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Abstract

In this paper, we focus on a class of convexly constrained nonsmooth convex—
concave saddle point problems with cardinality penalties. Although such nonsmooth
nonconvex—nonconcave and discontinuous min—max problems may not have a sad-
dle point, we show that they have a local saddle point and a global minimax point,
and some local saddle points have the lower bound properties. We define a class of
strong local saddle points based on the lower bound properties for stability of vari-
able selection. Moreover, we give a framework to construct continuous relaxations of
the discontinuous min—max problems based on convolution, such that they have the
same saddle points with the original problem. We also establish the relations between
the continuous relaxation problems and the original problems regarding local saddle
points, global minimax points, local minimax points and stationary points. Finally,
we illustrate our results with distributionally robust sparse convex regression, sparse
robust bond portfolio construction and sparse convex—concave logistic regression sad-
dle point problems.
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1 Introduction

Let ¢ : R" x R™ — R be a Lipschitz continuous function with ¢(x,y) convex in
x € R" fory € R™ and concave iny € R" forx € R”, g : R” — R" and h :
R™ — R be continuously differentiable functions. For a vector a € R¥, llat|lo is the
cardinality function for the positive elements in a, that is, ||a+ o = || max{a, 0}||p =
Zle (max{a;, 0})° with 0° = 0. In this paper, we consider the saddle point problems
with cardinality penalties in the following form

minmax f(x,y) := ¢(x, y) + A lg®)+llo — 22llh ¥+ o, (1.1)
xeX ye)

where the feasible sets X C R"” and ) C R are convex and compact, and the penalty
parameters A1, Ay € R are positive.

In the last few years, many interesting applications of the min—max problems have
been found in machine learning and data science, especially the generative adversarial
network (GAN) [23, 24, 31] and adversarial training [8]. Problem (1.1) is a discontin-
uous and nonconvex—nonconcave min—max problem, i.e. f is discontinuous in X' x )/,
f(-,y) is not convex for some fixedy € ) and f(x, -) is not concave for some fixed
x € X. A special case of (1.1)is

rrél)lgmax e, V) +rilx—a) ¢ llo+r1 | @=%)1llo— 22l (y =D+ llo— 22 (b=¥)+ llo,
X

B B (1.2)
where a,a € R” and b, b € R™. In particular, ifa = a =b = b = 0, then (1.2)
reduces to the convex—concave saddle point problem with £( penalties as follows

minmax c(X, y) + A [[x[lo — A2y llo. (1.3)
xeX ye)

In 1928, von Neumann [37] proved that when c is a bilinear function, and X', ) are
two finite dimensional simplices,

min max c(x, 1.4
min max x,y) (1.4)
has a saddle point and it holds
min max ¢(x,y) = max min c(x,y). (1.5)
xeX yey y yey xeX y

This pioneering work has inspired a number of seminal contributions in the existence
theory of saddle points of min—max problems in economics and engineering [19-21,
38, 43-46]. In 1949, Shiffman [45] gave a new proof of von Neumann’s minimax
theorem with a generalization to continuous convex—concave functions. Based on
Brouwer’s fixed point theorem, Nikaido [38] proved (1.5) for a continuous and quasi-
convex—concave function c. Here, we call ¢ is quasi-convex—concave if c(X,y) is
quasi-convex inx € R” fory € R™ and quasi-concave iny € R” forx € R". In 1958,
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Nonsmooth convex—concave saddle...

Sion [46] generalized von Neumann’s result, and showed that if ¢ is quasi-convex—
concave and lower semicontinuous-upper semicontinuous, then (1.4) has a nonempty
saddle point set whose closedness and convexity were pointed out in [43]. Moreover,
we know from [20, Theorem 1.4.1] that

minmax f(X,y) = maxmin [ (X, 1.6
xeXyeyf( y) yeyxeXf( y) (1.6)

is a necessary and sufficient condition for the existence of a saddle point of f over
X x ).

When f is not convex—concave, (1.6) fails in general. The concept of local saddle
points is defined by considering (1.6) locally at a point in X x ). However, a local
saddle point also may not exist for a nonconvex—nonconcave min—max problem. In
[33], Jin, Netrapalli and Jordan gave the definitions of global minimax points and
local minimax points by considering the min—max problem as a two-player sequential
game. Necessary and sufficient conditions for the local minimax points were studied
in [18, 26, 31, 33]. Recently, Chen and Kelley [12] showed that a min—max problem
for robust linear least squares problems does not have a saddle point, a local saddle
point and a local minimax point, while it has infinitely first order stationary points and
finite global minimax points. However, the set of first order stationary points and the
set of global minimax points do not have a common point.

The cardinality functions in problem (1.1) play importantroles to ensure the sparsity
of the desirable solutions and improve the estimation accuracy by selecting important
feature parameters. In the last decades, sparse minimization models with cardinality
penalties have been widely used for sparse signal recovery, sparse variable selection,
compressed sensing and statistical learning [2, 3, 7, 16, 47]. Advanced mathematical
and statistical theory and efficient algorithms have been developed for sparse mini-
mization [3, 9, 13, 32]. Recently, He et al. [28] systematically compared the solutions
of a special quadratic minimization problem with £ penalty, £ penalty and capped-£;
penalty.

Inspired by the wide applications of saddle point problems and sparse optimization,
we consider the sparse min—max problems modeled by (1.1). In Sect. 6, we will use
three applications to explain the motivation behind our research on this model and
the importance of cardinality penalties in the models. To the best of our knowledge,
mathematical theory and numerical algorithms on sparse saddle point problems with
cardinality penalties have not been systematically studied.

Approximating cardinality functions by continuous or smooth functions is a promis-
ing approach in studying this class of problems. Many continuous relaxations to the
cardinality function have been brought forward, such as the £; norm [9], SCAD [22],
hard thresholding [22], £, norm (0 < p < 1) [13], MCP [50], capped-¢; [40], CELO
[47], etc. In this paper, we construct continuous approximations to the cardinality func-
tions in (1.1) based on convolution [10, 11], which include most popular relaxation
functions to the cardinality function.
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The main contributions of this paper have four parts.

e We prove the existence of a local saddle point and a global minimax point of (1.1),
and define a class of strong local saddle points that have some desirable sparse
properties.

e Based on convolution, we introduce two classes of density functions to provide a
unified method for constructing the continuous relaxations with different smooth-
ness to the cardinality function, which induce many popular continuous penalties
in sparse optimization. Moreover, we propose the continuous relaxation problem
of (1.1), which has both the local saddle points and global minimax points.

e We establish the relations between (1.1) and its continuous relaxations regarding
the saddle points, local saddle points, local minimax points and global minimax
points. Moreover, we define the first order and second order stationary points of
the continuous relaxation problem. We show that both the first and second order
stationary points of the continuous relaxation problems are not only the strong local
saddle points of (1.1), but also have some promising computational tractability.

e We show the gradient consistency of a class of smoothing convex—concave func-
tions to nonsmooth functions c¢. Moreover we prove that any accumulation point
of weak d(irectional)-stationary points of the smoothing relaxation problem is a
weak d-stationary point of the nonsmooth relaxation problem as the smoothing
parameter goes to zero.

The rest of this paper is organized as follows. In Sect. 2, we prove the existence of
local saddle points and global minimax points of (1.1). In Sect.3, we construct the
continuous relaxations to (1.1). In Sect. 4, we establish the relations between (1.1) and
its continuous relaxation problems. The smoothing functions of nonsmooth function
c are studied at the end of this section. In Sect. 5, we study the first order and second
order stationary points of the continuous relaxation problems for a particular class of
(1.1) and their relations with the strong local saddle points of (1.1). In Sect. 6, we show
the applications of problem (1.1).

Notation Let Ry = [0, +00), R4+ = (0, +00) and [n] = {1, 2, .. ., n} for a positive
integer n. For a matrix A € R"*™, A;; means the element of A at the ith row and jth
column. Let e; be the vector with 1 at the ith element and O for the others and e be the
vector with 1 for all elements. For a Lipschitz continuous function ¢ : R" x R” — R,
0xc(X,y) and dyc(X, y) mean the Clarke subgradients of ¢ with respect to x and y at
point (X, ¥), respectively. When c is Lipschitz continuously differentiable, 3%c(X, ¥)
means the Clarke generalized Hessian of ¢ at point (X, y), 8,%Xc(i, y) and Byzyc(i, y)
mean the Clarke generalized Hessian of c(x, y) with respect to x and y at point (X, y),
respectively. For x € R"” and § > 0, B(x, §) means the closed ball centered at x
with radius §, AT(x) = {l e [A] : gg(x) > 0}, A~ (x) = {{ € [7] : gg(x) < 0} and
A;—(X) ={l € [A]:0 < g(x) < 8}. Similarly, denote BT (y) = {k € [m] : hi(y) >
0}, B~(y) = {k € [] : hx(y) < 0} and By (y) = {k € [m] : 0 < he(y) < 68}
Foraset S C R"andi € [n], S; = {x; : x € 5}, [[Sllc = sup{|[x|lec : X € S}
and co{S} = {Ax] + (1 - )»)x2 cxI,x2 e S, € [0, 1]}. For sets S, 8§ € R,
S+ S ={x'+x%:x' €8, x% e §}. Foraclosed convex subset 2 C R" and x € ,
Ngq(x) means the normal cone to 2 at x.
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2 Existence of local saddle points of problem (1.1)

In this section, we prove the existence of local saddle points and global minimax
points of problem (1.1). We also define a class of strong local saddle points of (1.1)
and provide its relation with saddle points of problem (1.4) in a certain subset of X x ).
First of all, we give some necessary definitions.

Definition 2.1 A point (x*, y*) € X x ) is called a saddle point of problem (1.1), if
for all (x,y) € X x ), it holds

F&Ey) < f5 Y9 < f(x¥9). 2.0

We call (x*, y*) € X x ) alocal saddle point of problem (1.1), if there existsa§ > 0
such that (2.1) holds for all x € X N B(x*,§) andy € Y N B(y*, §).

Definition 2.2 A point (x*, y*) € X x ) is called a global minimax point of (1.1),
if for all (x,y) € X x ), we have

f&y) < f(X*,y") <max f(x,¥).
yey

We call (x*, y*) € X x ) a local minimax point of (1.1), if there exist a §p > 0 and
afunction 7w : Ry — Ry satisfying 7(8) — 0as § — 0 such that for any § € (0, &g],
x € X NB(x*,8)andy € Y NB(y*, §), it holds

x*y) < f(x*, ¥ < max X, ¥). 2.2
F&Ty) = f( y)_y,eymB(y*’n(a))f( y) (22)

A local saddle point is a local minimax point, but a global minimax point is not
necessarily a local minimax point. The two inequalities in (2.1) forx € X andy €
can be equivalently expressed by

x* € argmin f(x,y*) and y* € argmax f(x*,y), (2.3)
xeX yey

respectively. Since X and ) are compact, the lower semicontinuity of ((-)1)° guar-
antees the existence of the solutions to the two optimization problems in (2.3), but
(x*, y*) may not be able to solve both the minimization and maximization simulta-
neously. This means that the saddle point set of problem (1.1) may be empty and
minge vy Maxyey f(X,y) # maxyey mingey f(X,y) (see Example 2.1).

Note that a nonconvex—nonconcave function may not have a saddle point, a local
saddle point, or even a local minimax point. Fortunately, we can prove the existence
of global minimax points, local saddle points and local minimax points of problem
(1.1) without any additional assumption.

Proposition 2.1 Min—max problem (1.1) always has a global minimax point.
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Proof By the compactness of ), we can define v/ (X) = maxycy f (X, y). Since func-
tion f(-,y) in (1.1) is lower semicontinuous for any fixed y € R and X’ is compact,
Y is lower semicontinuous on X'. Then, there exists a global solution to mingc x ¥ (X),
denoted by x*, i.e.

max f(x*,y) <max f(x,y), VxeX. 2.4)
yey yey

The upper semicontinuity of f(x*, -) and the compactness of ) ensure the existence
of the solution to maxy¢y f(x*,y’), denoted by y*, which implies

f&*y*) = max f&*y) = fx*y), Vyel. (2.5

Therefore, (2.4) together with (2.5) implies that (x*, y*) is a global minimax point of
(1.1). O

Proposition 2.2 Min—max problem (1.1) has a local saddle point and any saddle point
of (1.4) is a local saddle point of (1.1).

Proof By Sion’s minimax theorem [46], (1.4) has a saddle point (x*,y*) € X x Y

such that
c(x*,y) < c(x*,y") <c(x,¥%), VxeX, ye). (2.6)

By the continuity of functions g; and Ay, there exists a § > O such that

g1(x) >0, Vie At(x*), x e B(x*,8)NX,
hi(y) >0, VkeB*(y"),yeBy* 8Ny,

which implies A™(x*) € AT (x) and BT (y*) € B*(y) in the above neighborhood of
(x*, y*). On one hand,

cxh Y = fO YY) a1k YL

le At (x*) keB*(y*)

On the other hand, for x € B(x*,3) N X andy € B(y*, §) N Y, it has

cxy) = fEy)—m Y I+ Y1

leAt(x) keBt(y*)
SFEY) =M Y, T4+a Y,
le A+ (x*) keB*(y*)

and
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c Y = fEE) =M Y T+r Yol

le A+ (x*) keB*(y)
> fXy) = Y, l4+a Y L
le A+ (x*) keBT(y*)

Thus, we can conclude that
f&*y) < fxXy) < f(x,¥9), VxeBE"§)NAX,yeBy* 5N,

which implies that (x*, y*) is a local saddle point of (1.1). O

Moreover, by [46], (1.1) also has a local saddle point if ¢ is a continuous quasi-
convex—concave function.

The following example shows that the parameters A1 and A, play an important role
for the existence of saddle points, local saddle points, global minimax points and local
minimax points of min—-max problem (1.1).

Example 2.1 Consider the following min—max problem

minmax f(x,y) := (x — D(y — 1) + A1]x[lo — A2[lyllo, (2.7)
xeX ye)

where X = )Y = [-2,2] and A1, A2 > 0. It is clear that c(x,y) = (x —
)(y — 1) is convex—concave on X x Y and (1, 1) is the unique saddle point of
Mminge y Maxyey c(X, y).

Case 1 (has no saddle point): Let A; = 3 and Ap = 1. By simple calculation, we
find
max{5 —3x,x+ 1,4 —x} ifx#0

ma X,y) =
ye))} f&y) 2 ifx=0

and
min{-3y+5, -y, y+1} ify#0
1 ify =0.

min f(X,y) =
xeX f y
Hence, we have

minmax f(x,y) = f(0,—2) =2 and maxmin f(x,y) = f(0,0) = 1.
Yy ye) xeX

xeX ye

Thus, (1.6) fails in this case. By [20, Theorem 1.4.1], there is no saddle point to
problem (2.7) with A; = 3 and A, = 1. On the other hand, it has four local saddle
points: (0, 0), (1, 1), (0, —2) and (2, 0).

Case 2 (has a saddle point): Let A; = Ap = 3. The similar calculation gives

max{x — 1,4 —x, —3x+ 3} ifx#0

max f(X,y) = .
yeyf( y) 1 ifx=0
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and
_ {min{—Z—y,3—3y,y—l} ify #£0
min f(X,y) = .
xeX 1 ify =0.
Then, minge y maxyey f(X,y) = maxyecy mingey f(X,y) = 1. By [20, Theorem
1.4.1], there exists a saddle point to problem (2.7) with A1 = A» = 3, and (0, 0) is the
unique saddle point.
Case 3 (any global minimax point is not a local minimax point): Let Ay = Ay = 1.
We have

¥ (x) = max f(x,y) =

yey 2 ifx =0.

{ max{3—3x,2 —x,x— 1} ifx#0

Then, x* = argmingey ¥ (x) = {3/2} and argmaxycy f(x*,y) = {0,2}. Thus,
the set of global minimax points of (2.7) with A; = A, = 1 contains only two
points (3/2,0) and (3/2,2), and f(3/2,0) = f(3/2,2) = 1/2. Moreover, around
x* =3/2,forany 0 < § < 1/2, maxyefyey:jyj<s) f(X,¥) = f(x,0) =2 —x and
maxy eyey:y—2<s} f (X, ¥) = f(x,2) = x — 1, which means that neither (3/2, 0)
nor (3/2,2) is a local minimax point of (2.7) with A; = Ay = 1.

To study sparse saddle points, we introduce a class of strong local saddle points of

(1.1).

Definition 2.3 For a given v > 0, we call (x*, y*) € X x ) a v-strong local saddle
point of problem (1.1), if it is a local saddle point of (1.1) and satisfies the lower
bound property

g(x*) ¢ (0,v), VI €[] and hi(y*) ¢ (0,v), Vk € [m]. (2.8)

On one hand, for any local saddle point (x*, y*) of (1.1), there exists a v > 0
such that (2.8) holds, where we can set v = min{1, g;(x*), hy (y*) : [ € AT (x*), k €
BT (y*)}. Hence, (1.1) has a v-strong local saddle point with a certain value of v. On

the other hand, for a given v > 0, not all local saddle points of (1.1) satisfy (2.8) (see
Example 2.2). In particular, if (x*, y*) is a v-strong local saddle point of (1.3), then

Ix}| ¢ (0,v) and |y3] ¢ (0, v), Vi € [n], j € [m],

which not only helps us distinguish the zero and nonzero elements efficiently, but also
provides a solution with certain stability [3, 13]. Therefore, the study on v-strong local
saddle points of (1.1) is interesting and important in sparse problems.

Example 2.2 Consider the following min—max problem

minmax f(x,y) := [x; +x2 — 1|(y + 1) + [Ix]lo — 3llyllo (2.9)
xeX ye)
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with X = [-1,1% and Y = [—1, 1]. By simple calculation, we can find that (2.9)
has three saddle points, i.e. (0,0,0)", (1,0,0)" and (0, 1,0)" with

min max X, = max m1n X, = 1
xeXyeyf( y) = laxn fxy) =

The local saddle point set of (2.9) is
SL:={(x;,1=x1,)" :x; € [=1,1],y € [-1, 1]} U{(0,0,0)T, (0,0, 1) T},
while the v-strong local saddle point set of (2.9) withO < v < 1is

SLN{(x1,%2,¥) " ¢ [x1] ¢ (0,v), |xa| & (0,v)and |y| ¢ (0,v)}.

Notice that the v-strong local saddle point set of (2.9) is a proper subset of its local
saddle point set, and contains all saddle points of (2.9).

For a given § > 0, by [20, Theorem 1.4.1], we know that (X, y) is a saddle point of
problem (1.1) on (X N B(X, §)) x (Y N B(y, d)) if and only if

max min X,y) = f(X,y) = min max X,y). (2.10
yeyﬂB(y,B)xeXﬂB(i(,S)f( V=/&Y xeXﬂB(i,a)yeymB(y,a)f( V.« )

Hence (X,y) € & x ) is a local saddle point of (1.1) if and only if there isa § > 0
such that (2.10) holds. In what follows, we provide the relation between v-strong local
saddle points of (1.1) and local saddle points of ¢ restricted to a certain set.

Theorem 2.1 Forv >0and (X,y) € X x Y, let /f’(i) ={xeX :gx) <0,V ¢
AT} andY () ={y € V : hi(y) <0, Yk ¢ B (¥)). Thenthe following statements
are equivalent.

(1) (X,Y) is a v-strong local saddle point of (1.1);
(ii) (X,¥) is a local saddle point of ¢ on X (X) x y(y) and satisfies (2.8).

Proof (i)=(ii). Suppose (X,y) is a v-strong local saddle point of (1.1), then there
exists a § > 0 such that

fEy =f&y =fxy), VxeXNBKX ), ye YNBF.,8). (21D

For any x € /?(i), it holds that ||g(X)+]l0 < |lg(X)+|lo. Rearranging the second
inequality in (2.11) gives

cX,Y) +rllg®+llo < cx,¥) +A1llg®+llo, Vx € XNBX,H).
Thus, X is a local minimizer of c(-, y) on X (x). Following the same way, the first

inequality in (2.11) gives that y is a local maximizer of c¢(X, -) on j}(y). Thus, (ii)
holds.
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(i1)=(). Since X is a local minimizer of ¢(-, y) on X (X) and satisfies (2.8), there
exists a §; > 0 such that

c®,¥) <c(x,¥), Vxe XX NBR, )

and
gi(x) ¢ (0,v), VI € [na]. (2.12)

Based on (2.12), there exists a 6, € (0, §1] such that g;(x) > 0,Vx € B(X, §2), [ €
AT (X), which implies

[e®)+llo < lgX)+llo, Vx € B(X, ). (2.13)

Then, .
fXy < f(x,y), Vxe XX NB(X,d). (2.14)

Due to the continuity of c¢(-, y), there is a §3 € (0, §2] such that
c(X,y) <c(x,y) + A1, ¥xeB(,363). (2.15)

When x € XY NB(Xx, §3) but x ¢ é\?(i), there exists an [ ¢ AT (X) such that gi(x) > 0,
which together with (2.13) further gives

lgX)+llo+1 < llgx)+llo- (2.16)
Thanks to (2.14)—(2.16), we have
fXy < f(x,y), Vxe XNB(X,§). 2.17)

We can ensure f(X,y) < f(X,y),Vy € YNB(y, 84) with §4 > 0 in the same way.
Thus, (X, ¥) is a v-strong local saddle point of (1.1). ]

quproblem(l.3),)€(i) ={xeX:x;>0,Vi¢ A~ (X)andx; <0,Vi ¢ AT(X)}
and Y(y) ={y; >0,Vj¢ B (y)andy; <0, V, ¢ BT (¥)}. Thus, together the for-
mulations of X (x) and hY% (y) with the local optimality conditions, we obtain that (X, y)
is alocal saddle point of (1.3)if and only if (X, ¥) is a saddle point of c on X% (%) x V0 (¥)
with X0%) = {x e X : x; =0ifx; =0} and Y°(§) = {y € YV :y; = 0if §; = 0},
i.e. the subspace corresponding to nonzero components of (X, y).

By “pull-down” the discontinuity of the objective at an X € X’ to the constraints,
the authors in [16] brought forward the notion of “pseudo stationary” problem and the
corresponding pseudo local minimizer for the minimization problem with ((-)4)° in
the objective and constraints. By [16, Proposition 4], the special structure of f (X, y)
with y € Y and the Lipschitz continuity of g;, we find that X is a local minimizer
of minyc y f (X, ¥) if and only if it is a pseudo local minimizer of it, i.e. X is a local
minimizer of minxeﬁ;(i) c(x,y) with i’(i) =xeX:gkx) <0,Vl¢g A TX)). It
is stated in [27] that a pseudo B-stationary solution is necessary to be a pseudo local
minimizer, where we call X a pseudo B-stationary solution of minge y f (X, y), if it is
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a B-stationary solution of min__ ¢ ® c(x,y) [16]. Similar ideas are also employed in
[27, 34]. Combining Theorem 2.1 with [16, Proposition 4], (X, y) is a v-strong local
saddle point of (1.1), if and only if X is a pseudo local minimizer of minyc x f (X, y),y
is a pseudo local minimizer of minycy — f (X, y) and (X, y) satisfies the lower bounds
in (2.8). In general, a pseudo B-stationary solution to the min—max problem (1.1)
defined by a similar way is not necessary to be a local saddle point. However, when
¢ is convex—concave, and g;, VI € [n], hg, Vk € [m] are convex, by Theorem 2.1,
(X, y) is local saddle point of (1.1), if and only if X is a pseudo B-stationary solution
of minge y f(x,¥) and ¥y is a pseudo B-stationary solution of minycy — f (X, y).

3 Continuous relaxations

In this section, we propose a class of continuous relaxations to the cardinality function
in min-max problem (1.1) based on convolution [10], which include the capped-£,
function [40], SCAD function [22], MCP function [50] and hard thresholding penalty

function [22] as special cases. Then, we show the existence of local saddle points to
the continuous relaxations of (1.1).

3.1 Density functions
Let p : R — R, be a piecewise continuous density function satisfying
p(s) =0,Vs ¢ [0, a] (3.1

with a positive number «, which means that foa p(s)ds = 1. Then, for any fixed u > 0,

+00
r@4»:=/‘ ((t = us))°p(s)ds

—00

/L<m R =0 0
= p(s)ds = (14)" +§ _ p+oo :
- fﬁ o(s)ds ift >0
is well-defined, and when r (-, ) is Lipschitz continuous around ¢, it holds
ln
or(t, ) = co {.lim PUi/W) 1 t; — t, pis continuous at t,-/,u} . 3.3)
—>00 122

The continuous relaxation in (3.2) is inspired by the smoothing function to 74 in
[11, 41, 44]. Formulation (3.2) can easily be used to construct a continuous relaxation
r by a density function p.

By (3.2), for any u > 0, we have

rit, ) = (), Vi ¢ (0, ap), (3.4)
rt, ) — ) <0, VieR, (3.5)
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limr(t, u) = (t4)°, VieR, (3.6)
ni0
lim r(a, w) = (14)°, Vi #0. (3.7)
a—t,ul0

For any ¢t € R, we see from (3.5) and (3.6) that r(¢, 1) approximates (t+)0 from
below as u tends to 0. In what follows, we give four examples of the function r with
p satisfying (3.1).

Example 3.1 Choose a density function withe = 1 and 0 < p < 1 as

0 ift <0
psP7l if0<s <1 tr
p(s) = i = rit,u)={ — if0<t<p
0 otherwise up
1 ifr > .

Here, r (-, 1) with p = 1 is the capped-£; function (pcapl on R;.

Example 3.2 For any o > 1, choose a density function as

) 0 ift <0
ifo<s<l1 2t .
oa+1 —_— if0<t<pu
_ 20— 2s = @+ Du
pl) =1 2725 i ig<q T W= ot — 12 — 2
(¢ — D(x+1) —_— ifu<t<aup
0 otherwise (@—Die+Dp
1 ift > au.

Here, (-, u) is ascaled SCAD function goSCADZ onR,,ie.r(t, u) = ﬁwsczw(l),
vt > 0.

Example 3.3 For any o > 0, choose a density function as

0 iftr <0
2 2s .
- == f0<s <« 2 2 '
p)=1a « = r(t,pu) =4y — if0<t<au
. ap | alu?
0 otherwise
1 ift >apu.
1 Capped-£; function: @cap () = min{l, [|/u}.
t ift <p
2ot — 12 — 2 .
2 SCAD function: ggcap(f) = ECE ifu<t<au
1
(a+2 u ift > apu.
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Here, (-, ) is a scaled MCP function ¢ycp’ on Ry, ie. r(f, u) = %goMcp(t),
vt > 0.

Example 3.4 Choose a density function with @ = 1 as

0 ift <0
) 2(1—s) if0<s <1 0 X | 2 o
= = L) = (1 -
Pe 0 otherwise T (I —t/w) if0<t=<p
1 ift > p.

Here, (-, jt) is the Hard thresholding penalty function ¢y..4* on R,
For further analysis, we bring forward two assumptions on density function p.

Assumption 3.1 There exists a positive number p such that the density function p :
R — R; satisfies
p(s) = p, Vs € (0,a).

Assumption 3.2 The density function p is Lipschitz continuous on R4 and there
exist Py > 0 and pp > 0 such that for any s € (0, @),

either p(s) = p, or supfa:a € dp(s)} =< —D.

Notice that if p is Lipschitz continuous on Ry} and p(s) = 0, Vs ¢ [0, «], then
Assumption 3.1 fails. Thus, p can not satisfy Assumption 3.1 and Assumption 3.2 at
the same time.

When the density function p satisfies Assumption 3.1, we have

inf{& 1 & € dr(t, W) = p/u, Vi€ (0, ap). (3.8)

When the density function p satisfies Assumption 3.2, and (-, i) is Lipschitz
continuous around ¢ inspired by (3.3), we have that for any u > 0, r (-, ) is Lipschitz
continuously differentiable on R, and satisfies

opr(t, ) = dp(t/w)/1*, ¥i>0, 3.9

which implies for any ¢ € (0, au) such that sup{a : a € 9p(¢t/u)} < —p2, it holds

sup{é : & € 37r(t, W} < —po/u’.

Since all the four density functions p in Examples 3.1-3.4 satisfy (3.1), r (¢, n) in
these examples satisfy (3.4)—(3.6). To end this subsection, we use Table 1 to conclude
the different properties of the density functions and the corresponding continuous
functions r in these four examples.

43
an ift >ap

2
3 MCP function: gucp (1) = 2
t—— ift<op.
20014

4 Hard thresholding penalty function: gharg(t) =1 — (1 — t//,L)2+.
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Table 1 Properties of the density functions p and corresponding functions » in Examples 3.1-3.4

Example Differentiability of r (-, ) Assumption 3.1 Assumption 3.2

3.1 Not at 0, u pP=Pp X

32 Not at 0 x 03 = 351 72 = GITE=D
33 Notat 0 x 0y >0 =%

34 Not at 0 X Py > 0,00 =2

3.2 Continuous relaxation models to (1.1)

In what follows, we will use the continuous function r defined in (3.2) to approximate
the cardinality function in (1.1). For/ € [n] and k € [m], denote

$1(x) = (20" and Yr(y) = (e (y)4)°,

and define their continuous relaxations by

of(x, ) =r(g(x), w) and Y&y, w) = rhe(y), 1. (3.10)

For any u > 0,/ € [n] and k € [m], by (3.5), we have

ofx, ) <¢r(x) and YRy, ) < Yi(y), VxedX,yel. (3.11)

We propose the continuous relaxation of (1.1) as follows

minmax £y, ) = e y) +h ) @t = ) v, (12)
leli] kelrm]

where u is a given positive number. Here, f R (-, -, mw)in (3.12)is continuous on X x ),
and it is clear by (3.6) that, lim,, o fRx,y, u) = f(x,y) foranyx € X andy € ).

Notice that (3.12) is a nonconvex—nonconcave min—max problem and may not have
a saddle point. However, similar to Proposition 2.2, we can have the existence results
for the local saddle points of (3.12).

Proposition 3.1 There exists a ;i > 0 such that (3.12) has a local saddle point for any
w € (O, @)

Proof Let (x*, y*) be asaddle point of minye y maxycy c(X, y), i.e.(2.6) holds. Denote
¥ = min{l, g;(x*), he(y*) : | € AT (x*),k € BT (y*)} and set i = /2, then
g (x*) > 2ai, hi(y*) = 2afi, VI € AT (x*), k € BT (y*). Choose . € (0, i1). By the
continuity of g and #, there exists a § > 0 such that for any I € A" (x*), k € B (y*),
x € B(x*,§) andy € B(y*, §), it holds g;(x) > au and h(y) > au, by (3.4), which
further implies

¢, =1 and Yy, p) =1.
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This means that, for any x € B(x*, §) andy € B(y*, §),

Yoot w =Y o and YT YR w < Y v, (3.13)

le[n] le[n] kelm] kelm]
Together (3.13) with (2.6), we obtain
Ry < FReC v w < A& Y5 ), Vx e B, H)NA, y € BGH, $)NY,

which means that (x*, y*) is a local saddle point of (3.12). O

From the compactness of X and ), (3.12) has a global minimax point for any
w > 0.

4 Theoretical analysis on exact continuous relaxations

In this section, we will consider the consistence of problem (1.1) and its continuous
relaxation problem (3.12) with the density function p satisfying (3.1). Moreover, the
smoothing approximation to a nonsmooth function c is defined and discussed in Sect.
4.3.

4.1 Relations on saddle points

To proceed the discussion on the saddle points and local saddle points between problem
(1.1) and its continuous relaxation model (3.12), we need the following Assumption
4.1, which will be discussed and verified in Sect. 5.

Assumption 4.1 For a given u > 0, the following conditions hold.

(i) Foranyy € Y, if x* is a local minimizer of fR(x, y, 1) on X, then
g (x*) & (0,ap), Vielil 4.1

(ii) For any x € X, if y* is a local maximizer of fR(i, y, 1) on ), then
he(y*) ¢ (0, ap), Vk € [t]. (4.2)
If Assumption 4.1 holds for i, then it holds for any € (0, /i]. Assumption 4.1 is
to put the lower bound properties on the local solutions of f®(x, y, ) with respect to

x and y, respectively. If (x*, y*) satisfies the lower bounds in (4.1) and (4.2), by (3.4),
then

of(x*, ) = g1(x*), ¥l € [A] and YEy*, p) = vy, Yk e [m].  (4.3)

Together this with the definition of (local) saddle points, we can find that the values
of function f(-, ) and its continuous relaxation function f&(-,-, u) coincide at all
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(local) saddle points of (3.12), which is the main idea behind assuming the two lower
bounds in Assumption 4.1 and the key motivation behind defining the continuous
relaxation function as in (3.2). In Sect. 5, we will consider two ways to guarantee these
two central properties in (4.1) and (4.2), one based on a first order necessary optimality
condition and another based on a second order necessary optimality condition of
(3.12). In what follows, we first derive the relations on the saddle points and local
saddle points between problems (1.1) and (3.12) based on Assumption 4.1.

Theorem 4.1 Suppose problem (3.12) satisfies Assumption 4.1, then

(1) (x*,y*) is a saddle point of (1.1) if and only if it is a saddle point of (3.12);
(i) (x*,y*) is a local saddle point of (1.1), if it is a local saddle point of (3.12).

Proof Suppose (x*,y*) is a global (local) saddle point of problem (3.12). By the
relations in (3.11) and (4.3), it holds fR(x*,y*, u) = f(x*,y"), fRx*,y, n) >
fx*,y) and fR(x,y*, u) < f(x,y*). Then, (x*, y*) is a global (local) saddle point
of problem (1.1). Thus we only need to prove that if (x*, y*) is a saddle point of
problem (1.1), then it is a saddle point of (3.12).

Assume on contradiction that (x*, y*) is a saddle point of problem (1.1), but it is
not a saddle point of (3.12). Then

x* € argmin f(x,y*) and y* € argmax f(x*,y), 4.4)
xeX yey

but either x* is not a global minimizer of f&(x,y*, u) on X or y* is not a global
maximizer of f R (x*,y, ) on Y. Asapossible situation, if x* is not a global minimizer
of fR(x,y*, 1) on X, then there exists X € arg minycy fR(x, y*, 1) such that

FR&E y ) < Ry, ). (4.5)

By (4.1) in Assumption 4.1, either g;(X) > o or g;(X) < 0, which means ¢ZR (X, n) =
¢1(X), VI €[], and then

A&y W =&y =22 Y Wit w+r ) nGd. (4.6)

kelm) kelm]

While by ¢ (x*, 1) < ¢y(x*), VI € [#], we obtain

ROy < FOE Yy = h DD vEE A+ h Y ). @)

kelm) kelm]

Combining (4.5)—(4.7), we find that f(x,y*) < f(x*,y*), which contradicts to
the first relation in (4.4). Thus, x* is a global minimizer of f%(x, y*, 1) on X. And
we can verify that y* is a global maximizer of f®(x*,y, 1) on ) by a similar way.
Therefore, (x*, y*) is a saddle point of problem (3.12). O
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Remark 4.1 Following the proof of Theorem 4.1, besides the lower bound properties
assumed in Assumption 4.1, we see that the property of continuous relaxation function
rthatr(t, u) < (t+)0, Vt € Rand > 0,1isused to guarantee the equivalence between
the saddle points of (1.1) and (3.12) from sufficiency and necessity. Moreover, under
Assumption 4.1, we confirm by Theorem 4.1 that any saddle point (x*, y*) of (1.1),
if it exists, satisfies the lower bounds in (4.1) and (4.2).

4.2 Relations on minimax points

To establish the equivalent relation on global minimax points between problem (1.1)
and problem (3.12), we need the following assumption, which will be discussed and
verified in Sect. 5.

Assumption 4.2 For a given u > 0, the following conditions hold.

(i) If x* is a global minimizer of maxycy fR(x,y, u) on X, then (4.1) holds.
(ii) Forany X € X, if y* is a global maximizer of fR(X,y, ) on ), then (4.2) holds.

Assumption 4.2 implies that any global minimax point (x*, y*) of (3.12) satisfies
the lower bounds in (4.1) and (4.2), and subsequentially the function values of f (-, -)
and its continuous relaxation function f R, ., W) coincide at all global minimax points
of (3.12). Then, we can establish the following relations on the global minimax points
between problems (1.1) and (3.12).

Theorem 4.2 Under Assumption 4.2, (X*,y*) is a global minimax point of problem
(3.12) if and only if it is a global minimax point of problem (1.1).

Proof Let (x*, y*) be a global minimax point of problem (3.12), i.e.

fR(X*,y,u)5fR(X*,y*,M)E;r}s;f’e(x,y’,u), VxeX,ye), (4.8

which implies fR(x*,y*, u) = maxycy fRx* ¥y, n) < maxyey fRx, ¥, .
Then, Assumption 4.2 gives ¢;(x*) = ¢IR (x*, w) and Y (y*) = Iﬂ,f (y*, u), and
we further have

Ry w = Fx*,y5). (4.9)

Invoking (3.11), we have

fE Y =c& ) +h Y aix) —ra Y @ < Ry . Vye.
le[h] kelm]
(4.10)
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Forany x € X, denote yx amaximizer of f R (x,y, n) on Y. Recalling Assumption 4.2,
we have that yy satisfies the lower bound property in (4.2) and ¥ (yx) = l/f,fe (¥x, 1)

Together it with (3.11), we have that

max £ (% ¥, 1) = €t yx) + b Do mw = Y vy w

le[n] kelm]
ey FA Y G0 — A Y Yrlyx) < max f(x,y).
le[n] kelm] yey

Thus, (x*, y*) is a global minimax point of problem (1.1) by (4.8)—(4.11).
Conversely, let (x*, y*) be a global minimax point of problem (1.1), i.e.

FOEY) = YY) smax fxy). VxeX.ye).
y'e
By the first inequality in (4.12), similar to the proof of Theorem 4.1, we have

Rty w = fRadyt . Vyed.
Next, recalling Assumption 4.2, y* € argmaxycy f R(x*,y', w) implies
V) = vE 6w, Yk e linl,
which together with ¢IR (x*, w) < ¢1(x*), Vl € [n] gives
Ry W < FEyD).
Denote (X, ¥) a global minimax point of (3.12), then
FA&y ) < fEF ) < max FAx YL ). YxedX yed,
by the first part of this theorem, which implies

f&y < fxy) fgleaigf(x,y’), Vxe X, ye).

By Assumption 4.2, we further have

4.11)

(4.12)

4.13)

(4.14)

(4.15)

(4.16)

(4.17)

OR & 1) = ¢g(®), VI € [Al, v&F, 1) = ¥ (@), Yk € [m] and fREX,§, 1) = & 9.

Letting x = X in the second inequality of (4.12), we have
fX*, ") < max f(X,¥).
yey
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The first inequality in (4.17) gives maxycy f(X,y) = f(X,¥), which together with
(4.19) implies f(x*,y*) < f(X,¥). This together with (4.15) and the third equality
of (4.18) gives

Ry w = A&y 0. (4.20)

By virtue of (4.20) and the second inequality in (4.16), we have
SRy ) < max Ry w, VYxeX,
ye

which together with (4.13) guarantees that (x*, y*) is a global minimax point of prob-
lem (3.12). O

4.3 Smoothing functions to a nonsmooth convex-concave function ¢

If the function ¢ in problem (3.12) is nonsmooth, the smoothing approximation of
it is often needed in the algorithms [6, 11]. In what follows, we introduce a class of
smoothing functions of ¢ defined in [11].

Definition 4.1 Wecall¢ : X x ) x (0, 1] — R a smoothing function of a nonsmooth
function c on X x Y, if ¢(-, -, €) is continuously differentiable on X’ x ) for any fixed
¢ € (0, 1] and for any (X,y) € X x ), it satisfies

lim wE(x, y, &) =cX,y). 4.21)

X—>X,y—Y,&

The gradient consistence between the Clarke subgradient of the nonsmooth function
and the gradients associated with its smoothing function sequence is important for the
efficiency of the smoothing method, i.e. forany X € X and y € ),

{ lim va(x,y,s)}gac(i,y). (4.22)

X—>X,y—>y,6/0

The partial gradient consistences with respect to the update of two variables are often
necessary for the algorithm analysis of the min—max problems, i.e. for any X € & and
yel,

{limx%i,yﬁi,sio VxC(X, y. 5)} C oxc(x, 5’), (4.23)
{limg—5,y—y.600 Vye(X, ¥, &)} € dyc(X, §). (4.24)

However, neither dc(x, y) nor dxc(X,y) X dyc(X,y) are contained in each other
generally. See [14, Example 2.5.2]. When c is Clarke regular with respect to (X, y),
by [14, Proposition 2.3.15], it holds

dc(x,y) C dxe(x,y) X dyc(X, y). (4.25)
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In what follows, we will show that (4.25) holds for any convex—concave function c,
though the convexity—concavity of ¢ cannot give the regularity of it. For example,
c(x,y) = |x| — |y] is convex—concave on R x R, but not Clarke regular in (x,y) at
(1,0).

Proposition 4.1 For any convex—concave function c, (4.25) holds for any x € R" and
y € R™,

Proof Let (£, 1) € dc(x,y). We will prove that £ € dyc(x,y) and 1 € dyc(X, y).
Since c(-,y) is convex on R” for any y, by [14, Proposition 2.5.3], it has £ €
dxc(X,y). Inspired by the result in [14, Proposition 2.3.1], (=&, —n) € a(—c(X, y)).
Using the concavity of c(x, -) on R™ for any x € R”, —c(x, y) is convex with respect
to y and then —n € dy(—c(x,y)) = —dyc(x,y), which uses [14, Proposition 2.5.3]
again. Thus, n € dyc(x,y). O

For a nonsmooth function ¢, we can construct a smoothing function of ¢ by convo-
lution [11, 41, 44] as follows

c(z,¢e) = / c(z —a)yY.(u)du, (4.26)
R’1+m

where z := (X, y), ¥, : R"™ — R, is a sequence of bounded, measurable functions
satisfying f]RHm Ye(w)du = 1 and lim, o B® = {0} with B® := {u : ¥, (u) > 0}.

Proposition 4.2 Let ¢ : R” x R™ x (0, 1] — R be defined as in (4.26). Then ¢ is a
smoothing function of c on X x Y and satisfies the following properties:

(1) foranyx € X andy € ), (4.22) and (4.23)—(4.24) hold;

(i) forany e > 0, ¢(X, Y, €) is convex in X € R" and concave iny € R™.
Proof From [44, Theorem 9.67], ¢ in (4.26) is a smoothing function of ¢ on X’ x ) and
satisfies { lim Vex,y, 8)} C dc(x,y) forany X € X and y € V. Recalling

Xx—X,y—>Y,el0
the convexity—concavity of ¢, by Proposition 4.1, (4.23)—(4.24) hold.
In what follows, we first verify that ¢(x, y, ) is convex in x € R” for any y € R™

and ¢ > 0. For any X, X € X and 5 € [0, 1], observe that

E%+ (1 — MRy, e) = / x4+ (1— & — v,y — W)Y (W)du

Rn+m

<n / C® — v,y — W)Y (Wdut
Rn+m

1=mn cX =V, y = W)Y (u)du

Rntm

= 775()_(’ y, 8) + (1 - 77)5(72, y. S)a

where u = (v,w) € R""™ the inequality uses the convexity of c(-,y) and the
nonnegativity of ¥, on R"*™ Thus, ¢(X, Y, €) is convex in x € R" for anyy € R”
and ¢ > 0. By similar calculation, ¢(X, y, €) is concave iny € R™ for any x € R" and
e > 0. O
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Then, denote the smoothing model of (3.12) by

min max Ry, o) =y )+ Y o =22 Y vy, ),
le[n] kelnt)

4.27)
where ¢(x,y, €) is a smoothing function of ¢. Since ¢(, -, €) is a convex—concave
function, it always has a saddle point over X x ). Following the results in previous
sections, problem (4.27) with an ¢ > 0 has a local saddle point and a global minimax
point for some p > 0.

5 A particular case of problem (1.1)

In Sect. 4, we showed the consistency on the saddle point sets and the inclusion on
the local saddle point sets of problems (1.1) and (3.12) under Assumption 4.1, and
the consistence on their global minimax point sets under Assumption 4.2. In this
section, we verify that Assumptions 4.1 and 4.2 hold for the continuous relaxation of
a particular case of problem (1.1). Moreover, with the specific structure of r under
Assumption 3.1 or Assumption 3.2, we establish the relations between the first order
or second order stationary points of (3.12) and the local saddle points for the particular
case of (1.1).
Denote

N ={l en]: gg(x) := gi(x;), Vx € R"}, fori e [n],
M =1k € [m]: hi(y) :== hi(yj), Yy € R"}, for j € [m],

and suppose

UN =1L NN =0.¥i #85 ( My =Dh), M;OM; =8,Y] # ],

i€n] J€lm]

which means that for any [ € [n], there is an i € [r] such that g; is only dependent on
x;, and for any k € [/n], there is a j € [m] such that A is only dependent on y;. In
this section, we consider a case of (1.1) as follows

minmax f(x.y) = c(x.y) + A1 oY @D =r Y D ey

i€l IeN; jelml keM,
5.1
Moreover, we assume that X’ and ) satisfy Slater’s condition, i.e.
int(X) #0, int()) # ¢, (5.2)
and have the following structures
X=XnX, Y:=Yn), (5.3)
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where ~ ~
X=xeR':u<x<u}, VY={yeR":v<y<¥V) (5.4)

withu, u e R",v, ve R, u <u,v <V, and
X={xeR':ux <0 relil), Y={yeR":v(y) <0, selnl} (55
with Lipschitz continuous convex functions u; : R” — R for ¢ € [1] and v; : R" —

R for s € [m].
Denote

To(x) ={r € [n] 1 u; (x) =0}, So(y) = {s € [m] : vs(y) = 0}.

Since int()?) D int(&X) # @, by [20, Theorems 6.8.2 and 6.8.3] and [29, Proposition
5.3.1 and Remark 5.3.2],

N = Y [0,+00)du,(x), VxeX. (5.6)
teTy(x)

Using int(X) # ¢ again, we have
Ny (x) = N 3(x) + N3(x). (5.7)

Similar calculation can be put forward to ).
For any i € [r] and j € [m], denote

¢ix) =Y (@)’ vy = Y, Uy
leN; keM;

and define their continuous relaxations by

¢F i, ) =Y r@ex), 0, YRy, w =Y ruy), w (5.8)
IEM kEMj

with 7 in (3.2) and i > 0. We consider the continuous relaxation of (5.1) as follows

minmax /0y, ) = ey +h )6 =k Y v W 59)
i€ln] J€lm]

_ We impose the following assumption on functions g and / related to the sets X and
X in (5.4)-(5.5).

Assumption 5.1 There exist positive numbers T and o such that the following condi-
tions hold.

@ Springer



Nonsmooth convex—concave saddle...

(i) For any x € &, if there exist i€ [n] and [ e /\/’; such that g;(x;) € (0, 7), then

lgf(x)] = 0, x; € int()), (5.10)
ax) ¢[0,7], VieN; | # I, (5.1D)
E;’(x)glf(x;.) >0, VE(x) € du(x), t € To(x). (5.12)
(i) For any y € ), if there existf € [m] and k e ./\/ljc such that hlg(yjc) € (0, 1),
then
h. ()l =0, y; €intYs), (5.13)
he(yp) ¢ 10, 7], Yk e M, k #K, (5.14)
n}(Y)h;;(Y;) >0, Vn'(y) € du(y), s € So(y). (5.15)

When ap < 7, (5.11) is used to guarantee that for any x € X and i € [n], there is
at most one [ € N such that r(g;(x;), ) # (g/(x;)+)°. If there exist i€ [n] and
[ e /\/’l such that r(g;(x;), n) # (gi(x;.)+)0, by (5.10) and Assumption 3.1, if r(-, n)
is Lipschitz continuous around g;(x;), we obtain

inf(§ 1 § € Byr(g(x), 1) = po/u, (5.16)

and by (5.6), (5.7) and (5.10), [NX(X)];. = 0 or [NX(X)];. = [Ny®)]: =

[ > [0, —i—oo)au[(x)]?, which together with (5.12) implies that
1€To(x) !

£(x)g:(x) =0, VEX) € Nx(x). (5.17)

In particular, if A; = {i} and M; = {j}foralli € [n] and j € [m], then (5.1)
reduces to

minmax f(x,y) := c(x,y) + A1 D @)’ =22 ) iy’ (5.18)
i=1 j=I1

Remark 5.1 Consider

F&y) =@ y) + il —a)lo+rill@—%)+llo = 2201y = D) llo — 22l(b = ¥)+lo,
(5.19)

with a,a € R"” and b, b € R™. Then (5.19) is a special case of problem (5.1) with
gi(Xi) = Xi —a;, gnti(Xi)) = & —x;, 0 € [n]; hj(y;) =y; —b;, hmyj(yj) =
b; —y,,j€ml

In particular, the following three cases satisfy Assumption 5.1-(i), while the judg-
ment on Assumption 5.1-(ii) is the same.
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e Case l: Let ¥ = {x € R" : u < x < u} and f be defined as in (5.19) with
a, a € X. Then, Assumption 5.1-(i) holds with

o =1 and 7 =min{ty 1, 7x2}, (5.20)

where

Tx,1 =min{l,u; —a;,a; —w; : 4; > a;,a; > Ww;,i € [n]},

Tx,2 = min{l, |a, —a;|/2: a; #a;, i € [n]}.

° Qase 2: Let f be defined as in_(5.19) witha > 0,a < 0,b > 0, b <o,
X={xeR':u<x<u}and X be

X={x:[x2<8} or X={x: x| <8}

with § > 0. Then Assumption 5.1-(i) also holds with o and 7 in (5.20).
e Case3:Let ¥ ={x e R" :u<x <u}, ¥ = {x:Ax < ¢} with A € R,
¢ € R and f be specialized to

J&xy) i=cxy) + Al —=a)ilo — 220y = D)+ llo

with a; € [w;, u;) and hj € [gj,Vj) fori € [n] and j € [m]. Then Assumption

5.1-(i) also holds with o = 1 and T = min{l, w; — a; : w; > a;,i € [n]}.

In particular, case 2 in Remark 5.1 indicates that problem (1.3) with X = {x : u <
x<u |[|x]j <1l}and Y ={y: v <x <V, |lyll; <1} satisfies Assumption 5.1, and
the problems in case 3 satisfying Assumption 5.1 include

minmax f(x,y) :=c(X,y) + ArlIxqllo — A2lly+llo
xeX ye)

with X = (X |X[loo < 1, e'x < 1}and Y = {y : |[¥lleo < 1, €Ty < 1} as a special
case. Moreover, (5.1) satisfying Assumption 5.1 is not limited to problem (5.19). For
example, the following problem

minmax f(x,y) 1= c(X,y) + Arlxello — 22 Y ((sin(dy;)+)°
xeX ye) eml

with X = {X : ||X]|lco < S} and Y = {y : |lyllecoc < 5} also satisfies Assumption 5.1

Withr:%andozl.

5.1 Density function p under Assumption 3.1

In this subsection, we will show that when problem (5.1) satisfies Assumption 5.1
and density function p satisfies Assumption 3.1, Assumptions 4.1 and 4.2 hold for the
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continuous relaxation of (5.1) formulated by (5.9). Moreover, we need assume that p
has an upper bound on its support set, i.e. there exists a p > 0 such that

p(s) =p, Vse (. (5.21)
Here, the density function p in Example 3.1 with p = 1 satisfies this condition with
p = 1.Inthis situation, 7 (-, w) is Lipschitz continuous on R, which implies fR G, )
is Lipschitz continuous on R” x R for any fixed u > 0. Moreover, when the density

function p is as in Example 3.1 with p = 1, we will give more discussion on the
weak-d stationary points of (5.9) and its smoothing version in (4.27).

5.1.1 Relations on saddle points and minimax points

From the boundedness of X and ), there exists a positive constant L. ; such that for
allx € X andy € ), it holds

[0xc(X, Yoo < Le,1 and  [[dye(X, Y)lloo < Le,1- (5.22)
For a given # € Ry 4 and § € ), if x* is a local solution of minycy fR(x,§y, 1),

then
0 € dx fR(*, §, 1) + Ny (xh). (5.23)

Similarly, for X € &', if y* is a local solution of maxycy fR(i, y, 1), then

0 c —ay fR(x, ¥y, 1) + Ny(y"). (5.24)
Fori € [n] and j € [m], by [14, Proposition 2.3.9], we have

O B (i, 1) C O (xiy ) 1= ) 9 (2, 1) 1= gy ) 81 (X0),

leN;
. (5.25)
Oy YRy ) SOy YRy = D 9t Wimmeyp i (Y )-
keM;
By [14, Corollary 2] and recalling (5.25), one has
n
O fR*, 5. 10) S O f RO, §, 1) 1= e (x*, §) + 01 D Ox, 6 (XF, e,
i=1
(5.26)

m
Oy fR& y*, 1) C Oy fRE ¥ ) = 0ye® ¥ — A2 Y 3y, U R(yT, we;.
j=1
(5.27)

Combining (5.23) with (5.26), and (5.24) with (5.27), we obtain that
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e if x* is a local solution of miny¢ y fR(x, y, i), then
0 € dxfH (", 3, 1) + Nao(x*); (5.28)

e if y* is a local solution of maxycy fR(&x,y, n), then
0 c —dy fR&, ¥y, 1)+ Nyy"). (5.29)
If (x*,y*) € X x Y is alocal saddle point of (5.9), then (5.28) and (5.29) hold at

X=x"andy = y*.
In the rest of this paper, we denote A = min{A1, A} and set

A
! GB} (5.30)

1 =min{—,
o Lc,l

with 7, o in Assumption 5.1, « in (3.1), P in Assumption 3.1, and L. 1 a constant
satisfying the two inequalities in (5.22). Here, 0 < pu < 1 < 7/a gives po < ,
which together with (3.4) implies

if gi(x;) ¢ (0, 7), then r (g (x:), ) = (g1(x1)+)°, VI € Ni, i € [nl;
if hi(y;) ¢ (0, 7), then r(he(y), w) = (he(y;)+)°, Yk € M;, j € [m].

Next, we will derive the lower bounds in (4.1) and (4.2) based on (5.28) and (5.29),
respectively.

Proposition 5.1 Suppose problem (5.1) satisfies Assumption 5.1. When density func-
tion p satisfies Assumption 3.1 and 0 < pu < 1 with i1 defined in (5.30), then the
continuous relaxation model in (5.9) owns the following properties:

if (5.28) holds at (x*,y) € X x Y, then gi(x}) ¢ (0, ap), VI € Nj, i € [n],
(5.31)

if (5.29) holds at (X,y*) € X x ), then hk(y;f) ¢ (0,apn), Yk e M, j € [m].
(5.32)

Proof We argue the above statements by contradiction.

If there existi € [n] and [ € ./\/; such that 0 < gi(x;f) <oau,byou <ap; <,
Assumption 5.1, (5.25) and (5.26), we obtain x:f € int(??;), and

[Ox f R 5,5, 10T = [9xe ", P; + Aidyr (875, ).
From Assumption 5.1-(i), (5.16), (5.17) and (5.28), we further have that
hop/u < Le, (5.33)
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which contradicts u < it < A10p/Le,1. Thus, (5.31) holds. Similar analysis can be
derived to (5.32). O

Thus, under the conditions in Proposition 5.1, Assumption 4.1 holds naturally for
any u € (0, o) with ft1 defined in (5.30). In what follows, we will verify Assumption
4.2 in this situation.

Proposition 5.2 Suppose problem (5.1) satisfies Assumption 5.1. Then Assumption 4.2
holds for (5.9) when density function p satisfies Assumption 3.1 and 0 < pu < 11 with
1 in (5.30). Moreover; all global minimax points of (5.9) satisfy the lower bounds in
(4.1) and (4.2).

Proof Forx € X, if y* is a global maximizer of f R(x, y, i) on ), then (5.29) holds.
By Proposition 5.1, we have hk(yjf) ¢ (0,ap), Yk € M;, j € [m], which means
Assumption 4.2-(ii) holds. Now we prove Assumption 4.2-(i) holds. Denote

Ry, w=cxy) = Y vy, m, o = max Ry, w.

jelm]

For an x € X, let yx be a maximizer of flR (X,y, ) on Y, then it is also a maximizer
of fR(x,y, u) on Y. Forany X, X € X, if 9(X, u) > 9 (X, i), then

P& ) — P& < & ye ) — R Yz ) < Lealk — Rl
Similarly, if 9 (X, u) < 9 (X, n),
& ) — X 1) < [y ) — & yeo ) < Lealx =Rl

Thus, ¥ (-, ) is Lipschitz continuous on X with constant L. .
Let x* be a global minimizer of ¥ (x, u) + A1 )y dR(xi, ) = maxycy fR
(x,¥', n) on X. The first order necessary optimality condition gives

0 € [0x? (x*, )i + A%, ¢F (X7, 1) + [Ny (X", Vi € [n]. (5.34)

Assume there exist i € [n] and [ e A/Z such that 0 < gi(x;‘ ) < ap. Similar to the
derivation in Proposition 5.1, we also obtain (5.33) and a contradiction to the value
of w. Thus, foralli € [n]and [ € N}, g (x) ¢ (0, au), which together with the
above analysis gives that any gloabl minimax point of (5.9) satisfies the lower bounds
in (4.1) and (4.2). Hence Assumption 4.2-(i) holds. O

Similar to the proof of Proposition 5.2, we can show that all local minimax points
of (5.9) satisfy the lower bounds in (4.1) and (4.2). Moreover, similar to the proof of
Theorem 4.2, we can have the relation on the local minimax points between problems
(5.1) and (5.9). Combining this with the above discussion, we conclude the relations
on (5.1) and (5.9) in the following theorem.
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Theorem 5.1 Suppose problem (5.1) satisfies Assumption 5.1, density function p sat-
isfies Assumption 3.1 and 0 < p < 1 with i1 defined in (5.30), then the following
statements hold:

(1) (x*,y%) is a saddle point (global minimax point) of problem (5.1) if and only if
it is a saddle point (global minimax point) of (5.9);
(i) (x*,y*) is an ap-strong local saddle point of (5.1), if it is a local saddle point
of problem (5.9);
(iii) (x*, y*) is a local minimax point of (5.1), ifit is a local minimax point of problem
(5.9).

5.1.2 Stationary points of (5.9) with p in Example 3.1 withp =1

In this subsection, we focus on the relations of (5.1) and (5.9) when the density
function p is defined as in Example 3.1 with p = 1, which makes the corresponding
function r satisfy Assumption 3.1 with « = p = 1 and (5.21) with p = 1. Theorem
5.1 has established the relations on the (local) saddle points and global minimax
points between problems (5.1) and (5.9). In this subsection, we suppose problem (5.1)
satisfies Assumption 5.1, and functions g;, hy in (5.1) are convex foralll € N;,i € [n]
and k € M, j € [m]. We will study the relations on a class of stationary points of
(5.9) with the u-strong local saddle points of (5.1) in what follows.

For a locally Lipschitz continuous function ¢ : R” — R, the generalized (Clarke)
directional derivative [14] of ¢ at point x in direction v is well-defined, i.e.

o . @(z+1v) — ¢(z)
¢°(X,v) =limsup ———8 ™.
z—Xx,t)0 t

Function ¢ is said to be Bouligand-differentiable (B-differentiable) at x, if ¢ is locally
Lipschitz continuous around x and directionally differentiable atx, i.e. forany v € R",

/ . P(x +1v) — @(x)
¢ (X,v) =limsuyp ——mMMMMM@M8M8m ™ —
110 t

exists.

It is well-known that ¢° (X, v) > ¢'(X, v) in general and these two directional deriva-
tives are the same if function ¢ is (Clarke) regular [14]. However, most nonconvex
functions are not regular and a nonsmooth nonconvex function is not always direc-
tionally differentiable. Notice that convex functions and differentiable functions are
directionally differentiable, then a DC (difference-of-convex) function is directionally
differentiable [44], where we call function ¢ a DC function, if it can be formulated by
the difference of two convex functions. This promotes some kinds of stationary points
for the DC programming [39], such as the d(irectional)-stationary point and the weak
d-stationary point, both of which are generally stronger than the Clarke stationary
point.

Note that r (¢, 1) in Example 3.1 with p = 1 can be expressed by the following DC
function

r(t,m) =ty/pm— @ — pw)+/1. (5.35)
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From the definitions of qSiR and f in (5.8), the objective function in (5.9) has the
formulation of

fR(X, Y. ) =c(X,y) + Ag Z Z (g1 (X)) /1 — (g1(x;) — )4/ 1)
i€[n]leN;
—2 Y > (/i — iy — w /). (5.36)
jelm] kEMj

For fixed x* € X, y* € Y and u € R, denote
AEL00 2 Ry . fE 02 Rty w,
and consider the following two optimization problems

. R R
gé%fy*,u(x) and Iyneaj)}(fx*’u(y). (5.37)

By (5.36) and the convexity—concavity of ¢, the two objective functions in (5.37) are
DC functions with respect to x and y, and then they are B-differentiable on X and
Y, respectively. For the sake of completeness, we recall the definition of d-stationary
point in DC programming. We call x* € X a d-stationary point [17, Definition 6.1.1]
of the minimization problem in (5.37), if

()& x—x") >0, Vxed, (5.38)

which is a necessary optimality condition to the minimization program in (5.37).
Define
wi(t)=t, @) =0, @@)=max{w (1), @21}

and D(t) = {d € {1,2) : @ (1) = wa(1)}.

It is clear that

1 ift >0
w{(t) =1, @) =0and 9w (r) = { [0,1] ifr=0
0 ift <O.

(5.38) is equivalent to that, for any g, € D(g;(x]) — ), it holds

Al
m D 2 Do Dimgix) -8 (XD € dxe(x",y")
i€[n]leN;
Al
+=0 | D D @) | + Nax), (5.39)

i€[n]leN;
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in which by [14, Proposition 2.3.10],

Yo wm@E) | =D 0w (g8l (e

i€[n]leN; i€[n]leN;

Similarly, we call y* € ) a d-stationary point of the maximization problem in (5.37),
if

L) G5y—y) <0, Vyel,
which is equivalent to that for any p; € D(hy (y’j‘f) — ), it holds

Z Y @ e D=yl (Y7,

/e[m] keM;

A
€ —dyex*, ¥y + 20| D D @) |+ NyGH.  (5.40)
j€lml ke M;

Based on the above analysis, we introduce the following definitions to min—max
problem (5.9).

Definition 5.1 For (x*,y*) € X x ),

o if (5.39) and (5.40) hold for all g; € D(g(x]) — ) and p; € D(hk(y ) — W)
withi € [n],1 € Nj and j € [m], k € M, we call (x*,y*) a d-statlonary point
of min—max problem (5.9);

o if there exist a couple of sequences ¢, € D(g;(x) — u) and p} € D(hk(y*) — W)
fori € [n],l € N;and j € [m), k € M, such that (5.39) and (5.40) hold we
call (x*, y*) a weak d-stationary point of min—max problem (5.9).

On one hand, if (x*, y*) is a local saddle point of problem (5.9), then it is a (weak) d-
stationary point of (5.9). On the other hand, if (x*, y*) € X x ) is a weak d-stationary
point of (5.9), then it satisfies (5.28) and (5.29).

Proposition 5.3 Let density function p be defined as in Example 3.1 with p = 1 and
0 < u < a1 with iy defined in (5.30). If (x*,y*) is a weak d-stationary point of
(5.9), then the following statements hold:
() &(x)) ¢ (0, w), VI € N, i € [n] and hi(y5) ¢ (O, w), Vk € M, j € [m];
(ii) ifgi(xlf) = | for some i €nlandl € ./\/l~ then the qli" € D(gl(X~) — )
satisfying (5.39) is unique and qlf =1
(iii) ifh,;(yji,) = u for some | € [m] and k € /\/ljf, then the p,’cf € ’D(h,;(ij) )
satisfying (5.40) is unique and p;(f =1

Proof From Proposition 5.1, (i) holds naturally. Next, we argue (ii) by contradiction
and (iii) can be proved similarly. For item (ii), suppose there existi € [n] and [ € /\/;
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such that gf(xli‘) = u and (5.39) holds with qlik = 2. Forany! € J\/’l~ and [ # 1, by

Assumption 5.1 and u < 11 < 7, we have xlik € int(z’\?;) and gl(x;f) ¢ [0, t], which

implies g; € D(g (le) — ) is unique and w(;[* (t)f=g1(xli‘)—u = w/(z)[:gl(x?). Then,
(5.39) gives

% Al * *

0 € [elx", ¥l + g1 + INx ()] (5.41)

Using Assumption 5.1, (5.7) and (5.17), we confirm that MTJ < L¢,1, which con-

tradicts to the supposition on the value of u and gives the result in (ii). m]

Fort € R, denote AY(1) = {I € \; : g(t) = 0} and B?(t) ={keM;:h(t) =
0}. For given (x*,y*) € & x Y and p € R4, consider the following two functions

MM "
Wy yeu(®) = e, ¥+ =D D g+, (5.42)
His 1eA(x})
Ao i
vx*,y*,ﬂ(y)z—c<x*,y)+;Z > s (5.43)

i=1 0 (%
J kij(yj)

If g; is convex for any [ € [7], by the convexity of c(-, y*), function Wy y« , is
convex on X', which gives that x* is a minimizer of Wy+ y+ , on X if and only if

0 €dWyx y+ 1 (X*) + Ny (x¥)

M (5.44)
= ey + 3 YT 0. 11g) () | e+ Na(x).

i=1 \1eA)x})

Similarly, if &y is convex for any k € [m], Vx# y*,u 18 convex on Y and y e Visa
minimizer of Vy= y« , on ) if and only if

0e an*,y*,u(y*) + N)/(y*)-

In what follows, we will verify that all weak d-stationary points of (5.9) are p-strong
local saddle points of (5.1).

Theorem 5.2 Under conditions of Proposition 5.3, if (x*,y*) € X x Y is a weak
d-stationary point of (5.9), then it is a p-strong local saddle point of problem (5.1).

Proof Since (x*, y*) is a weak d-stationary point of (5.9), putting forward the results
in Proposition 5.3 to (5.39), we have (5.44), which means that x* is a global minimizer
of Wy y+ , on X, i.e.

)\’ n
e y) sexy)+ Y Y gxi)e. YxeX. (545
=1 1e A (x})
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Then, (5.45) means that forany x € {x € &' : g;(x;) < 0ifg;(x}) <O0forl e N; and
i € [n]}, it holds c(x*, y*) < c(x, y*). Similarly, Proposition 5.3 together with (5.43)
implies that y* is a global minimizer of Vy+ y« , on ) and we further have that y* is a
maximizer of c(x*, -)on{y € YV : hi(y) < 0 if hk(y;f) <Ofork € M;j and j € [m]}.
Thus, from Theorem 2.1 and recalling Proposition 5.3-(i), (x*, y*) is a u-strong local
saddle point of (5.1). m]

Remark 5.2 Following the proof of Proposition 5.3, when 0 < u < ji1, if x* and y*
satisfy
x* € arg min Wy yr 1 (x)  and y* € arg min Ve ye 1 (Y5
xeX yey

then (x*, y*) is a u-strong local saddle point of (5.1).

By [33, Proposition 17], any local saddle point is a local minimax point. Then, by
Theorem 5.2, any weak d-stationary point of problem (5.9) is also a local minimax
point of problem (5.1).

Since the continuous relaxation functions to the cardinality functions in (5.9) are
DC functions and variable separated, the proximal operator of its subtracted convex
function can be calculated directly in most cases. Moreover, to solve problem (5.9)
with a nonsmooth function c efficiently, we can use a smoothing approximation of
(5.9) as follows

n m
minmax fR(x.y. . 8) = y. )+ Y of(xi. ) — 22 Y vy, .
xeX ye)y i1 =
(5.46)
where ¢ is a smoothing function of ¢ defined by (4.26). Similar to the expression in
(5.36) and by Proposition 4.2-(ii), for fixed u > O and ¢ > 0, fR (X,y, U, &) in (5.46)
is a DC function with respect to x and y, respectively. Thus, the d-stationary point and
weak d-stationary point to (5.46) can be defined according to Definition 5.1. By using

the gradient consistency (4.23)—(4.24), we have the following result.

Proposition 5.4 Let ¢ : R" x R” x (0, 1] — R be defined as in (4.26). If {(x*, y*)}
is a sequence of weak d-stationary points of (5.46) with ¢ := ¢ | 0, then any
accumulation point of {(x*, y¥)} is a weak d-stationary point of (5.9).

5.2 Density function p under Assumption 3.2

Section 5.1 focuses on the study of (5.1) with a density function p satisfying Assump-
tion 3.1. From Table 1, we find that the other three density functions satisfy Assumption
3.2 and the corresponding continuous relaxation function r (-, ) owns the continu-
ous differentiability on R, which may bring some convenience to its algorithm
research when ¢ is smooth. Thus, in this subsection, we pay attention to the results of
the continuous relaxation to (5.1) with density function p satisfying Assumption 3.2
and consider (5.1) under the following conditions:

(i) functionsc, g;,1 € [n]and hy, k € [m] are Lipschitz continuously differentiable;
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(ii) the feasible regions are defined by the box constraints, i.e.

where u, U, v and V are defined as in (5.4);

(iii)) Assumption 5.1 holds, in which the conditions of (5.12) and (5.15) can be
ignored;

(iv) under Assumption 3.2, there exist po > 0 and pg > 0 such that

p(s) < p2, Vse€(0,a) and ltif(}p(t) = 0. (5.47)

In this case, (5.2) holds naturally and we will consider the second order necessary
optimality condition of (5.1).
To proceed, we first introduce some notations on the existing parameters.

e By virtue of the Lipschitz continuous differentiability of c on X' x ), there exists
L. > such that for any x € X,y € ), it holds

sup{| Hii|. [Mj| : H € 93c(x.y), M € 8} c(x.y).i € [n], j € [m]} < L.

X

e Since g; : R — R is Lipschitz continuous differentiable on X; for [ € N;, and X;
is compact, there exists L, > such that

sup{|§|: € € 9°g1(x)), xi € X i € [n],] € Ni} < Ly,
Similarly, there exists Ly > such that
sup{[n] : 0 € 3*hi(y)),y; € V). j € [ml.k € Mj} < L.
e Fort e R,i € [n], j € [m] and § > 0, denote
A;fi(t) ={leN; :0<gl() <3} B;j(t) ={keM;:0<h(t) <S5}
Proceed to the next step, and let

)\.U > 2 ~ 2

T P Ao Ao

ﬁzzmin{—, = L — 2009 } (5.48)
@ Ley tLhep/ao+Apalgn then/a+A202Lp2

with A = min{A1, A2}. In particular, when g, k. are linear functions and c(, -) is also
T )\'UBZ
a’ L

linear with respect to x and y, respectively, then 1o = { } . If we further choose

p as in Example 3.3 or Example 3.4, then, ji; = g
In what follows, suppose that p satisfies Assumption 3.2 and 0 < u < o with o
defined in (5.48). By the Lipschitz continuity of p on R, r(g;(¢), i) is Lipschitz
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continuous differentiable on {¢ : g;(¢) > 0}, VI € [7]. When g;(¢) > 0, by (3.9), the
second order generalized derivative of r(g;(¢), ) with respect to ¢ satisfies

00(8)s=g; (1) /10 p(gi®)/ 1) 52
2

(8/1)* + 8i().
y (5.49)
where p(gi(1)/p) = 0 if g(1) ¢ [0, 7). Then, 97r(gi(1), 1) = {0} when g (1) ¢
[0, 7). Thus, if x* is a local solution of minycy f®(x,y*, 1) and Aii(x;“) # ) for
i € [n], by Assumption 5.1 and the second order necessary optimality condition [30],
then

02r(gi(t), ) C 2r(gi(r), ) :=

{ there exists a unique le N; such that 0 < gi(x;‘) < 7 and

there exists a w; € [83Xc(x*, Y9 + klétztr(gi(t), W)=x* such that w; > 0,
l (5.50)
whichimplies X} € int(X;). Similarly, if y* is alocal solution of maxycy f Rix*,y, w)
and B::j(y;f) # @ for j € [m], then

there exists a unique k € M such that 0 < h $(¥7) < tand

: 2 52
there exists a w; € —[d5yc(X*, y)1jj + A20;r (hp (1), u),:y;ﬁ such that @; > 0.
(5.51)
Thus, inspired by the first and second order necessary optimality conditions to

x* € argmin fR(x,y*, u) and y* € argmax fRx*,y, n), (5.52)
xeX yey

we introduce the following definition.

Definition 5.2 We call (x*, y*) € X x ) a weak second order stationary point of
problem (5.9), if

0cdfRx* y*, )+ Ny(x*) and 0e —dyfR(x* y* 1)+ Ny(y*), (5.53)

where 3y fR(x*, y*, u) and 5yfR(x*, y*, u) are defined in (5.26) and (5.27), and for
any i € [n] with AT, (x7) # 0 and j € [m] with B} jO0) # @, (5.50) and (5.51)
hold, respectively.

It is clear that (5.50)—(5.51) and (5.53) are weaker than the general first and sec-
ond order necessary optimality conditions to (5.9), respectively, so we call it “weak"
stationary point.

Theorem 5.3 Suppose problem (5.1) satisfies Assumption 5.1, density function p sat-
isfies Assumption 3.2 and 0 < p < [ip with [iy defined in (5.48). Then, the following
statements hold.

(1) If (x*,y%) is a weak second order stationary point of (5.9), then

g1(x)) & (0,ap), Yl e N, i € nl; hi(y}) ¢ (0, ap), Vk € M;, j € [m].
(5.54)

@ Springer



Nonsmooth convex—concave saddle...

(i) (x*,y*) is a saddle point of (5.1) if and only if it is a saddle point of (5.9).

(iii) (x*,y*) is an au-strong local saddle point of (5.1) if it is a local saddle point
of (5.9).

(iv) When functions gj, hy are convex for alll € [n] and k € [m], (x*,y*) is an o p-
strong local saddle point of (5.1) if it is a weak second order stationary point of
(5.9).

Eroof To prove (i), we argue the results in (5.54) by contradiction. Suppose there exist
i €[n]and/ € N; such that 0 < gl(x-) < au.

By Assumption 5.1, since e < t, then x~ € int(X%), and for any € N l # I,
8l (x~) ¢ [0, t], which together with (3.4) 1mphes that

vlr(t’ M)t:g,(x;‘) =0 and Vtzr(t, :u)t:gz(xli*) =0.

Next, we obtain the contradiction to 0 < g7 (X~) < apu from two cases.

Case 1: sup{a : a € 3,0(gl(X~)//L)} > —pp. By Assumption 3.2, it means that
,o(gl(x Y u) = Py Similar to the discussion in Proposition 5.1, by u < fia <
Ala@/LL, 1, it brmgs a contradiction.

Case 2: sup{a : a € 8,0(gl(x )/ )} < —p2. By (5.49) and (5.50), there exist

§ € [ < C(X*, ¥) =, s € ap(t)t=g,-(xli‘)/u and §; € 92 g[(t),zxf* such that

(g7(x3)/1)
b L (gl 44 %g > 0. (5.55)

Recalling Assumption 3.2 and by i < -, an estimation on the left side of (5.55)

gives
Lept

0< — Mo’/ hipaLg o, (5.56)
~ 2
which contradicts to . < jip < m;ﬂﬁ% given in (5.48). Therefore, g;(x}) ¢

0, ap), VI € N;,i € [n]. Similarly, hk(y ) ¢ (0, ap), Vk € M, j € [m]. Thus, (i)
holds. Moreover, (i) implies Assumption 4 1. By Theorem 4.1, we can obtain (ii) and
(iii).

(iv) Suppose (x*, y*) is a weak second order stationary point of (5.9). To proceed
the proof, we use a slight modification of functions in (5.42) and (5.43) as follows

Wye g (X) = c(x, y )+‘—"°Z > ) (557)
i=11eA(x})
A200
Vi ye i (¥) = —c(x”, y)+—Z D G+ (5.58)
j= 1ke80(y)
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which are convex on X’ and Y, respectively. By Assumption 3.2 and (3.3), if g;(x}) >
apor g (x’) < O0forsomei € [n]and! € N, then d;r(t, u)t=g1(x;ﬁ)gl’(x;‘) = 0. From
(1), (x*, y*) satisfies (5.54). Thus, using (3.3) again and by (5.53), we have

n

A
0 Ve, y) + 222313 [0, 11g/) | e+ Netx™, (5.59)
i=1 \1e AV x)

which implies 0 € 9x Wy y+ , (x*) + Ny (x*). Thus, x* is a global minimizer of
Wy y* ,(X) on X'. In what follows, similar to the analysis in Theorem 5.2, we get that
(x*, y*) is an au-strong local saddle point of (5.1). O

5.3 Continuous relaxations defined by different density functions

In this subsection, we use three examples to explain the different properties of the
continuous relaxation problems constructed by the density functions that satisfy
Assumption 3.1 or 3.2. In particular, we use the density functions in Examples 3.1 and
3.3 to construct two different continuous relaxation problems, which have different
relations with min—max problem (1.1) regarding local saddle points and strong local
saddle points.

e In Example 5.1, we show that we can provide a possible larger lower bound to the
saddle points of (5.1) by the analysis on the continuous relaxation models with
different density functions.

e It is interesting to see in Example 5.2 that the bounds in (4.1) and (4.2) with
0<u < ptr, t1in(5.30) and ¢ = 1 (given in Sect. 5.1 by the continuous relation
model with density function in Example 3.1 and p = 1) is satisfied by the global
minimax points of this example, but these bounds with 0 < p < i3, 12 in (5.48),
and « in Assumption 3.2 (given in Sect. 5.2 by the continuous relation model with
a density function satisfying Assumption 3.2) may not hold to the global minimax
points.

e Note that all the functions (-, ) in Examples 3.1-3.4 can be expressed by DC
functions and continuously differentiable on (0, au), where p = 1 in Example
3.1. Then, when c is continuously differentiable, both the weak d-stationary points
and weak second order stationary points to these continuous relaxation models are
well-defined. In Example 5.3, we will show that a weak second order stationary
point is not necessary to be a weak d-stationary point of the continuous relaxation
problem with a density function in Example 3.1 and p = 1. Moreover, a weak
d-stationary point is also not necessary to be a weak second order stationary point
of the continuous relaxation problem with a density function in Example 3.3.

Example 5.1 Consider

i ,Y) (= (x— 1 -1 3 -3 . 5.60
Xer[n_lgz]yg_az)fz]f(x y) = — Dy —D+3[xllo—3lyllo (5.60)
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In Example 2.1, we have verified that (0, 0) is the unique saddle point of (5.60).
Assumption 5.1 holds witho = 1,7 =2, L,y =3and Lo = Lg> = L2 = 0.

Case 1: Choose the density function p in Example 3.1 with p = 1 to build up its
continuous relaxation. Then, « = 1, p = 1 and then £; = 1 in (5.30). Since we can
choose any 1 in (0, fi1), by Theorem 5.1, it gives that the saddle points and global
minimax points of (5.60) satisfy the lower bounds that

either x = 0or |X| > vand eithery =0or |y| > v (5.61)

withv = 1.

Case 2: Choose the density function p in Example 3.3 with @ = 2 to build up its
continuous relaxation. Then, the analysis in Sect. 5.2 gives that i = 1. By Theorem
5.3, we have that any saddle point of (5.60) satisfies the lower bound in (5.61) with
v=2.

Example 5.2 Consider

min max_ f(X y) =&— Dy —1D+lxllo—lyllo-
xe[—2,2] ye[-2

Example 2.1 shows that (3/2, 0) and (3/2, 2) are global minimax points of this prob-
lem.

By basic calculation, 11 = 1/3 when we define p by Example 3.1 with p = 1.
Then, by Theorem 5.1, any global minimax point of this example satisfies (5.61) with
anyv=pu < .

However, when we define p by Example 3.3 with ¢ = 2, then 1> = 1. Itis obvious
that neither of the two global minimax points satisfies (5.61) with v = ax when
3/4 < < a.

Example 5.3 Consider

- D( - - . 5.62
Jnin max 660y = 6= D=y Flxlo— vl (562

On one hand, choose the density function p in Example 3.1 with p = land u = 1/4
to build up its continuous relaxation, where 0 < u < 1 = 1/3. For this case, we
can verify that (—1/4, 1/4) is a weak second order stationary point of its continuous
relaxation model, but it is not a weak d-stationary point of it and is also not a local
saddle point of (5.62).

On the other hand, choose the density function p in Example 3.3 with « = 1 and
u = 1to build up its continuous relaxation, where 0 < u < fip = 2. For this case, we
can easily check that (1, 1) is a weak d-stationary point but not a weak second order
stationary point of this continuous relaxation model, and it is not a local saddle point
of (5.62).

At the end of this subsection, we summarize the relations between min—max prob-
lem (5.1) and its continuous relaxation problem (5.9) in Fig. 1. From Fig. 1, we find
that both weak d-stationary point and weak second order stationary point of (5.9) are
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T R ..
hold for ™ with capped-£, points satisfying the lower bounds

{TT hold for f# with SCAD, MCP or hard
thresholding

t hold for f* with the four relaxations

=

minmax f(x
ziin o f(x.y)

local saddle e |! local minimax global
point ap-strong local saddle point :ﬂ point minimax point

=7 7 4
HH L[| HH R

local saddle weak d- weak second order local minimax X .global )
point stationary point stationary point minimax point

point
|

: ‘R
min max f(x,y,
Ry T xy, 1)

Fig. 1 Relations between problems (5.1) and (5.9) with different relaxations

necessary conditions to the saddle points of (5.1) and (5.9), but sufficient conditions
to the v-strong local saddle points of (5.1). Getting a bound on v in (2.8) satisfied by
all saddle points of (5.1) would allow us to discard a certain number of local saddle
points which are not saddle points. When problem (5.1) satisfies Assumption 5.1, by
Theorem 5.1 and Theorem 5.2, we can conclude that any saddle point of (5.1) satisfies
the lower bounds in (2.8) with v := u < [, which is obtained by the continuous
relaxation model with p in Example 3.1 and p = 1. For a more special case, we also
obtain from Theorem 5.3 that any saddle point of (5.1) satisfies the lower bounds in
(2.8) with v := au < aji, which is obtained by the continuous relaxation model
with p satisfying Assumption 3.2.

6 Applications

In this section, we use three examples to explain the motivation and theoretical results
of this paper. Moreover, we present numerical results for the third example.

6.1 Distributionally robust sparse convex regression

The sparse convex regression problem
min E[p(x; ¢z, dg)] + Arllx]lo
xeX

has wide applications in data science, where X = {x € R" : u < x < u} with
u < u, (cg,de) € R" x R represents a random data set of interest, ¢(-; ¢z, dg) :
R" — R is a convex loss function and E is the expectation. Widely used convex
loss functions include the censored function (max(ch, 0) — a’g;-)2 and the ¢; function
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|ch — dg|, which are nonsmooth functions. Then, the distributionally robust sparse
convex regression problem can be expressed by

m
minmax » yig;(x) + A1lx[lo (6.1)
xeX yey ; e
with ¢; (X) := @(x;¢;, d;), a set of m samples {¢;, d;}7_, and the approximation

of the ambiguity set )A) ={yeR":y>0 ey =1, |[Ay —b| < 8}. Here
(A, b, 8) € RE¥™ 5 RF x R, describes the approximated ambiguity set in a general
moment form.

Taking account of the constraint on y, the following penalty form

m
minmax > yigi () — fmax(|Ay —b|I* = 8%, 0} +11lxlo  (62)
i=1

xeX ye

c(x.y)

for (6.1) is promising, where 8 > 0 is a penalty parameter and Y = {y ¢ R" : y >
0, eTy = 1}. In (6.2), c(x, y) is nonsmooth with respect to both x and y. However,
thanks to the method in Sect. 4.3, a smoothing function to ¢ can be easily constructed
with the properties in (4.23) and (4.24). For example, if ¢; (x) = |c;rx — d;|, then we
can set

m

Ex.y.e) =Y yif(c]x —di.e) — Bo(|Ay — b|* — 6%, ),

i=1

where ¢ (s, €) is a smoothing function of the plus function s and 8 (s, ¢) is a smoothing

function of the absolute value function |s|. Note that ¢ (s, €) can be defined by any
one of the following formulations:

b(s,e) =s+eln(l+e¢), ¢(s,¢8) = %(s + V52 + 462),

. & _s .
S+ if|s| > ¢ s+ —e e ifs >0

$s.8) =1 (s 4e) $(s.e) =

if|s] <e,
4e

and 6 (s, €) can be given by 8(s, &) = ¢ (s, €) + ¢ (—s, ). From Definition 4.1, it is
clear that ¢ is a smoothing convex—concave function of c. Moreover, by Proposition
4.1, it satisfies (4.23) and (4.24).

S .
ec ifs <0,

| ™

6.2 Robust bond portfolio construction

We consider a portfolio of # bonds with quantities x € X C R’ and time periods
t=1,...,T, where the set ¥ = {x € R" : u < x < u} gives a range of possible
quantities for each bond. Let «; ; denote the cash flow from bond i in period ¢, which
includes the coupon payments and the payment of the face value at maturity.
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Letp € R’ denote the price of the bonds with

T
pi= Y aigexp(—tu; +s7)), i=1,....n,
=1

where s; > 0 is the spread for bond i and u; is the yield curve at time 7. The portfolio
value is given by p " x. Let ¢ be a smooth convex nominal function that may include
tracking error against a benchmark, a risk term and a transaction cost term.
Lety=(',s")" e R"*7T Theset) = {y € R*T : v <y < V) gives a range
of possible values for each point in the yield curve and for each spread.
A version of the robust bond portfolio construction model in [35] is the following
convex—concave saddle point problem

n T

min max c(X, y) := ¢(x) — A Z inai,z exp(—t(y: + yr+i)) — BllAy — bl1,
xeX yey i=1 =1

where ||Ay — b||; describes the uncertainties in yield curves and spreads, and c(X, y)
is a nonsmooth function with respect to y. A robust bond portfolio construction with
sparse selection of bonds is as follows

minmag}cc(x, y) + A1lx|lo- (6.3)

xeX ye

Problem (6.3) is a nonsmooth convex—concave saddle point problem with cardinal-
ity penalty [|x||o, where X is a convex set with int(X’) % @, and ) is a convex set. Note
that the assumption int()) # @ 1in (5.2) and Assumption 5.1-(ii) can be removed, since
(6.3) does not have a cardinality function of y. A smoothing function of ||[Ay — b||;
in the function ¢ can be constructed by 6 (s, ¢) in Sect. 6.1.

6.3 Sparse convex-concave logistic regression saddle point problems

Motivated by the unconstrained convex—concave logistic regression saddle point prob-
lem in [5], we consider the following saddle point problem

N N

T T
minmax c(x,y) ;= > log(l +e %%%) +x Ay — Y log(l + e PPeY)  (6.4)
xeX ye)y y ; g y ; £

where X = {x : [X[looc < 1L YV ={y : I¥llec = 1}, ax € {0, 1}", b € {0, 1}™,
A € {0, 1} and oy, Br € {—1, 1}, for all k € [N]. To find a sparse solution, we
consider the following min—-max model

min max c(x, y) + A1[[x[lo — A2y llo (6.5)
xeX ye)
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with A; > 0 and A, > 0. It is clear that ¢ is a smooth convex—concave function and
Assumption 5.1 holds for (6.5) with t = o = 1. It has

N —ara) x N 7‘3kay
—oke —Bre PkPx
Vxe(X,y) = Z ———ap + Ay, Vyc(x,y) = — Z —bTb +ATx
o1 el S 14 e Pl

By simple calculation, we can set L. 1 in (5.22) by
Le = max {llalloc + 1 Aloos [Bloo + ATl 1} (6.6)

wherea = (ay,...,ay)and b = (by,..., by).

If we choose the density function in Example 3.1 with p = 1 to construct continuous
relaxation function fX(x,y, 1), then @ = p = 1. From the weak d-stationary point
defined in Definition 5.1 and by Theorem 5.2,if (x*,y*) € X' x)Yisaweakd-stationary
point of minye y maxycy f R(x,y, ), then (x*, y*) is a u-strong local saddle point
of (6.5), that is

Ix;| & (0, ), ij-l ¢ (0, u), Vi € [n], j € [m],
0 € [Vxe(X*, y")]i + Ny, (X7), fori € [n] satisfying |X| > p, (6.7)
0 € —[Vye(x*,y91; + Ny, (yjf), for j € [m] satisfying |ij| > .

There are many interesting algorithms for min—max problems [1, 4, 15, 25, 36,
42, 48, 49]. To illustrate our theoretical results, we solve convex—concave min—max
problem (6.4) by the Proximal Gradient Descent Ascent (PGDA) algorithm proposed
in [15] as follows

k+ k+1 k+1

= argmin O(x x5y yh), ¥ = argmax O(x
Xe

k k
XY, Y,
yey

where
< < P < P o 1 . <12
0, Xy, y) := (Vxc(X, ¥), x—X) +(Vyc(X, y),y—y>+§yllx—X|l —Eylly—yll ,

and y > max {[allco, Ibllec} = maxyex yey.icinl.jemm{l[Vaxc®, Vil [[Vyye(x,
Y)1;j;1}. If (x¥, y¥) generated by PGDA converges to (X, ¥), then

0eViex,y)+Nx(X), 0e—-VycX,y) + Nyy),

which implies that (X, y) is a saddle point of (6.4) by the convexity—concavity of c.
To find a sparse local saddle point of (6.5), we define the continuous relaxation

n m
~ ~ ~ ~ - dy .
Qu.dy (X, X1 ¥, §i 1) = Q(X, X: ¥, §) + A1 ) % (x;, 1) — A > dYi(y;, 1),
i=1 j=1
(6.8)
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1 o~
. —Is| iflSl<p ) )
where &% (s, u) = { Notice that for fixed X € X,y € Y and

1 if |5] > .
u >0, Qd,.“dy(~, X; -, ¥; ) is convex—concave.
Combining the PGDA with the alternating index at x* and y¥ in [3], we propose
the following Alternating Proximal Gradient Descent Ascent (APGDA) algorithm

k+1 : k. gk k.

X = argmin O ay (X5 ¥ ¥ 0,

k+1 k+1 ok, k.

Y = argmax O dy (X7 XYL Y ).

Although the two steps in APGDA can be considered as a generalization Algo-
rithm 3.1 in [3] for solving two minimization problems: mingey f (X, y*) and
minycy — f (x**1,y), the convergence analysis of APGDA is not trivial. In what fol-
lows, we give a preliminary result on the convergence of APGDA.

Proposition 6.1 For any initial point (x°,y%) € X x Y, if (x*,y*) generated by
APGDA with n < %‘1)‘2} converges to a point (X,y), then it is a jt-strong local
saddle point of (6.5).

Proof Let ©(s, u) = |s|/u and Po(s, u) = 1. There is a subsequence of {(xk, yk)}
(also denoted by {(x*, y¥)}) and vectors t € R", w € R™ with f;, w; € {1, 2} such

d d
that & (s, ;1) = @, (s, 1) and & I (s, 1) = By, (s. ) forany i € [n], j € [m]
and k € N. From APGDA, we have

0 € [Vxe(xr, y9)1i + y ! —xb) + 41V, @, 5T ) + Ny T, Vi e [n),
0 € —[Vye, ¥91; + v 5T = v + Vi@, 5, ) + Ny, 05T, V) e Iml.

Letting k — oo, forany i € [n] and j € [m], we obtain

0 € [Vxe(X, 9)]i + A1 Vs @y (Xi, ) + N, (Xi), ©.9)
0 € —[VyeX P)j + 22Vs @ (§j. 1) + Ny, § ). '
If there exists i € [n] such that |Xx;| € (0, w), then X; € int(AX;) and the first inclusion
in (6.9) gives L. 1 < % which leads a contradiction. Thus, |X;| ¢ (0, ©), Vi € [n].
Similarly, |y;| ¢ (0, u),Vj € [m].

If there exists i € [n] such that |X;| = w and ¢; = 1, then the first inclusion in (6.9)
also brings a contradiction to the value of . Putting forward these results into (6.9)
gives

x| ¢ (0, ), 1yl ¢ ©O,n), Vie€ln], jelm]
0 € [Vxe(X,Y)]i + Ny, (X;), Vieln], x; #0,

0 € [-Vye®, D)+ Ny, §;), Vjelml y;#0.

Recalling the results in Theorem 2.1, we confirm that (X, y) is a pu-strong local saddle
point of (6.5). O
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For a given point, to determine whether it is a saddle point of (6.4) or a u-strong local
saddle point of (6.5), by the normal cones of X = {X : |[X[|occ < 1} and VY = {y :
l¥lloo < 1}, we define the following evaluation functions

([Vxex, P+ ifx; =1 (=[Vyex, 1+ ify; =1
Ri(x) =1 (=[Vxc(x, M)+ ifx;=—1 S;j(y) =1 (Vyex,]j)+ ify; =—1
[[Vxe(x, y)1;| otherwise, [[Vyex, ;| otherwise.

Itis clear that R;(x) > 0,Vi € [n]and S;(y) > 0,Vj € [m]. Forx € X andy € J, it
holds

e p(X) =) " | Ri(X) =0and q¢(y) := ZT:] Si(y) = 0if and only if (x,y) is a
saddle point of (6.4).

o P = N5 20 (RiI®) + max{p — %], 0D) = 0and () := 35, 20(S;(F) +
max{u —1y;l, 0}) = Oif and only if (X, y) is a u-strong local saddle point of (6.5).

Although the sequence convergence of PGDA and APGDA cannot be guaranteed,
we can compare the behaviour of the sequences generated by PGDA and APGDA
from the same initial points. We conduct a simple test experiment with n = 20,
m = 30, N = 50, .1 = X2 = 1 in Matlab. We randomly generate a binary matrix
A € {0, 1} and for k € [N] randomly generate a; € {0, 1}"*, by € {0, 1}’ with
2 nonzero elements, ok, Br € {—1, 1}. We compute the constant L. 1 as in (6.6) and
obtain u = 0.0323 < f1;, where jt; = min {1, 1/L.} is defined as in (5.30). We
choose an initial point (x°, y°) = 0.2e for running both PGDA and APGDA.

Figure2-(a), (c), (e) plot convergent sequences of xk, yk , D (xk), q (yk) generated by
PGDA and (b), (d), (f) plot convergent sequences of xk, vk, p(xb), §(v%) generated by
APGDA, where each curve in (a)—(d) represents one component of the corresponding
vectors. From Fig.2, we find that the limit point of the sequence (x*, y*) generated
by PGDA does not have a zero element and some elements of it do not satisfy the
lower bounds in (6.7). However, more than half elements of the limit point of (xk , yk )
generated by APGDA are zero, and all elements of it satisfy the lower bounds in (6.7).
This is consistent with the theoretical results and shows the superiority of (6.5) in
finding a sparse solution. Moreover, in Fig. 2-(e), from the convergence of p(x¥) and
q(y%) on (x*, y*) generated by PGDA, we confirm that the limit point of (x¥, y*) is a
saddle point of (6.4), while Fig.2-(f) shows the convergence of ﬁ(xk) and é(yk) on
(x¥, y*) generated by APGDA, which confirms that the limit point of this sequence is
a p-strong local saddle point of (6.5).

7 Conclusion

In this paper, we prove the existence of local saddle points and global minimax points
of problem (1.1) and define a class of strong local saddle points of it. To construct
interesting continuous relaxations to (1.1) based on convolution, we introduce two
classes of density functions which satisfy Assumptions 3.1 and 3.2, respectively. The
induced continuous relaxations include the capped-£, with0 < p < 1, scaled SCAD,
scaled MCP, hard thresholding functions as special cases. Moreover, we establish
the relations between problem (1.1) and its continuous relaxation (3.12) regarding

@ Springer



W. Bian, X. Chen

0.035

100 200 30¢ 0.6

02/

—————————————————————— S @, o Mo
s ®_ho

-0.2

04|

-0.6

-0.8 - -0.8
0 50 100 150 200 250 300 0 50 100 15 200 250 300
k r

(a) x* by PGDA (b) x* by APGDA

0.8 |

0.6 1/

04 Y/

< g
>_ho

02 il

-0.4 (A

0.6

08}

0 50 100 150 200 250 300 0 50 100 15 200 250 300

k E
(c) y* by PGDA (d) y* by APGDA

0 50 100 150 200 250 300 0 50 100 150 200 250 300

k %
(e) p(x¥) and g(y*) by PGDA (f) B(x*) and G(y*) by APGDA

Fig.2 Convergence of xk, yk, p(xk) and q(yk) generated by PGDA and convergence of xk, yk, ﬁ(xk) and
i) generated by APGDA

their saddle points, local saddle points and global minimax points by using the lower
bound properties of g(x) and A(y) in (4.1)—(4.2) at the local saddle points and global
minimax points of the continuous relaxation problem. Moreover, we define the weak d-
stationary points and weak second order stationary points of problem (5.1), which are
necessary conditions for the local saddle points of its continuous relaxation problem
(5.9), while sufficient conditions for the strong local saddle points of (5.1). In addition,
we study the smoothing approximation of (5.9) by using a smoothing convex—concave
function of nonsmooth ¢ and prove that any accumulation point of weak d-stationary
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points of the smoothing approximation problem is a weak d-stationary point of (5.9)
as the smoothing parameter goes to zero.
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