based on the variation of dynamic scaling factors, and different 
turbidities of dynamic scattering environments are considered. 
When a series of realizations are recorded in dynamic scattering 
media to be tested, they can be corrected by using the trained 
model and then used to reconstruct high-quality object images. 
There is no limitation on the types of objects to be tested in optical 
experiments. The proposed learning-based correction method 
needs only the half number of realizations compared with the TCGI 
method, showing a great potential for the applications in various 
dynamic and complex scenarios. 
      In static environments, the physically-existing scaling factors in 
GI are usually assumed as a constant, and the realizations conform 
to Gaussian distribution when an object is sequentially illuminated 
by a series of illumination patterns [20]. The single-pixel detection 
process can be described by  

( ) ( ) ,mn n mB I G d= ∫ x x x          (1) 

where mnB  denotes a realization (i.e., one single-pixel light 
intensity) in GI, 1,2,..., ,Mm = M  denotes the number of objects, 
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1,2,..., ,Nn = N  denotes the number of realizations, ( )nI x  
denotes the series of illumination patterns with spatial coordinate 

,x  and ( )mG x  denotes the thm  object transmission function. The 
scaling factor in Eq. (1) is usually assumed as a constant (e.g., 1) in 
static environments.  
      However, when imaging through dynamic scattering media is 
conducted, the dynamically-changed scaling factors could induce a 
significant fluctuation in the realizations. Gaussian distribution of 
the realizations is disrupted, and the object cannot be further 
recovered using GI methods. In the proposed learning-based 
correction method, the variation of dynamic scaling factors can be 
modeled. The variation of dynamic scaling factors at different 
turbidities of scattering environments can be represented by using 
different functions, e.g., exponential functions with different bases. 
Here, a neural network is designed to rectify dynamic scaling 
factors and obtain a series of corrected realizations. A Gaussian 
constraint is further incorporated into a loss function to optimize 
the neural network and facilitate the corrected realizations to obey 
Gaussian distributions.  
      The process of dataset generation in a digital way is shown in 
Fig. 1(a). For the training, 5000 objects MG ∈   with 128×128 
pixels are selected from the Modified National Institute of 
Standards and Technology (MNIST) database to sequentially 
interact with a set of random patterns ( )I x  in Eq. (1). A series of 
realizations M NB ×∈   in static environments are obtained, which 
are normalized with 16384N =  for each object image. With an 
exponential transformation that emulates the variation of dynamic 
scaling factors M Na ×∈  in this study, realizations M NH ×∈   
numerically generated in dynamic scattering environment, i.e., 
without the usage of labeled experimental data for the training, can 
be described by 

  , mn mn m mn
t

mnH a B k B= =                               (2) 

where Mk∈ denotes the base of exponential function, and  t  is 
the same as .n  For each object, k  is first selected randomly in a 
range (e.g., [ ]0 9995 1. , ) and then is fixed. The minimum value k  is 
chosen based on the exponential curve of the realizations in 
practical, and k  is not larger than 1 to ensure a downward trend of 
dynamic scaling factors. In various dynamic scattering media, 
parameters mna  could be adjusted or designed to be adaptive. 
      The dataset for training is composed of the labeled pairs 

( )2 ,; ,S H B σ= where 2 Mσ ∈   denotes the variance of realizations 
.M NB ×∈   It is worth noting that the series of realizations B  and 

H  for each object image is required to be reshaped to a N N×  
2D image before being fed into the designed neural network. A 
framework of the proposed learning-based correction method is 
shown in Fig. 1(b). U-Net [21] is chosen as an architecture of the 
designed neural network. To estimate the corrected realizations 

,Y the designed neural network is optimized with the following 
loss functions. 

= ,MSE GLoss L L+                                                (3) 
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Fig. 1. (a) The process of dataset generation via a digital way in this 
study, 2 :σ  the variance of realizations B, and (b) schematic for a 
framework of the proposed learning-based correction method. B: the 
realizations to be numerically generated in static environments; H: the 
realizations emulated in dynamic scattering environments; Y: the 
corrected realizations. 

where MSEL  denotes mean squared error (MSE), GL  denotes a 
Gaussian constraint function [22], ln denotes a natural 
logarithm, eps  denotes a constant used for maintaining the 
training stability and its default is as 61.0 10 .−×  It can be found that 

GL  can ensure the designed neural network to learn probability 
distribution of the realizations .B Therefore, the corrected 
realizations Y  is constrained to be in accordance with a Gaussian 
distribution, and then can be further used to reconstruct a ghost 
image. 
      The training process is numerically implemented on a 
workstation with a NVIDIA GeForce RTX 1080 Ti GPU with codes 
in Pytorch. 100 epochs with a batch size of 16 are used. The 
learning rate is 0.0001, and Adam [23] is adopted as the optimizer. 
To reconstruct a ghost image with DGI, the corrected realizations 
Y  generated by the trained neural network using the 
experimentally collected light intensities as inputs are reshaped to 
one row vector, and ghost reconstruction is further described by [4] 

                 ( ) ( ) ( )( ) ,
Y

O Y I I
Q

Q= − −
 
 
 

x x x                           (6) 

where ( )O x denotes a recovered ghost image, .  denotes an 
ensemble average, and ( ).IQ = ∑ x   
      A series of optical experiments are conducted through dynamic 
scattering media to verify the proposed learning-based correction 
method. In Fig. 2, a green laser beam with wavelength of 532.0 nm 
and maximum output power of 50.0 mW is expanded and 
collimated. 40000 random amplitude-only patterns with 128×128 
pixels are sequentially embedded into an amplitude-only SLM 
(Holoeye, LC-R720) with a pixel size of 20.0 μm to be illuminated 
by the collimated beam. There is no requirement for random 
patterns. A 4f system with a focal length of 5.0 cm for L1 and a focal 
length of 10.0 cm for L2 is used to project random patterns onto 
the object. Diffraction limit in the optical setup is 40.0 μm, 
calculated by using pixel size of the SLM and the magnification 
factor of the 4f system. A transparent water tank (polymethyl  
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Fig. 2. A schematic experimental setup to verify the proposed method 
in dynamic scattering media. OL: objective lens; L1: a lens with a focal 
length of 5.0 cm; L2: a lens with a focal length of 10.0 cm. 

 
Fig. 3. (a) The experimentally-collected light intensities, (b) probability 
distribution corresponding to (a), (c) a reconstructed object using the 
realizations in (a), (d) the intensities corrected by using the proposed 
method, (e) probability distribution corresponding to (d), and (f) a 
reconstructed object using the realizations in (d).  

methacrylate) with a dimension of 10.0 cm (Length) × 20.0 cm 
(Width) × 30.0 cm (Height) is placed in the optical path. 4000 ml 
clean water is placed in the water tank. Different volumes of 
skimmed milk diluted with 1000 ml clean water are kept dropping 
into water tank during optical experiments to create dynamic 
scattering environments with different turbidities. A stirrer rotates 
at 600 revolutions per minute (rpm). A single-pixel silicon 
photodiode (Thorlabs, PDA100A2) is used to record a range of 
light intensities. The axial distance between the object and SPD is 
42.0 cm, and the axial distance between the front face of water 
tank and SPD is 36.0 cm. 
      A USAF 1951 resolution test chart is used as the object in Fig. 2 
to test spatial resolution achieved by the proposed learning-based 
correction method in dynamic scattering media. 10 ml skimmed 
milk diluted with 1000 ml clean water is kept dropping into water 
tank over 66.7 minutes. The curve of collected single-pixel light 
intensities after normalization is shown in Fig. 3(a) which shows 
an exponential-like downward trend. The significant variance of 
collected intensities indicates the influence of dynamic scaling 
factors, which matches the model designed in the digital dataset 
generation. The collected intensities do not obey Gaussian 
distribution, as shown in Fig. 3(b). Here, H∆ is denoted by the 
experimentally-collected light intensities minus mean value of the 
experimentally-collected light intensities. The recovery result  
 

 

Fig. 4. The experimentally recovered ghost images obtained when 10 
ml, 20 ml, and 30 ml skimmed milk is respectively used: (a)-(c) DGI, 
and (d)-(f) the proposed learning-based correction method. 

using the realizations in Fig. 3(a) with DGI is shown in Fig. 3(c). No 
information about the object can be observed, showing that 
conventional method fails to work in dynamic scattering 
environments. When the proposed learning-based correction 
method is applied, the corrected light intensities in Fig. 3(d) 
fluctuate in a certain range. It is demonstrated that effect of 
dynamic scaling factors is eliminated with the proposed method. 
The corrected intensities obey the property of Gaussian 
distribution with Gaussian constraints designed in the proposed 
method, as shown in Fig. 3(e). Here, Y∆ is denoted by the 
corrected intensities minus mean value of the corrected intensities. 
When the corrected intensities in Fig. 3(d) are used to reconstruct 
a ghost image with DGI, experimental result is shown in Fig. 3(f). It 
can be found that the object information of Group 2 in the USAF 
1951 resolution test chart can be recovered with high quality. The 
element 6 in Group 2 can be clearly identified and resolved. 
Therefore, spatial resolution achieved is 70.15 μm in the proposed 
method, when imaging in the dynamic and complex environment 
is conducted. 
      To demonstrate robustness of the proposed method in dynamic 
scattering environments, the influence of different volumes of 
skimmed milk is further tested based on the experimental setup in 
Fig. 2. Triple-bar in USAF 1951 element 2 of Group 0 is used as an 
object. The experimentally-collected single-pixel intensities and 
single-pixel intensities corrected by the proposed method are 
shown in Fig. S1 in Supplement 1. The corresponding probability 
distributions are shown in Fig. S2 in Supplement 1. It can be found 
that the impact of dynamic scattering media is more obvious with 
an increase of the volume of skimmed milk. The collected 
intensities fail to conform to Gaussian distribution regardless of the 
volumes of milk. When the proposed learning-based correction 
method is used, the influence of different turbidities of dynamic 
scattering environments can be fully suppressed and probability 
distributions of the corrected intensities are in accordance with 
Gaussian. 
      Typically recovered experimental results are shown in Fig. 4 
when 10 ml, 20 ml and 30 ml skimmed milk is used, respectively. 
The reconstructed ghost images with DGI have no any effective 
information, as shown in Figs. 4(a)–4(c). When the proposed 
learning-based method is applied to rectify dynamic scaling factors, 
the recovered ghost images are of high fidelity, as shown in Figs. 
4(d)–4(f). Quality of the recovered ghost images is quantitatively 
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evaluated by using SNR [24] [see Eq. (S1) in Supplement 1]. Figure 
5 shows SNR values of the recovered ghost images, when different 
volumes of skimmed milk are used in DGI method and the 
proposed method. When no milk (i.e., 0 ml) is dropped into water 
tank during optical experiments, it is feasible for DGI and the 
proposed learning-based correction method to recover high-
quality ghost images. SNR values are 2.87 and 3.57, respectively. 
When milk is dropped into water tank, SNR values of the 
recovered ghost images using conventional DGI are nearly 0. With 
the proposed learning-based correction method, the SNR value can 
stabilize at a high level, when the volume of milk ranges from 0 ml 
to 20.0 ml. Although quality of the recovered ghost image 
decreases as the volume of milk increases to 30.0 ml, effective 
object information can still be obtained, as shown in Fig. 4(f). 
Experimental results in Fig. 5 show high robustness of the 
proposed learning-based correction method against different 
degrees of dynamic scattering. Other different objects have been 
tested in this study, and similar SNR trends are obtained. 
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Fig. 5. A variation of SNR values of the experimentally recovered ghost 
images using DGI method and the proposed learning-based correction 
method, when different volumes of skimmed milk are individually 
used in Fig. 2. 

      Conventional learning-based algorithms usually have a limited 
generalization, since the performance is satisfactory only when the 
object to be experimentally tested is close to those in the training 
dataset. The proposed learning-based correction method can 
overcome this drawback by learning the dynamic scattering 
mechanism in the realizations via a digital way, rather than just 
mapping the degraded images to clean images. High-fidelity 
experimental results can still be obtained, when the objects to be 
tested (e.g., USAF 1951 resolution test chart) are different from 
those in the database. In various dynamic scattering media, the 
fitting or parameters in Eq. (2) can also be adjusted or designed to 
be adaptive. The proposed method has a high generalization for 
different objects (e.g., binary and grayscale) placed in the optical 
path, when there is a dynamic scattering environment. 
Furthermore, the proposed method has an advantage of removing 
the usage of temporal carriers in TCGI [20] in dynamic scattering 
media. Only the half number of realizations is required compared 
with TCGI, which can improve efficiency of data acquisition. 
Different volumes of milk have been studied, and the high-fidelity 
recovered ghost images illustrate high robustness of the proposed 
method. Since the influence of light wavelength (e.g., red laser) and 
the stirrer speed (e.g., 200.0 rpm to 1500.0 rpm) are trivial, the 
analysis is omitted here. 

      In conclusion, we have proposed a learning-based correction 
method to realize high-fidelity GI through dynamic scattering 
media by correcting the physically-existing dynamic scaling factors 
in the optical channel. A Gaussian constraint is also taken into 
consideration in the loss function of the designed neural network, 
and corrected intensities are in accordance with Gaussian 
distributions. Experimental results demonstrate that the proposed 
learning-based correction method is effective and robust without 
extra temporal carriers to be used in the optical setup. It can be 
expected that this work could have a great application prospect for 
GI in a wide range of free-space wave propagation environments, 
and a foundation has been laid for a further reduction of the 
number of realizations. 
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