This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Pei Gen Li, Sheung Mei Ng, Xin Yuan, Fu Xiang Zhang, Hon Fai Wong, Chi Wah Leung; Impact of ultrathin garnet spacers on the magnetotransport in Tb3Fe5O12/Pt bilayers. Appl. Phys. Lett. 2 September 2024; 125 (10): 102404 and may be found at https://doi.org/10.1063/5.0219796.

Impact of ultrathin garnet spacers on the magnetotransport in Tb₃Fe₅O₁₂/Pt bilayers

Pei Gen Li,¹ Sheung Mei Ng,¹ Xin Yuan,^{1,2} Fu Xiang Zhang,² Hon Fai Wong,¹ and Chi Wah Leung^{1,a)}

1Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom,

Hong Kong, China

2Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

a) Author to whom correspondence should be addressed: dennis.leung@polyu.edu.hk

Abstract: We studied the interfacial spin Hall magnetotransport in the Tb₃Fe₃O₁₂ (TbIG)/Pt system, across a non-magnetic (Y₃Al₅O₁₂ (YAG) and Gd₃Ga₅O₁₂ (GGG)) spacer with the garnet structures. TbIG (30 nm)/spacer samples were grown on single-crystal (GGG) (111) substrates by pulsed laser deposition, before 5 nm of Pt was sputtered on the samples and patterned into Hall bars. The YAG spacer thickness (t_{YAG}) dependences of anomalous Hall effect resistance (R_{AHE}) indicated no significant change on the magnetization compensation temperature of TbIG. Hysteretic R_{AHE} loops were observed at low magnetic fields, but with reducing magnitude as t_{YAG} thickness increases. A cross-over of the R_{AHE} sign was observed at temperatures below the compensation temperature, which decreased sharply from 135 K to 34 K as t_{YAG} increased from 0 to 1 nm. We attributed this to the strong dependence of the magnetic proximity effect towards the YAG insertion in TbIG/Pt interface. Replacement of YAG spacer with GGG showed significant impact on the R_{AHE} behaviour. No obvious R_{AHE} -H loops were observed in the TbIG/Pt sample inserted with 0.5 nm GGG spacer, which could be linked to the strong magnetic

contribution of the Gd ions. This work highlights the tunability of interfacial transport behaviour in iron garnet/heavy metal systems through ultrathin spacers, providing guidance for the interfacial design of spintronic devices. Ferrimagnetic insulator (FMI)/heavy metal (HM) devices play an important role in studying spin Hall magnetotransport behavior,¹⁻⁴ as the strong spin-orbit-torque (SOT) of HM (like Pt) enables spin current within the layer to be reflected or absorbed by the FMI/HM interface and convert back into an charge current in the HM layer, achieving information transmission.^{5,6} This spin transport is closely related to FMI/HM interface, because two important interface effects, spin Hall effect (SHE) and magnetic proximity effect (MPE),⁷ would affect the direction and intensity of spin current.

The peculiar interface effects have attracted attention of researchers, focusing on spin current phenomena like spin pumping,^{8,9}, spin Seebeck effect,^{10,11} spin Hall effect (SHE), and inverse spin Hall effect (ISHE).^{7,12} They also explored the complex interface by X-ray magnetic circular dichroism (XMCD) or polarized neutron reflectometry (PNR) measurements, trying to distinguish the physical origin of such effects. To achieve regulation of these interface effects, interface engineering is an effective means that helps spintronics devices to achieve controllable information storage.¹³

Due to the strong spin-orbit coupling, Pt has been widely used in such studies of FMI/ HM systems.^{14,15} The most commonly-studied system is Y₃Fe₅O₁₂ (YIG)/Pt, in which the anomalous Hall effect (AHE) phenomenon can be easily observed.^{6,16,17} In a related rare earth ion garnet (REIG) structure, Tb₃Fe₅O₁₂ (TbIG)/Pt has demonstrated two sign crossover in AHE resistance (R_{AHE}) with decreasing temperatures.^{18,19} The first sign reversal at higher temperature coincides with the magnetization compensation point (T_{comp}) of TbIG, at which the saturation magnetization temporarily vanishes.^{18,20,21} The effect is attributed to antiferromagnetically-coupled Tb and Fe ions in the material, which exhibit different temperature dependences of magnetization. Similar T_{comp} phenomenon was also observed in similar systems such as DyIG/Pt²² and GdIG/Pt.^{23,24}

The second sign reversal of R_{AHE} (defined as T_I) is considered to arise from the competition between MPE-induced in the Pt layer and spin Hall magnetotransport at

REIG/Pt interface.^{19,21,25,26} With such a linkage with MPE, this low-temperature R_{AHE} sign reversal can possibly be regulated through modifications of the FMI/HM interface, for example by dusting with a foreign material.²⁷

For REIG/Pt heterostructures with two R_{AHE} sign cross-over behaviour, previous studies have focused on the regulation T_{comp} ;^{28,29} relatively little attention was paid to the modulation of T_I . Some reports attempted to insert non-magnetic barriers (such as Cu and Si) at the REIG/Pt interface to modify MPE or SHE,^{2,30} but there was no systematic exploration of T_I regulation. Moreover, the long spin diffusion length of Cu could interfere with the normal spin diffusion of Pt. Besides, metal spacers are polycrystalline in nature, and has crystal structure dramatically different from that of REIG, resulting in increased uncertainty in interface regulation. Selection of appropriate materials that ensures uniform interface quality and controlling of T_I is worth exploring.

In this work, we study the impact of lattice-matching, non-magnetic spacer on the R_{AHE} behaviour of TbIG/Pt. Y₃Al₅O₁₂ (YAG) is a non-magnetic material with garnet structure and a lattice constant (12.003 Å)³¹ close to that of TbIG (12.436 Å).³² Their similar garnet structure implies the possibility for coherent YAG growth on TbIG (particularly for ultrathin YAG layers in which stress relaxation is mild),^{31,33} and therefore YAG was selected here as the spacer material. Meanwhile, another lattice-matching paramagnetic spacer of Gd₃Ga₅O₁₂ (GGG, lattice constant = 12.383 Å)³⁴ was also used for comparison. The lattice mismatch of TbIG/YAG is 3.48 %, which is higher than that of TbIG/GGG (0.43 %). Besides, previous works have confirmed that paramagnetic GGG can achieve spin transport like other ferromagnetic insulators albeit with weaker signals.^{35,36} The difference of magnetism between YAG and GGG could provide insights in the effect of different spacer layers on TbIG/Pt spin transport.

TbIG/YAG/Pt and TbIG/GGG/Pt samples were grown on GGG (111) substrates. The temperature (*T*) dependence of R_{AHE} in the samples for various spacer thicknesses was

measured. T_{comp} was identified by a divergence of coercivity (H_c) in R_{AHE} -T plot, which coincides with the cross-over of the R_{AHE} sign.¹⁹ Within the YAG thickness (t_{YAG}) studied (1 nm or less), our results indicate no significant impact of the spacer on the measured T_{comp} , although the R_{AHE} amplitude decreases gradually. Below T_{comp} , a second R_{AHE} sign reversal is observed and is attributed to the competition between MPE-induced AHE and spin Hall (SH)-induced AHE. The ultrathin spacer strongly modulates the MPE behaviour, and the presence of ultrathin spacers leads to a rapid decrease of this R_{AHE} sign reversal temperature. Apart from YAG, paramagnetic spacer of GGG also strongly inhibits the spin transport at the interface at even extremely thin cases (0.5 nm or less). Possible reasons for the observed differences are discussed.

TbIG (30 nm) with ultrathin YAG overlayers (thicknesses t_{YAG} between 0 to 2 nm) were deposited on GGG (111) single crystal substrates by pulsed laser deposition, using a KrF laser (wavelength $\lambda = 248$ nm), in an oxygen ambient of 100 mTorr and substrate temperature of 710°C. The substrates were pre-cleaned and pre-annealed in an oxygen environment of 1000°C for 6 hours, yielding a reconstructed surface that promote the smooth growth of films.¹⁸ The deposited films were post-annealed for 10 mins at the same temperature *in situ* with 10 Torr oxygen pressure. Afterwards, 5 nm of Pt was deposited on the samples by d.c. magnetron sputtering (base pressure better than 1×10^{-6} Torr) and patterned into Hall bars (channel size 100 μ m × 50 μ m) by photolithography and Ar ion etching. Au (50 nm)/Ti (5 nm) electrodes were deposited on the Hall bar pattern by e-beam evaporation (pressure less than 1×10^{-6} Torr). The schematic of the completed device is shown in Fig. 1(a).

X-ray diffraction (XRD) measurements were conducted using a high-resolution X-ray diffractometer (Rigaku SmartLab) with Cu K_{α} ($\lambda = 1.541$ Å) radiation. Atomic force microscopy (AFM, Asylum 3D infinity) was used to characterize the surface morphology of the thin films. High-resolution transmission electron microscopy (HR-TEM) images

were captured by spherical aberration-corrected transmission electron microscope (AC-TEM) equipped with high-angle annular dark field (HAADF) and the energy-dispersive xray spectroscopy (EDX) to analyse the elements distribution and atomic structure. R_{AHE} -H loops were measured using a physical property measurement system (PPMS, Quantum Design). Due the out-of-plane tensile stress and positive magnetostriction coefficient of TbIG, TbIG deposited on GGG (111) exhibits perpendicular magnetic anisotropy (PMA).^{18,37} The R_{AHE} was measured from the samples with a magnetic field applied normal to the sample surface.

Fig. 1. (a) Schematic illustration of TbIG/spacer/Pt device for AHE measurements. J_e represents the electric current and H is external field. (b) AFM image of TbIG(30 nm) (scan area: 2 μ m × 2 μ m). (c) XRD diffraction profile of TbIG (30 nm)/YAG bilayers with different YAG thickness. Inset: lattice spacing of TbIG (444) as a function of t_{YAG} . (d)

Rocking curve of TbIG (30 nm) sample.

Fig. 1 (b) presents the AFM scan of the TbIG (30 nm) sample, indicating an atomically smooth surface with a root-mean-square roughness of 0.21 nm. Fig. 1 (c) shows the θ -2 θ scan of TbIG/YAG bilayer films for different t_{YAG} values. In addition to the sharp GGG (444) substrate peak, the TbIG film peak can be identified at smaller 2 θ values. The extracted lattice spacing of $d_{444} = 0.182$ nm (inset of Fig. 1(c)) shows an out-of-plane expansion compared to the bulk value (0.1795 nm). With increasing t_{YAG} , the peak position of the bilayer films has shown a minute increase. Meanwhile, the ultrathin YAG layer is not expected to have a significant impact on the epitaxial growth of the underlying TbIG, as confirmed by the similar Laue oscillations and lattice spacing of the TbIG layer. The TbIG (444) peak rocking curve of GGG/TbIG (30 nm) sample (Fig. 1 (d)) shows a full-width at half-maximum (FWHM) of 0.07°, indicating a low mosaic spread. Samples with YAG overlayers essentially show the same FWHM.

A TbIG (30 nm)/YAG (2 nm)/Pt sample was prepared by focused ion beam (FIB) etching for HR-TEM. As shown in Fig. 2(a), the YAG layer can be clearly recognized through the cross-sectional TEM image. EDX mapping shows minute interdiffusion of each interface, which is a common phenomenon in garnet systems.^{38,39} HR-TEM (Fig. 2(b) and 2(c)) shows a coherent atomic arrangement of garnet structure along the [11 $\overline{2}$] direction for the TbIG/YAG. Although there is a lattice mismatch of 3.48 % between TbIG and YAG, there is no significant lattice distortion observed in the YAG layer and shows good epitaxy in GGG/TbIG/YAG system. Line scan results in Fig. 2(d) indicates that the interdiffusion length is less than 0.5 nm across the TbIG/YAG interface. It provides evidence for comparing magnetotransport difference caused by direct and non-direct contact in TbIG/YAG/Pt systems.

Fig. 2. (a) Cross-sectional TEM image of TbIG/YAG (2 nm)/Pt sample. Elements distribution of Gd, Tb, Y and Pt are extracted from the EDX mapping. (b) HR-TEM image of the TbIG/YAG interface, with the magnetified TbIG/YAG interface extracted from the enclosed range displayed in (c). (d) Average signal intensity of Tb and Y as obtained from the line scan in (c).

The two cross-over behaviour in R_{AHE} -T plots of TbIG/Pt has been reported previously.^{18,38}Although the interface coupling can affect the R_{AHE} signals, it remains to be explored whether changing interface coupling will affect the behaviour of T_{comp} and T_1 . Here, an ultrathin layer of non-magnetic YAG (from 0-2 nm) is inserted between Pt and TbIG to regulate the interface. Fig. 3 compares the temperature-dependent R_{AHE} of TbIG/YAG/Pt samples with varying t_{YAG} . Several R_{AHE} -H loops present distortions at high field (e.g. Fig. 3(c)). Similar AHE distortion has been observed in TmIG/Pt systems, which may be attributed to the nonlinear background signal contribution at high fields.^{21,40} Such distortions should not affect the observation of AHE signal along the field sweeping direction.

Fig. 3. Temperature-dependent R_{AHE} -H loops of TbIG (30 nm)/YAG/Pt, with $t_{YAG} = 0$ nm (a), 0.5 nm (b), 1 nm (c) and 2 nm (d). Black arrows indicate the scanning directions of the external magnetic field. In all plots, measurements at different temperatures are offset in y-axis direction.

For the control sample ($t_{YAG} = 0$, Fig. 3 (a)), as temperature decreases from 300 K, the first R_{AHE} sign change occurs at around 230 K. A similar R_{AHE} sign reversal behaviour at around the same temperature is also observed in other samples with YAG spacer (Fig. 3 (b-c)). When the thickness of YAG increases to 2 nm (Fig. 3 (d)), the AHE characteristics of TbIG cannot be discerned across the whole temperature range, indicating that 2 nm of YAG is sufficient to block the coupling between TbIG and Pt.

Apart from the sign reversal mentioned above, the samples also demonstrate a second R_{AHE} sign reversal at lower temperatures. For the control sample ($t_{YAG} = 0$), this occurs at around 135 K and is much higher than that of samples with YAG spacers (~ 65 K for $t_{YAG} = 0.5$ nm, below 34 K for $t_{YAG} = 1$ nm, and completely disappear for $t_{YAG} = 2$ nm).

To observe the variations in AHE more intuitively, temperature-dependent H_c and R_{AHE} at zero magnetic field (R_{AHE}^0) are extracted from R_{AHE} -H loops in Fig. 3 and are presented in Fig. 4, with H_c extracted from $R_{AHE} = 0$ at various temperatures. The H_c -T plots (upper plots of Fig. 4(c)) show the temperature dependence of H_c for different spacer thickness. Due to the absence of AHE signal at YAG 2 nm, the corresponding H_c and R_{AHE} cannot be obtained for comparison.

As shown in Figs. 4(a) and (b), a similar divergence of H_c takes place around 230 K in all samples, accompanied by a sudden sign reversal of R_{AHE}^0 , indicating the occurs of T_{comp} which remains stable. Within the measurement error, we conclude that the YAG spacer layer does not change the temperature where H_c divergence occurs. The T_{comp} value is slightly lower than that of bulk value (about 246 K), possibly because of the strain state

in the deposited TbIG layer.^{41,42}

Fig. 4. Temperature dependence of (a) H_c and (b) R_{AHE}^0 for different YAG thickness, as extracted from R_{AHE} -H loops in Fig. 3. Inset in (b) shows the enlarged $R_{AHE}^0 - T$ curve for $t_{YAG} = 1$ nm sample. (c) Comparison of T_{comp} and T_1 for samples with different YAG thickness. Notice the difference of y-axes scales for T_{comp} (black) and T_1 (red) plots.

It is known that antiferromagnetic coupling exists between Fe³⁺ and Tb³⁺ ions in TbIG, which is the origin of its ferrimagnetic behaviour.¹⁸ The temperature-dependent magnetizations of Tb³⁺ (at dodecahedral sites) and Fe³⁺ (at tetrahedral and octahedral sites) cancel out at T_{comp} . Similar behaviour also occurs in other rare-earth iron garnets like GdIG⁴³ and DyIG²² and were probed with R_{AHE} .

Meanwhile, the interfacial exchange coupling of REIG/Pt is dominated by Fe/Pt exchange coupling,^{21,22} with the R_{AHE} sign orientation being determined by the Fe³⁺ moments. At above T_{comp} , Fe³⁺ dominates the net magnetization of TbIG. As temperature decreases to T_{comp} , the moment of Fe³⁺ is wholly cancelled out at T_{comp} by the Tb³⁺ moment (which has a more dramatic temperature dependence). Such magnetization can be reflected through the divergent H_c . When the temperature across T_{comp} and continues to decrease, the decreased Zeeman energy would reorient the magnetic moments of Fe³⁺,⁴⁴ resulting a sudden sign flip of R_{AHE}^0 , reflected in R_{AHE}^0 as a sharp sign reversal from positive to negative values (Fig. 4(b)).

Consistent divergence of H_c and sudden reversal of R_{AHE}^0 sign behaviours across all TbIG/YAG/Pt samples (Fig. 4) indicate that the YAG spacer does not alter the antiferromagnetic coupling between the Fe³⁺ and Tb³⁺ in the TbIG layer, and confirms that the interface exchange coupling of TbIG/Pt is independent of T_{comp} .

At lower temperatures, R_{AHE}^0 sign reversal occurs again at T_1 . The transition temperature T_1 varies drastically from ~135 K for the control sample to ~35 K for $t_{\text{YAG}} = 1$ nm. As mentioned earlier, the occurrence of T_1 is attributed to the competition between SHE and MPE.^{19,21,25,26} For AHE induced by SHE, the spin-mixing conductance $G_{\uparrow\downarrow} =$ $G_r + iG_i$ plays a great role in generating AHE, which is attributed to the SHE at FMI/HM interface.³ According to Chen *et al.*,⁴⁵ the SHE-induced AHE needs to consider multiple factors, including (temperature dependent) conductivity σ , spin Hall angle θ_{SH} , spin diffusion length λ of Pt, and the spin-mixing conductance $G_{\uparrow\downarrow}$ at TbIG/Pt interface. This leads to the attenuated SHE-induced AHE as temperature goes down. The other contribution of AHE originates from MPE, which leads to magnetic ordering in Pt and resulting in additional AHE signal. The MPE-induced AHE is strongly related to the exchange coupling between interfacial Fe³⁺ and Pt. The magnetic moment of Fe³⁺ is increased as the temperature goes down, and the Fe/Pt exchange coupling strength also increases accordingly, which leads to the MPE-induced AHE becomes stronger at low temperatures.

Unlike the R_{AHE} sign change around T_{comp} , no H_c divergence is observed and the sign reversal process occurs more gradually with temperature. Reports have demonstrated a more dominant role of SHE on AHE at higher temperatures,⁴⁶ and MPE induced AHE dominates at low temperatures.^{21,22} Considering the continuously increased MPE and decreased SHE as the temperature goes down, the cross-over of R_{AHE}^0 occurs at T_1 in TbIG/Pt.

It is worth noting that the R_{AHE}^0 amplitude is reduced dramatically as the YAG thickness increases. As shown in Fig. 4 (b), the R_{AHE} amplitude decays exponentially from 1.5 m Ω (for $t_{YAG} = 0$) to virtually zero (for $t_{YAG} = 2$ nm) at 235 K. The magnetic ordering in Pt induced by MPE occurs in the region very close to the TbIG/Pt interface, and SHE also depends on the spin accumulation at the TbIG/Pt interface. After the insertion of non-magnetic YAG, the coupling of Fe/Pt will be severely weakened, and the magnetic ordering within Pt is highly dependent on direct contact with TbIG, which means that the competitive balance between MPE and SHE would be disrupted, and the induced AHE signals would be weakened, displayed as a decreased R_{AHE}^0 amplitude.

The slope of R_{AHE}^0 plots also provide some interesting insight on the temperature dependence of MPE and SHE. As shown in Fig. 4 (b), the R_{AHE}^0 plot of control sample $(t_{\text{YAG}} = 0 \text{ nm})$ exhibits a constant fixed value between T_{comp} and T_1 , indicating the competitive balance between MPE and SHE follows a linear variation. Based on the

competitive relationship and the fact that MPE dominates at low temperatures,^{21,22} we speculate that rising MPE impact in AHE from T_{comp} onwards with decreasing temperature.

With YAG intervention, it is noticed that such linear variation of the R_{AHE}^0 at low temperatures occurs in an increasingly narrow temperature range with rising t_{YAG} values. Instead, the plots retain a fair steady amplitude for temperatures between T_{comp} and T_1 . Assuming the MPE impact take effect at a transition temperature such that the R_{AHE}^0 plot slope changes (see Fig. 4(b) for details), such transition occurs at ~108 K for $t_{YAG} = 0.5$ nm and ~ 51 K for $t_{YAG} = 1$ nm. This indicates that the YAG spacer has a greater impact on the temperature dependence of MPE, with MPE-induced AHE become more suppressed as t_{YAG} increases.

Fig. 5 shows the normalized R_{AHE}^0 with an evident exponential decay with t_{YAG} increases. The fitting curve follows the formula $\frac{R_{AHE}^0}{R_{AHE}^0} \left(\frac{1}{R_{AHE}^0} = 0 \right) = e^{-t_{YAG}/\lambda}$, where λ is decay length. A decay length of $\lambda = 0.26 nm$ across YAG spacer was obtained.

Fig. 5. Semi-log plots of normalized R_{AHE}^0 as a function of the YAG thickness at 235 K. The fit indicates a decay length $\lambda = 0.26 nm$ in TbIG/YAG/Pt system.

Considering the TbIG and Pt are separated by the insulating YAG spacer, it is speculated that the coupling between TbIG and Pt originate from the quantum tunneling

across the barrier; similar effect has been observed in YIG systems.^{30,47} The ability of spinpolarized electrons in Pt to pass through spacer barriers can be evaluated by the spin tunneling transmission coefficient $D_{ttc.}$ This is strongly correlated with Schottky barrier

 ϕ_{sc} and spacer thickness t and is described as $D_{ttc} \propto exp \left[\frac{-2t_{YAG}\sqrt{2m\phi_{sc}}}{\hbar}\right]^{30}$, where

m and \hbar represent the effective electron mass and Planck's constant. This indicates that the spin transport achieved by tunneling are negatively correlated with the thickness and work function of spacer.

Fig. 6. Temperature-dependent R_{AHE} -H loops of TbIG (30 nm)/GGG/Pt, with $t_{GGG} = 0$ nm (a), 0.5 nm (b).

To explore the universality of the simple barrier model, we chose another paramagnetic garnet GGG as the spacer layer. The commonality between GGG and YAG is the similar garnet structure with TbIG, which can ensure the uniform crystallinity of the spacer layer and similar interface quality. However, GGG demonstrates strong paramagnetism while YAG is largely non-magnetic. The strong magnetic moment of Gd³⁺

in GGG under Curie temperature (292 K)⁴⁸ may alter the magnetotransport dominated by TbIG. This allows us to explore the difference between non-magnetic and paramagnetic garnet as spacer.

As shown in Fig. 6, samples inserted with 0.5 nm and 1 nm GGG spacer exhibit almost identical R_{AHE} -H signals, with no AHE loop to be observed. It can be considered that only the signal of the GGG spacer is displayed, indicating a strong attenuation of tunneling with just 0.5 nm of GGG spacer. Considering YAG and GGG spacers of the same thickness by the barrier model mentioned above (the Schottky barrier \emptyset_{sc} is expected to be half of the spacer band gap³⁰), with bandgap of YAG being 6.5 eV⁴⁹ and is higher than that of GGG (5.66 eV).⁵⁰ Theoretically, the larger bandgap means lower ability of tunneling. However, comparing the results of 0.5 nm spacers in Fig. 3 (b) and Fig. 6 (a), it is evident that the decay length in YAG spacer is much larger than that in GGG spacer. This indicates that in addition to the barrier model, other factors need to be considered to judge the ability of tunneling. Although it is known that the spin transport is achieved in FMI through the propagation of magnon,⁵¹ considering the strong paramagnetism of GGG, the 4*f*-shell of Gd³⁺ contributes a large local moment,⁵² which could significantly attenuate the spin transport from TbIG to Pt layer.

In summary, magnetotransport at the TbIG/Pt interface with non-magnetic YAG and paramagnetic GGG spacer layer was studied. T_{comp} of TbIG/Pt remained at ~230 K with varied YAG spacer thickness, indicating that the interface exchange coupling of TbIG/Pt is independent of T_{comp} and depends on the overall magnetic moment of the system. On the other hand, the presence of YAG spacer significantly affected the interfacial competition between MPE and SHE, leading to an exponential drop of R_{AHE}^0 amplitude. The second cross-over of R_{AHE} sign T_1 dropped significantly from ~135 K for the control sample to ~35 K for $t_{YAG} = 1$ nm, indicating the controllability of T_1 . Finally, paramagnetic GGG spacer exhibited stronger attenuation of R_{AHE} singals than non-magnetic YAG, which was attributed to strong Gd³⁺ magnetic moment. The study illustrates the impact of spacer and interface on the AHE switching behaviour, which would be helpful for the engineering of FMI/HM heterostructures and interfaces for spintronic applications.

Acknowledgement

The work is supported by the Research Grants Council, HKSAR (15302320) and the Hong Kong Polytechnic University (ZVWC).

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

¹S. Meyer, M. Althammer, S. Geprägs, M. Opel, R. Gross, S. T. B. Goennenwein, Appl. Phys. Lett. **104** (24), 242411 (2014).

²C. Tang, P. Sellappan, Y. Liu, Y. Xu, J. E. Garay, J. Shi, Phys. Rev. B **94** (14), 140403 (2016).

³S. Meyer, R. Schlitz, S. Geprägs, M. Opel, H. Huebl, R. Gross, S. T. B. Goennenwein, Appl. Phys. Lett. **106** (13), 132402 (2015).

⁴S. Shimizu, K. S. Takahashi, T. Hatano, M. Kawasaki, Y. Tokura, Y. Iwasa, Phys. Rev. Lett. **111** (21), 216803 (2013).

⁵J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H Back, T. Jungwirth, Rev. Mod. Phys. **87** (4), 1213 (2015).

⁶M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Altmannshofer, M. Weiler, H. Huebl, S. Geprägs, M. Opel, R. Gross, D. Meier, C. Klewe, T. Kuschel, J.-M. Schmalhorst,

G. Reiss, L. Shen, A. Gupta, Y.-T. Chen, G. E. W. Bauer, E. Saitoh, S. T. B. Goennenwein, Phys. Rev. B 87 (22), 224401 (2013).

⁷H. Nakayama, M. Althammer, Y. T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprags, M. Opel, S. Takahashi, R. Gross, G. E. Bauer, S. T. Goennenwein, E. Saitoh, Phys. Rev. Lett. **110** (20), 206601 (2013).

- ⁸M. V. Costache, M. Sladkov, S. M. Watts, C. H. van der Wal, B. J. van Wees, Phys. Rev. Lett. **97** (21), 216603 (2006).
- ⁹O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. Bauer, S. D. Bader, A. Hoffmann, Phys. Rev. Lett. **104** (4), 046601 (2010).
- ¹⁰S. M. Wu, W. Zhang, A. Kc, P. Borisov, J. E. Pearson, J. S. Jiang, D. Lederman, A. Hoffmann, A. Bhattacharya, Phys. Rev. Lett. **116** (9), 097204 (2016).
- ¹¹Z. Jiang, C. Z. Chang, M. R. Masir, C. Tang, Y. Xu, J. S. Moodera, A. H. MacDonald, J. Shi, Nat. Commun. 7, 11458 (2016).
- ¹²B. F. Miao, S. Y. Huang, D. Qu, C. L. Chien, Phys. Rev. Lett. **111** (6), 066602 (2013).
- ¹³S. Jiang, X. Chen, X. Li, K. Yang, J. Zhang, G. Yang, Y. Liu, J. Lu, D. Wang, J. Teng, and
 G. Yu, Appl. Phys. Lett. **107** (11), 112404 (2015).
- ¹⁴P. Blonski, S. Dennler, J. Hafner, J. Chem. Phys. **134** (3), 034107 (2011).
- ¹⁵P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M. D. Stiles, Phys. Rev. B **87** (17), 174411 (2013).
- ¹⁶H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, F. Y. Yang, Phys. Rev. Lett. **112** (19), 197201 (2014).
- ¹⁷Y. K. Liu, H. F. Wong, X. Guo, S. M. Ng, K. K. Lam, Y. Zhu, C. L. Mak, C. W. Leung, ACS Appl. Electron. Mater. **1** (7), 1099 (2019).
- ¹⁸Y. K. Liu, H. F. Wong, K. K. Lam, K. H. Chan, C. L. Mak, C. W. Leung, J. Magn. Magn. Mater. **468**, 235 (2018).
- ¹⁹P. G. Li, J. M. Liang, S. M. Ng, H. F. Wong, Y. Zhou, L. J. Huang, K. W. Lin, Y. H. Tsang,

- C. L. Mak, C. W. Leung, J. Magn. Magn. Mater. 592, 171785 (2024).
- ²⁰S. Becker, Z. Ren, F. Fuhrmann, A. Ross, S. Lord, S. Ding, R. Wu, J. Yang, J. Miao, M. Kläui, G. Jakob, Phys. Rev. Appl. **16** (1), 014047 (2021).
- ²¹Q. Shao, A. Grutter, Y. Liu, G. Yu, C.-Y. Yang, D. A. Gilbert, E. Arenholz, P. Shafer, X. Che, C. Tang, M. Aldosary, A. Navabi, Q. L. He, B. J. Kirby, J. Shi, K. L. Wang, Phys. Rev. B **99** (10), 104401 (2019).
- ²²J. J. Bauer, P. Quarterman, A. J. Grutter, B. Khurana, S. Kundu, K. Andre Mkhoyan, J. A. Borchers, C. A. Ross, Phys. Rev. B **104** (9), 094403 (2021).
- ²³B. W. Dong, J. Cramer, K. Ganzhorn, H. Y. Yuan, E. J. Guo, S. T. B. Goennenwein, M. Klaui, J. Phys. Condens. Matter. **30** (3), 035802 (2018).
- ²⁴L. Liu, Z. Fan, Z. Chen, Z. Chen, Z. Ye, H. Zheng, Q. Zeng, W. Jia, S. Li, N. Wang, J. Liu, L. Ma, T. Lin, M. Qiu, S. Li, P. Han, J. Shi, H. An, Appl. Phys. Lett. **119** (5), 052401 (2021).
- ²⁵W. Zhang, M. B. Jungfleisch, W. Jiang, Y. Liu, J. E. Pearson, S. G. E. te Velthuis, A. Hoffmann, F. Freimuth, Y. Mokrousov, Phys. Rev. B **91** (11), 115316 (2015).
- ²⁶S. Ding, Z. Liang, C. Yun, R. Wu, M. Xue, Z. Lin, A. Ross, S. Becker, W. Yang, X. Ma, D. Chen, K. Sun, G. Jakob, M. Kläui, J. Yang, Phys. Rev. B **104** (22), 224410 (2021).
- ²⁷W. Amamou, I. V. Pinchuk, A. H. Trout, R. E. A. Williams, N. Antolin, A. Goad, D. J.
- O'Hara, A. S. Ahmed, W. Windl, D. W. McComb, R. K. Kawakami, Phys. Rev. Mater. 2 (1), 011401 (2018).
- ²⁸J. M. Liang, X. W. Zhao, Y. K. Liu, P. G. Li, S. M. Ng, H. F. Wong, W. F. Cheng, Y. Zhou,
 J. Y. Dai, C. L. Mak, C. W. Leung, Appl. Phys. Lett. **122** (24) 242401 (2023).
- ²⁹Y. F. Li, X. H. Yang, H. Bai, M. Z. Wang, D. S. Cheng, C. Song, Z. Yuan, Y. Liu, and Z. Shi, Phys. Rev. B **108** (18) 184403 (2023).
- ³⁰C. H. Du, H. L. Wang, Y. Pu, T. L. Meyer, P. M. Woodward, F. Y. Yang, P. C. Hammel, Phys. Rev. Lett. **111** (24), 247202 (2013).

³¹Y. K. Liu, J. M. Liang, H. F. Wong, S. M. Ng, C. L. Mak, C. W. Leung, J. Magn. Magn. Mater. **536**, 168130 (2021).

³² H. Fuess, G. Bassi, M. Bonnet, A. Delapalme, Solid State Commun. 18 (5), 557 (1976).

³³J. M. Liang, X. W. Zhao, S. M. Ng, H. F. Wong, Y. K. Liu, C. L. Mak, C. W. Leung, IEEE Trans. Magn. **58** (2), 1 (2022).

- ³⁴S. Mokarian Zanjani, M. C. Onbaşlı, J. Magn. Magn. Mater. **499**, 166108 (2020).
- ³⁵S. M. Wu, J. E. Pearson, A. Bhattacharya, Phys. Rev. Lett. **114** (18), 186602 (2015).
- ³⁶K. Oyanagi, S. Takahashi, L. J. Cornelissen, J. Shan, S. Daimon, T. Kikkawa, G. E. W.
- Bauer, B. J. van Wees, and E. Saitoh, Nat. Commun. 10 (1), 4740 (2019).
- ³⁷V. H. Ortiz, M. Aldosary, J. Li, Y. Xu, M. I. Lohmann, P. Sellappan, Y. Kodera, J. E. Garay, J. Shi, APL Mater. **6** (12), 121113 (2018).
- ³⁸R. Yadav, A. Bake, W. T. Lee, Y.-K. Liu, D. R. G. Mitchell, X.-R. Yang, D. L. Cortie, K.-W. Lin, C. W. Leung, Phys. Rev. Mater. 7 (12), 124407 (2023).
- ³⁹A. Mitra, O. Cespedes, Q. Ramasse, M. Ali, S. Marmion, M. Ward, R. M. D. Brydson, C.
- J. Kinane, J. F. K. Cooper, S. Langridge, B. J. Hickey, Sci. Rep. 7 (1), 11774 (2017).
- ⁴⁰C. N. Wu, C. C. Tseng, Y. T. Fanchiang, C. K. Cheng, K. Y. Lin, S. L. Yeh, S. R. Yang, C.
- T. Wu, T. Liu, M. Wu, M. Hong, and J. Kwo, Sci. Rep. 8 (1), 11087 (2018).
- ⁴¹S. Geller, J. P. Remeika, R. C. Sherwood, H. J. Williams, G. P. Espinosa, Phys. Rev. 137 (3A), A1034 (1965).
- ⁴²Y. Li, X. Yang, H. Bai, M. Wang, D. Cheng, C. Song, Z. Yuan, Y. Liu, Z. Shi, Phys. Rev. B 108 (18), 184403 (2023).
- ⁴³Y. Li, D. Zheng, C. Liu, C. Zhang, B. Fang, A. Chen, Y. Ma, A. Manchon, X. Zhang, ACS Nano **16**, 8181 (2022).
- ⁴⁴K. J. Kim, S. K. Kim, Y. Hirata, S. H. Oh, T. Tono, D. H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K. J. Lee, and T. Ono, Nat. Mater. **16** (12), 1187 (2017).

- ⁴⁵Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goennenwein, E. Saitoh,
 G. E. W. Bauer, Phys. Rev. B 87 (14), 144411 (2013).
- ⁴⁶E. R. Rosenberg, L. Beran, C. O. Avci, C. Zeledon, B. Song, C. G. Fuentes, J. Mendil, P. Gambardella, M. Veis, C. Garcia, G. S. D. Beach, C. A. Ross, Phys. Rev. Mater. 2 (9), 094405 (2018).
- ⁴⁷W. Chen, Ma. Sigrist, D. Manske, Phys. Rev. B **94** (10), 104412 (2016).
- ⁴⁸S. M. Benford, G. V. Brown, J. Appl. Phys. **52** (3), 2110 (1981).
- ⁴⁹A. Kumar, R. Kumar, N. Verma, A. V. Anupama, H. K. Choudhary, R. Philip, B. Sahoo, Opt. Mater. **108**, 110163 (2020).
- ⁵⁰K. Ghimire, H. F. Haneef, R. W. Collins, N. J. Podraza, Phys. Status Solidi B **252** (10), 2191 (2015).
- ⁵¹Q. Shao, C. Tang, G. Yu, A. Navabi, H. Wu, C. He, J. Li, P. Upadhyaya, P. Zhang, S. A. Razavi, Q. L. He, Y. Liu, P. Yang, S. K. Kim, C. Zheng, Y. Liu, L. Pan, R. K. Lake, X. Han, Y. Tserkovnyak, J. Shi, K. L. Wang, Nat. Commun. **9** (1), 3612 (2018).
- ⁵²M. J. Roos, P. Quarterman, Jinjun Ding, Mingzhong Wu, B. J. Kirby, B. L. Zink, Phys. Rev. Mater. **6** (3), 034401 (2022).