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Abstract

Numerous studies have investigated the coupled multi-field processes in frozen soils, focusing on the variation in frozen soils
and addressing the influences of climate change, hydrological processes, and ecosystems in cold regions. The investigation
of coupled multi-physics field processes in frozen soils has emerged as a prominent research area, leading to significant
advancements in coupling models and simulation solvers. However, substantial differences remain among various coupled
models due to the insufficient observations and in-depth understanding of multi-field coupling processes. Therefore, this
study comprehensively reviews the latest research process on multi-field models and numerical simulation methods, including
thermo-hydraulic (TH) coupling, thermo-mechanical (TM) coupling, hydro-mechanical (HM) coupling, thermo—hydro-
mechanical (THM) coupling, thermo—hydro-chemical (THC) coupling and thermo-hydro-mechanical-chemical (THMC)
coupling. Furthermore, the primary simulation methods are summarised, including the continuum mechanics method, discrete
or discontinuous mechanics method, and simulators specifically designed for heat and mass transfer modelling. Finally, this
study outlines critical findings and proposes future research directions on multi-physical field modelling of frozen soils. This
study provides the theoretical basis for in-depth mechanism analyses and practical engineering applications, contributing to
the advancement of understanding and management of frozen soils.

1 Introduction are critical for construction safety in cold regions since

the multi-field coupling process can cause significant

Permafrost and seasonally frozen soil cover approximately
50% of the exposed land surfaces in the Northern
Hemisphere [59, 364]. In cold regions, these frozen
soils are often subjected to complex multi-filed coupling
processes in varying temperatures, pressures, and intricate
hydraulic—chemical environments. These multi-field
coupling processes govern numerous phenomena observed
in frozen soils, e.g., frost heave, thaw settlement, moisture
migration, phase transition, and ice lens growth [40,
154, 188, 189]. For example, seasonally frozen regions
experience frost heaving due to the volume expansion
induced by water/ice phase changes, resulting in uneven
deformation. These coupling interactions in frozen soils
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deformation even without external loads. Therefore,
developing robust and efficient multiphysics models is
necessary to comprehensively understand the underlying
mechanisms and obtain reliable simulation results for
practical applications. Such coupled multi-physics models
are theoretically superior to approaches that address
individual processes in isolation.

The coupled multi-physics fields play significant roles
in various engineering domains, such as railways and
highway construction and management (e.g., [290, 347]),
energy pipeline/water main projects in cold regions (e.g.,
[107, 108, 227, 269]), methane hydrates extraction under
seabed (e.g., [72, 252]), and underground constructions
involving artificial ground freezing (AGF, e.g., [162, 203,
213]). Furthermore, the intricate coupling processes exert a
profound influence on the behaviour of frozen soils, giving
rise to engineering and environmental challenges such as
slope instability, climate change impacts, carbon emissions,
subgrade settlements, and infrastructure damage [98, 255,
264, 268]. These coupled multi-physical modelling have
direct relevance to numerous research fields, including
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hydrology and hydrogeology (e.g., [244, 270]), nuclear
waste storage (e.g., [83, 101]), fluvial geomorphology (e.g.,
[136, 288]), Mars studies (e.g., [202]), climate modelling
(e.g., [340]), and acid mine drainage in cold regions (e.g.
[36]).

Various methods, including experimental and numerical
methods, have been employed to investigate the fundamental
behaviours of frozen soils. Some investigations focused
on elucidating specific properties of frozen soils, such as
strength and relationships between different parameters
(e.g., soil freezing characteristic curve, SFCC describing
the relationship between temperature and unfrozen water
content) [174]. In addition, efforts have been made to
explore the coupling mechanisms in frozen soils and
develop governing equations for each field. The development
of multi-physics modelling for frozen soils has benefited
from the advancements in multiphysics investigations
of other geomaterials and the development of simulation
platforms. For insurance, multiple studies on the coupled
model for rocks and soils have been conducted. However,
these models have been derived from non-isothermal
consolidation of deformable porous media or an extension
of Biot's phenomenological model, which fails to consider
the phase change in freezing soils. Furthermore, these
models are often solved by numerical methods, such as
the finite element method (FEM), finite volume method
(FVM), and finite difference method (FDM), owing to the
highly nonlinear governing equations and complex boundary
conditions. On the other hand, field tests are challenging and
expensive to perform, resulting in limited available data.

Therefore, it is necessary to establish reliable and efficient
coupling models for simulating the multi-physical fields
of frozen soils, which is crucial for evaluating the risks of
engineering where conducting experiments are risky, such as
the application of AGF for pollutant dispersion retardation.

The coupled thermo—hydro-mechanical-chemical
(THMC) process involves the intricate interactions of
thermal, hydraulic, mechanical, and chemical fields. Among
these four fields, each pairing of two fields can be intricately
interconnected through a coupling process, as illustrated
in Fig. 1. The primary contents of each physical field are
described as follows.

(1) The thermal (T) field is associated with temperature
distribution and three heat transfer modes, i.e., conduction,
convection, and radiation. The geothermal, solar energy,
and local heat sink induced by human/engineering activity
(e.g., thermal disturbances) and climate change (e.g.,
snow conduction and rainfall infiltration) can serve as heat
sources. Besides, the temperature gradient acts as the driving
force for water migration and phase transition. It is worth
noting that the primary type of frozen soil contributing to
disasters is warm frozen soil (— 0.5 to 1.5°C).

(2) The hydraulic (H) field, referring to Darcy or non-
Darcy flows in soils, is an unstable factor affecting frozen soil
stability. Moisture migration and water/ice phase transition
can exacerbate this deterioration effect. The water—ice phase
change occurs when the soil freezes, increasing volume by
1.09 times and generating frost heave from 10 to thousands
of kilopascals [39]. Furthermore, the directional growth of
ice lenses during the freezing process can induce anisotropy
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Fig. 1 Coupled THMC (thermo-hydro-mechanical-chemical) interactions in frozen soils
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in hydraulic conductivities after thawing [340], thereby
contributing to the inherent variability in the properties of
frozen soils. During thawing, the increase in moisture can
increase pore water pressure and reduce effective stress,
consequently decreasing the shear strength of frozen soils.

(3) The mechanical (M) field mainly refers to stress,
strain, strength, damage, failure, and generation and propa-
gation of fractures. The variations of properties and internal
structures can significantly influence frozen soils' stress state
and mechanical behaviours. During freezing, the soil experi-
ences physical changes induced by the interaction between
water and heat, weakening and damaging microstructure in
soils, and macroscopic deformation and failure.

(4) The chemical (C) field presents the transport of reac-
tive or nonreactive particles or solutes and chemical reac-
tions (dissolution and precipitation), which mainly deter-
mines the variation of material and chemical composition
in soils, such as leakage and discharge of chemical waste
liquids, minerals transformation, and salinisation.

Numerous studies have been conducted on multi-field cou-
pling models for frozen soils, with significant attention given
to the numerical implementations of these coupled models.
However, these multi-physical field methods for frozen soils
have not yet been adequately summarised. Accordingly, this
study comprehensively reviews the current investigations
on multi-filed coupling models for frozen soils, categoris-
ing them into six groups: thermo-hydraulic (TH) coupling,
thermo-mechanical (TM) coupling, hydro-mechanical (HM)
coupling, thermo-hydro-mechanical (THM) coupling,
thermo—hydro-chemical (THC) coupling and thermo—hydro-
mechanical-chemical (THMC) coupling. It is worth noting
that although the studies on chemical coupling are relatively
limited, models related to chemical fields coupled with THM
fields (i.e., THMC model) are also considered. In addition
to summarising the fruitful investigations on coupled multi-
physical modelling, this review also provides a comprehen-
sive overview of the numerical implementations of these cou-
pled models and sheds light on the current research directions
of coupled modelling for frozen soils. This comprehensive
analysis can facilitate the development of new coupled mod-
els in closely related fields and drive advancements in the
understanding and simulation of coupled multi-physical pro-
cesses in frozen soils.

2 Multi-field Coupling Models
2.1 Thermo-hydraulic (TH) Coupling Approach

The heat transfer equation demonstrates that the rate of
change of internal energy within a representative volume
element (RVE) is contributed to heat flux resulting from
thermal conduction, the release of latent heat due to phase

change, and the convective heat associated with liquid water
seepage per unit time. The governing equation for thermal
modelling based on energy conservation can be expressed
as:

oT

C,=— = V(VT) +L3(p,.s,.n)

- <, VT,
a at at vaWCW (1)

where C is volumetric heat capacity, T is temperature, 4 is
thermal conductivity. p; and p,, are density of ice and water;
s; s ice saturation, n is porosity, v, is velocity of liquid
water; c,, is the specific heat of ice.

Based on the principle of mass conservation, the disparity
between the inflow and outflow rates of water per unit time
should be equal to the rate of change of total water mass
within RVE. Therefore, the mathematical representation can
be formulated as follows:

9 0 _
E(pwswn) + a_r(p"s'") =0+ p,V(kVH), )

where s; is water saturation, k is hydraulic conductivity, H
is water head, Q is internal sources or sinks. The left term
represents the variation rate of liquid water mass and ice
mass, and the right term are the flux of RVE and sources
or sinks.

2.1.1 Coupled TH Models

The soils in the seasonal frozen zone experience
freeze—thaw cycles annually. Previous soil freezing/thawing
investigations primarily concentrate on heat transfer. Since
the 1970s, it has been recognised that both thermal flow and
mass transfer should be included in the analysis of soils'
freezing and thawing process. Since the physical processes in
frozen soils are complex, it is difficult to derive a solution to
accurately predict the temperature and moisture variation in
the freeze—thaw process. Accordingly, numerous numerical
models have been developed to simulate the coupled thermo-
hydraulic (TH) process within the freezing soils, which is
significant for engineers to estimate the frost heave and
for soil scientists to predict the temperature and moisture
content profiles. Therefore, it is necessary to address the
mechanisms of water and heat transfer processes in frozen
soils, which is beneficial for revealing the interaction
mechanisms of frozen soils and climate change and their
influences on the environment and engineering.

Table 1 presents a summary of typical investigations on
coupled TH models for frozen soils. The pioneering work
by Harlan [89] established the first TH coupling model for
partially frozen soils, providing a numerical finite difference
solution to a one-dimensional (1D) coupled TH problem
for a homogeneous porous medium under freezing/thawing
conditions. Subsequently, numerous TH coupling models
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Table 1 (continued)

18

Solvers

Dimensions Scales

Soil types Applications

Validations

Heat convec-

migration tion

Water

change

\/

Phase

Coupling mode Theories

References

Springer

FEM (COMSOL)

Macro

Unsaturated

Tand w in FT  Unsaturated

Richards’ equa-

[T—H]

Zhan et al.

seasonal

frozen soil

test

tion (water
migration)

=k
K(S,) *k, Fick's law

[349]

0,(D), ke

frozen soil
slope

(vapour migra-

tion)
Heat conserva-

* 10—10*191’

k
[H->T]4A, C

tion equation

(heat transfer)

AGF artificial ground freezing, BC boundary condition, C heat capacity, D diffusivity coefficient, f()function, FT freeze—thaw, / impedance factor, x permeability, k& hydraulic conductivity of

unfrozen soils, kg saturated hydraulic conductivity of frozen soils, k, hydraulic conductivity of frozen soils, K, relative permeability/hydraulic conductivity, p pressure, ¢ heat flux, s matric
suction, T temperature, 6, unfrozen water content, 6, ice content, & water content, y viscosity, 8, unfrozen water content, A thermal conductivity, CFD computational fluid dynamic, LBM lattice

Boltzmann method, CoupModel coupled heat and mass transfer, RFEM random finite element model

*] Represents Harlan [89] model that was modified by adding water diffusivity with impedance factor; *2 represents the modified Harlan [89] model by considering liquid moisture flux in the

unsaturated zone induced by thermal gradient; *3 represent the effect of dissolved ions on soil water freezing point depression was included by combining an expression for the osmotic head
with Clapeyron equation and van Genuchten soil water retention function); *4 represents that energy transport in porous materials was described by a modified Fourier's equation with both

conduction and convection terms; fluid migration in the variably unsaturated porous media was described by the mix-type Richards equation

were developed to simulate frozen soils' water and heat
transfer processes, employing various governing equations
and model parameterisations. Some critical conclusions
from Table 1 are as follows:

(1) The majority of models account for the variations of
unfrozen water content with temperature, especially when
the temperature drops below subzero temperature. However,
only a few studies consider the migration of unfrozen
water. Besides, the water and vapour transfer within frozen
soils can affect the water infiltration process and thermal
properties during the freezing and thawing, as well as heat
transfer by releasing/absorbing a large amount of latent heat
[253, 307].

(2) Most models used the soil temperature as a prognostic
parameter (i.e., a threshold freezing point) to determine
the phase change of water, which might lead to numerical
instability in simulations [51, 87].

(3) The freezing and thawing of frozen soils are
accompanied by heat exchanges involving three processes:
(i) conductive and convective heat transfer induced by
temperature gradient and water migration, (ii) heat release/
sink due to the freezing of liquid water and thaw of ice,
and (iii) heat exchange between the soil and external
environment [248]. The heat transfer resulting from the
latent heat during the phase change of permafrost near 0 °C
is considerably larger than that caused by heat conduction
or convection resulting from water and vapour flow during
freeze—thaw processes. However, as for unsaturated freezing
soils, vaporisation is not considered, which would induce
errors since the phase change between liquid water and
vapour is 7.4 times more energy than that between ice and
liquid water [251].

(4) Many TH coupling models have been validated
by comparing field observations, such as variations in
temperature and water content within frozen soils at the
soil surface or around freezing pipes in AGF and buried
oil pipelines. However, it is crucial for TH models to
incorporate a sufficiently deep soil profile to enable
realistic simulations of temperature profiles over time,
particularly for permafrost regions [254]. For example, to
accurately simulate century-long permafrost changes, it is
advisable to consider a steady geothermal heat flow as the
lower boundary condition, particularly at depths exceeding
30 m [283]. Besides, numerous studies have shown the
significance of enhancing the simulated ground depth and
incorporating a greater number of ground layers to capture
the diminishing impact of multi-decadal variability with
increasing depth more precisely [3, 6].

Therefore, it is imperative to investigate the energy
distribution state at different depths and transfer features
within deeper frozen soils. Given the potential extension of
calculation memories with deeper soil configurations, it is
crucial to meticulously determine the appropriate soil depth
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and geothermal flux for surface modelling in cold regions. It
is essential to consider the soil properties, commonly derived
from lookup tables using available soil maps, as they exhibit
variations across diverse areas and subsoil layers [217].

(5) The majority of TH models commonly fail to address
the snow process and surface features that are crucial inputs
for accurate TH modelling. Nevertheless, Kelleners [132]
and Lan et al. [157] have made notable contributions in
this regard. Kelleners [132] developed a numerical coupled
TH model for seasonally frozen soils with snow cover,
aiming to explore mass and energy exchange among soil,
plant, and atmosphere. Snow cover plays a significant role
in the land surface, influencing the outcomes of TH model
simulations and the energy exchange between the soil and
atmosphere. Its impact is primarily attributed to factors
such as low thermal conductivity, high surface albedo,
and energy absorption resulting from latent heat during
snowmelt [69, 90]. However, the blowing snow and snow
melt are not considered, which causes the underestimation of
snow height prediction and overestimation of water content
in shallow soils. Accurately simulating the snow process is
essential to comprehend frozen soils' thermal and energy
balance and better understand coupled TH processes.

In a related study, Lan et al. [157] established a coupled
TH model to analyse the reciprocal relationship between
desertification and permafrost degradation, highlighting
the crucial role of permafrost in maintaining environmental
stability on the Qinghai—Tibet Plateau. Surface parameters,
such as surface albedo, emissivity, roughness, sand
accumulation, and vegetation coverage, also serve as
significant inputs for TH models [337]. Besides, some
researchers [42, 362] have emphasised the importance of
considering the impacts of freeze—thaw processes on surface
parameters to avoid significant errors in simulating water and
heat processes in permafrost regions of the Qinghai—Tibetan
Plateau. Thus, when exploring coupled TH processes in cold
areas, it is crucial to incorporate surface parameters that
account for freeze—thaw impacts.

(6) These existing TH models are fully coupled to
simulate the interaction between the thermal and hydraulic
fields of frozen soils. The thermal transfer within the soil
can significantly impact the hydraulic field through phase
change phenomena. As freezing progresses, the ice content
increases, leading to changes in the hydraulic properties of
the soil. To account for this, many studies have incorporated
empirical functions to represent the effect of temperature
on unfrozen water content. Additionally, some researchers
have assumed that the fluid's viscosity coefficient or the
frozen soil's hydraulic properties, such as permeability and
saturation, depend on temperature. Besides, the impedance
impact of ice lenses was also involved in some coupled
TH models, and its detailed discussion is depicted in
Sect. 2.2.2. Regarding the influence of the hydraulic field

on heat transfer, it is crucial to consider the movement of
moisture within the frozen soil, which is strongly influenced
by temperature gradients. The variation in ice and water
content within the soil also affects the effective heat capacity
and thermal conductivity values. By accounting for these
influences, the coupled TH models can accurately represent
the impact of the hydraulic field on heat transfer processes
within the frozen soil.

(7) Existing TH models were developed from one-
dimensional to two- and three-dimensional configurations,
with most models adopting a macroscopic perspective.
However, several studies have also been conducted from
meso/micro perspectives (e.g., [63, 316]). Dong and Yu [63]
specifically developed a microstructure-based four-phase
model for clay, employing finite element software (i.e.,
COMSOL Multiphysics, hereafter referred to as COMSOL)
to simulate the coupling TH process. Moreover, Wang et al.
[316] established a multiphase pseudo-potential model
with an enthalpy-based model, and employed the lattice
Boltzmann method (LBM) to predict the spatial distributions
of temperature and water content during the thawing process
of frozen soil.

(8) Various solvers have simulated the complex heat
and mass transfer processes within frozen soils. Notable
examples of coupled TH models include Coupled Heat and
Mass Transfer (CoupModel) [117, 169], Hydrus-1D model
[87, 367], and Heatflow model [121]. These models provide
a comprehensive understanding of the combined effects of
water flow and heat transfer in frozen soils. Additionally,
advanced methods, such as the lattice Boltzmann method,
LBM [316] and bond-based peridynamics [229], have been
employed to analyse the coupled TH process. Numerical
methods, including the finite volume method (FVM),
finite difference method (FDM), and finite element method
(FEM), are alternative approaches for simulating the TH
coupling process. These methods are often implemented
using popular software packages such as COMSOL and
OpenFOAM. A comprehensive discussion of the different
solvers will be presented in Sect. 3.

2.1.2 Parameterisation of TH Model

2.1.2.1 Phase Change Phase change significantly impacts
not only the thermal characteristics of soils but also the
heat and mass transfer processes within frozen soils. During
phase change, a significant release or absorption of latent
heat occurs, which impedes rapid cooling or warming of the
soil and causes temperature disparities between the air and
ground [15, 65].

In general, two methods can be employed to account for
phase change [28]. The commonly used method for phase-
change porous media problems is apparent heat capacity that

@ Springer
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adds the latent energy associated with the phase change to
the heat conduction equation, which could be defined as [27]

_C1+CW+ L
2T T 2T.—T) 3)

w 1

where C, is apparent heat capacity, C is heat capacity, T
is temperature, and L is latent heat during water/ice phase
change. The subscripts w and i correspond to the water and
ice phases, respectively. However, a notable feature of heat
transfer in frozen soils that is different from the conventional
process is the presence of unfrozen water, which is not
accounted for in the apparent heat capacity method. Another
approach to consider the phase change is the excess energy
method [206]. The temperature of soil undergoing phase
change remains constant at the freezing point until the heat
gain or loss equals the latent heat of the soil. The excess
energy method offers a practical approximation of modelling
phase change phenomena and enables the coexistence of
multiple phases of water within the soil [231]. Nonetheless,
this method does not allow for supercooled water (i.e.,
liquid water coexists with ice over a range of temperatures
below the freezing point), which can be compensated by the
relationship between temperature (7) and unfrozen water
content [48, 170]. By comparing the two methods with
analytical solutions from Jumikis [124] and Lunardini [206],
Bonan [28] indicated that frost penetration depths from the
two methods align with the analytical solution, while results
from excess energy produce some fluctuations. Furthermore,
incorporating phase change improves the accuracy of the
simulation.

2.1.2.2 Thermal Conductivity As a multi-phase medium,
the thermal conductivity (1) of soils can be influenced by
the content and properties of each component [172, 180,
181]. Moreover, soils with smaller particle sizes, possessing
smaller unfrozen water content and lower saturation, tend
to have a higher thermal conductivity value in the warm
season than that in the cold season [173]. Many scholars
have proposed prediction models for thermal conductivity
where / is a function of soil mineral composition (e.g., [46,
123, 160, 171]). He et al. [95] evaluated 39 models for A
and suggested the need for further research to develop a
more accurate and generalised model for 1. Besides, some
researchers have proposed data-driven models to aid the
development of a theory that can better estimate soil thermal
conductivity [166, 167, 177, 183].

2.1.2.3 Hydraulic Conductivity Hydraulic conductivity (k)
is another important factor affecting water and heat transfer.
Previous studies assume that the soil water content is zero
and hydraulic conductivity is directly set to O when the
temperature is subzero [28, 50]. Considering fluid flow in

@ Springer

porous soils, two methods have been developed to address
the variation of k as water freezes into ice, i.e., k is a function
of T, and k is a function of ice and water content.

Previous numerical studies have indicated the
accumulation of a significant amount of ice behind the frost
front. Jame and Norum [115] introduced an impedance
factor () to illustrate the resistance imposed by ice on the
porous medium's water flow to elucidate the disruption of
the presence of ice on frozen soils.

ke =k, X1, (4a)

=107, (4b)

where k; and k, are the hydraulic conductivity of frozen soils
and unfrozen soils; a is an empirical constant depending on
soil type, which can be obtained by fitting a diffusivity versus
water content function in the laboratory experiments; and 6
is the volumetric ice content. / is the impedance factor, which
indicates that a larger value of I can promote a lower value
in the conductivity of liquid as the ice content increases.
However, there is no consensus regarding the specific value
of the impedance factor (/) in existing studies. For example,
Jame and Norum [115] reported that the impedance factor
increases exponentially from 1 for ice-free conditions to
1000 when ice contents exceed 20%. Gosink et al. [81]
suggested values of 8 for fine sand and silts and 20-30
for coarse gravel soils. In contrast, Black and Hardenberg
[23] considered the impedance factor method as a “potent
and wholly arbitrary correction function” for determining
hydraulic conductivity. Generally, the determination of /
relies on calibration using measurements, which restricts
its application and integration within numerical models.
Besides, the numerical results from Newman and Wilson
[228] demonstrated that the application of impedance factors
remarkably affects the prediction accuracy of ice content and
suggested that the adoption of I becomes unnecessary if soil
water characteristic curve data is available.

Another approach employed to quantify the hydraulic
conductivity (k) of soils under freezing conditions is
incorporating a scalar parameter, i.e., relative permeability
(K},) ranging from O to 1 [196]. The most commonly used
equation for K, is relevant to saturation degree as follows.

K= V5 [1- (15T’ 5)

where b is material constant, and S, is saturation. In addi-
tion, the saturation degree is considered to be a function of
temperature. Two widely used formulas of S, are presented
in Egs. (6)—(7) (Nishimura et al. [230], Marwan et al. [213],
Liet al. [184], Lunardini [206]; McKenzie et al. [216]).
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[ (TO—T>ﬁr
S =11+ 5 (6)
X

) 4 %

r,res®

Sr = (1 - Sr,res)

where T} is the freezing point; T is temperature; y and 7 are
material constants; S, . is residual saturation that equals
the minimum value of S,. It is worth noting that the process
history can affect K, i.e., K, during the thawing process
differs from K, during the freezing process. As reported
by Kaviany [130], the hysteresis phenomenon can lead
to various values of S, at the same saturation. Previous
studies have achieved reasonable results using the concept
of K, such as in studies on AGF [184, 196]. However, it
remains challenging to obtain accurate values of hydraulic
conductivity over a wide range of T [323]. Therefore, further
research should be dedicated to addressing the effect of ice
blocking on the hydraulic properties of soils.

2.2 Hydro-mechanical (HM) Coupling Approach

The hydro-mechanical (HM) coupling models explore the
interactions of hydraulic and mechanical fields. Terzaghi [292]
initially proposed the concept of effective stress (¢”) and linked
the pore pressure and medium deformation through the stress
balance equation. The specific consolidation equation was
derived by Tarzaghi [292] as follows.

ou,, dufv ()ufv 0u3v
7 = Cvxﬁ + va()—yz + CVZa_Zz, (8)

where u,, is excess pore pressure, which reflects the
variation of pore pressure due to stress; C,,, Cyy, and C,,
are consolidation coefficients in x-, y-, and z-direction,
respectively. Different from the one-dimensional (1D)
consolidation model proposed by Tarzaghi [292], Biot
[20, 21] extended the consolidation mechanism to a three-
dimensional (3D) condition with consideration of the
interaction between solids and fluids [see Eqs. (9)—(12)],
whose model describes the relations between pore pressure
dissipation and medium skeleton deformation.

G 0 (ou ov ow Ju,,
GV2 g, v W) _ T o,
“r1o ax<ax dy 0z> ox ©)
G 0 [ou oJv  ow ou
GV2 oo, v ow) Ty,
v+1—2v0y<0x+0y+dz> dy (10)

G df(ou ov K ow ou,,
GVw+———(—+—+-—")-—=+r=0,
Y 1—2vaz<x dy az> o

an

d(ou  ov ow k <>
—(=+=+=) ==V,
ot < ax oy oz ) e P (12)

where p is pore pressure; u, v and w are displacements along
x-, y-, and z-direction, respectively. G is shear modulus; v is
Poisson ratio; y is solid density; k is hydraulic conductivity
of soils.

Based on Terzaghi and Biot models, various coupled HM
models have been developed. After the introduction of the
mixture theory concept [297], the macro homogenization
and superposition assumptions have been applied to
multi-phase media materials. Bowen [29, 30] further
advanced the coupling HM mechanics equations based on
the mixture theory and proposed a comprehensive elastic
stress—hydraulic mixture constitutive theory. Subsequently,
Borja and his co-authors [351, 365] used coupled HM finite
element models to calculate the stress and deformation fields
in steep hillsides impacted by rainfall infiltration. They
have derived the analytical expression for the Biot tensor,
effective tensor, and total Cauchy stress tensor:

o' =0 +pb, (13)

where 6 and ¢' are total Cauchy stress tensor and effective
stress tensor, respectively; b is Biot tensor.

It is worth noting that since the freezing and thawing
processes are significantly related to temperature, it seems
impossible to simulate solely the coupled HM process in
frozen soils without considering the thermal aspect.

2.3 Thermo-mechanical (TM) Coupling Approach

The phenomena of frost heave and thaw settlement in cold
regions are closely related to the THM process within fro-
zen soils, which can be attributed to the movements of soils
affected by strength enhancing during freezing and strength
weakening during the thawing process. To gain insights
into the underlying mechanisms of frost heave and thaw
settlement, a reliable computational coupled THM model is
required to be developed based on TM or TH models. How-
ever, early studies primarily focused on studying the thermo-
mechanical (TM) coupling models due to the greater com-
plexity and challenges associated with solving THM models.
Table 2 provides a summary of notable investigations on
TM models for frozen soils. It is evident from Table 2 that
various TM models have been proposed to simulate the TM
process of frozen soils and address engineering issues such
as frost heave, thawing settlements, crack formation, and
pipeline settlements. These models have been validated by
test results or numerical simulations. The majority of TM
models predominantly focus on 3D macro-scale analyses
employing FEM, in addition to the work of Sun et al. [281],

@ Springer
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where the TM behaviours of frozen soils were modelled by
the discrete element method (DEM).

As shown in Table 2, these TM models for frozen
soils are typically derived from energy conservation and
linear momentum equations without directly considering
cryogenic suction and water migration into the frozen
zone (e.g., neglecting the heat convection due to water
migration). In addition, they simplified the coupling TM
process by considering a partially unidirectional coupling
relationship, i.e., only considering heat transfer's influence
on mechanical aspects, such as assuming mechanical
properties (e.g., elastic modulus, Poisson ratio, friction
angle and cohesion) are functions of temperature, involving
thermal strain/damage. In terms of the mechanical aspects,
most models employed relatively simple representations of
the mechanical behaviours of frozen soils, such as the linear
elastic model [311], Mohr—Coulomb failure criterion [54,
60, 259], modified Cam Clay model [205] and so on.

Regarding the thermal aspect of the coupled TM
model, TM models typically employ heat conduction and
energy conservation to describe the thermal behaviours of
frozen soils, allowing the models to account for the heat
transfer and energy exchange processes within the frozen
soil [37, 60, 205, 290, 311, 373]. Furthermore, some TM
models incorporate specific mechanisms to account for
water migration within the frozen soil as the temperature
varies. For instance, Dayarathne et al. [54] utilised the
Konrad—Morgenstern segregation potential model [144]
to determine the velocity of water migration towards the
ice lens. Shan et al. [259] proposed a novel coupled TM
model incorporating a damage mechanism. Based on the
strain equivalent theory of damage mechanisms, their study
adopted the initial elastic modulus as a temperature damage
parameter and introduced a composite damage factor to
reflect the interdependence between mechanical and thermal
damage.

Therefore, advancements in TM models for frozen
soils deserve to be explored, including the development
of constitutive models capable of capturing complex
mechanical behaviours (e.g., anisotropic and rheological
behaviour of ice lenses, nonlinearity of strength
envelope, and potential pressure melting phenomena) and
establishment of fully coupled models. Furthermore, the
parameterisation of TM models should be refined to allow
for more accurate representations of the TM processes
in frozen soils. These advancements offer opportunities
to improve the parameterisation process and enhance the
reliability of TM models in capturing the complex TM
response of frozen soils.

@ Springer

2.4 Thermo-hydro-mechanical (THM) Coupling
Approach

The THM coupling phenomena during freezing and thawing
processes play a pivotal role in soil frost heave and thaw
settlement. Figure 2 illustrates the THM interactions in
frozen soils involving governing equations and auxiliary
relationships. To solve these models effectively, numerical
methods such as the finite difference method (FDM), finite
element method (FEM), or finite volume method (FVM)
are commonly employed, which are validated independently
through comparisons with experimental data, i.e., in situ
monitoring data and laboratory measurements. Accurate
simulations of this intricate THM process within frozen
soils are imperative for comprehending the fundamental
mechanisms underlying frost heave and thaw settlements
in cold regions. Consequently, this section offers a
comprehensive synthesis and classification of the technical
underpinnings of various THM models, aiming to identify
apparent disparities and commonalities by integrating
contributions from diverse disciplines.

2.4.1 Coupled THM Models

Table 3 presents a compilation of typical investigations
on THM models for frozen soils, including the governing
equations for each field and detailed model information (i.e.,
suitable soil types, validations, applications, dimensions,
and corresponding solvers).

2.4.1.1 Partially or Fully Coupled Model As depicted in
Table 3, one of the earliest studies on the coupled THM model
for frozen soils was proposed by Mu and Ladanyi [225], who
derived a simplified model for solving the frost heave issues
in practice based on some simplifying assumptions, such as a
constant volume of soil skeleton during the freezing process,
neglecting the effect of consolidation and stress on heat
transport, considering elastic unfrozen soils, and assuming
that the elastic modulus and yield points are independent of
strain rate and confining pressure. Specifically, the frozen
soils were treated as isotropic Mises materials, and creep
was assumed to follow the Prandtl-Reuss law. However,
these oversimplifying assumptions limited its application.
Selvadurai et al. [257] derived a numerical model for the
heave of soil-pipeline interaction, calibrating the model
with unidirectional freezing of saturated soil [242]. Besides,
Selvadurai et al. [258] extended their 3D model to simulate
the interaction between the buried pipeline and soil region.
Lai et al. [152, 153] conducted numerical investigations on
the behaviour of existing tunnels and retaining walls in cold
regions by proposing a THM model according to thermal
transfer theory, seepage theory, and frozen soil mechanics.
However, their coupling THM analyses did not account for
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Fig.2 Schematic diagram of
coupled THM model of frozen
soils (h total water head, T
temperature, u displacement,
0 volumetric water content, 6,
volumetric ice content)
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depression | Clapeyron
equation

echanical

Richard’s/Darcy equation
Mass conservation

water migration. Subsequently, Lai et al. [155] developed
a novel THM model that incorporated the water migration
theory and explored the frost-heaving process of land
bridges in the Qinghai-Tibetan railway. Yang et al. [338]
analysed the frost heave in AGF via semi-coupled THM
models with consideration of the effect of water migration
on the temperature field and the impacts of stresses and
temperature on the frost heave strain by introducing some
empirical equation to simply the hydraulic aspect.

In contrast, fully coupled THM models are more reason-
able and capable of accurately reproducing the deforma-
tion and coupled heat and mass transfer in frozen soils. To
achieve a comprehensive integration, the mechanical con-
stitutive model of frozen soils should maintain consistency
with the effective-stress constitutive models of unfrozen
soils. Most boundary value problems include both states
and transient moving boundaries among them. However, the
framework for such models does not seem to be well-estab-
lished. Accordingly, given the similarity between behaviours
of unsaturated soil and frozen soil, Nishimura et al. [230]
developed a fully coupled THM framework (i.e., critical
state elastoplastic model) for freezing and thawing soils by
involving two sets of stress variables, i.e., net stress and suc-
tion-equivalent stress. This model possesses a similar form
to the Barcelona Basic Model (BBM) for unfrozen, unsatu-
rated soils [4] and was validated by in situ tests with buried
large chilled gas pipelines [269]. However, some essential
behaviours of frozen soils, such as strain-rate-dependent
features and cumulative response to the freeze—thaw cycles,

@ Springer

Momentum equation
Constitutive model (e.g.,
elastic/elastoplastic, etc.)

are excluded from their model. Besides, Shastri and Sanchez
[262] employed the THM model of Nishimura et al. [4] and
validated it by comparing numerical results calculated by
the finite element program CODE_BRIGHT and results
from unconfined and triaxial tests from Parameswaran [237]
and Parameswaran and Jones [238]. The comparison dem-
onstrated that the coupled model behaves well in confined
tests, but the differences increase with increasing confining
pressure, which might be attributed to the fact that the model
of Nishimura et al. [230] ignored the ice melting caused
by higher confining stress. Subsequently, some scholars
also employed the THM model of Nishimura et al. [230]
to analyse other geotechnical issues, such as slope stabil-
ity and AGF in underground construction [35, 148]. Some
scholars also employed the concept of effective stress and
developed various expressions to calculate effective stress
for modelling the THM process within frozen soils. Further-
more, Qi et al. (2024) have comprehensively examined the
expressions of effective stress for frozen soils and classified
them into two categories. Based on extensive analysis, they
concluded that developing a mechanism-based principle of
effective stress for geotechnical engineering in cold regions
is highly challenging, which arises from the presence of
new substances in ice and the dynamic occurrence of phase
change. A more detailed discussion on the effective stress
applied in cold regions geotechnical engineering can be
found in Qi et al. [245].
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2.4.1.2 Coupling Modes As shown in Table 3, the
interactions between thermal, hydraulic, and mechanical
fields in frozen soil can be simulated by multiple governing
and complementary equations. The specific manifestations
can be summarised as follows:

(i) Thermal aspect heat conduction and heat convection
(due to water migration) are generally considered in THM
models accompanied by the phase change phenomena. The
thermal properties (i.e., thermal conductivity, heat capacity)
of soil mixtures are calculated by the fraction of each phase,
which can reflect the effect of the hydraulic field on the
temperature field. Similarly, the impact of porosity or void
ratio variations on soil mixtures' thermal properties (i.e.,
thermal conductivity, heat capacity) is also considered to
describe the TM interactions. Moreover, deformation energy
is often included in the energy conservation equation as a
strategy to capture the influence of the mechanical field on
the thermal field.

(ii) Hydraulic aspect water movement can be caused by
temperature gradients, hydraulic gradients and pressure
variations; therefore, the corresponding items are involved
in the mass conservation equation. Darcy's law for saturated
flow or Richards' equation for unsaturated flow are used
to model water flow. The permeability of frozen soil is
typically temperature/pore pressure-dependent, as freezing
and thawing affect pore structure and water flow paths.

(iii) Mechanical aspect the stress caused by thermal
expansion and volumetric expansion due to ice are taken into
account to reflect the influences of the thermal and hydraulic
fields on the mechanical field. In addition, elastic parameters
are often assumed to be related to temperature, saturation
and porosity, with their relationships capturing the effects
of the thermal and hydraulic processes on the mechanical
field. A more detailed discussion of the Coupling modes for
the THM process can be found in Sect. 2.4.2.

2.4.1.3 Freezing and Thawing Soils It can be noted from
Table 3 that various models have been proposed to predict
the frost heave in frozen soils. Because of the complexity
of these problems, many studies independently developed
the coupled THM model of frozen soils subject to freezing
conditions, which merely focused on the investigations
of frost heave of frozen soils while often neglecting the
thawing issue caused by temperature rise and seasonal
changes (e.g., [56, 197, 265, 334, 342, 361]). Existing
investigations have demonstrated that the thawing soils
suffer from strength reduction and settle deformation,
negatively affecting construction safety [93, 357]. A general
method for simultaneously simulating the frost heave
and thaw settlements is to establish a unified constitutive
model for both frozen soils and unfrozen soils [195, 226,
374]. Therefore, some scholars have devoted themselves to
developing more unified THM models for both freezing and

thawing soils (e.g., [9, 17, 192, 207, 208, 226, 239, 246,
331, 345, 348, 350, 353, 354, 363]).

One notable work is proposed by Zhou and Meschke
[374] who presented a three-phase model considering
solid particles, liquid water, and ice crystals as separate
phases and regulated temperature, fluid pressure, and solid
displacement as primary field variables. Their model was
developed within the framework of Coussy's linear poro-
elasticity [47] and premelting dynamics of Wettlaufer and
Worster [325], essentially derived using the entropy concept.
Being validated by an in-situ frost test, the THM model of
Zhou and Meschke [374] demonstrated its ability to capture
the volume expansion caused by change changes, water
migration, and mechanical deformation. Na and Sun [226]
introduced a novel generalised theory that incorporates all
critical aspects of THM mechanisms into balance equations
within the finite deformation range to simulate the complex
responses of freezing and thawing soils. Unlike the single-
physics solid mechanics problem, the generalised hardening
rule proposed by Na and Sun [226], explicitly incorporating
thermal and cryo-suction effects, enables the evolution of
the yield surface with the variation of pore ice content and
temperature.

2.4.1.4 Saturated and Unsaturated Frozen Soils It can
be noted from Table 3 that the number of THM models
under saturated conditions exceeds those for partially
saturated conditions. The frost heave can occur when the
saturation exceeds 80-90% rather than reaching 100% [58].
Furthermore, most in situ frozen soils are unsaturated,
and vapour plays a significant role in the water and energy
balance, especially when the temperature gradient is large
and the initial water content is low. Accordingly, some
scholars have emphasised the influence of vapour on THM
modelling of frozen soils (e.g., [105, 131, 164, 178, 192,
200, 207,227, 246,265,273, 294, 306, 326, 344, 348, 370]).
For example, Liu and Yu [200] combined Fourier’s law,
generalised Richards’ equation, and mechanical relation
(i.e., Navier’s equation) to model the THM process in
unsaturated frozen soils. Considering the condensation and
congelation of vapour in unsaturated freezing soil, a novel
THM model was proposed by Yin et al. [344] by involving
three variables (i.e., temperature, overburden pressure, and
saturation), but their simulated results were not validated
by laboratory or filed tests. Huang et al. [109] developed
a fully coupled THM model for unsaturated freezing soils
and conducted a numerical simulation to replicate one-side
freezing tests. Wang et al. [306] proposed a THM model
of a single pile in frozen soil to simulate the ground heave
and pile uplift under one-dimensional freezing conditions.
Soltanpour and Foriero [273] derived a THM model for
predicting the frost heave in unsaturated freezing fine sands
compared with full-scale freeze—thaw tests at CRREL. Based
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on the modified Cam Clay model, Li et al. [192] developed
a thermo—elastoplastic model for unsaturated freezing soils
to address the soil hardening caused by temperature and
compression during thawing, whose model was applied to
assess the long-term freezing and thawing behaviours of
Railway subgrade.

2.4.1.5 Impact of Ice Lens In addition, some studies
proposed novel THM models that consider the formation and
evolution of ice lenses to reproduce frozen soil behaviours
more accurately. Table 4 summarises the criterion of ice lens
formation, indicating that ice lens generation is influenced
not only by temperature and overburden pressure but also by
the separation strength. The ice lenses can induce volume
expansion, alter the yield condition and strength variations,
and block water migration within freezing soils. The growth
of ice lenses tends to be anisotropic due to the directional
formation of ice lenses perpendicular to the heat transfer
direction. Therefore, accurately determining the occurrence
moment and position of ice lenses is crucial for capturing
the THM process in frozen soils.

2.4.2 Coupling Modes for THM Fields

It can be noted from Table 3 that the coupling interactions
among THM fields can be achieved in three manners. The
first is directly incorporating the relevant actions into the
governing partial differential equations (PDEs), i.e., the
impact of water on the temperature field can be addressed
by including corresponding terms in Fourier's equation
[200]. The second is establishing explicit relations, i.e.,
connections among the state variables can be regarded
as independent variables within the governing equations.
The last method is to develop the implicit relationships,
referring to the dependence of material properties on the
state variables and other parameters.

2.4.2.1 Basic Mechanisms For the first coupling mode, the
fundamental governing equations of THM models (i.e.,
mass conservation, energy conservation, and momentum
conservation equations) describe the basic mechanisms and
serve as critical components of the THM models. The basic
framework of THM models is to define the governing balance
equations based on different assumptions and to propose a
mechanical constitutive model. Three primary governing
laws form the foundation for describing the THM process,
which are: (i) mass conservation for the hydraulic field.
The mass conservation can be formulated in two ways, i.e.,
considering the bulk mixture body as a whole or accounting
for the mass balance for each component while applying the
superposition of mass balance. (ii) Momentum conservation
for the mechanical field. The momentum conservation
indicates that the time derivation of momentum equals the
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summation of external forces. (iii) Energy conservation for
the thermal field. Energy conservation refers to the first
law of thermodynamics, which represents that the sum of
time derivatives of internal and kinetic energies is equal
to the rates of mechanical work rate and heat. Generally,
phenomenological thermodynamics, energy conservation,
and Fourier’s law serve as the fundamental theories for
temperature fields, while mass conservation, Darcy’s law,
and Richards' equation form the basis of moisture fields.
However, the approaches to mechanical constitutive
models vary considerably in the literature. Therefore,
a comprehensive review of the mechanical constitutive
models for frozen soils was summarised by the authors
[185] who categorised the constitutive models into different
groups based on their underlying theories.

It can be noted from Table 3 that existing THM models
primarily rely on stress fields governed by Navier's equation,
effective stress theory, poromechanics theory, and elastic/
elastoplasticity theory. It is worth noting that treating the
frozen soils as temperature-dependent elastic materials
during freezing is generally reasonable, but the responses
of thawing soils under freeze—thaw cycles exhibit non-
linear elastoplastic behaviours. Therefore, more advanced
mechanical constitutive models capable of describing
multiple mechanical responses of frozen soils should be
incorporated into the THM models to provide a more precise
understanding of the complex coupling process related to
frozen soils.

2.4.2.2 Explicit Relations Among these explicit relations,
the state variables (i.e., 7, @ and displacement) are
independent variables and do not directly influence the
coupling process, but the PDEs’ solutions are sensitive to
these explicit relationships. The soil water characteristic
curve (SWCC) and the Clapeyron equation are two typical
explicit relations.

The SWCC depicts the relationship between water content
and suction, which depends on the soil type and is employed
to model drying and wetting processes in soils [186]. Due
to the similarity between the drying—wetting process and
freezing—thawing process, the relationship described by
SWCC is extensively utilised for freezing processes in frozen
soils. Various empirical equations are proposed for SWCC
(e.g., [31, 73,298, 301]), and van Genuchten's [298] model
and Fredlund and Xing [73] model are widely employed in
existing THM models (van Genuchten [298], Fredlund and
Xing [73]).

6—-0, _ 1
0,—0, 1+ [(as)']"

(14)
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0, In (1 + j—/)
0= N\ - 105\ | (15)
ln(exp(l)+<;) ) 1n<1+ 5 )
where s is suction (kPa); @ is the volumetric water content
and 6, and 6, are the saturated and residual volumetric water
contents, respectively. a, m and n are fitting parameters.
s, 1s suction corresponding to the residual water content.
However, directly applying the SWCC equation to frozen
soils remains questionable [22, 147], as it is only suitable
when the suction in frozen soils exceeds 50 kPa [275, 276].
Besides, the SWCC displays noticeable hysteresis, whereas
these commonly used SWCC equations do not account for
hysteresis effects.

The Clapeyron equation depicts the relationships
between pressure and temperature, which can be expressed
in various ways and notations. Based on equilibrium
assumptions of the Clapeyron equation, the soil water
potential is influenced by ice and water pressures [149].
Table 5 lists the typical Clapeyron equation for frozen soils.
The original derivation of the Clapeyron equation was
formulated by combining the thermodynamic concept of
Gibbs free energy and the Gibbs—Duhem relationship for
each phase [84]. Equation (2) in Table 5 is often used in
THM models due to its convenience in implementation. It
accurately describes the behaviour of an ice crystal using
ice pressure once the temperature and water pressure values
are available. However, it is essential to note that the strict
validity of its application in frozen soils is questionable since
the equation assumes a closed system, whereas a porous
medium represents an open system. Besides, equilibrium in
the quasi-static sense can only be confidently ensured near
interfaces. Thus, caution is necessary when applying the
Clapeyron equation across the entire region, especially for
rapid transient transport processes.

It is worth noting that the primary state variables in
existing THM models include displacement, pore pressure,
and temperature, which are suitable for slow freezing rate
scenarios. However, in cases of high freezing rates, such
as AGF, the selection of state variables should be carefully
selected to avoid the occurrence of spurious oscillations
unless they are appropriately treated. For example, Suh
and Sun [280] alleviated this issue by implementing a
stabilization procedure in the weighted residuals of the heat
and mass balance equation. Arzanfudi and Al-Khoury [9]
also treated cryogenic suction as a primary state variable to
address this problem.

2.4.2.3 Implicit Relations The implicit relations refer to
the variations of soil properties (e.g., thermal conductivity,
hydraulic conductivity/permeability, heat capacity) with
the change of state variables (e.g., T, @ and displacement).

In addition, other soil properties are also functions of state
variables, such as the hydraulic conductivity of the vapour
phase, coefficient of convective/conduction, and various
moduli. These implicit relations can remarkably influence
the coupled THM process and introduce high nonlinearity
into PDEs governing frozen soils. When unknown
parameters exceed the number of PDEs, supplementary
equations should be added. Typically, empirical equations
and the concept of ice—water ratio are utilised to solve the
PDEs. The coefficients in these supplementary equations are
derived from experimental measurements, which are highly
influenced by testing conditions and the type and location
of soil samples.

Solving the PDEs requires the incorporation of explicit
relations, such as the soil water characteristic curve
(SWCC) and the Clapeyron equation, as well as implicit
relations. However, the inclusion of these relations can
lead to computational challenges. Implementing numerical
calculations becomes difficult due to the PDEs' highly
nonlinear and interdependent nature. Existing THM
models have primarily focused on the coupling interactions
between the mechanical field and the other two fields, as
these couplings typically exert weaker effects, particularly
the coupling from the mechanical field to the thermal or
hydraulic fields. In most THM models, simplified methods
based on mixture theories, poromechanics, or direct coupling
using experimental relationships are employed, which can
capture the complicated THM interactions while reducing
computational complexity. However, they may overlook
critical behaviours of frozen soils under freezing/thawing
conditions, such as pressure melting phenomena, freezing
point depression, and time-dependent behaviours. Therefore,
further research and development are necessary to enhance
the understanding and modelling of the interdependencies
among the mechanical, thermal, and hydraulic fields within
frozen soils.

2.5 Thermo-hydro-chemical (THC) Coupling
Approach

As outlined in Sect. 2.1, numerous modelling studies have
focused on the coupled mechanisms of heat and water
transport in frozen soils, which often neglects the freezing
point depression. The freezing point of pure water occurs at
0°C, but in a soil-water system, it appears below 0°C. The
depression of the freezing point can be neglected in coarse
soils with a small specific surface area (SSA). However,
fine-grained soils, such as silts and clays, with a high SSA
and the ability to retain unfrozen water content, experience
a temperature depression of up to 5°C [8]. Water content,
overburden pressures, and the presence of solutes could
induce lower values of freezing/melting point [11]. There-
fore, it is necessary to consider the influence of freezing
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point depression in subsequent research and extension of
THM models. In other words, the chemical aspect should
be incorporated into the coupled modelling of frozen soils.
Existing studies demonstrate that neglecting the effect of
salt in the simulation of frozen soils can introduce significant
uncertainties in modelling the freezing and thawing
processes [232, 327]. Generally, salt exists in two phases
within frozen soils: dissolved salt and salt crystals. Recent
findings reveal that dissolved salt tends to be expelled into
the unfrozen water during the freezing process. Furthermore,
diffusion and migration of salt lead to the formation of a
zone with a higher concentration of salt crystals near the
freezing fringe [13, 92]. The effect of salt on frozen soils
is complicated, the concrete manifestation of which can
be concluded into two aspects: one is the freezing point
depression of soils due to the existence of salt; another is the
salt dynamics of soils under freezing/thawing is influenced
by the processes of diffusion and repulsion [315, 329].
Accordingly, some scholars have attempted to explore
the influences of salt on the frozen sols during freezing/
thawing, as well as the interactions between freezing/
thawing and salination in cold regions. Considering the
heat flux during salt crystallization, Koniorczyk [141]
developed a fully coupled THC model using the kinetics of
salt phase change but without accounting for the influence
of crystallization pressure on the stress field. Wu et al. [330]
analysed the salt dynamics and soil freezing/thawing over
three winter periods based on CoupModel, and their model
was verified by comparing simulated results and observed
data (i.e., temperature, water content, and groundwater table
depth). Their model mainly focused on the coupled water
and heat transfer by considering the effect of temperature
on hydraulic conductivity, freezing on thermal properties
and heat convection due to water flux, and the freezing point
depression caused by salt. Wan et al. [303] also employed
the CoupModel as a coupled THC model to investigate the
effect of climate change on water, heat, and salt migration
of unsaturated frozen soils, and their model was validated
by the comparison between the meteorological data
(i.e., temperature, precipitation, evaporation) from filed
observations and simulated data. In their model, temperature
gradient served as the driving force for water migration and
salt transport, while salt dispersion or diffusion was not
considered. Liu et al. [194] modified the simultaneous heat
and water (SHAW) model by considering soil deformation
and its impact on hydrothermal properties during the
freeze and thaw process. When simulating water, heat and
salt transport processes, the heat convection due to water
flux, blocking impact of ice and solute absorption (i.e.,
diffusion, convection and dispersion processes) are involved
in this coupled model. Besides, their model was compared
with in situ water content and temperature observations,
demonstrating its ability to capture water—heat—salt
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dynamics in frozen soils. However, since neglecting the
lateral groundwater exchange, ground surface albedo, and
salt expulsion, their model yielded underestimations of water
content in deep soil layers and mispredicted the temperature
during the thawing period. Hence, THC models can be
further improved by considering these essential factors.

Furthermore, the presence of salinity can alter the
evolution of the freezing front and freezing points, which,
in turn, affects the formation of frozen walls in artificial
ground freezing (AGF) and poses safety concerns for AGF
construction [175, 199]. Therefore, investigations on coupled
THC models are relatively scarce, and more effort should be
dedicated to analysing the complex interactions among the
fluid field, thermal field, and chemical field in frozen soils,
which is crucial for understanding the mechanisms of THC
processes in frozen soils and to identify the salinisation for
better water management and construction safety in cold
regions.

2.6 Thermo-hydro-Mechanical-Chemical (THMC)
Coupling Approach

The coupled thermo-hydro-mechanical-chemical (THMC)
process is a widely researched topic that significantly
impacts frozen soils' mechanical behaviour and failure
mechanisms. Investigating the mechanical behaviour of
frozen soils under multi-physics coupled processes is
crucial for ensuring construction safety in cold regions, such
as railway construction on the Qinghai-Tibet Plateau and
tunnel constructions related to AGF. Salinity significantly
alters the freezing behaviour of frozen soils, leading to
freezing point depression [19, 263]. However, the effect of
salt in the fluid on the performance of frozen soils has been
rarely investigated, despite its relevance to construction
safety and potential harm to adjacent structures and
infrastructure foundations caused by frost heave in sulfate
saline soils [141, 328]. It is worth noting that methane
hydrates are ice-like materials comprising methane gas and
water, wherein the methane gas is confined within cage-
like structures in solid form due to high-pressure and low-
temperature conditions [247, 317]. The methane hydrates
occur naturally in permafrost regions and beneath the
deep marine bed. Table 6 presents an overview of existing
investigations on coupled THMC models for frozen soils,
revealing that most studies have explored the effect of salt on
the THM process in frozen soils, while some investigations
have focused on the THMC process during natural gas
hydrates.

As for the THMC models for frozen soils, Zhang et al.
[356] established a coupled THM model for freezing
saturated saline soils and explored the effect of salt by
involving mass conservation, Darcy’s law, and energy
conservation. However, their models did not account
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for salt expansion. Tounsi et al. [296] derived a fully
coupled THM model considering salinity influence to
explore the THM behaviours of AGF, but they neglected
salt crystallisation and its impact on ground deformation.
Accordingly, Zhang et al. [352] proposed a coupled
THMC model to simulate the one-side freezing process
of saturated frozen sulfate saline soil by employing the
crystallisation kinetics theory to elaborate the ice and
salt crystallisation mechanism. However, many studies
assumed soil saturation and neglected the vapour phase
in freezing soils. To enhance the modelling of dynamic
processes within frozen soils, including heat transfer,
vapour flow, water migration, deformation, and solute
transport, Zhang et al. [359] enhanced the THMC
model, while their model neglected the salt effect on the
mechanical aspect. Additionally, Huang and Rudolph
[106] developed a 2D THMC model for variably saturated
soils under freezing/thawing conditions, considering the
influence of freeze—thaw cycles. However, their models'
configuration (i.e., shallow model and short simulation
duration) and assumptions (i.e., ignoring subsurface lateral
flow, surface runoff, rainfalls, snow, irrigation, and other
mass sinks) may introduce errors when modelling the
coupled processes in the subsurface during freeze—thaw
cycles. Furthermore, they neglected the interaction
between the mechanical field and chemical field, the
hysteresis of freeze—thaw cycles and the occurrence of
ice lenses.

In recent years, some THMC models have been developed
to simulate the dissociation of methane hydrates and the
mechanical responses of reservoirs using numerical
simulations. Kimoto et al. [137, 138] established 1D and
2D THMC models for simulating the hydrate dissociation
and indicated that the ground deformation is remarkably
influenced by water and gas generation and dissipation, as
well as soil strength reduction due to hydrate loss. However,
their model ignored the mechanical-chemical interaction,
and its effectiveness was limited by the lack of validation
through experimental data. Based on thermodynamics
theory and critical state concept, Sun et al. [282] also
developed novel THMC models for analysing the mechanical
responses of methane hydrate-bearing sediment and showed
that decoupling the mechanical and hydraulic fields (i.e.,
keeping porosity and volume strain constant) would result in
an overestimation of the depressurization rate. Furthermore,
Wan et al. [304] developed a THMC model to simulate
fluid flow within hydrate sediments, dividing it into fluid
and solid subsystems and solving it using a hybrid control
volume finite element method (CVFEM)-finite element
method (FEM). They validated the model with two classical
experimental cases, demonstrating its capability to capture
coupled THMC behaviours.

Therefore, it can be concluded that most existing THMC
models for frozen soils are formulated based on a set of
assumptions aimed at simplifying the governing equations
that govern the complex coupling processes. Although
these assumptions are physically reasonable, they have the
potential to introduce inaccuracies in the numerical results.
Table 6 demonstrates how these models simplify the cou-
pling of THMC processes by tailoring them to specific
problem characteristics, typically focusing on partial bidi-
rectional coupling relationships. For example, the interac-
tions between the mechanical field and chemical field (e.g.,
salt expansion and crystallisation) were rarely taken into
account. Neglecting these critical factors or phenomena can
lead to incomplete or inaccurate representations of the actual
behaviour of frozen soils. Furthermore, loading/unloading
actions often occur on the ground surface in cold regions.
Therefore, enhancements should be made to incorporate a
more comprehensive understanding of the underlying pro-
cesses and phenomena to simulate the non-elastic deforma-
tion and develop complete coupled models to fully reflect
the coupling relationship between multiple physical fields.

3 Numerical Simulation Methods

The coupling of multi-physical fields (i.e., thermal,
hydraulic, mechanical, and chemical fields) can be realised
by variables that interactively transfer information. Although
the effective stress principle and consolidation model of the
HM coupling model were proposed in the early 1920s, along
with the establishment of the corresponding differential
equations, their solutions required modifications due to
the limitations in computational power. Besides, analytical
solutions were derived for some simple cases, such as
axisymmetric and plane strain issues [156, 240, 319].
However, obtaining analytical or exact solutions for more
general cases with slightly complex boundary conditions is
not feasible. To address this issue, computational techniques,
specifically advancements in numerical methods for
discretely solving the coupled model's differential equations,
become necessary.

This section mainly summarises the typical numerical
methods that can solve the coupled multi-physical models
according to their underlying principles, which include
two types of methods, i.e., continuum mechanics method
(CMM) and discrete or discontinuous mechanics method
(DMM). The continuum mechanics methods include the
finite element method (FEM) and its modified versions
(XFEM), finite volume method (FVM), finite difference
method (FDM), and phase-field modelling (PFM). The
discrete element method (DEM), lattice Boltzmann model
(LBM), and peridynamics (PD) are the typical discrete or
discontinuous mechanics methods. Section 3.3 presents the
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primary advantages and disadvantages of each numerical
method for reference on the choice of suitable numerical
solvers for coupled models of frozen soils. As summarised
in Sect. 2.1, the coupled TH models are different from other
models related to the mechanical field. Therefore, some
typical models that are tailored for TH coupling issues are
introduced in Sect. 3.4.

3.1 Continuum Mechanics Method (CMM)

The continuum mechanics method treats frozen soils as
a continuous medium, where they are considered to be
occupied by fluid or solid substances that can be modelled
as a continuous medium composed of particles without
pores. The macroscopic physical quantities of these particles
adhere to fundamental physical laws, including mass, energy
and momentum conservation, thermal dynamics, diffusion,
and heat conduction [10, 91, 165, 190]. The governing
differential equations representing these physical laws can
be solved using various numerical methods, i.e., FEM and
modified FEM (e.g., XFEM, RFEM), FVM, FDM, and PFM
methods.

3.1.1 Finite Element Method (FEM)

The finite element method (FEM) is one of the most
popular numerical techniques used to solve differential
equations that arise in engineering and mathematical
modelling. The foundational works of Zienkiewicz [380]
and Strang and Fix [279] have laid the groundwork for future
advancements in FEM. FEM discretises a continuous object
into finite elements, each possessing a set of nodes, thereby
representing the continuum as a series of interconnected
elements [44, 67, 122, 165]. The value of each node in
the field function serves as primary unknowns, and an
approximate interpolation function is assumed in each
element. Accordingly, the simple equations of these finite
elements can be subsequently assembled into a more
extensive system of equations modelling the entire problem.

Based on the review of coupled models in Sect. 2, it
can be noted that FEM has been extensively employed to
simulate complex multi-physical processes in frozen soils,
especially for coupled models involving mechanical aspects.
When combined with phenomenological constitutive
models, this continuum-based numerical method (i.e., FEM)
has demonstrated robustness and efficiency in multi-physical
modelling. Various commercial software packages, such
as COMSOL, ABAQUS, and ANSYS, have been widely
adopted for finite element analysis in coupled modelling.
COMSOL offers a user-friendly graphical user interface
(GUI), enabling researchers to build and modify governing
equations through secondary development, which is helpful
for improving modelling efficiency and different hypothesis
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testing. COMSOL has proven to be an effective tool for
simulating complex multi-physical coupled issues [105].

FEM is capable of addressing nonlinear and
heterogeneous issues and complex boundary conditions.
However, the applications of FEM in modelling coupled
processes in frozen soils are limited when dealing with
specific issues such as severe discontinuity problems and
regional scale systems. These limitations can be attributed
to several factors. (i) Internal flaws (e.g., fractures) introduce
discontinuities in the research object, necessitating the
refinement of local meshes surrounding these flaws, which
increases the computational burden. (ii) Large deformations
can distort the mesh, leading to calculation deviations and
computational challenges. Additionally, the remeshing
process at each step introduces a significant workload. (iii)
The generation and propagation of ice lenses are difficult
to solve since the ice lenses should be attached to nodes so
that the formation of ice lenses becomes a dynamic internal
boundary, which also introduces additional complications
due to remeshing. The classical FEM discretization for
such issues often results in unstable solutions and requires
extremely small-time steps; (iv) when solving large-scale
problems, FEM requires multiple parameters and involves a
vast number of elements and nodes that demand substantial
computational resources and time. Hence, approximate
upscaling schemes should be employed to improve
computational efficiency [160].

Accordingly, modified versions of FEM have been
developed to remedy the weakness of FEM in solving
special issues, such as extended finite element model
(XFEM) and random finite element model (RFEM). The
classic FEM is limited in its ability to handle discontinuities
within an element due to the continuity requirements of the
shape functions. As for coupled models of frozen soils,
FEM struggles to accurately capture the sharp interface
between ice and water, which involves a weak discontinuity
in the temperature field and then induces a discontinuity
in its gradient field. To overcome this limitation, the
XFEM method has been effectively developed to model
such discontinuities and high gradient fields [134], which
introduces an additional field to the standard interpolation
field. Recently, some scholars have employed XFEM to
reproduce frozen soils' freezing and thawing behaviours.
For example, Amiri et al. [S] proposed a TH model via
XFEM to model the temperature discontinuity of the ice/
water interface. Arzanfudi and Al-Khoury [9] focused on
issues involving relatively high freezing—thawing rates,
such as AGF, and employed the partition of unity within the
framework of XFEM to discrete cryo-suction.

Another modified version of FEM is RFEM, which
accounts for the randomness in materials components and
properties. Dong and Yu [61] employed XFEM to explore
slope stability based on a coupled TM model. In addition,
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Dong and Yu [62] developed a microstructure-based THM
model using RFEM to model frost heave in frozen soils,
which was validated by laboratory-scale experiments.

3.1.2 Finite Difference Method (FDM) and Finite Volume
Method (FVM)

The finite difference method (FDM) was one of the earliest
discretization schemes, primarily favoured for its simplicity
and ease of implementation on structured grids. However,
the limitations of FDM become apparent when dealing with
complex geometries, particularly in multiple dimensions.
This drawback has motivated the development of more
advanced integral-based discretization techniques, such as
the FVM and FEM [241], which offer greater flexibility and
accuracy in handling complex geometries.

The finite volume method (FVM) is well-suited for
handling geometrically complex regions without the need
for variable transformations due to the flexible utilization of
grids (e.g., unstructured grids). In FVM, the computational
domain is divided into a collection of control volumes, and
the PDEs are integrated over the control volume and solved
[66, 159]. FVM has been extensively utilised as a numerical
technique for modelling fluid flow and heat transfer. Its
popularity arises from its inherent conservation properties,
ensuring that the discretised equations preserve physical
quantities and clear physical interpretations of coefficients
in the FVM equations. Recently, FVM has been extended
into solid mechanic analysis [360, 379] and proved to be
a promising method for THM coupling issues [55, 272].
However, numerical diffusion in FVM is likely to induce the
smoothing of sharp gradients and loss of fine-scale details,
which might limit its accuracy in capturing the transport
process. Besides, FVM might encounter difficulties when
handling complex equations involving non-linearities or
coupling different physical processes.

The choice of the appropriate numerical discretization
method is critical for multi-physics modelling for frozen
soils, such as FEM, FDM, and FVM. FEM was initially
developed for static stress analysis and then extended to
various fields, which has been the most widely utilised
method in computational mechanics and solving material
and geometric nonlinearities due to its ability to handle
complex, highly heterogeneous domains with irregular
boundaries [215, 277]. However, when it comes to flow
modelling, FVM is considered a superior choice compared
to FEM due to its maintenance of local conservation
properties at the discrete level and accurate representation
of flow behaviour [111]. FVM combines the advantages
of FDM in terms of simplicity of implementation and the
flexibility of FEM in handling complex geometries.

3.1.3 Phase-Field Modelling (PFM)

Phase-field modelling (PFM) has recently emerged as a
robust computational tool for simulating and modelling
the mesoscale development of morphological and
microstructure in materials [126, 182, 187, 278], which
introduces phase-filed variables to track the dynamic
evolution of interfaces. The temporal evolution of the
phase field variables is governed by a system of PDEs,
which is typically solved using numerical methods. PFM
possesses two key characteristics: (i) a continuous phase
field used to distinguish different microstructure domains;
(ii) a diffuse interface where physical properties smoothly
transition between phases [299]. Depending on the problem
being addressed, the phase field can serve as an auxiliary
variable or a physical parameter [32, 45]. In both scenarios,
the diffuse interface is characterised by excess free energy,
typically expressed as a function of the spatial gradient of
the phase field. For a comprehensive understanding and
further information on PFM, relevant details and references
can be found in some publications (e.g., [100, 127, 278]).

Recently, researchers have formulated the framework of
PFM coupled with the continuum theory of porous media
(TPM) to address coupled issues and developed interface
models to describe the ice—water interface. Sweidan et al.
[286] derived a unified model to simulate frost action in
saturated frozen soils, extending TPM with PFM to describe
the macroscopic phase-change process in saturated frozen
soils. Sweidan et al. [287] combined TPM and PFM to
develop a unified kinematics approach for modelling
the coupled thermal, hydraulic, and mechanical (THM)
processes in freezing soils with different frost penetration
directions. Suh and Sun [280] formulated a THM model to
simulate freezing-induced fracture caused by the growth of
ice lenses, introducing two-phase field variables.

The PFM method lays a solid foundation for future
research in the coupled modelling of frozen soils. However,
some improvements can be addressed in future work to
provide a more realistic description of soil freezing/thawing
processes. This can be achieved by extending the framework
for unsaturated soils and considering the hysteresis effect
in freeze—thaw cycles. Furthermore, the initiation and
formation of ice lenses will be modelled with the aid of
fracture-based PFM.

3.2 Discrete or Discontinuous Mechanics Method
(DMM)

3.2.1 Discrete Element Method (DEM)
The discrete element method (DEM) is a well-known

micromechanics-based approach that captures the inherent
discrete characteristics of particles. Specifically, heat
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Table 4 Summary of criteria for the formation of ice lenses

Criteria References Equations Remarks
Pressure Pore water pressure Miller [218] Puw Z Psep Pore water pressure (p,,) > separating
stress of soil particles (pge,)
Pore ice pressure Gilpin [80] pi 20 +p,, Poreice pressure (p;)>sum of total
stress (o) and separation strength
Pyep)
Koop et al. [146] Di 2 Pex Pore ice pressure (p;) > total external
pressure (p.,)
Pore total stress O'Neill and Miller [233] O > Dover Total stress (o) > overburden pressure
(POVCT)
Liquid pressure at the ice—  Jietal. [119, 120] P = P + 0, Liquid pressure at the ice-water
water interface interface (p; ) > sum of external
pressure (p,,) and tensile strength
(o)
Vertical stress Thomas et al. [293] 6y < —Pyep Vertical stress (0,) < — py,, (tension)
Normal stress Gao et al. [76] o, < —0, Normal stress on the plane
perpendicular to the temperature
gradient (o,1) <tensile strength (¢,
Average stress (microscopic) Liu et al. [195] o, < —0, Average stress (o,) <tensile strength
(o)
Strain Konard and Duquennoi [142] € > & Strain in frozen fringe (&) > tensile
failure strain (&)
Volumetric water Bai et al. [12] 0>0 Volumetric content of water

content (for saturated

(0) > separating water content (Hsep)

conditions)
Temperature Konrad and Morgenstern [143] 0,,, <T <0, Ice lens formation when temperature
ranges from 6 to O
Void ratio Zhou and Li [372] e ey, Void ratio > separating void ratio;
used by Yin et al., Sweidan et al.
Suh and Sun [280, 287, 344]
Porosity Laietal. [151] n2ng, Porosity (n) > separating porosity

(gep), Ngep 18 related to initial
porosity, compression, temperature
gradient, and overburden pressure

transfer in frozen soils can be regarded as heat flows at the
grain scale, where the thermally-induced inter-particle force
can be described by the contact force model in DEM [14,
75, 309]. Furthermore, combining DEM with computational
fluid dynamics (CFD) has been developed to account for
heat convection through granular materials [309, 318,
335]. However, conducting large-scale DEM simulations
(involving billions of particles) is computationally expensive
when solving actual engineering problems, particularly
when coupled with CFD, although speed-up techniques (e.g.,
parallelization with multi-core CPUs and distinguishing
GPU acceleration techniques) can be conducted [274].

3.2.2 Lattice Boltzmann Method (LBM)
The lattice Boltzmann method (LBM) was initially
proposed by Hardy et al. [88] as a micromechanics-based

approach. In LBM, variables are typically obtained from
particle interactions [125, 220], which have higher parallel
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computation efficiencies than traditional macroscopic
methods due to the improved functional form and quantities
[110]. Another advantage of LBM is that the equations used
are dimensionless, expanding its applicability to various
scenarios. With these advantages, LBM has been widely
used in several fields, including multi-component flow
(e.g., multiphase and thermal flow), chemical reaction, mass
transfer in fuel cells, and flow in porous media, and so on
[77, 224, 332, 336].

Overall, investigations on coupled models of frozen soils
via LBM are relatively scarce since the studies on frozen
soils initially focused on macroscopic relations. Wang et al.
[316] established a multiphase model based on LBM to
simulate heat and mass transfer in frozen soils and evaluate
the intricate temperature and water content distribution
during the thawing process. However, one limitation of
LBM is the relatively small model dimension, which
poses challenges when dealing with macroscopic issues
that involve enormous calculation quantities. Additionally,
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obtaining parameters for small particles is relatively
difficult. It remains challenging to transform the parameters
obtained from in situ observations into the micro/mesoscale
parameters required in LBM [162].

3.2.3 Peridynamics (PD)

Peridynamics (PD) was initially developed to describe the
mechanical behaviours of solids [266, 267] and subsequently
extended to address various diffusion phenomena [26, 212].
Unlike classical local theories that employ partial differential
equations (PDEs), such as those used in FEM, PD utilises a
set of integral—differential equations. This approach ensures
a mathematically consistent formulation that remains valid
despite significant non-linearities and discontinuities.
Initially introduced as a bond-based approach, PD has
evolved into a state-based PD, presenting two variants:
ordinary and non-ordinary [2]. Recent developments have
introduced an element-based PD formulation [193]. The
connection between PD and continuum formulations is
established using the concept of peridynamics differential
operator [210]. Previous studies have demonstrated the
successful applications of PD in solving problems such as
heat conduction [25, 38, 78], phase change [211] and water
flow in porous media [113, 129], which shows the simplicity
and universality of this theory in addressing coupled issues.
Nikolaev et al. [229] developed a non-local approach
based on bond-based PD to analyse the heat and water
transfer with phase change in saturated frozen soils under
freezing and thawing conditions. To validate the accuracy
of their model, they compared the calculated temperature
distribution from PD with the analytical solutions and FEM

Table 5 Summary of Clapeyron equations for frozen soils

results. More importantly, their model was successfully
applied for convention-dominated heat transfer simulations
in frozen soils with high-pressure gradients, which poses
a challenge for other methods such as FEM. Therefore,
the PD-based method can be extended further for THM
and THMC models, which is beneficial for modelling the
hydrological behaviours of permafrost soils and frost heave
that remarkably influences construction safety and increases
the risk of geological disasters.

3.3 Comparison Between CMM and DMM

The selection of an appropriate numerical method is of
utmost importance when addressing various coupling
problems associated with frozen soils. Different numerical
methods possess distinct characteristics and application
domains. Table 7 summarises the advantages and
disadvantages of relevant numerical methods. Based on
Table 7, researchers and practitioners can adopt the most
suitable approach for solving their specific coupling
problems in frozen soil applications.

3.4 Heat and Mass Transfer Simulators

Various coupled water and heat process models for frozen
soils, without considering the mechanical aspect, are
depicted in this section, such as simultaneous heat and water
(SHAW), coupled heat and mass transfer (CoupModel), and
Hydrus-1D models. Table 8§ presents a compilation of typical
simulators for modelling water and mass transfer processes
related to frozen soils, providing a brief overview of their
distinct characteristics.

No References Equations Remarks
1 Groenevelt and Kay, [84] s ( dap, ) _1 ( dp; ) _ L considering Gibbs—Duhem relationship for each phase and
pw \ dT pi \ dT T+T; thermodynamic of Gibbs free energy
2 Loch [204], Henry [97] Po _Pi_[n ( T ) Assuming that liquid water coexists with ice, and ice pressure is a
P P Ty function of P, T, p,, and p;
3 Schofield [256] dPy _ Lpy Assuming that liquid water coexists with ice at constant pressure and
a T+ density
4 Liuand Yu[191] dh _ L A generalised Clapeyron equation to describe the coexistence of water—
a6t ice condition
5  Watanabe et al. [321] P, =Lp,1 (# ) Assuming that water density is temperature-independent
f

6  Maetal. [209]

7  Padilla and Villeneuve [236] Pu _ P _ ;T L P

Assuming that water pressure and ice pressure are not equal

A general thermodynamic relation and has been verified by
experimental data

P, and P, equilibrium gauge pressures for the liquid water and ice, P gauge pressure of water and ice, P, osmotic pressure, p,, and p; density of
water and ice, T and T} equilibrium temperature and freezing point temperature, L latent heat, 4 water head, g gravitational acceleration
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4 Conclusions and Future Prospects

The multi-physical field modelling of frozen soil plays a
crucial role in the design of structures, oil pipelines, and
engineering constructions in cold regions. However,
coupling these multi-physical fields presents a complex
and interdisciplinary challenge. Further efforts are needed
to improve the accuracy of predicting the soil freezing
process, understand the coupling mechanisms, refine
coupling methods, and develop effective solving techniques.
Accordingly, this study provides a comprehensive state-of-
the-art review of coupled models for frozen soils.

The advancements in coupled multi-field models and
corresponding numerical solvers for frozen soils are
extensively summarised. Firstly, studies on coupled multi-
physical field models for frozen soils were thoroughly
examined and discussed, which provides insights into the
various approaches and methodologies used to model frozen
soils' coupled behaviours under the freezing and thawing
process. Secondly, this review explored existing numerical
simulations employed in frozen soil coupling modelling.
Each numerical method's key advantages and disadvantages
are also listed to provide guidelines for choosing appropriate
solvers for coupled models of frozen soils. However, due to
the complexity of the interaction process occurring in frozen
soils, some critical issues in coupled multi-physics field
modelling and numerical methods require further research.
Based on the critical discussion in this review, the primary
conclusion and challenges in simulating the multi-field
coupling process on frozen soils are summarised as follows.

(1) The coupled models of frozen soils can be categorised
into six types, i.e., TH models, TM models, HM models,
THM models, THC models, and THMC models. In
general, the TH and THM models have been extensively
investigated, while the other coupled models, especially
models incorporating chemical effects, are worthy of
further development. TH models primarily concentrated
on the interaction mechanisms of frozen soils and external
environments (e.g., climate change) and their influences on
the environment and engineering. In contrast, THM models
addressing the mechanical effect have been developed to
analyse the freeze—thaw action of frozen soils, which sheds
light on the frost and settlement mechanisms of interaction
processes in frozen soils.

(2) Further establishment of 3D models and numerical
simulators for coupled multi-physics fields with different
scales is essential. It is crucial to comprehensively consider
the realistic conditions of frozen soils at various scales when
modelling complex multi-field interactions. By simulating
the physical environment of frozen soils across different
scales, the coupling mechanisms of multi-physics can be
investigated from micro, meso, and macro/multi-scales. This

@ Springer

approach provides valuable insights for solving practical
engineering problems in various domains.

(3) It is essential to conduct large-scale and long-term
in situ tests to investigate multi-physics coupling in frozen
soils. To establish accurate multi-physics coupling models,
it is crucial to understand the interactions among hydraulic,
mechanical, thermal, solute transport, and other fields in
frozen soils. However, current coupling models often rely on
small-scale laboratory tests at the centimetre or meter level.
These tests simplify the actual conditions using similarity
criteria and neglect secondary factors. To overcome these
limitations, it is necessary to minimise the size effect in
testing by conducting large-scale in situ tests that encompass
multi-physics coupling and long-term monitoring.

(4) A more comprehensive, fully coupled model for
frozen soils needs to be developed by incorporating
additional factors to simulate multi-physics field interactions
more accurately. The prediction errors in existing models
might be attributed to the oversimplification of complex
boundary conditions (e.g., groundwater exchange, change
in soil surface albedo, and salt expulsion) and neglecting
critical behaviours of frozen soils (e.g., time/temperature
dependence, pressure melting, freezing point depression,
hysteresis of the freeze—thaw cycle, and vapour effects).
Furthermore, the heterogeneity of structures (e.g., ice
lenses) in frozen soils will be of interest in subsequent work
to derive more general coupled models.

(5) Concerning the numerical simulations of multi-
physics field processes in frozen soils, a balance needs to be
struck between simulation accuracy, simulation efficiency,
calculation complexity, and ease of implementation. Several
challenges exist in the numerical implementation of coupled
models for frozen soils. (i) Efficient and unified software
systems for large-scale and long-term computations with
coupled multi-field processes should be further developed.
(i1) Numerical simulators should contain core moduli,
such as user-defined material modes, adaptive inputs
for boundary conditions, engineering/environmental
procedures (e.g., AGF), and functions that evaluate model
uncertainty/sensibility. (iii) Special attention can be given
to techniques that can enhance calculation efficiency (e.g.,
parallel computing), interface with visualisation techniques
(e.g., BIM or digital twin), artificial intelligence, and other
emerging technologies. Advancements in these areas
will strengthen the foundation of simulation models and
contribute to a comprehensive and holistic simulation
platform for frozen soils subjected to freezing/thawing
actions.
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