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Abstract. In this paper, an optimal PID tuning method is proposed for a

class of two-link manipulators. In particular, the control specifications of the

manipulators are considered. By modeling the control specifications into state
constraints, the optimal PID tuning problem is converted to an optimal pa-

rameters selection problem with state constraints. An exact penalty function

based method is then utilized to handle the state constraints. The superior of
the proposed method over an existing method is verified by carrying out an

numerical example.

1. Introduction. The manipulators have been widely used in the industry, and it
has many successful applications in which the manipulators are required to perform
various types of complex tasks. Thus, the controller design of the manipulators is
challenging. The most fundamental task for the controller design of the manipu-
lators is to drive the manipulator to follow a desired reference input. In addition,
some control performance specifications have to be met. This is because most of the
complex tasks for a manipulator can be achieved by tacking desired several joint
angles and desired torques.

In the literature, various types of control strategies has been developed for con-
trolling the manipulators [14]. For example, the PID control [41, 8], the adaptive
control [28, 9], the robust control [32, 33], the neural networks [26] based control
and the fuzzy control [15], and the iterative learning control [35]. Among all of
these control strategies, PID control is the most used one in real world applica-
tions. In fact, it has been adopted for more than 90% of the control systems [39] in
engineering practice. The key problem for a PID controller design is to determine
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the parameters for the proportional, the integral and the differential terms, which 
motivates the study of this paper.

The problem of PID tuning has been intensively studied. For example, the 
Ziegler-Nichols (Z-N) method [51] has been regarded as one of the most classical 
PID tuning schemes. Followed by the Z-N method, many modified versions were 
developed by exploring the features of the plants [1, 27, 34] or by incorporating a 
relay feedback [40, 49]. Intelligent tuning scheme [3, 4] was proposed by Astrom 
in 1988. Some are based on the plant model and some are developed based on 
the rules. The former one tunes the PID parameters by incorporating the Z-N 
method with identifying the system input and the system output [5, 6]. The lat-
ter one is a model free tuning method [50, 10, 31]. By introducing some rules, 
which are manually set by experienced engineers, the PID parameters can be ob-
tained by according to the transient responses, and the changes of the set value 
and the disturbance [17, 7]. Taking the position and trajectory tracking errors as 
the optimization indexes, a multi-objective particle swarm optimization algorithm 
is proposed for fractional-order fuzzy PID controller of double link manipulator 
[2]. An adaptive neural network controller design method based on PID structure 
is proposed in [29]. Furthermore, the problem of PID tuning can be regarded as 
the optimal parameter selection problem subject to state constraints. The control 
parametrization method is an efficient approach for solving such problem [38], and 
it has been widely applied in spacecraft attitude control [20], UAV formation control
[22] and trajectory optimization [19].

In this paper, an exact penalty function based PID tuning method [43] is pro-
posed for a two-link manipulator [37]. By formulating the control specifications into
state constraints, the PID tuning problem can be treated as an optimal parameters
selection problem subject to state constraints. Particularly, the state constraints
are difficult to handle since there are infinite number of constraints on the time
horizon to satisfy. The constraint transcription method [45, 48, 24, 46, 47, 23, 25]
was regarded an effective method for tackling the state constraints. However, the
exact penalty function [43, 25, 44, 12, 13] has shown to be more efficient in terms
of optimality and numerical computations. Thus, it is adopted in this paper to
handle the state constraints. By appending the state constraints into the cost func-
tion, an unconstrained optimal parameters selection problem, which is a nonlinear
program and can be solved by many existing computational methods, is obtained.
For example, the sequential quadratic program (SQP) method. There are even off-
the-shelf optimal control softwares available for solving such unconstrained optimal
parameters selection problem. For example, MISER 3.2 [16] and Visual MISER
[42].

The rest of the paper is organized as follows. The PID tuning problem is con-
verted into the state constrained optimal parameters selection problem in Section 2.
The proposed computational method is proposed in Section 3, and some numerical
examples are proved in Section 4 to test the effectiveness of the proposed method.
In Section 5, the paper is concluded by making some remarks.

2. Problem formulation. We consider a two-link rigid manipulator with the fol-
lowing dynamic equations:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ (1)

where q ∈ R2 denotes the joint displacements, q̇ ∈ R2 denotes the joint velocities,
τ ∈ R2 is the torques, M(q) ∈ R2×2 represents the manipulator inertia matrix



which is a symmetric positive definite matrix, C(q, q̇ ) ∈ R2×2 is the 2 × 2 matrix 
of centripetal and Coriolis torques,

g(q) =
∂U(q)

∂q

denotes the gravitational torques and U(q) is potential energy.
Let qd = [qd1 , qd2 ]T be the desired joint position and define e = q − qd as the

position error, respectively, then the PID controller can be expressed as

τ (t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t) (2)

where Kp = [Kp1 ,Kp2 ] > 0 ∈ R2, Ki = [Ki1 ,Ki2 ] > 0 ∈ R2 and Kd =
[Kd1 ,Kd2 ] > 0 ∈ R2 are the proportional, the integral and the derivative gains
of the PID controller, respectively. The objective of this paper is to choose these
gain matrices Kp, Ki and Kd such that the required control specifications of the
system is satisfied.

By defining the following system state

x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2 (3)

the dynamics equation (1) can be rewritten into the following sate-space model:

ẋ1 = x2

ẋ2 = −d12

w
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d22

w
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d22c12

w
x2

4 − 2
d22c11

w
x2x4

+
c21d12

w
x2

2 +
d12

w
h2 +

d22

w
τ1

ẋ3 = x4

ẋ4 =
d11

w
τ2 +

d21

w
h1 +

d21c12

w
x2

4 + 2
d22c11

w
x2x4

− c12d11

w
x2

2 −
d11

w
h2 −

d21

w
τ1

(4)

where c11 = c12 = −m3 sin(x3), c21 = −c11, d11 = m1 + m2 + 2m3 cos
(
x3

)
, d12 =

m2 + m3 cos(x3), d21 = d12, d22 = m2, and h1 = m4g cos(x1) + m5g cos(x1 + x3),
h2 = m5g cos(x1 + x3). Here, mi, i = 1, 2, . . . , 5, are constant numbers.

It is well known that the performance of the controller is described by the control
specifications. For example, the overshoot and the setting time. In real world
applications, a large overshoot may lead to serious consequences for the physical
system. In order to prevent such situation from happening, we impose the following
constraints:

g1 = x1 − 1.05qd1 ≤ 0, t ∈ [0, 5s] (5)

g2 = x3 − 1.05qd2 ≤ 0, t ∈ [0, 5s] (6)

Since the rise time and the setting time are two important performance specifi-
cations for a control system, then we set the rise time as 2s and the setting time as
3s, respectively. Hence, the following constraints are introduced:

g3 = l − x1 ≤ 0, t ∈ [0, 5s] (7)

g4 = l − x3 ≤ 0, t ∈ [0, 5s] (8)



Figure 1. Performance Specifications

where

l =


0, 0 < t ≤ 0.3

0.5t− 0.15, 0.3 < t ≤ 2
0.15t+ 0.59, 2 < t ≤ 3

0.98, 3 < t ≤ 5

These performance specifications are illustrated as in Figure 1. With the state
constraints (5)-(8), it can be guaranteed that the manipulator joint position could
satisfy the requirement of overshoot, rise time and setting time.

By considering the limit of the actuator [30], the following box constraints are
imposed:

g5 = τ1 − 150 ≤ 0, t ∈ [0, 5s] (9)

g6 = −τ1 − 150 ≤ 0, t ∈ [0, 5s] (10)

g7 = τ2 − 15 ≤ 0, t ∈ [0, 5s] (11)

g8 = −τ2 − 15 ≤ 0, t ∈ [0, 5s] (12)

where (9)-(12) imply that the torque on the first link is required to be less than
150N ·m and the torque on the second link has to be less than 15N ·m.

Note that g1, g2, g3 and g4 are state constraints while g5, g6, g7 and g8 are not.
In what follows, we shall reformulate g7 and g8 into state constraints. For this, we
define

x5(t) =

∫ t

0

e1(τ)dτ (13)

x6(t) =

∫ t

0

e2(τ)dτ (14)



Obviously, x5(0) = 0 and x6(0) = 0. Then, by substituting (13)-(14) into (2), 
system (4) can be rewritten as:

ẋ1 = x2

ẋ2 = −d12w τ2 − d22
w g1 − d22c12

w x2
4 − 2d22c11w x2x4

+ c21d12
w x2

2 + d12
w g2 + d22

w τ1
ẋ3 = x4

ẋ4 = d11
w τ2 + d21

w g1 + d21c12
w x2

4 + 2d22c11w x2x4

− c12d11w x2
2 − d11

w g2 − d21
w τ1

ẋ5 = x1 − qd1
ẋ6 = x3 − qd2

(15)

where

τ1 = Kp1 (x1 − qd1) +Ki1x5 +Kd1x2 (16)

τ2 = Kp2 (x3 − qd2) +Ki2x6 +Kd2x4 (17)

and the initial state is given by

x(0) = [0 0 0 0 0 0]> (18)

Remark 2.1. By observing (16) and (17), the control inputs τ1 and τ2 are functions
of the states. Hence, g5, g6, g7 and g8 are state constraints. Interestingly, the PID
control (16)-(17) becomes state feedback control by introducing the transform (13)-
(14).

In order to track the reference input qd1 and qd2 , we define the objective function
as below:

J =

∫ T

0

[
(x1(t)− qd1)2 + (x3(t)− qd2)2

]
dt (19)

The optimal PID parameters tuning problem for the two-link manipulator can
be formulated as the follows:

min
K

J

s.t. (15)

(5)− (12)

where K = [Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 ]>. We refer to this problem as Problem Q.

Remark 2.2. ProblemQ is a stat constrained optimal parameter selection problem.
The state constraints are difficult to handle since the number of constraints on the
time horizon is infinite. An exact penalty function method [21] will be introduced
in the next section to tackle this difficulty.

3. Computational method. In this section, an exact penalty function method
[21] will be introduced to handle the state constraints. Inspired by [21], we construct
a new objective function as below:

Jδ = J + ε−αJ∆ + δεβ (20)

where

J∆ =
8∑
i=1

∫ T

0

[max {0, gi − εγWi}]2 dt (21)



0 < Wi < 1, α > 0, γ > 0, β > 2, δ > 0 are fixed constants, and ε > 0 is the penalty 
parameter.

By replacing the objective function (19) with (20), we obtain a new problem 
which is referred to as Problem Qδ: Given system (15), find a pair (K, ε) ∈ 
R6 × [0, +∞) such that the cost function (20) is minimized.

Remark 3.1. According to Theorem 5.1, Theorem 5.2, Theorem 5.3 and Theorem 
5.4 in [21], there exits a finite number δ∗ such that the optimal solution of Problem 
Qδ∗ is the optimal solution of Problem Q . This implies that Problem Q can be 
solved by solving a sequence of Problem Qδ by increasing δ.

The idea of the exact penalty function can be interpreted as follows. By observing 
the third term of (20), if δ increases, then εβ will decrease in order to minimize the 
objective function Jδ. Therefore, ε will decrease since β is a constant. This may 
lead to the increase of ε−α in the second term of (20), which will push the constraint 
violation function J∆ to decrease.

Problem Qδ is an unconstrained optimal parameters selection problem, which can 
be regarded a nonlinear program. There exists many efficient methods for solving a 
nonlinear program. For example, the sequential quadratic program (SQP) method. 
In addition, some off-the-shelf optimal control software packages are available for 
solving Problem Qδ. For example, MISER 3.2 (Matlab Version) [16] and Visual 
MISER (Fortran Version) [42].

In this paper, the SQP method, which is a gradient based method, is adopted 
to solve Problem Qδ. Thus, the gradient formulas of the objective function are 
required. In the following theorem, the corresponding gradient formulas are derived.

Theorem 3.2. The gradient formulas of the cost function Jδ with respect to K
and ε are

∂Jδ
∂ε

= ε−α−1

{
− α

8∑
i=1

∫ T

0

[
max

{
0, gi − εγWi

}]2
dt

+2γ

8∑
i=1

∫ T

0

max

{
0, gi − εγWi

}
(−εWi)dt

}
+δβεβ−1 (22)

∂Jδ
∂K

=

∫ T

0

ε−α ∂J∆

∂K
+
∂
(
f(x,K)

>
)

∂K
λ(t)

dt (23)

where
∂J∆

∂K
=

[
2 max {0, g5 − εγWi} − 2 max {0, g6 − εγWi}
2 max {0, g7 − εγWi} − 2 max {0, g8 − εγWi}

]
∂f(x,K)

∂K
=

0 0 0
d22
w (x1 − qd1)− d12

w (x3 − qd2) d22
w x5 − d12

w x6
d22
w x2 − d12

w x4

0 0 0
d21
w (x1 − qd1)− d11

w11
(x3 − qd2) d21

w x5 − d11
w11

x6
d21
w x2 − d11

w11
x4

0 0 0
0 0 0





Here, λ(t) is the solution of the following system of co-state differential equations:

λ̇ = −∂H
∂x

(24)

with the boundary condition

λ(T ) = 0 (25)

where
∂H

∂x
=
∂L
∂x

+

(
∂f(x,K)

∂x

)>
λ

∂L
∂x

= 2


Ω
Kd1 max {0, g5 − εγWi} −Kd1 max {0, g6 − εγWi}
Ξ
Kd2 max {0, g7 − εγWi} −Kd2 max {0, g8 − εγWi}
Ki1 max {0, g5 − εγWi} −Ki1 max {0, g6 − εγWi}
Ki2 max {0, g7 − εγWi} −Ki2 max {0, g8 − εγWi}

 (26)

Ω = (x1(t)− qd1) + max {0, g1 − εγWi} −max {0, g3 − εγWi}
+Kp1 max {0, g5 − εγWi} −Kp1 max {0, g6 − εγWi}

Ξ = (x3(t)− qd2) + 1.05qd2 max {0, g3 − εγWi} −max {0, g4 − εγWi}
+Kp2 max {0, g7 − εγWi} −Kp2 max {0, g8 − εγWi}

∂f(x,K)

∂x
=



0 0 0 0 1 0

1 2d22c11w x4 + 2 c21d12w x2 0 2d22c11w x4 − 2 c12d11w x2 0 0
0 0 0 0 0 0

0 −2d22c12w x4 − 2d22c11w x4 1 2d21c12w1
x4 + 2d22c11w x4 0 0

0 0 0 0 0 0
0 0 0 0 0 0



>

Proof. (22) can be proved straight forwardly by differentiating (20) with respective
to ε. To prove (23), we need to consider the following optimal parameters selection
problem.
Problem P . Given the following system:

ẋ(t) = f(t,x(t), ζ)

x(0) = x0(ζ) (27)

find a system parameter ζ ∈ Rs such that the cost functional:

g0(ζ) = Φ0(x(tf |ζ), ζ) +

∫ T

0

L0(t,x(t|ζ), ζ)dt (28)

is minimized and subject to the equality constraints:

gi(ζ) = Φi(x(tf |ζ), ζ) +

∫ T

0

Li(t,x(t|ζ), ζ)dt = 0

i = 1, 2, · · · , Ne
and inequality constraints:

gi(ζ) = Φi(x(tf |ζ), ζ) +

∫ T

0

Li(t,x(t|ζ), ζ)dt ≥ 0

i = Ne + 1, 2, · · · , N



Lemma 1 gives the gradient formulas of the cost functional and the constraint 
functionals.

Lemma 3.3. (Theorem 5.2.1 of [36]) Consider Problem P . For each i = 1, 2, · · · , N , 
the gradient of the functional is given as follows:

∂gi(ζ)

∂ζ
=

Φi(x(T |ζ), ζ)

∂ζ
+ (λi(0|ζ))

> ∂x
0(ζ)

∂ζ

+

∫ T

0

∂Hi (t,x(t|ζ), ζ,λi(t|ζ))

∂ζ
dt (29)

where, for each i = 0, 1, 2, · · · , N ,

Hi (t,x(t|ζ), ζ,λi(t|ζ)) = Li(t,x, ζ) + λ>f(t,x, ζ)

is the corresponding Hamiltonian and λi(t) is the corresponding co-state variable
that satisfies the following differential equations

λ̇i(t) = −Hi (t,x(t|ζ), ζ,λi(t|ζ))

∂x
, t ∈ [0, T )

with

λi(T ) =
∂Φi(x(tf |ζ), ζ)

∂x

To prove (23), we define the corresponding Hamiltonian of Problem Qδ as follows:

H = L+ λ>f(x,K) (30)

where

L = (x1(t)− qd1)2 + (x3(t)− qd2)2 + εα
8∑
i=1

(max {0, gi − εγWi})2
(31)

Since Φ(x(T )) = δεβ and x0 does not depend on K in Problem Qδ, then it
follows that

∂Φ(x(T ))

∂K
= 0 (32)

and

∂x0

∂K
= 0 (33)

Considering (30) and differentiating H with respective to K, we have

∂H

∂K
= ε−α

∂J∆

∂K
+
∂
(
f(x,K)

>
)

∂K
λ (34)

By applying Lemma 1, it follows that

∂Jδ
∂K

=
∂Φ(x(T ))

∂K
+ (λλλ0(0))

> ∂x
0

∂K
+

∫ T

0

∂H

∂K
dt (35)

(23) can be proved by substituting (32), (33) and (34) into (35). This completes
the proof.



Figure 2. Joint displacement of link 1 with proposed method

4. Numerical example. In this section, we shall test the proposed method by
solving a numerical example. The goal of the example is to design a PID controller
such that the joint displacement tracks a constant angle.

The details of the two-link manipulator are given below. The length of link 1 and
link 2 are l1 = 1, l2 = 1, respectively. The desired tracking inputs are qd1 = qd2 = 1.
In (4), m1 = 2.90, m2 = 0.78, m3 = 0.87, m4 = 3.04, m5 = 0.87.

The parameters of the exact penalty function based method are given below. We
set α = 2, γ = 3,W1 = W2 = W3 = W4 = W5 = W6 = 0.30. By the applying
the proposed tuning method, the obtained results are shown below. δ = 1 × 103,
ε = 9.5366 × 10−4, and the optimal PID parameters are Kp = diag{19.30, 6.51},
Ki = diag{3.43× 10−5, 1.67× 10−5}, Kd = diag{18.50, 5.71}.

By using the obtained tuning parameters, we plot the joint displacement for both
of the links in Figure 2 and Figure 3, respectively. The corresponding torque τ1 and
τ2 are plotted in Figure 4. As shown in Figure 2 and Figure 3, all of the control
specifications are satisfied since the q1(t) and q2(t) are lower than the bound of the
overshoot constraint and higher than boundaries of the other constraints. From
Figure 4 we can see that the torque constraints on both of the links are satisfied .

For comparison, the PID tuning method by using the constraint transcription
method [18] is applied. The resulted joint displacement cures are plotted in Figure
5 and Figure 6, and the corresponding torque is plotted in Figure 7. As shown in
Figure 6, the overshoot constraint is violated.

By using the Z-N tuning method [11], the resulted joint displacement cures and
torques on both of the links are plotted in Figure 8-Figure 10. From Figure 9, we
observe that the overshoot constraint is also violated on the second link.

5. Conclusions. An exact penalty function based PID tuning method was pro-
posed for the two-link manipulator. The PID tuning problem was described as a
state constrained optimal parameters selection problem by formulating the control
specifications into state constraints. By utilizing the exact penalty function method,
the formulated problem was transformed into an unconstrained nonlinear program.
In the simulations, the proposed method has shown to be superior than the existing
methods [18] and [11].



Figure 3. Joint displacement of link 2 with proposed method

Figure 4. Motor torque with proposed method

Figure 5. Joint displacement of link 1 with constraint transcrip-
tion method



Figure 6. Joint displacement of link 2 with constraint transcrip-
tion method

Figure 7. Motor torque with constraint transcription method

Figure 8. Joint displacement of link 1 with Z-N tuning method



Figure 9. Joint displacement of link 2 with Z-N tuning method

Figure 10. Motor torque with Z-N tuning method
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