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Abstract
Numerous studies have investigated the coupled multi-field processes in frozen soils, focusing on the variation in frozen soils 
and addressing the influences of climate change, hydrological processes, and ecosystems in cold regions. The investigation 
of coupled multi-physics field processes in frozen soils has emerged as a prominent research area, leading to significant 
advancements in coupling models and simulation solvers. However, substantial differences remain among various coupled 
models due to the insufficient observations and in-depth understanding of multi-field coupling processes. Therefore, this 
study comprehensively reviews the latest research process on multi-field models and numerical simulation methods, including 
thermo-hydraulic (TH) coupling, thermo-mechanical (TM) coupling, hydro-mechanical (HM) coupling, thermo–hydro-
mechanical (THM) coupling, thermo–hydro-chemical (THC) coupling and  thermo–hydro-mechanical–chemical (THMC) 
coupling. Furthermore, the primary simulation methods are summarised, including the continuum mechanics method, discrete 
or discontinuous mechanics method, and simulators specifically designed for heat and mass transfer modelling. Finally, this 
study outlines critical findings and proposes future research directions on multi-physical field modelling of frozen soils. This 
study provides the theoretical basis for in-depth mechanism analyses and practical engineering applications, contributing to 
the advancement of understanding and management of frozen soils.

1 Introduction

Permafrost and seasonally frozen soil cover approximately 
50% of the exposed land surfaces in the Northern 
Hemisphere [59, 364]. In cold regions, these frozen 
soils are often subjected to complex multi-filed coupling 
processes in varying temperatures, pressures, and intricate 
hydraulic–chemical environments. These multi-field 
coupling processes govern numerous phenomena observed 
in frozen soils, e.g., frost heave, thaw settlement, moisture 
migration, phase transition, and ice lens growth [40, 
154, 188, 189]. For example, seasonally frozen regions 
experience frost heaving due to the volume expansion 
induced by water/ice phase changes, resulting in uneven 
deformation. These coupling interactions in frozen soils 

are critical for construction safety in cold regions since 
the multi-field coupling process can cause significant 
deformation even without external loads. Therefore, 
developing robust and efficient multiphysics models is 
necessary to comprehensively understand the underlying 
mechanisms and obtain reliable simulation results for 
practical applications. Such coupled multi-physics models 
are theoretically superior to approaches that address 
individual processes in isolation.

The coupled multi-physics fields play significant roles 
in various engineering domains, such as railways and 
highway construction and management (e.g., [290, 347]), 
energy pipeline/water main projects in cold regions (e.g., 
[107, 108, 227, 269]), methane hydrates extraction under 
seabed (e.g., [72, 252]), and underground constructions 
involving artificial ground freezing (AGF, e.g., [162, 203, 
213]). Furthermore, the intricate coupling processes exert a 
profound influence on the behaviour of frozen soils, giving 
rise to engineering and environmental challenges such as 
slope instability, climate change impacts, carbon emissions, 
subgrade settlements, and infrastructure damage [98, 255, 
264, 268]. These coupled multi-physical modelling have 
direct relevance to numerous research fields, including 
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hydrology and hydrogeology (e.g., [244, 270]), nuclear 
waste storage (e.g., [83, 101]), fluvial geomorphology (e.g., 
[136, 288]), Mars studies (e.g., [202]), climate modelling 
(e.g., [340]), and acid mine drainage in cold regions (e.g. 
[36]).

Various methods, including experimental and numerical 
methods, have been employed to investigate the fundamental 
behaviours of frozen soils. Some investigations focused 
on elucidating specific properties of frozen soils, such as 
strength and relationships between different parameters 
(e.g., soil freezing characteristic curve, SFCC describing 
the relationship between temperature and unfrozen water 
content) [174]. In addition, efforts have been made to 
explore the coupling mechanisms in frozen soils and 
develop governing equations for each field. The development 
of multi-physics modelling for frozen soils has benefited 
from the advancements in multiphysics investigations 
of other geomaterials and the development of simulation 
platforms. For insurance, multiple studies on the coupled 
model for rocks and soils have been conducted. However, 
these models have been derived from non-isothermal 
consolidation of deformable porous media or an extension 
of Biot's phenomenological model, which fails to consider 
the phase change in freezing soils. Furthermore, these 
models are often solved by numerical methods, such as 
the finite element method (FEM), finite volume method 
(FVM), and finite difference method (FDM), owing to the 
highly nonlinear governing equations and complex boundary 
conditions. On the other hand, field tests are challenging and 
expensive to perform, resulting in limited available data. 

Therefore, it is necessary to establish reliable and efficient 
coupling models for simulating the multi-physical fields 
of frozen soils, which is crucial for evaluating the risks of 
engineering where conducting experiments are risky, such as 
the application of AGF for pollutant dispersion retardation.

The coupled thermo–hydro-mechanical–chemical 
(THMC) process involves the intricate interactions of 
thermal, hydraulic, mechanical, and chemical fields. Among 
these four fields, each pairing of two fields can be intricately 
interconnected through a coupling process, as illustrated 
in Fig. 1. The primary contents of each physical field are 
described as follows.

(1) The thermal (T) field is associated with temperature 
distribution and three heat transfer modes, i.e., conduction, 
convection, and radiation. The geothermal, solar energy, 
and local heat sink induced by human/engineering activity 
(e.g., thermal disturbances) and climate change (e.g., 
snow conduction and rainfall infiltration) can serve as heat 
sources. Besides, the temperature gradient acts as the driving 
force for water migration and phase transition. It is worth 
noting that the primary type of frozen soil contributing to 
disasters is warm frozen soil (− 0.5 to 1.5°C).

(2) The hydraulic (H) field, referring to Darcy or non-
Darcy flows in soils, is an unstable factor affecting frozen soil 
stability. Moisture migration and water/ice phase transition 
can exacerbate this deterioration effect. The water–ice phase 
change occurs when the soil freezes, increasing volume by 
1.09 times and generating frost heave from 10 to thousands 
of kilopascals [39]. Furthermore, the directional growth of 
ice lenses during the freezing process can induce anisotropy 

Fig. 1  Coupled THMC (thermo–hydro-mechanical–chemical) interactions in frozen soils
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in hydraulic conductivities after thawing [340], thereby 
contributing to the inherent variability in the properties of 
frozen soils. During thawing, the increase in moisture can 
increase pore water pressure and reduce effective stress, 
consequently decreasing the shear strength of frozen soils.

(3) The mechanical (M) field mainly refers to stress, 
strain, strength, damage, failure, and generation and propa-
gation of fractures. The variations of properties and internal 
structures can significantly influence frozen soils' stress state 
and mechanical behaviours. During freezing, the soil experi-
ences physical changes induced by the interaction between 
water and heat, weakening and damaging microstructure in 
soils, and macroscopic deformation and failure.

(4) The chemical (C) field presents the transport of reac-
tive or nonreactive particles or solutes and chemical reac-
tions (dissolution and precipitation), which mainly deter-
mines the variation of material and chemical composition 
in soils, such as leakage and discharge of chemical waste 
liquids, minerals transformation, and salinisation.

Numerous studies have been conducted on multi-field cou-
pling models for frozen soils, with significant attention given 
to the numerical implementations of these coupled models. 
However, these multi-physical field methods for frozen soils 
have not yet been adequately summarised. Accordingly, this 
study comprehensively reviews the current investigations 
on multi-filed coupling models for frozen soils, categoris-
ing them into six groups: thermo-hydraulic (TH) coupling, 
thermo-mechanical (TM) coupling, hydro-mechanical (HM) 
coupling, thermo–hydro-mechanical (THM) coupling, 
thermo–hydro-chemical (THC) coupling and thermo–hydro-
mechanical–chemical (THMC) coupling. It is worth noting 
that although the studies on chemical coupling are relatively 
limited, models related to chemical fields coupled with THM 
fields (i.e., THMC model) are also considered. In addition 
to summarising the fruitful investigations on coupled multi-
physical modelling, this review also provides a comprehen-
sive overview of the numerical implementations of these cou-
pled models and sheds light on the current research directions 
of coupled modelling for frozen soils. This comprehensive 
analysis can facilitate the development of new coupled mod-
els in closely related fields and drive advancements in the 
understanding and simulation of coupled multi-physical pro-
cesses in frozen soils.

2  Multi‑field Coupling Models

2.1  Thermo‑hydraulic (TH) Coupling Approach

The heat transfer equation demonstrates that the rate of 
change of internal energy within a representative volume 
element (RVE) is contributed to heat flux resulting from 
thermal conduction, the release of latent heat due to phase 

change, and the convective heat associated with liquid water 
seepage per unit time. The governing equation for thermal 
modelling based on energy conservation can be expressed 
as:

where C is volumetric heat capacity, T is temperature, λ is 
thermal conductivity. ρi and ρw are density of ice and water; 
si is ice saturation, n is porosity, vw is velocity of liquid 
water; cw is the specific heat of ice.

Based on the principle of mass conservation, the disparity 
between the inflow and outflow rates of water per unit time 
should be equal to the rate of change of total water mass 
within RVE. Therefore, the mathematical representation can 
be formulated as follows:

where si is water saturation, k is hydraulic conductivity, H 
is water head, Q is internal sources or sinks. The left term 
represents the variation rate of liquid water mass and ice 
mass, and the right term are the flux of RVE and sources 
or sinks.

2.1.1  Coupled TH Models

The soils in the seasonal frozen zone experience 
freeze–thaw cycles annually. Previous soil freezing/thawing 
investigations primarily concentrate on heat transfer. Since 
the 1970s, it has been recognised that both thermal flow and 
mass transfer should be included in the analysis of soils' 
freezing and thawing process. Since the physical processes in 
frozen soils are complex, it is difficult to derive a solution to 
accurately predict the temperature and moisture variation in 
the freeze–thaw process. Accordingly, numerous numerical 
models have been developed to simulate the coupled thermo-
hydraulic (TH) process within the freezing soils, which is 
significant for engineers to estimate the frost heave and 
for soil scientists to predict the temperature and moisture 
content profiles. Therefore, it is necessary to address the 
mechanisms of water and heat transfer processes in frozen 
soils, which is beneficial for revealing the interaction 
mechanisms of frozen soils and climate change and their 
influences on the environment and engineering.

Table 1 presents a summary of typical investigations on 
coupled TH models for frozen soils. The pioneering work 
by Harlan [89] established the first TH coupling model for 
partially frozen soils, providing a numerical finite difference 
solution to a one-dimensional (1D) coupled TH problem 
for a homogeneous porous medium under freezing/thawing 
conditions. Subsequently, numerous TH coupling models 
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were developed to simulate frozen soils' water and heat 
transfer processes, employing various governing equations 
and model parameterisations. Some critical conclusions 
from Table 1 are as follows:

(1) The majority of models account for the variations of 
unfrozen water content with temperature, especially when 
the temperature drops below subzero temperature. However, 
only a few studies consider the migration of unfrozen 
water. Besides, the water and vapour transfer within frozen 
soils can affect the water infiltration process and thermal 
properties during the freezing and thawing, as well as heat 
transfer by releasing/absorbing a large amount of latent heat 
[253, 307].

(2) Most models used the soil temperature as a prognostic 
parameter (i.e., a threshold freezing point) to determine 
the phase change of water, which might lead to numerical 
instability in simulations [51, 87].

(3) The freezing and thawing of frozen soils are 
accompanied by heat exchanges involving three processes: 
(i) conductive and convective heat transfer induced by 
temperature gradient and water migration, (ii) heat release/
sink due to the freezing of liquid water and thaw of ice, 
and (iii) heat exchange between the soil and external 
environment [248]. The heat transfer resulting from the 
latent heat during the phase change of permafrost near 0 °C 
is considerably larger than that caused by heat conduction 
or convection resulting from water and vapour flow during 
freeze–thaw processes. However, as for unsaturated freezing 
soils, vaporisation is not considered, which would induce 
errors since the phase change between liquid water and 
vapour is 7.4 times more energy than that between ice and 
liquid water [251].

(4) Many TH coupling models have been validated 
by comparing field observations, such as variations in 
temperature and water content within frozen soils at the 
soil surface or around freezing pipes in AGF and buried 
oil pipelines. However, it is crucial for TH models to 
incorporate a sufficiently deep soil profile to enable 
realistic simulations of temperature profiles over time, 
particularly for permafrost regions [254]. For example, to 
accurately simulate century-long permafrost changes, it is 
advisable to consider a steady geothermal heat flow as the 
lower boundary condition, particularly at depths exceeding 
30 m [283]. Besides, numerous studies have shown the 
significance of enhancing the simulated ground depth and 
incorporating a greater number of ground layers to capture 
the diminishing impact of multi-decadal variability with 
increasing depth more precisely [3, 6].

Therefore, it is imperative to investigate the energy 
distribution state at different depths and transfer features 
within deeper frozen soils. Given the potential extension of 
calculation memories with deeper soil configurations, it is 
crucial to meticulously determine the appropriate soil depth Ta
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and geothermal flux for surface modelling in cold regions. It 
is essential to consider the soil properties, commonly derived 
from lookup tables using available soil maps, as they exhibit 
variations across diverse areas and subsoil layers [217].

(5) The majority of TH models commonly fail to address 
the snow process and surface features that are crucial inputs 
for accurate TH modelling. Nevertheless, Kelleners [132] 
and Lan et al. [157] have made notable contributions in 
this regard. Kelleners [132] developed a numerical coupled 
TH model for seasonally frozen soils with snow cover, 
aiming to explore mass and energy exchange among soil, 
plant, and atmosphere. Snow cover plays a significant role 
in the land surface, influencing the outcomes of TH model 
simulations and the energy exchange between the soil and 
atmosphere. Its impact is primarily attributed to factors 
such as low thermal conductivity, high surface albedo, 
and energy absorption resulting from latent heat during 
snowmelt [69, 90]. However, the blowing snow and snow 
melt are not considered, which causes the underestimation of 
snow height prediction and overestimation of water content 
in shallow soils. Accurately simulating the snow process is 
essential to comprehend frozen soils' thermal and energy 
balance and better understand coupled TH processes.

In a related study, Lan et al. [157] established a coupled 
TH model to analyse the reciprocal relationship between 
desertification and permafrost degradation, highlighting 
the crucial role of permafrost in maintaining environmental 
stability on the Qinghai–Tibet Plateau. Surface parameters, 
such as surface albedo, emissivity, roughness, sand 
accumulation, and vegetation coverage, also serve as 
significant inputs for TH models [337]. Besides, some 
researchers [42, 362] have emphasised the importance of 
considering the impacts of freeze–thaw processes on surface 
parameters to avoid significant errors in simulating water and 
heat processes in permafrost regions of the Qinghai–Tibetan 
Plateau. Thus, when exploring coupled TH processes in cold 
areas, it is crucial to incorporate surface parameters that 
account for freeze–thaw impacts.

(6) These existing TH models are fully coupled to 
simulate the interaction between the thermal and hydraulic 
fields of frozen soils. The thermal transfer within the soil 
can significantly impact the hydraulic field through phase 
change phenomena. As freezing progresses, the ice content 
increases, leading to changes in the hydraulic properties of 
the soil. To account for this, many studies have incorporated 
empirical functions to represent the effect of temperature 
on unfrozen water content. Additionally, some researchers 
have assumed that the fluid's viscosity coefficient or the 
frozen soil's hydraulic properties, such as permeability and 
saturation, depend on temperature. Besides, the impedance 
impact of ice lenses was also involved in some coupled 
TH models, and its detailed discussion is depicted in 
Sect. 2.2.2. Regarding the influence of the hydraulic field 

on heat transfer, it is crucial to consider the movement of 
moisture within the frozen soil, which is strongly influenced 
by temperature gradients. The variation in ice and water 
content within the soil also affects the effective heat capacity 
and thermal conductivity values. By accounting for these 
influences, the coupled TH models can accurately represent 
the impact of the hydraulic field on heat transfer processes 
within the frozen soil.

(7) Existing TH models were developed from one-
dimensional to two- and three-dimensional configurations, 
with most models adopting a macroscopic perspective. 
However, several studies have also been conducted from 
meso/micro perspectives (e.g., [63, 316]). Dong and Yu [63] 
specifically developed a microstructure-based four-phase 
model for clay, employing finite element software (i.e., 
COMSOL Multiphysics, hereafter referred to as COMSOL) 
to simulate the coupling TH process. Moreover, Wang et al. 
[316] established a multiphase pseudo-potential model 
with an enthalpy-based model, and employed the lattice 
Boltzmann method (LBM) to predict the spatial distributions 
of temperature and water content during the thawing process 
of frozen soil.

(8) Various solvers have simulated the complex heat 
and mass transfer processes within frozen soils. Notable 
examples of coupled TH models include Coupled Heat and 
Mass Transfer (CoupModel) [117, 169], Hydrus-1D model 
[87, 367], and Heatflow model [121]. These models provide 
a comprehensive understanding of the combined effects of 
water flow and heat transfer in frozen soils. Additionally, 
advanced methods, such as the lattice Boltzmann method, 
LBM [316] and bond-based peridynamics [229], have been 
employed to analyse the coupled TH process. Numerical 
methods, including the finite volume method (FVM), 
finite difference method (FDM), and finite element method 
(FEM), are alternative approaches for simulating the TH 
coupling process. These methods are often implemented 
using popular software packages such as COMSOL and 
OpenFOAM. A comprehensive discussion of the different 
solvers will be presented in Sect. 3.

2.1.2  Parameterisation of TH Model

2.1.2.1 Phase Change Phase change significantly impacts 
not only the thermal characteristics of soils but also the 
heat and mass transfer processes within frozen soils. During 
phase change, a significant release or absorption of latent 
heat occurs, which impedes rapid cooling or warming of the 
soil and causes temperature disparities between the air and 
ground [15, 65].

In general, two methods can be employed to account for 
phase change [28]. The commonly used method for phase-
change porous media problems is apparent heat capacity that 
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adds the latent energy associated with the phase change to 
the heat conduction equation, which could be defined as [27]

where Ca is apparent heat capacity, C is heat capacity, T 
is temperature, and L is latent heat during water/ice phase 
change. The subscripts w and i correspond to the water and 
ice phases, respectively. However, a notable feature of heat 
transfer in frozen soils that is different from the conventional 
process is the presence of unfrozen water, which is not 
accounted for in the apparent heat capacity method. Another 
approach to consider the phase change is the excess energy 
method [206]. The temperature of soil undergoing phase 
change remains constant at the freezing point until the heat 
gain or loss equals the latent heat of the soil. The excess 
energy method offers a practical approximation of modelling 
phase change phenomena and enables the coexistence of 
multiple phases of water within the soil [231]. Nonetheless, 
this method does not allow for supercooled water (i.e., 
liquid water coexists with ice over a range of temperatures 
below the freezing point), which can be compensated by the 
relationship between temperature (T) and unfrozen water 
content [48, 170]. By comparing the two methods with 
analytical solutions from Jumikis [124] and Lunardini [206], 
Bonan [28] indicated that frost penetration depths from the 
two methods align with the analytical solution, while results 
from excess energy produce some fluctuations. Furthermore, 
incorporating phase change improves the accuracy of the 
simulation.

2.1.2.2 Thermal Conductivity As a multi-phase medium, 
the thermal conductivity (λ) of soils can be influenced by 
the content and properties of each component [172, 180, 
181]. Moreover, soils with smaller particle sizes, possessing 
smaller unfrozen water content and lower saturation, tend 
to have a higher thermal conductivity value in the warm 
season than that in the cold season [173]. Many scholars 
have proposed prediction models for thermal conductivity 
where λ is a function of soil mineral composition (e.g., [46, 
123, 160, 171]). He et  al. [95] evaluated 39 models for λ 
and suggested the need for further research to develop a 
more accurate and generalised model for λ. Besides, some 
researchers have proposed data-driven models to aid the 
development of a theory that can better estimate soil thermal 
conductivity [166, 167, 177, 183].

2.1.2.3 Hydraulic Conductivity Hydraulic conductivity (k) 
is another important factor affecting water and heat transfer. 
Previous studies assume that the soil water content is zero 
and hydraulic conductivity is directly set to 0 when the 
temperature is subzero [28, 50]. Considering fluid flow in 

(3)Ca =
Ci + Cw

2
+

L

2(Tw − Ti)
,

porous soils, two methods have been developed to address 
the variation of k as water freezes into ice, i.e., k is a function 
of T, and k is a function of ice and water content.

Previous numerical studies have indicated the 
accumulation of a significant amount of ice behind the frost 
front. Jame and Norum [115] introduced an impedance 
factor (I) to illustrate the resistance imposed by ice on the 
porous medium's water flow to elucidate the disruption of 
the presence of ice on frozen soils.

where kf and ku are the hydraulic conductivity of frozen soils 
and unfrozen soils; a is an empirical constant depending on 
soil type, which can be obtained by fitting a diffusivity versus 
water content function in the laboratory experiments; and θi 
is the volumetric ice content. I is the impedance factor, which 
indicates that a larger value of I can promote a lower value 
in the conductivity of liquid as the ice content increases. 
However, there is no consensus regarding the specific value 
of the impedance factor (I) in existing studies. For example, 
Jame and Norum [115] reported that the impedance factor 
increases exponentially from 1 for ice-free conditions to 
1000 when ice contents exceed 20%. Gosink et al. [81] 
suggested values of 8 for fine sand and silts and 20–30 
for coarse gravel soils. In contrast, Black and Hardenberg 
[23] considered the impedance factor method as a “potent 
and wholly arbitrary correction function” for determining 
hydraulic conductivity. Generally, the determination of I 
relies on calibration using measurements, which restricts 
its application and integration within numerical models. 
Besides, the numerical results from Newman and Wilson 
[228] demonstrated that the application of impedance factors 
remarkably affects the prediction accuracy of ice content and 
suggested that the adoption of I becomes unnecessary if soil 
water characteristic curve data is available.

Another approach employed to quantify the hydraulic 
conductivity (k) of soils under freezing conditions is 
incorporating a scalar parameter, i.e., relative permeability 
(Kr) ranging from 0 to 1 [196]. The most commonly used 
equation for Kr is relevant to saturation degree as follows.

where b is material constant, and Sr is saturation. In addi-
tion, the saturation degree is considered to be a function of 
temperature. Two widely used formulas of Sr are presented 
in Eqs. (6)–(7) (Nishimura et al. [230], Marwan et al. [213], 
Li et al. [184], Lunardini [206]; McKenzie et al. [216]).

(4a)kf = ku × I,

(4b)I = 10−a�i ,

(5)Kr =
√
Sr

�
1 −

�
1 − S1∕b

r

�b�2
,
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where Tf is the freezing point; T is temperature; χ and η are 
material constants; Sr,res is residual saturation that equals 
the minimum value of Sr. It is worth noting that the process 
history can affect Kr, i.e., Kr during the thawing process 
differs from Kr during the freezing process. As reported 
by Kaviany [130], the hysteresis phenomenon can lead 
to various values of Sr at the same saturation. Previous 
studies have achieved reasonable results using the concept 
of Kr, such as in studies on AGF [184, 196]. However, it 
remains challenging to obtain accurate values of hydraulic 
conductivity over a wide range of T [323]. Therefore, further 
research should be dedicated to addressing the effect of ice 
blocking on the hydraulic properties of soils.

2.2  Hydro‑mechanical (HM) Coupling Approach

The hydro-mechanical (HM) coupling models explore the 
interactions of hydraulic and mechanical fields. Terzaghi [292] 
initially proposed the concept of effective stress (σ′) and linked 
the pore pressure and medium deformation through the stress 
balance equation. The specific consolidation equation was 
derived by Tarzaghi [292] as follows.

where uw is excess pore pressure, which reflects the 
variation of pore pressure due to stress; Cvx, Cvy, and Cvz 
are consolidation coefficients in x-, y-, and z-direction, 
respectively. Different from the one-dimensional (1D) 
consolidation model proposed by Tarzaghi [292], Biot 
[20, 21] extended the consolidation mechanism to a three-
dimensional (3D) condition with consideration of the 
interaction between solids and fluids [see Eqs. (9)–(12)], 
whose model describes the relations between pore pressure 
dissipation and medium skeleton deformation.

(6)Sr =

[
1 +

(
T0 − T

�

) 1

1−�

]�

,

(7)Sr =
(
1 − Sr,res

)( T0−T

�

)2

+ Sr,res,

(8)
�uw

�t
= Cvx

�u2
w

�x2
+ Cvy

�u2
w

�y2
+ Cvz

�u2
w

�z2
,

(9)G∇2u +
G

1 − 2�

�

�x

(
�u

�x
+

�v

�y
+

�w

�z

)
−

�uw

�x
= 0,

(10)G∇2v +
G

1 − 2�

�
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(
�u
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−
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(11)
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�
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(
�u

�x
+
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�y
+

�w
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)
−

�uw

�x
+ � = 0,

where p is pore pressure; u, v and w are displacements along 
x-, y-, and z-direction, respectively. G is shear modulus; ν is 
Poisson ratio; γ is solid density; k is hydraulic conductivity 
of soils.

Based on Terzaghi and Biot models, various coupled HM 
models have been developed. After the introduction of the 
mixture theory concept [297], the macro homogenization 
and superposition assumptions have been applied to 
multi-phase media materials. Bowen [29, 30] further 
advanced the coupling HM mechanics equations based on 
the mixture theory and proposed a comprehensive elastic 
stress–hydraulic mixture constitutive theory. Subsequently, 
Borja and his co-authors [351, 365] used coupled HM finite 
element models to calculate the stress and deformation fields 
in steep hillsides impacted by rainfall infiltration. They 
have derived the analytical expression for the Biot tensor, 
effective tensor, and total Cauchy stress tensor:

where σ and σ' are total Cauchy stress tensor and effective 
stress tensor, respectively; b is Biot tensor.

It is worth noting that since the freezing and thawing 
processes are significantly related to temperature, it seems 
impossible to simulate solely the coupled HM process in 
frozen soils without considering the thermal aspect.

2.3  Thermo‑mechanical (TM) Coupling Approach

The phenomena of frost heave and thaw settlement in cold 
regions are closely related to the THM process within fro-
zen soils, which can be attributed to the movements of soils 
affected by strength enhancing during freezing and strength 
weakening during the thawing process. To gain insights 
into the underlying mechanisms of frost heave and thaw 
settlement, a reliable computational coupled THM model is 
required to be developed based on TM or TH models. How-
ever, early studies primarily focused on studying the thermo-
mechanical (TM) coupling models due to the greater com-
plexity and challenges associated with solving THM models. 
Table 2 provides a summary of notable investigations on 
TM models for frozen soils. It is evident from Table 2 that 
various TM models have been proposed to simulate the TM 
process of frozen soils and address engineering issues such 
as frost heave, thawing settlements, crack formation, and 
pipeline settlements. These models have been validated by 
test results or numerical simulations. The majority of TM 
models predominantly focus on 3D macro-scale analyses 
employing FEM, in addition to the work of Sun et al. [281], 

(12)
�

�t

(
�u

�x
+

�v

�y
+

�w

�z

)
=

k

�w
∇2p,

(13)�
� = � + pb,
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where the TM behaviours of frozen soils were modelled by 
the discrete element method (DEM).

As shown in Table  2, these TM models for frozen 
soils are typically derived from energy conservation and 
linear momentum equations without directly considering 
cryogenic suction and water migration into the frozen 
zone (e.g., neglecting the heat convection due to water 
migration). In addition, they simplified the coupling TM 
process by considering a partially unidirectional coupling 
relationship, i.e., only considering heat transfer's influence 
on mechanical aspects, such as assuming mechanical 
properties (e.g., elastic modulus, Poisson ratio, friction 
angle and cohesion) are functions of temperature, involving 
thermal strain/damage. In terms of the mechanical aspects, 
most models employed relatively simple representations of 
the mechanical behaviours of frozen soils, such as the linear 
elastic model [311], Mohr–Coulomb failure criterion [54, 
60, 259], modified Cam Clay model [205] and so on.

Regarding the thermal aspect of the coupled TM 
model, TM models typically employ heat conduction and 
energy conservation to describe the thermal behaviours of 
frozen soils, allowing the models to account for the heat 
transfer and energy exchange processes within the frozen 
soil [37, 60, 205, 290, 311, 373]. Furthermore, some TM 
models incorporate specific mechanisms to account for 
water migration within the frozen soil as the temperature 
varies. For instance, Dayarathne et  al. [54] utilised the 
Konrad–Morgenstern segregation potential model [144] 
to determine the velocity of water migration towards the 
ice lens. Shan et al. [259] proposed a novel coupled TM 
model incorporating a damage mechanism. Based on the 
strain equivalent theory of damage mechanisms, their study 
adopted the initial elastic modulus as a temperature damage 
parameter and introduced a composite damage factor to 
reflect the interdependence between mechanical and thermal 
damage.

Therefore, advancements in TM models for frozen 
soils deserve to be explored, including the development 
of constitutive models capable of capturing complex 
mechanical behaviours (e.g., anisotropic and rheological 
behaviour of ice lenses, nonlinearity of strength 
envelope, and potential pressure melting phenomena) and 
establishment of fully coupled models. Furthermore, the 
parameterisation of TM models should be refined to allow 
for more accurate representations of the TM processes 
in frozen soils. These advancements offer opportunities 
to improve the parameterisation process and enhance the 
reliability of TM models in capturing the complex TM 
response of frozen soils.

2.4  Thermo–hydro‑mechanical (THM) Coupling 
Approach

The THM coupling phenomena during freezing and thawing 
processes play a pivotal role in soil frost heave and thaw 
settlement. Figure 2 illustrates the THM interactions in 
frozen soils involving governing equations and auxiliary 
relationships. To solve these models effectively, numerical 
methods such as the finite difference method (FDM), finite 
element method (FEM), or finite volume method (FVM) 
are commonly employed, which are validated independently 
through comparisons with experimental data, i.e., in situ 
monitoring data and laboratory measurements. Accurate 
simulations of this intricate THM process within frozen 
soils are imperative for comprehending the fundamental 
mechanisms underlying frost heave and thaw settlements 
in cold regions. Consequently, this section offers a 
comprehensive synthesis and classification of the technical 
underpinnings of various THM models, aiming to identify 
apparent disparities and commonalities by integrating 
contributions from diverse disciplines.

2.4.1  Coupled THM Models

Table 3 presents a compilation of typical investigations 
on THM models for frozen soils, including the governing 
equations for each field and detailed model information (i.e., 
suitable soil types, validations, applications, dimensions, 
and corresponding solvers).

2.4.1.1 Partially or  Fully Coupled Model As depicted in 
Table 3, one of the earliest studies on the coupled THM model 
for frozen soils was proposed by Mu and Ladanyi [225], who 
derived a simplified model for solving the frost heave issues 
in practice based on some simplifying assumptions, such as a 
constant volume of soil skeleton during the freezing process, 
neglecting the effect of consolidation and stress on heat 
transport, considering elastic unfrozen soils, and assuming 
that the elastic modulus and yield points are independent of 
strain rate and confining pressure. Specifically, the frozen 
soils were treated as isotropic Mises materials, and creep 
was assumed to follow the Prandtl–Reuss law. However, 
these oversimplifying assumptions limited its application.

Selvadurai et al. [257] derived a numerical model for the 
heave of soil–pipeline interaction, calibrating the model 
with unidirectional freezing of saturated soil [242]. Besides, 
Selvadurai et al. [258] extended their 3D model to simulate 
the interaction between the buried pipeline and soil region. 
Lai et al. [152, 153] conducted numerical investigations on 
the behaviour of existing tunnels and retaining walls in cold 
regions by proposing a THM model according to thermal 
transfer theory, seepage theory, and frozen soil mechanics. 
However, their coupling THM analyses did not account for 
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water migration. Subsequently, Lai et al. [155] developed 
a novel THM model that incorporated the water migration 
theory and explored the frost-heaving process of land 
bridges in the Qinghai–Tibetan railway. Yang et al. [338] 
analysed the frost heave in AGF via semi-coupled THM 
models with consideration of the effect of water migration 
on the temperature field and the impacts of stresses and 
temperature on the frost heave strain by introducing some 
empirical equation to simply the hydraulic aspect.

In contrast, fully coupled THM models are more reason-
able and capable of accurately reproducing the deforma-
tion and coupled heat and mass transfer in frozen soils. To 
achieve a comprehensive integration, the mechanical con-
stitutive model of frozen soils should maintain consistency 
with the effective-stress constitutive models of unfrozen 
soils. Most boundary value problems include both states 
and transient moving boundaries among them. However, the 
framework for such models does not seem to be well-estab-
lished. Accordingly, given the similarity between behaviours 
of unsaturated soil and frozen soil, Nishimura et al. [230] 
developed a fully coupled THM framework (i.e., critical 
state elastoplastic model) for freezing and thawing soils by 
involving two sets of stress variables, i.e., net stress and suc-
tion-equivalent stress. This model possesses a similar form 
to the Barcelona Basic Model (BBM) for unfrozen, unsatu-
rated soils [4] and was validated by in situ tests with buried 
large chilled gas pipelines [269]. However, some essential 
behaviours of frozen soils, such as strain-rate-dependent 
features and cumulative response to the freeze–thaw cycles, 

are excluded from their model. Besides, Shastri and Sanchez 
[262] employed the THM model of Nishimura et al. [4] and 
validated it by comparing numerical results calculated by 
the finite element program CODE_BRIGHT and results 
from unconfined and triaxial tests from Parameswaran [237] 
and Parameswaran and Jones [238]. The comparison dem-
onstrated that the coupled model behaves well in confined 
tests, but the differences increase with increasing confining 
pressure, which might be attributed to the fact that the model 
of Nishimura et al. [230] ignored the ice melting caused 
by higher confining stress. Subsequently, some scholars 
also employed the THM model of Nishimura et al. [230] 
to analyse other geotechnical issues, such as slope stabil-
ity and AGF in underground construction [35, 148]. Some 
scholars also employed the concept of effective stress and 
developed various expressions to calculate effective stress 
for modelling the THM process within frozen soils. Further-
more, Qi et al. (2024) have comprehensively examined the 
expressions of effective stress for frozen soils and classified 
them into two categories. Based on extensive analysis, they 
concluded that developing a mechanism-based principle of 
effective stress for geotechnical engineering in cold regions 
is highly challenging, which arises from the presence of 
new substances in ice and the dynamic occurrence of phase 
change. A more detailed discussion on the effective stress 
applied in cold regions geotechnical engineering can be 
found in Qi et al. [245].

Fig. 2  Schematic diagram of 
coupled THM model of frozen 
soils (h total water head, T 
temperature, u displacement, 
θ volumetric water content, θi 
volumetric ice content)
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2.4.1.2 Coupling Modes As shown in Table  3, the 
interactions between thermal, hydraulic, and mechanical 
fields in frozen soil can be simulated by multiple governing 
and complementary equations. The specific manifestations 
can be summarised as follows:

(i) Thermal aspect heat conduction and heat convection 
(due to water migration) are generally considered in THM 
models accompanied by the phase change phenomena. The 
thermal properties (i.e., thermal conductivity, heat capacity) 
of soil mixtures are calculated by the fraction of each phase, 
which can reflect the effect of the hydraulic field on the 
temperature field. Similarly, the impact of porosity or void 
ratio variations on soil mixtures' thermal properties (i.e., 
thermal conductivity, heat capacity) is also considered to 
describe the TM interactions. Moreover, deformation energy 
is often included in the energy conservation equation as a 
strategy to capture the influence of the mechanical field on 
the thermal field.

(ii) Hydraulic aspect water movement can be caused by 
temperature gradients, hydraulic gradients and pressure 
variations; therefore, the corresponding items are involved 
in the mass conservation equation. Darcy's law for saturated 
flow or Richards' equation for unsaturated flow are used 
to model water flow. The permeability of frozen soil is 
typically temperature/pore pressure-dependent, as freezing 
and thawing affect pore structure and water flow paths.

(iii) Mechanical aspect the stress caused by thermal 
expansion and volumetric expansion due to ice are taken into 
account to reflect the influences of the thermal and hydraulic 
fields on the mechanical field. In addition, elastic parameters 
are often assumed to be related to temperature, saturation 
and porosity, with their relationships capturing the effects 
of the thermal and hydraulic processes on the mechanical 
field. A more detailed discussion of the Coupling modes for 
the THM process can be found in Sect. 2.4.2.

2.4.1.3 Freezing and  Thawing Soils It can be noted from 
Table 3 that various models have been proposed to predict 
the frost heave in frozen soils. Because of the complexity 
of these problems, many studies independently developed 
the coupled THM model of frozen soils subject to freezing 
conditions, which merely focused on the investigations 
of frost heave of frozen soils while often neglecting the 
thawing issue caused by temperature rise and seasonal 
changes (e.g., [56, 197, 265, 334, 342, 361]). Existing 
investigations have demonstrated that the thawing soils 
suffer from strength reduction and settle deformation, 
negatively affecting construction safety [93, 357]. A general 
method for simultaneously simulating the frost heave 
and thaw settlements is to establish a unified constitutive 
model for both frozen soils and unfrozen soils [195, 226, 
374]. Therefore, some scholars have devoted themselves to 
developing more unified THM models for both freezing and 

thawing soils (e.g., [9, 17, 192, 207, 208, 226, 239, 246, 
331, 345, 348, 350, 353, 354, 363]).

One notable work is proposed by Zhou and Meschke 
[374] who presented a three-phase model considering 
solid particles, liquid water, and ice crystals as separate 
phases and regulated temperature, fluid pressure, and solid 
displacement as primary field variables. Their model was 
developed within the framework of Coussy's linear poro-
elasticity [47] and premelting dynamics of Wettlaufer and 
Worster [325], essentially derived using the entropy concept. 
Being validated by an in-situ frost test, the THM model of 
Zhou and Meschke [374] demonstrated its ability to capture 
the volume expansion caused by change changes, water 
migration, and mechanical deformation. Na and Sun [226] 
introduced a novel generalised theory that incorporates all 
critical aspects of THM mechanisms into balance equations 
within the finite deformation range to simulate the complex 
responses of freezing and thawing soils. Unlike the single-
physics solid mechanics problem, the generalised hardening 
rule proposed by Na and Sun [226], explicitly incorporating 
thermal and cryo-suction effects, enables the evolution of 
the yield surface with the variation of pore ice content and 
temperature.

2.4.1.4 Saturated and  Unsaturated Frozen Soils It can 
be noted from Table  3 that the number of THM models 
under saturated conditions exceeds those for partially 
saturated conditions. The frost heave can occur when the 
saturation exceeds 80–90% rather than reaching 100% [58]. 
Furthermore, most in  situ frozen soils are unsaturated, 
and vapour plays a significant role in the water and energy 
balance, especially when the temperature gradient is large 
and the initial water content is low. Accordingly, some 
scholars have emphasised the influence of vapour on THM 
modelling of frozen soils (e.g., [105, 131, 164, 178, 192, 
200, 207, 227, 246, 265, 273, 294, 306, 326, 344, 348, 370]). 
For example, Liu and Yu [200] combined Fourier’s law, 
generalised Richards’ equation, and mechanical relation 
(i.e., Navier’s equation) to model the THM process in 
unsaturated frozen soils. Considering the condensation and 
congelation of vapour in unsaturated freezing soil, a novel 
THM model was proposed by Yin et al. [344] by involving 
three variables (i.e., temperature, overburden pressure, and 
saturation), but their simulated results were not validated 
by laboratory or filed tests. Huang et  al. [109] developed 
a fully coupled THM model for unsaturated freezing soils 
and conducted a numerical simulation to replicate one-side 
freezing tests. Wang et  al. [306] proposed a THM model 
of a single pile in frozen soil to simulate the ground heave 
and pile uplift under one-dimensional freezing conditions. 
Soltanpour and Foriero [273] derived a THM model for 
predicting the frost heave in unsaturated freezing fine sands 
compared with full-scale freeze–thaw tests at CRREL. Based 
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on the modified Cam Clay model, Li et al. [192] developed 
a thermo–elastoplastic model for unsaturated freezing soils 
to address the soil hardening caused by temperature and 
compression during thawing, whose model was applied to 
assess the long-term freezing and thawing behaviours of 
Railway subgrade.

2.4.1.5 Impact of  Ice Lens In addition, some studies 
proposed novel THM models that consider the formation and 
evolution of ice lenses to reproduce frozen soil behaviours 
more accurately. Table 4 summarises the criterion of ice lens 
formation, indicating that ice lens generation is influenced 
not only by temperature and overburden pressure but also by 
the separation strength. The ice lenses can induce volume 
expansion, alter the yield condition and strength variations, 
and block water migration within freezing soils. The growth 
of ice lenses tends to be anisotropic due to the directional 
formation of ice lenses perpendicular to the heat transfer 
direction. Therefore, accurately determining the occurrence 
moment and position of ice lenses is crucial for capturing 
the THM process in frozen soils.

2.4.2  Coupling Modes for THM Fields

It can be noted from Table 3 that the coupling interactions 
among THM fields can be achieved in three manners. The 
first is directly incorporating the relevant actions into the 
governing partial differential equations (PDEs), i.e., the 
impact of water on the temperature field can be addressed 
by including corresponding terms in Fourier's equation 
[200]. The second is establishing explicit relations, i.e., 
connections among the state variables can be regarded 
as independent variables within the governing equations. 
The last method is to develop the implicit relationships, 
referring to the dependence of material properties on the 
state variables and other parameters.

2.4.2.1 Basic Mechanisms For the first coupling mode, the 
fundamental governing equations of THM models (i.e., 
mass conservation, energy conservation, and momentum 
conservation equations) describe the basic mechanisms and 
serve as critical components of the THM models. The basic 
framework of THM models is to define the governing balance 
equations based on different assumptions and to propose a 
mechanical constitutive model. Three primary governing 
laws form the foundation for describing the THM process, 
which are: (i) mass conservation for the hydraulic field. 
The mass conservation can be formulated in two ways, i.e., 
considering the bulk mixture body as a whole or accounting 
for the mass balance for each component while applying the 
superposition of mass balance. (ii) Momentum conservation 
for the mechanical field. The momentum conservation 
indicates that the time derivation of momentum equals the 

summation of external forces. (iii) Energy conservation for 
the thermal field. Energy conservation refers to the first 
law of thermodynamics, which represents that the sum of 
time derivatives of internal and kinetic energies is equal 
to the rates of mechanical work rate and heat. Generally, 
phenomenological thermodynamics, energy conservation, 
and Fourier’s law serve as the fundamental theories for 
temperature fields, while mass conservation, Darcy’s law, 
and Richards' equation form the basis of moisture fields. 
However, the approaches to mechanical constitutive 
models vary considerably in the literature. Therefore, 
a comprehensive review of the mechanical constitutive 
models for frozen soils was summarised by the authors 
[185] who categorised the constitutive models into different 
groups based on their underlying theories.

It can be noted from Table 3 that existing THM models 
primarily rely on stress fields governed by Navier's equation, 
effective stress theory, poromechanics theory, and elastic/
elastoplasticity theory. It is worth noting that treating the 
frozen soils as temperature-dependent elastic materials 
during freezing is generally reasonable, but the responses 
of thawing soils under freeze–thaw cycles exhibit non-
linear elastoplastic behaviours. Therefore, more advanced 
mechanical constitutive models capable of describing 
multiple mechanical responses of frozen soils should be 
incorporated into the THM models to provide a more precise 
understanding of the complex coupling process related to 
frozen soils.

2.4.2.2 Explicit Relations Among these explicit relations, 
the state variables (i.e., T, ω and displacement) are 
independent variables and do not directly influence the 
coupling process, but the PDEs’ solutions are sensitive to 
these explicit relationships. The soil water characteristic 
curve (SWCC) and the Clapeyron equation are two typical 
explicit relations.

The SWCC depicts the relationship between water content 
and suction, which depends on the soil type and is employed 
to model drying and wetting processes in soils [186]. Due 
to the similarity between the drying–wetting process and 
freezing–thawing process, the relationship described by 
SWCC is extensively utilised for freezing processes in frozen 
soils. Various empirical equations are proposed for SWCC 
(e.g., [31, 73, 298, 301]), and van Genuchten's [298] model 
and Fredlund and Xing [73] model are widely employed in 
existing THM models (van Genuchten [298], Fredlund and 
Xing [73]).

(14)
� − �r

�s − �r
=

1

1 +
[
(as)n

]m ,
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where s is suction (kPa); θ is the volumetric water content 
and θs and θr are the saturated and residual volumetric water 
contents, respectively. a, m and n are fitting parameters. 
sr is suction corresponding to the residual water content. 
However, directly applying the SWCC equation to frozen 
soils remains questionable [22, 147], as it is only suitable 
when the suction in frozen soils exceeds 50 kPa [275, 276]. 
Besides, the SWCC displays noticeable hysteresis, whereas 
these commonly used SWCC equations do not account for 
hysteresis effects.

The Clapeyron equation depicts the relationships 
between pressure and temperature, which can be expressed 
in various ways and notations. Based on equilibrium 
assumptions of the Clapeyron equation, the soil water 
potential is influenced by ice and water pressures [149]. 
Table 5 lists the typical Clapeyron equation for frozen soils. 
The original derivation of the Clapeyron equation was 
formulated by combining the thermodynamic concept of 
Gibbs free energy and the Gibbs–Duhem relationship for 
each phase [84]. Equation (2) in Table 5 is often used in 
THM models due to its convenience in implementation. It 
accurately describes the behaviour of an ice crystal using 
ice pressure once the temperature and water pressure values 
are available. However, it is essential to note that the strict 
validity of its application in frozen soils is questionable since 
the equation assumes a closed system, whereas a porous 
medium represents an open system. Besides, equilibrium in 
the quasi-static sense can only be confidently ensured near 
interfaces. Thus, caution is necessary when applying the 
Clapeyron equation across the entire region, especially for 
rapid transient transport processes.

It is worth noting that the primary state variables in 
existing THM models include displacement, pore pressure, 
and temperature, which are suitable for slow freezing rate 
scenarios. However, in cases of high freezing rates, such 
as AGF, the selection of state variables should be carefully 
selected to avoid the occurrence of spurious oscillations 
unless they are appropriately treated. For example, Suh 
and Sun [280] alleviated this issue by implementing a 
stabilization procedure in the weighted residuals of the heat 
and mass balance equation. Arzanfudi and Al-Khoury [9] 
also treated cryogenic suction as a primary state variable to 
address this problem.

2.4.2.3 Implicit Relations The implicit relations refer to 
the variations of soil properties (e.g., thermal conductivity, 
hydraulic conductivity/permeability, heat capacity) with 
the change of state variables (e.g., T, ω and displacement). 

(15)� =
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In addition, other soil properties are also functions of state 
variables, such as the hydraulic conductivity of the vapour 
phase, coefficient of convective/conduction, and various 
moduli. These implicit relations can remarkably influence 
the coupled THM process and introduce high nonlinearity 
into PDEs governing frozen soils. When unknown 
parameters exceed the number of PDEs, supplementary 
equations should be added. Typically, empirical equations 
and the concept of ice–water ratio are utilised to solve the 
PDEs. The coefficients in these supplementary equations are 
derived from experimental measurements, which are highly 
influenced by testing conditions and the type and location 
of soil samples.

Solving the PDEs requires the incorporation of explicit 
relations, such as the soil water characteristic curve 
(SWCC) and the Clapeyron equation, as well as implicit 
relations. However, the inclusion of these relations can 
lead to computational challenges. Implementing numerical 
calculations becomes difficult due to the PDEs' highly 
nonlinear and interdependent nature. Existing THM 
models have primarily focused on the coupling interactions 
between the mechanical field and the other two fields, as 
these couplings typically exert weaker effects, particularly 
the coupling from the mechanical field to the thermal or 
hydraulic fields. In most THM models, simplified methods 
based on mixture theories, poromechanics, or direct coupling 
using experimental relationships are employed, which can 
capture the complicated THM interactions while reducing 
computational complexity. However, they may overlook 
critical behaviours of frozen soils under freezing/thawing 
conditions, such as pressure melting phenomena, freezing 
point depression, and time-dependent behaviours. Therefore, 
further research and development are necessary to enhance 
the understanding and modelling of the interdependencies 
among the mechanical, thermal, and hydraulic fields within 
frozen soils.

2.5  Thermo–hydro‑chemical (THC) Coupling 
Approach

As outlined in Sect. 2.1, numerous modelling studies have 
focused on the coupled mechanisms of heat and water 
transport in frozen soils, which often neglects the freezing 
point depression. The freezing point of pure water occurs at 
0°C, but in a soil–water system, it appears below 0°C. The 
depression of the freezing point can be neglected in coarse 
soils with a small specific surface area (SSA). However, 
fine-grained soils, such as silts and clays, with a high SSA 
and the ability to retain unfrozen water content, experience 
a temperature depression of up to 5°C [8]. Water content, 
overburden pressures, and the presence of solutes could 
induce lower values of freezing/melting point [11]. There-
fore, it is necessary to consider the influence of freezing 
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point depression in subsequent research and extension of 
THM models. In other words, the chemical aspect should 
be incorporated into the coupled modelling of frozen soils.

Existing studies demonstrate that neglecting the effect of 
salt in the simulation of frozen soils can introduce significant 
uncertainties in modelling the freezing and thawing 
processes [232, 327]. Generally, salt exists in two phases 
within frozen soils: dissolved salt and salt crystals. Recent 
findings reveal that dissolved salt tends to be expelled into 
the unfrozen water during the freezing process. Furthermore, 
diffusion and migration of salt lead to the formation of a 
zone with a higher concentration of salt crystals near the 
freezing fringe [13, 92]. The effect of salt on frozen soils 
is complicated, the concrete manifestation of which can 
be concluded into two aspects: one is the freezing point 
depression of soils due to the existence of salt; another is the 
salt dynamics of soils under freezing/thawing is influenced 
by the processes of diffusion and repulsion [315, 329].

Accordingly, some scholars have attempted to explore 
the influences of salt on the frozen sols during freezing/
thawing, as well as the interactions between freezing/
thawing and salination in cold regions. Considering the 
heat flux during salt crystallization, Koniorczyk [141] 
developed a fully coupled THC model using the kinetics of 
salt phase change but without accounting for the influence 
of crystallization pressure on the stress field. Wu et al. [330] 
analysed the salt dynamics and soil freezing/thawing over 
three winter periods based on CoupModel, and their model 
was verified by comparing simulated results and observed 
data (i.e., temperature, water content, and groundwater table 
depth). Their model mainly focused on the coupled water 
and heat transfer by considering the effect of temperature 
on hydraulic conductivity, freezing on thermal properties 
and heat convection due to water flux, and the freezing point 
depression caused by salt. Wan et al. [303] also employed 
the CoupModel as a coupled THC model to investigate the 
effect of climate change on water, heat, and salt migration 
of unsaturated frozen soils, and their model was validated 
by the comparison between the meteorological data 
(i.e., temperature, precipitation, evaporation) from filed 
observations and simulated data. In their model, temperature 
gradient served as the driving force for water migration and 
salt transport, while salt dispersion or diffusion was not 
considered. Liu et al. [194] modified the simultaneous heat 
and water (SHAW) model by considering soil deformation 
and its impact on hydrothermal properties during the 
freeze and thaw process. When simulating water, heat and 
salt transport processes, the heat convection due to water 
flux, blocking impact of ice and solute absorption (i.e., 
diffusion, convection and dispersion processes) are involved 
in this coupled model. Besides, their model was compared 
with in situ water content and temperature observations, 
demonstrating its ability to capture water–heat–salt 

dynamics in frozen soils. However, since neglecting the 
lateral groundwater exchange, ground surface albedo, and 
salt expulsion, their model yielded underestimations of water 
content in deep soil layers and mispredicted the temperature 
during the thawing period. Hence, THC models can be 
further improved by considering these essential factors.

Furthermore, the presence of salinity can alter the 
evolution of the freezing front and freezing points, which, 
in turn, affects the formation of frozen walls in artificial 
ground freezing (AGF) and poses safety concerns for AGF 
construction [175, 199]. Therefore, investigations on coupled 
THC models are relatively scarce, and more effort should be 
dedicated to analysing the complex interactions among the 
fluid field, thermal field, and chemical field in frozen soils, 
which is crucial for understanding the mechanisms of THC 
processes in frozen soils and to identify the salinisation for 
better water management and construction safety in cold 
regions.

2.6  Thermo–hydro‑Mechanical–Chemical (THMC) 
Coupling Approach

The coupled thermo–hydro-mechanical–chemical (THMC) 
process is a widely researched topic that significantly 
impacts frozen soils' mechanical behaviour and failure 
mechanisms. Investigating the mechanical behaviour of 
frozen soils under multi-physics coupled processes is 
crucial for ensuring construction safety in cold regions, such 
as railway construction on the Qinghai–Tibet Plateau and 
tunnel constructions related to AGF. Salinity significantly 
alters the freezing behaviour of frozen soils, leading to 
freezing point depression [19, 263]. However, the effect of 
salt in the fluid on the performance of frozen soils has been 
rarely investigated, despite its relevance to construction 
safety and potential harm to adjacent structures and 
infrastructure foundations caused by frost heave in sulfate 
saline soils [141, 328]. It is worth noting that methane 
hydrates are ice-like materials comprising methane gas and 
water, wherein the methane gas is confined within cage-
like structures in solid form due to high-pressure and low-
temperature conditions [247, 317]. The methane hydrates 
occur naturally in permafrost regions and beneath the 
deep marine bed. Table 6 presents an overview of existing 
investigations on coupled THMC models for frozen soils, 
revealing that most studies have explored the effect of salt on 
the THM process in frozen soils, while some investigations 
have focused on the THMC process during natural gas 
hydrates.

As for the THMC models for frozen soils, Zhang et al. 
[356] established a coupled THM model for freezing 
saturated saline soils and explored the effect of salt by 
involving mass conservation, Darcy’s law, and energy 
conservation. However, their models did not account 
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for salt expansion. Tounsi et  al. [296] derived a fully 
coupled THM model considering salinity influence to 
explore the THM behaviours of AGF, but they neglected 
salt crystallisation and its impact on ground deformation. 
Accordingly, Zhang et  al. [352] proposed a coupled 
THMC model to simulate the one-side freezing process 
of saturated frozen sulfate saline soil by employing the 
crystallisation kinetics theory to elaborate the ice and 
salt crystallisation mechanism. However, many studies 
assumed soil saturation and neglected the vapour phase 
in freezing soils. To enhance the modelling of dynamic 
processes within frozen soils, including heat transfer, 
vapour flow, water migration, deformation, and solute 
transport, Zhang et  al. [359] enhanced the THMC 
model, while their model neglected the salt effect on the 
mechanical aspect. Additionally, Huang and Rudolph 
[106] developed a 2D THMC model for variably saturated 
soils under freezing/thawing conditions, considering the 
influence of freeze–thaw cycles. However, their models' 
configuration (i.e., shallow model and short simulation 
duration) and assumptions (i.e., ignoring subsurface lateral 
flow, surface runoff, rainfalls, snow, irrigation, and other 
mass sinks) may introduce errors when modelling the 
coupled processes in the subsurface during freeze–thaw 
cycles. Furthermore, they neglected the interaction 
between the mechanical field and chemical field, the 
hysteresis of freeze–thaw cycles and the occurrence of 
ice lenses.

In recent years, some THMC models have been developed 
to simulate the dissociation of methane hydrates and the 
mechanical responses of reservoirs using numerical 
simulations. Kimoto et al. [137, 138] established 1D and 
2D THMC models for simulating the hydrate dissociation 
and indicated that the ground deformation is remarkably 
influenced by water and gas generation and dissipation, as 
well as soil strength reduction due to hydrate loss. However, 
their model ignored the mechanical–chemical interaction, 
and its effectiveness was limited by the lack of validation 
through experimental data. Based on thermodynamics 
theory and critical state concept, Sun et  al. [282] also 
developed novel THMC models for analysing the mechanical 
responses of methane hydrate-bearing sediment and showed 
that decoupling the mechanical and hydraulic fields (i.e., 
keeping porosity and volume strain constant) would result in 
an overestimation of the depressurization rate. Furthermore, 
Wan et al. [304] developed a THMC model to simulate 
fluid flow within hydrate sediments, dividing it into fluid 
and solid subsystems and solving it using a hybrid control 
volume finite element method (CVFEM)–finite element 
method (FEM). They validated the model with two classical 
experimental cases, demonstrating its capability to capture 
coupled THMC behaviours.

Therefore, it can be concluded that most existing THMC 
models for frozen soils are formulated based on a set of 
assumptions aimed at simplifying the governing equations 
that govern the complex coupling processes. Although 
these assumptions are physically reasonable, they have the 
potential to introduce inaccuracies in the numerical results. 
Table 6 demonstrates how these models simplify the cou-
pling of THMC processes by tailoring them to specific 
problem characteristics, typically focusing on partial bidi-
rectional coupling relationships. For example, the interac-
tions between the mechanical field and chemical field (e.g., 
salt expansion and crystallisation) were rarely taken into 
account. Neglecting these critical factors or phenomena can 
lead to incomplete or inaccurate representations of the actual 
behaviour of frozen soils. Furthermore, loading/unloading 
actions often occur on the ground surface in cold regions. 
Therefore, enhancements should be made to incorporate a 
more comprehensive understanding of the underlying pro-
cesses and phenomena to simulate the non-elastic deforma-
tion and develop complete coupled models to fully reflect 
the coupling relationship between multiple physical fields.

3  Numerical Simulation Methods

The coupling of multi-physical fields (i.e., thermal, 
hydraulic, mechanical, and chemical fields) can be realised 
by variables that interactively transfer information. Although 
the effective stress principle and consolidation model of the 
HM coupling model were proposed in the early 1920s, along 
with the establishment of the corresponding differential 
equations, their solutions required modifications due to 
the limitations in computational power. Besides, analytical 
solutions were derived for some simple cases, such as 
axisymmetric and plane strain issues [156, 240, 319]. 
However, obtaining analytical or exact solutions for more 
general cases with slightly complex boundary conditions is 
not feasible. To address this issue, computational techniques, 
specifically advancements in numerical methods for 
discretely solving the coupled model's differential equations, 
become necessary.

This section mainly summarises the typical numerical 
methods that can solve the coupled multi-physical models 
according to their underlying principles, which include 
two types of methods, i.e., continuum mechanics method 
(CMM) and discrete or discontinuous mechanics method 
(DMM). The continuum mechanics methods include the 
finite element method (FEM) and its modified versions 
(XFEM), finite volume method (FVM), finite difference 
method (FDM), and phase-field modelling (PFM). The 
discrete element method (DEM), lattice Boltzmann model 
(LBM), and peridynamics (PD) are the typical discrete or 
discontinuous mechanics methods. Section 3.3 presents the 
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primary advantages and disadvantages of each numerical 
method for reference on the choice of suitable numerical 
solvers for coupled models of frozen soils. As summarised 
in Sect. 2.1, the coupled TH models are different from other 
models related to the mechanical field. Therefore, some 
typical models that are tailored for TH coupling issues are 
introduced in Sect. 3.4.

3.1  Continuum Mechanics Method (CMM)

The continuum mechanics method treats frozen soils as 
a continuous medium, where they are considered to be 
occupied by fluid or solid substances that can be modelled 
as a continuous medium composed of particles without 
pores. The macroscopic physical quantities of these particles 
adhere to fundamental physical laws, including mass, energy 
and momentum conservation, thermal dynamics, diffusion, 
and heat conduction [10, 91, 165, 190]. The governing 
differential equations representing these physical laws can 
be solved using various numerical methods, i.e., FEM and 
modified FEM (e.g., XFEM, RFEM), FVM, FDM, and PFM 
methods.

3.1.1  Finite Element Method (FEM)

The finite element method (FEM) is one of the most 
popular numerical techniques used to solve differential 
equations that arise in engineering and mathematical 
modelling. The foundational works of Zienkiewicz [380] 
and Strang and Fix [279] have laid the groundwork for future 
advancements in FEM. FEM discretises a continuous object 
into finite elements, each possessing a set of nodes, thereby 
representing the continuum as a series of interconnected 
elements [44, 67, 122, 165]. The value of each node in 
the field function serves as primary unknowns, and an 
approximate interpolation function is assumed in each 
element. Accordingly, the simple equations of these finite 
elements can be subsequently assembled into a more 
extensive system of equations modelling the entire problem.

Based on the review of coupled models in Sect. 2, it 
can be noted that FEM has been extensively employed to 
simulate complex multi-physical processes in frozen soils, 
especially for coupled models involving mechanical aspects. 
When combined with phenomenological constitutive 
models, this continuum-based numerical method (i.e., FEM) 
has demonstrated robustness and efficiency in multi-physical 
modelling. Various commercial software packages, such 
as COMSOL, ABAQUS, and ANSYS, have been widely 
adopted for finite element analysis in coupled modelling. 
COMSOL offers a user-friendly graphical user interface 
(GUI), enabling researchers to build and modify governing 
equations through secondary development, which is helpful 
for improving modelling efficiency and different hypothesis 

testing. COMSOL has proven to be an effective tool for 
simulating complex multi-physical coupled issues [105].

FEM is capable of addressing nonlinear and 
heterogeneous issues and complex boundary conditions. 
However, the applications of FEM in modelling coupled 
processes in frozen soils are limited when dealing with 
specific issues such as severe discontinuity problems and 
regional scale systems. These limitations can be attributed 
to several factors. (i) Internal flaws (e.g., fractures) introduce 
discontinuities in the research object, necessitating the 
refinement of local meshes surrounding these flaws, which 
increases the computational burden. (ii) Large deformations 
can distort the mesh, leading to calculation deviations and 
computational challenges. Additionally, the remeshing 
process at each step introduces a significant workload. (iii) 
The generation and propagation of ice lenses are difficult 
to solve since the ice lenses should be attached to nodes so 
that the formation of ice lenses becomes a dynamic internal 
boundary, which also introduces additional complications 
due to remeshing. The classical FEM discretization for 
such issues often results in unstable solutions and requires 
extremely small-time steps; (iv) when solving large-scale 
problems, FEM requires multiple parameters and involves a 
vast number of elements and nodes that demand substantial 
computational resources and time. Hence, approximate 
upscaling schemes should be employed to improve 
computational efficiency [160].

Accordingly, modified versions of FEM have been 
developed to remedy the weakness of FEM in solving 
special issues, such as extended finite element model 
(XFEM) and random finite element model (RFEM). The 
classic FEM is limited in its ability to handle discontinuities 
within an element due to the continuity requirements of the 
shape functions. As for coupled models of frozen soils, 
FEM struggles to accurately capture the sharp interface 
between ice and water, which involves a weak discontinuity 
in the temperature field and then induces a discontinuity 
in its gradient field. To overcome this limitation, the 
XFEM method has been effectively developed to model 
such discontinuities and high gradient fields [134], which 
introduces an additional field to the standard interpolation 
field. Recently, some scholars have employed XFEM to 
reproduce frozen soils' freezing and thawing behaviours. 
For example, Amiri et al. [5] proposed a TH model via 
XFEM to model the temperature discontinuity of the ice/
water interface. Arzanfudi and Al-Khoury [9] focused on 
issues involving relatively high freezing–thawing rates, 
such as AGF, and employed the partition of unity within the 
framework of XFEM to discrete cryo-suction.

Another modified version of FEM is RFEM, which 
accounts for the randomness in materials components and 
properties. Dong and Yu [61] employed XFEM to explore 
slope stability based on a coupled TM model. In addition, 
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Dong and Yu [62] developed a microstructure-based THM 
model using RFEM to model frost heave in frozen soils, 
which was validated by laboratory-scale experiments.

3.1.2  Finite Difference Method (FDM) and Finite Volume 
Method (FVM)

The finite difference method (FDM) was one of the earliest 
discretization schemes, primarily favoured for its simplicity 
and ease of implementation on structured grids. However, 
the limitations of FDM become apparent when dealing with 
complex geometries, particularly in multiple dimensions. 
This drawback has motivated the development of more 
advanced integral-based discretization techniques, such as 
the FVM and FEM [241], which offer greater flexibility and 
accuracy in handling complex geometries.

The finite volume method (FVM) is well-suited for 
handling geometrically complex regions without the need 
for variable transformations due to the flexible utilization of 
grids (e.g., unstructured grids). In FVM, the computational 
domain is divided into a collection of control volumes, and 
the PDEs are integrated over the control volume and solved 
[66, 159]. FVM has been extensively utilised as a numerical 
technique for modelling fluid flow and heat transfer. Its 
popularity arises from its inherent conservation properties, 
ensuring that the discretised equations preserve physical 
quantities and clear physical interpretations of coefficients 
in the FVM equations. Recently, FVM has been extended 
into solid mechanic analysis [360, 379] and proved to be 
a promising method for THM coupling issues [55, 272]. 
However, numerical diffusion in FVM is likely to induce the 
smoothing of sharp gradients and loss of fine-scale details, 
which might limit its accuracy in capturing the transport 
process. Besides, FVM might encounter difficulties when 
handling complex equations involving non-linearities or 
coupling different physical processes.

The choice of the appropriate numerical discretization 
method is critical for multi-physics modelling for frozen 
soils, such as FEM, FDM, and FVM. FEM was initially 
developed for static stress analysis and then extended to 
various fields, which has been the most widely utilised 
method in computational mechanics and solving material 
and geometric nonlinearities due to its ability to handle 
complex, highly heterogeneous domains with irregular 
boundaries [215, 277]. However, when it comes to flow 
modelling, FVM is considered a superior choice compared 
to FEM due to its maintenance of local conservation 
properties at the discrete level and accurate representation 
of flow behaviour [111]. FVM combines the advantages 
of FDM in terms of simplicity of implementation and the 
flexibility of FEM in handling complex geometries.

3.1.3  Phase‑Field Modelling (PFM)

Phase-field modelling (PFM) has recently emerged as a 
robust computational tool for simulating and modelling 
the mesoscale development of morphological and 
microstructure in materials [126, 182, 187, 278], which 
introduces phase-filed variables to track the dynamic 
evolution of interfaces. The temporal evolution of the 
phase field variables is governed by a system of PDEs, 
which is typically solved using numerical methods. PFM 
possesses two key characteristics: (i) a continuous phase 
field used to distinguish different microstructure domains; 
(ii) a diffuse interface where physical properties smoothly 
transition between phases [299]. Depending on the problem 
being addressed, the phase field can serve as an auxiliary 
variable or a physical parameter [32, 45]. In both scenarios, 
the diffuse interface is characterised by excess free energy, 
typically expressed as a function of the spatial gradient of 
the phase field. For a comprehensive understanding and 
further information on PFM, relevant details and references 
can be found in some publications (e.g., [100, 127, 278]).

Recently, researchers have formulated the framework of 
PFM coupled with the continuum theory of porous media 
(TPM) to address coupled issues and developed interface 
models to describe the ice–water interface. Sweidan et al. 
[286] derived a unified model to simulate frost action in 
saturated frozen soils, extending TPM with PFM to describe 
the macroscopic phase-change process in saturated frozen 
soils. Sweidan et al. [287] combined TPM and PFM to 
develop a unified kinematics approach for modelling 
the coupled thermal, hydraulic, and mechanical (THM) 
processes in freezing soils with different frost penetration 
directions. Suh and Sun [280] formulated a THM model to 
simulate freezing-induced fracture caused by the growth of 
ice lenses, introducing two-phase field variables.

The PFM method lays a solid foundation for future 
research in the coupled modelling of frozen soils. However, 
some improvements can be addressed in future work to 
provide a more realistic description of soil freezing/thawing 
processes. This can be achieved by extending the framework 
for unsaturated soils and considering the hysteresis effect 
in freeze–thaw cycles. Furthermore, the initiation and 
formation of ice lenses will be modelled with the aid of 
fracture-based PFM.

3.2  Discrete or Discontinuous Mechanics Method 
(DMM)

3.2.1  Discrete Element Method (DEM)

The discrete element method (DEM) is a well-known 
micromechanics-based approach that captures the inherent 
discrete characteristics of particles. Specifically, heat 
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transfer in frozen soils can be regarded as heat flows at the 
grain scale, where the thermally-induced inter-particle force 
can be described by the contact force model in DEM [14, 
75, 309]. Furthermore, combining DEM with computational 
fluid dynamics (CFD) has been developed to account for 
heat convection through granular materials [309, 318, 
335]. However, conducting large-scale DEM simulations 
(involving billions of particles) is computationally expensive 
when solving actual engineering problems, particularly 
when coupled with CFD, although speed-up techniques (e.g., 
parallelization with multi-core CPUs and distinguishing 
GPU acceleration techniques) can be conducted [274].

3.2.2  Lattice Boltzmann Method (LBM)

The lattice Boltzmann method (LBM) was initially 
proposed by Hardy et al. [88] as a micromechanics-based 
approach. In LBM, variables are typically obtained from 
particle interactions [125, 220], which have higher parallel 

computation efficiencies than traditional macroscopic 
methods due to the improved functional form and quantities 
[110]. Another advantage of LBM is that the equations used 
are dimensionless, expanding its applicability to various 
scenarios. With these advantages, LBM has been widely 
used in several fields, including multi-component flow 
(e.g., multiphase and thermal flow), chemical reaction, mass 
transfer in fuel cells, and flow in porous media, and so on 
[77, 224, 332, 336].

Overall, investigations on coupled models of frozen soils 
via LBM are relatively scarce since the studies on frozen 
soils initially focused on macroscopic relations. Wang et al. 
[316] established a multiphase model based on LBM to 
simulate heat and mass transfer in frozen soils and evaluate 
the intricate temperature and water content distribution 
during the thawing process. However, one limitation of 
LBM is the relatively small model dimension, which 
poses challenges when dealing with macroscopic issues 
that involve enormous calculation quantities. Additionally, 

Table 4  Summary of criteria for the formation of ice lenses

Criteria References Equations Remarks

Pressure Pore water pressure Miller [218] pw ≥ psep Pore water pressure (pw) ≥ separating 
stress of soil particles (psep)

Pore ice pressure Gilpin [80] pi ≥ � + psep Pore ice pressure (pi) ≥ sum of total 
stress (σ) and separation strength 
(psep)

Koop et al. [146] pi ≥ pex Pore ice pressure (pi) ≥ total external 
pressure (pex)

Pore total stress O'Neill and Miller [233] � ≥ pover Total stress (σ) ≥ overburden pressure 
(Pover)

Liquid pressure at the ice–
water interface

Ji et al. [119, 120] pLH ≥ pex + �t Liquid pressure at the ice-water 
interface (pLH) ≥ sum of external 
pressure (pex) and tensile strength 
(σt)

Vertical stress Thomas et al. [293] �v ≤ −psep Vertical stress (σv) ≤  − psep (tension)
Normal stress Gao et al. [76] �nT ≤ −�t Normal stress on the plane 

perpendicular to the temperature 
gradient (σnT) ≤ tensile strength (σt)

Average stress (microscopic) Liu et al. [195] �av ≤ −�t Average stress (σv) ≤ tensile strength 
(σt)

Strain Konard and Duquennoi [142] � ≥ �f Strain in frozen fringe (ε) ≥ tensile 
failure strain (εf)

Volumetric water 
content (for saturated 
conditions)

Bai et al. [12] � ≥ �sep Volumetric content of water 
(θ) ≥ separating water content (θsep)

Temperature Konrad and Morgenstern [143] �sm ≤ T ≤ �sf Ice lens formation when temperature 
ranges from θsm to θsf

Void ratio Zhou and Li [372] e ≥ esep Void ratio > separating void ratio; 
used by Yin et al., Sweidan et al. 
Suh and Sun [280, 287, 344]

Porosity Lai et al. [151] n ≥ nsep Porosity (n) > separating porosity 
(nsep), nsep is related to initial 
porosity, compression, temperature 
gradient, and overburden pressure
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obtaining parameters for small particles is relatively 
difficult. It remains challenging to transform the parameters 
obtained from in situ observations into the micro/mesoscale 
parameters required in LBM [162].

3.2.3  Peridynamics (PD)

Peridynamics (PD) was initially developed to describe the 
mechanical behaviours of solids [266, 267] and subsequently 
extended to address various diffusion phenomena [26, 212]. 
Unlike classical local theories that employ partial differential 
equations (PDEs), such as those used in FEM, PD utilises a 
set of integral–differential equations. This approach ensures 
a mathematically consistent formulation that remains valid 
despite significant non-linearities and discontinuities.

Initially introduced as a bond-based approach, PD has 
evolved into a state-based PD, presenting two variants: 
ordinary and non-ordinary [2]. Recent developments have 
introduced an element-based PD formulation [193]. The 
connection between PD and continuum formulations is 
established using the concept of peridynamics differential 
operator [210]. Previous studies have demonstrated the 
successful applications of PD in solving problems such as 
heat conduction [25, 38, 78], phase change [211] and water 
flow in porous media [113, 129], which shows the simplicity 
and universality of this theory in addressing coupled issues. 
Nikolaev et  al. [229] developed a non-local approach 
based on bond-based PD to analyse the heat and water 
transfer with phase change in saturated frozen soils under 
freezing and thawing conditions. To validate the accuracy 
of their model, they compared the calculated temperature 
distribution from PD with the analytical solutions and FEM 

results. More importantly, their model was successfully 
applied for convention-dominated heat transfer simulations 
in frozen soils with high-pressure gradients, which poses 
a challenge for other methods such as FEM. Therefore, 
the PD-based method can be extended further for THM 
and THMC models, which is beneficial for modelling the 
hydrological behaviours of permafrost soils and frost heave 
that remarkably influences construction safety and increases 
the risk of geological disasters.

3.3  Comparison Between CMM and DMM

The selection of an appropriate numerical method is of 
utmost importance when addressing various coupling 
problems associated with frozen soils. Different numerical 
methods possess distinct characteristics and application 
domains. Table  7 summarises the advantages and 
disadvantages of relevant numerical methods. Based on 
Table 7, researchers and practitioners can adopt the most 
suitable approach for solving their specific coupling 
problems in frozen soil applications.

3.4  Heat and Mass Transfer Simulators

Various coupled water and heat process models for frozen 
soils, without considering the mechanical aspect, are 
depicted in this section, such as simultaneous heat and water 
(SHAW), coupled heat and mass transfer (CoupModel), and 
Hydrus-1D models. Table 8 presents a compilation of typical 
simulators for modelling water and mass transfer processes 
related to frozen soils, providing a brief overview of their 
distinct characteristics.

Table 5  Summary of Clapeyron equations for frozen soils

Pw and Pi equilibrium gauge pressures for the liquid water and ice, P gauge pressure of water and ice, P0 osmotic pressure, ρw and ρi density of 
water and ice, T and Tf equilibrium temperature and freezing point temperature, L latent heat, h water head, g gravitational acceleration

No References Equations Remarks

1 Groenevelt and Kay, [84] 1

�w

(
dPw

dT

)
−

1

�i

(
dPi

dT

)
=

L

T+Tf

considering Gibbs–Duhem relationship for each phase and 
thermodynamic of Gibbs free energy

2 Loch [204], Henry [97] Pw

�w
−

Pi

�i
= L ln

(
T

Tf

)
Assuming that liquid water coexists with ice, and ice pressure is a 

function of Pw, T, ρw and ρi

3 Schofield [256] dPw

dT
=

L�w

T+Tf

Assuming that liquid water coexists with ice at constant pressure and 
density

4 Liu and Yu [191] dh

dT
=

L

gT
A generalised Clapeyron equation to describe the coexistence of water–

ice condition
5 Watanabe et al. [321] Pw = L�w ln

(
T+Tf

Tf

)
Assuming that water density is temperature-independent

6 Ma et al. [209]
(

1

�w
−

1

�i

)
P = L

T−Tf

Tf
, P = Pw = Pi

Assuming that water pressure and ice pressure are not equal

7 Padilla and Villeneuve [236] Pw

�w
−

Pi

�i
= L

T

Tf
+

P0

�w

A general thermodynamic relation and has been verified by 
experimental data
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4  Conclusions and Future Prospects

The multi-physical field modelling of frozen soil plays a 
crucial role in the design of structures, oil pipelines, and 
engineering constructions in cold regions. However, 
coupling these multi-physical fields presents a complex 
and interdisciplinary challenge. Further efforts are needed 
to improve the accuracy of predicting the soil freezing 
process, understand the coupling mechanisms, refine 
coupling methods, and develop effective solving techniques. 
Accordingly, this study provides a comprehensive state-of-
the-art review of coupled models for frozen soils.

The advancements in coupled multi-field models and 
corresponding numerical solvers for frozen soils are 
extensively summarised. Firstly, studies on coupled multi-
physical field models for frozen soils were thoroughly 
examined and discussed, which provides insights into the 
various approaches and methodologies used to model frozen 
soils' coupled behaviours under the freezing and thawing 
process. Secondly, this review explored existing numerical 
simulations employed in frozen soil coupling modelling. 
Each numerical method's key advantages and disadvantages 
are also listed to provide guidelines for choosing appropriate 
solvers for coupled models of frozen soils. However, due to 
the complexity of the interaction process occurring in frozen 
soils, some critical issues in coupled multi-physics field 
modelling and numerical methods require further research. 
Based on the critical discussion in this review, the primary 
conclusion and challenges in simulating the multi-field 
coupling process on frozen soils are summarised as follows.

(1) The coupled models of frozen soils can be categorised 
into six types, i.e., TH models, TM models, HM models, 
THM models, THC models, and THMC models. In 
general, the TH and THM models have been extensively 
investigated, while the other coupled models, especially 
models incorporating chemical effects, are worthy of 
further development. TH models primarily concentrated 
on the interaction mechanisms of frozen soils and external 
environments (e.g., climate change) and their influences on 
the environment and engineering. In contrast, THM models 
addressing the mechanical effect have been developed to 
analyse the freeze–thaw action of frozen soils, which sheds 
light on the frost and settlement mechanisms of interaction 
processes in frozen soils.

(2) Further establishment of 3D models and numerical 
simulators for coupled multi-physics fields with different 
scales is essential. It is crucial to comprehensively consider 
the realistic conditions of frozen soils at various scales when 
modelling complex multi-field interactions. By simulating 
the physical environment of frozen soils across different 
scales, the coupling mechanisms of multi-physics can be 
investigated from micro, meso, and macro/multi-scales. This 

approach provides valuable insights for solving practical 
engineering problems in various domains.

(3) It is essential to conduct large-scale and long-term 
in situ tests to investigate multi-physics coupling in frozen 
soils. To establish accurate multi-physics coupling models, 
it is crucial to understand the interactions among hydraulic, 
mechanical, thermal, solute transport, and other fields in 
frozen soils. However, current coupling models often rely on 
small-scale laboratory tests at the centimetre or meter level. 
These tests simplify the actual conditions using similarity 
criteria and neglect secondary factors. To overcome these 
limitations, it is necessary to minimise the size effect in 
testing by conducting large-scale in situ tests that encompass 
multi-physics coupling and long-term monitoring.

(4) A more comprehensive, fully coupled model for 
frozen soils needs to be developed by incorporating 
additional factors to simulate multi-physics field interactions 
more accurately. The prediction errors in existing models 
might be attributed to the oversimplification of complex 
boundary conditions (e.g., groundwater exchange, change 
in soil surface albedo, and salt expulsion) and neglecting 
critical behaviours of frozen soils (e.g., time/temperature 
dependence, pressure melting, freezing point depression, 
hysteresis of the freeze–thaw cycle, and vapour effects). 
Furthermore, the heterogeneity of structures (e.g., ice 
lenses) in frozen soils will be of interest in subsequent work 
to derive more general coupled models.

(5) Concerning the numerical simulations of multi-
physics field processes in frozen soils, a balance needs to be 
struck between simulation accuracy, simulation efficiency, 
calculation complexity, and ease of implementation. Several 
challenges exist in the numerical implementation of coupled 
models for frozen soils. (i) Efficient and unified software 
systems for large-scale and long-term computations with 
coupled multi-field processes should be further developed. 
(ii) Numerical simulators should contain core moduli, 
such as user-defined material modes, adaptive inputs 
for boundary conditions, engineering/environmental 
procedures (e.g., AGF), and functions that evaluate model 
uncertainty/sensibility. (iii) Special attention can be given 
to techniques that can enhance calculation efficiency (e.g., 
parallel computing), interface with visualisation techniques 
(e.g., BIM or digital twin), artificial intelligence, and other 
emerging technologies. Advancements in these areas 
will strengthen the foundation of simulation models and 
contribute to a comprehensive and holistic simulation 
platform for frozen soils subjected to freezing/thawing 
actions.
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