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Abstract: Synergistic modulation has been extensively explored to develop highly efficient transition-
metal-based electrocatalysts for oxygen evolution reaction (OER) because coupling effects among
intrinsic activity, conductivity, mass transfer, mass diffusion, and intermediates adsorption can
further promote catalytic activity. In this review, recent progress in both experimental and theoretical
research on synergistic modulation for transition-metal-based alkaline OER electrocatalysts is focused.
Specifically, synergistic effects will be presented in the following aspects: (1) metal reactive sites
and heterogeneous atoms; (2) heterogeneous atoms and crystallographic structure; (3) electronic
structure and morphology; (4) elementary reaction steps; and (5) external fields. Finally, the remaining
challenges and prospects of synergistic modulation for efficient OER are further proposed.
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1. Introduction

Efficient electrochemical energy conversion techniques, such as water splitting, CO2
reduction, and Zn-air battery, play a crucial role in mitigating energy and environmental
challenges by replacing fossil fuels and decarbonizing the power and transportation sec-
tors [1,2]. Oxygen evolution reaction (OER) can couple with reduction reactions (hydrogen
reaction and CO2 reduction) to constitute a redox reaction circle. However, the effectiveness
of these techniques is impeded by the thermodynamic uphill nature and sluggish kinetics
of OER occurring on the anode [3,4]. As a result, it is often necessary to use precious
metal (Ru/Ir)-based electrocatalysts to facilitate OER, yet the scarcity and high cost hamper
their wide application [5]. Therefore, the pursuit of affordable and efficient electrocatalysts
remains an important research focus. Typically, high-performance electrocatalysts require
the following features: (1) high intrinsic activity to minimize the overpotential required for
catalyzing OER; (2) abundant active sites for rapid reaction kinetics; (3) favorable conduc-
tivity for efficient electron transfer; (4) sufficient channels for effective mass transfer and
gas evolution; (5) robust structural and chemical stability to ensure long-term durability;
and (6) low cost for scalable fabrication.

Transition-metal-based OER catalysts have been extensively explored as alternatives
to precious metals because of their abundant reserves, cost-effectiveness, and favorable
theoretical electrochemical activity. Transition metals are characterized by their d-orbital
valence electronic structure [6–8]. The interaction between oxygen-containing species and
the transition-metal surface leads to electron transfer at the interfaces, driven by the differ-
ence in their electrochemical potentials. Specifically, the O 2p orbital of oxygen-containing
species hybridizes with the d orbitals of transition metals to split into two energy levels [9].
The catalytic activity of OER catalysts, such as transition-metal oxides, hydroxides, sul-
fides, and phosphides, is closely associated with the electronic number of metal d band
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because eg orbit can bind surface anions, thus affecting the combination of oxygen interme-
diates [1,10–16]. Although transition-metal-based catalysts have demonstrated appealing
OER performances, they still exhibit shortcomings such as poor conductivity, less acces-
sible active sites, and high activation energy barriers [17–19]. Numerous strategies have
been adopted to modify their electronic structure, enhance electron transfer, improve mass
diffusion, and optimize intermediates’ adsorption and desorption. However, most efforts
focusing on a single individual aspect were unable to fulfill all the requirements for high-
performance catalysts. To overcome this limitation, synergistic modulation, which has
exhibited significant effects in the fields of CO2 reduction, N2 reduction, and H2 evolution
reactions [20–24], for simultaneously targeting multiple aspects has been suggested to
realize advanced OER catalysts based on transition metals.

In this review, we first summarize the recent research progress of several transition-
metal-based OER catalysts (oxides, phosphides, sulfides, and borides). Then, synergistic
modulations on heterogeneous atoms, defects, morphology, elementary reactions, and
external fields for high-performance OER catalysts in alkaline environment are discussed.
Finally, we point out the challenges associated with synergistic modulation and offer an
outlook on the future directions in this emerging field.

2. Development of Transition-Metal-Based OER Electrocatalysts

The cost and availability of materials are crucial factors to consider in the production
of electrocatalysts. By taking advantage of their easy and cost-effective accessibility, earth-
abundant first-row transition metals such as Fe, Co, and Ni have gained significant attention
(Figure 1) [25–29]. This is mainly because of their variable valence states and unique
electronic structures, which enable them to exhibit catalytic performance comparable to
that of noble-metal-based catalysts. Some significant works published in recent two years
are summarized in Table 1. The most widely investigated transition metal catalysts can be
roughly categorized into oxides, phosphides, sulfides, and borides.
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Figure 1. Publication number of electrocatalytic OER regarding transition-metal-based materials over
the last 10 years. Search keywords: OER and transition metal. Website: Web of Science.
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Table 1. List of electrocatalysts and corresponding OER performance in alkaline environment
published from 2022 to 2023.

Catalysts η10 (mV) η100 (mV) Tafel Slope (mV dec−1) References

Co(OH)2/NiPx 236 304 52 [30]
CoNiFe carbonate hydroxide 258 / 48.7 [31]

Vein-like Cr-doping CoxP / 325 79.2 [32]
CoNiFe-LDH nanocages 257 / 31.4 [33]

Fe-NiCo-LDH / 262 51.9 [34]
F-CDs/CoP/NF / 328 96 [35]

W-NiS0.5Se0.5 171 239 41 [36]
CoO@S-CoTe 246 362 56 [37]

NiFeV nanofibers/carbon cloth 181 269 47 [38]
CoOOH/Co9S8 240 / 86.4 [39]

Bi/BiFe(oxy)hydroxide 232 / 34 [40]
Ni2P@FePOxHy 220 260 43 [41]

NiMo-Fe 217 264 30 [42]
Ni@CNTs-MoxC/Ni2P 228 297 43 [43]
FexNi2-xP4O12/RGO / 277 43.8 [44]

Co3O4/CoMoO4 217 342 72 [45]
NiFeW3-LDHs 211 256 36.4 [46]

CeO2-NiCoPx/NCF 260 / 72 [47]
FeS2@NiS2 237 / 31.4 [48]

Ni0.3Fe0.7-LDH@NF 184 256 56.7 [49]
Fe-V-doped Ni3S2/NF / 259 22.4 [50]

Transition metal oxides, including perovskites, spinels, and layered double hydrox-
ides (LDHs), have been extensively studied for their potential as electrocatalysts for the
OER. The use of perovskite materials in the OER was first demonstrated by Bockris and
Otagawa in 1984 [51], and subsequently, Suntivich et al. proposed them as promising
candidates for OER applications [52]. Metal oxide perovskites (ABO3) are structurally
stable and have a wide compositional range. Generally, substitutions at the A- and B-sites
primarily influence the ability to adsorb oxygen and the reactivity of adsorbed oxygen,
respectively [53]. Matienzo et al. synthesized six perovskites compounds (LaFeO3, LaCoO3,
LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) by co-precipitation and thermal
annealing methods [54]. Among these perovskites, LaNiO3 exhibited the best OER perfor-
mance within La-based compounds, while Pr0.8Sr0.2CoO3 had the optimal OER activity
within Pr-based perovskites.

Spinel oxides have a structural formula of AB2O4, where A and B typically represent
divalent and trivalent cations, respectively, located in the oxygen pores of tetrahedrons
and octahedrons, respectively. Transition-metal spinel materials, such as Co3O4 and its
derivatives, have shown excellent OER activity thanks to their three-dimensional (3D)
structures [55,56]. Qiao’s group developed a 3D hybrid paper by loading spinel NiCo2O4
nanosheets on N-doped graphene film [57]. The edges of NiCo2O4 and N(O)-metal (Ni
or Co) bonds were identified as active sites which were responsible for the excellent OER
performance. Additionally, the incorporation of metals such as Mn, Zn, Cu, and Fe into
spinel Co3O4 was shown to enhance its OER activity [58].

LDHs typically adopt a brucite-type structure, consisting of metal hydroxide layers
with intercalated anions or water molecules. The metal layer comprises octahedral MO6
units with shared edges, where two types of metal ions occupy the layer. One valence
state is M2+ (M = Mg, Ca, Mn, Fe, Co, Ni, Cu, and Zn), and the other valence state is M3+

(M = Al, Mn, Fe, Co, and Ni). As a result, the metal layers are positively charged [59]. To
neutralize this positive charge, anions such as Cl−, Br−, NO3

−, and SO4
2− are inserted

into the interlayer spacing to increase the interlayer distance [60]. Due to their tunable
composition, facile tailoring of structure, and easy functionalization with other materials,
LDHs have shown significant advantages in the field of electrocatalysis. The thickness
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of LDH catalysts significantly affects their OER activity. Zhang et al. fabricated porous
monolayer NiFe-LDH nanosheets with a thickness of 0.8 nm through a facile one-step
strategy [61]. This NiFe-LDH exhibited a remarkably low overpotential of 230 mV and
a Tafel slope of only 47 mV dec−1. Besides NiFe-LDH, other LDH materials, such as
NiCo-LDH and CoFe-LDH, have also emerged as potential OER catalysts [62,63]. Sun
et al. synthesized hierarchical NiCo-LDH hollow nanopolyhedra by a facile self-templated
method [64]. Density functional theory (DFT) calculations revealed that Co3+ hollow sites
served as the adsorption and active sites in the OER process. Pei et al. grew CoFe-LDH
nanosheets on nickel foam (NF) to form a 3D hierarchical structure via electrodeposition.
Such CoFe-LDH exhibited excellent OER activity with an overpotential of 250 mV and a
Tafel slope of 35 mV dec−1 [65].

In recent years, transition metal sulfides (NixSy, CoxSy, and FexSy), phosphides (NixPy,
CoxPy, and FexPy), and borides have also shown excellent catalytic activity in the field
of electrocatalytic OER [66–71]. Hexagonal 2D CoS nanosheets with varying thicknesses
were synthesized by chemical vapor deposition [72]. The thinnest 5 nm-CoS nanosheets
showed optimal OER performance (290 mV at 10 mA cm−2) due to more exposed catalytic
active sites, stronger intermediate adsorption, and promoted electron transfer. Nitrogen-
doped carbon-decorated CoP@FeCoP yolk-shelled micro-polyhedra were prepared via
phosphorization of ZIF-67@Co-Fe Prussian blue analogues, which only required 238 mV
overpotential to reach 10 mA cm−2 and displayed outstanding long-term stability [73].
Such excellent OER activity could be ascribed to the increased specific surface area and
active sites resulting from the unique yolk-shell structure and carbon matrix. Sun et al.
used the chemical reduction method to in situ deposit tungsten-iron-nickel-boron (W-Fe-
Ni-B) nanoparticles on the surface of a NF substrate, creating WFeNiB/NF catalyst [74]. A
low overpotential of only 223 mV could afford a current density of 10 mA cm−2, and the
corresponding Tafel slope was 38.8 mV dec−1. Furthermore, it exhibited excellent long-term
stability, as indicated by a mere 6 mV shift after 10 h of continuous operation, which could
be attributed to the enhanced corrosion resistance of borate species in the catalyst.

3. Synergistic Modulation on Transition-Metal-Based Electrocatalysts for OER

Despite significant efforts dedicated to the development of various transition-metal
OER electrocatalysts, achieving industrial-level OER performance remains a formidable
challenge. Applying modification to the electronic structure, morphology, crystalline,
elementary reactions, and external fields to synergistically modulate intrinsic activity,
active sites number, conductivity, mass diffusion, the free energy of intermediates adsorp-
tion, and external forces has been accepted as an effective approach to optimizing OER
catalytic performance.

3.1. Metal Active Sites and Heterogeneous Atoms

The electrocatalytic OER performance is known to be influenced by intrinsic activity,
which is determined by the energy barriers associated with the adsorption and desorption
of oxygen-containing intermediates [75]. Nørskov’s theory proposes that the difference
in adsorption energy between *O to *OH (∆G*O − ∆G*OH) serves as a descriptor for OER
activity (Figure 2a), which can be balanced by electronic modulation [76]. The introduction
of heteroatoms, including both metal and non-metal atoms, is a highly effective strategy
for tuning the electronic structure [77–79]. To effectively adjust the electronic structure of
the reactive sites, the heteroatom must possess a relatively low electronegativity or induce
an abundance of electrons.
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Figure 2. (a) Negative values of theoretical overpotential plotted against the standard free energy
of ∆G*O − ∆G*OH step. Reproduced from [76] with permission from John Wiley and Sons License.
(b) Two-dimensional map of the overpotentials generated by assuming ∆EOOH = EOH + 3.2 for
different dopants in FeCoX and NiFeX catalysts: the overpotential can be reduced significantly
with the high-valence charge metals. Reproduced from [80] with permission from Springer Nature.
(c) Atomic structures of OER intermediates on V25%-Ni2P/NF-AC, where Ni, V, O, and H are
represented by green, yellow, red, and grey spheres, respectively. (d) Free energy diagrams of the
OER processed on V25%-Ni2P/NF-AC and Ni2P/NF-AC on Ni sites. Reproduced from [81] with
permission from John Wiley and Sons License.

3.1.1. Metal Active Sites and Heterogeneous Metal Atoms

Sargent’s group demonstrated that introducing metallic dopants (W, Mo, Nb, Ta, Re,
and MoW) with high-valence charges can lower the energy barriers for valence charge
transition in 3d metals, such as Fe, Co, and Ni, thereby improving catalytic OER perfor-
mance (Figure 2b) [80]. Furthermore, the adsorption energy of NiFe-LDH towards oxygen
intermediates can also be optimized after the introduction of those high-valence metals.
Zhao’s group investigated the in situ structural reconstruction from V-doped Ni2P to NiV
oxyhydroxides, where the synergistic interaction between Ni hosts and V dopants can
modulate the electronic structure of NiV oxyhydroxides, facilitating the adsorption of *OH
and deprotonation of *OOH intermediates (Figure 2c,d) [81]. Wang et al. incorporated
high-valence state tantalum (Ta) into the pristine NiFe-LDH through the hydrothermal
method [82]. Structural characterizations and DFT results revealed that Ta doping induced
electronic structure modulation around Ni, Fe, and Ta, and the eg orbital of Ta, resulting
from charge transfer, promoted the adsorption of OH species on Ta sites and improve
the conductivity of NiFe-LDH. It is worth noting that surface reconstruction can occur
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easily before OER. Rare earth metals containing unique 4f sub-shell electrons have also
attracted significant attention [83,84]. Sun et al. synthesized Ce-doped LaNiO3 and found
that low-concentration Ce doping at the A-site can promote surface reconstruction into a
highly active NiOOH phase by optimizing the O 2p level [85].

In addition to doping, loading single atoms on catalyst surfaces has emerged as a
promising strategy to achieve outstanding catalytic properties by utilizing low-coordination
and unsaturated active sites [86]. Wang et al. uniformly anchored single Ir atoms on the
outermost surface of the NiO matrix (Figure 3a,b). As shown in Figure 3c, DFT calculations
indicated that the substituted single Ir atom served as an OER active site and activated
nearby surface Ni sites because of the excess electrons contributed by the Ir atom, which
synergistically enhanced the OER activity of NiO [87]. They also reported that the Ir-
single-atom decorated Ni2P catalyst exhibited an ultralow overpotential of 149 mV to
achieve a current density of 10 mA cm−2 for OER, which could be ascribed to the optimized
adsorption and desorption of OH intermediate species on Ir–O–P/Ni–O–P coordination
sites [69]. Additionally, Chen et al. anchored Pt single atoms inside interlayers of NiFe-
LDHs. During the OER process, intercalated Pt single atoms not only promoted surface
reconstruction but also optimized the intrinsic activity of Ni2+δ–O–Fe3+ζOxHy in the active
phase. The interaction between Pt single atoms and Ni2+δ/Fe3+ζ species further promoted
OER activity [88].
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Figure 3. (a) Scanning transmission electron microscopy (STEM) micrographs of Ir-NiO catalyst, in
which the bright spots are ascribed to Ir single atoms. (b) Corresponding atomic modes. (c) Free
energy diagrams of OER at a potential of 1.23 V vs. RHE on perfect NiO (001) and single Ir atoms
doped NiO (001). The potential-determining steps of OER are indicated for these two surfaces. Insets
show the optimized OER intermediates on the Ir-NiO (001) surface. Reproduced from [86] with
permission from American Chemical Society.

3.1.2. Metal Active Sites and Heterogeneous Non-Metal Atoms

Opposite to metal elements, highly electronegative non-metal atoms can attract elec-
trons from metals to form adsorption sites for oxygen-containing intermediates during the
OER process. Li et al. demonstrated the OER performance of NiFeP catalysts can be im-
proved by partially replacing P with S [89]. The formation of metal-sulfur bonds modulated
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the electronic structure of the catalysts, leading to a decrease in the energy barrier during
the adsorption process and reaction pathway of OER. Moreover, S doping facilitated the
generation of *OOH and the release of O2 during the OER process. N-doped NiS2 exhibited
enhanced OER activity because of its well-defined morphology, fast charge transfer, and
enriched N doping [90] (Figure 4a). Specifically, the presence of N atoms adjacent to the
active sites of Ni shifted the position of Ni d-states closer to the Fermi level, and the strong
electron-withdrawing property of N atoms endowed adjacent Ni atoms with a higher
oxidation state (Figure 4b). Moreover, the introduction of N atoms also promoted the value
of (∆G*OH − ∆G*OOH) close to the volcano center, which indicated optimized adsorption
energy towards oxygen-containing intermediates during the OER process (Figure 4c,d).
Additionally, halogen atoms (F, Cl, and Br) have been proven to effectively modulate the
electronic structure of the matrix to improve OER performance [91–95].
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Figure 4. (a) Current densities N-doped NiS2 obtained at different overpotentials. (b) Projected
density of states (PDOS) of different N-doped NiS2. (c) Volcano plots for N-doped NiS2 (squares),
pure NiS2 (circles), and common metal electrocatalysts (triangles). (d) Free energy diagram of the
Ni-0 and Ni-1 sites at the different applied potentials. Reproduced from [89] with permission from
Royal Society of Chemistry.

3.2. Heterogeneous Atoms and Crystallographic Structure

In addition to the conventional method of incorporating heterogeneous atoms, manip-
ulating the crystalline nature of catalysts provides an alternative approach to modulating
their electronic properties. By synergistically combining heteroatoms with the creation of
vacancies, lattice distortion, and grain boundaries, researchers have demonstrated the effec-
tiveness of this strategy in precisely adjusting the electronic properties of catalysts, leading
to significant improvements in catalytic performance or even the mechanism of OER.

3.2.1. Synergistic Modulation on Heterogeneous Atoms and Cation/Anion Vacancies

The construction of oxygen vacancies is a prevalent strategy in the design of transition-
metal-based catalysts, owing to their low formation energy. An oxygen vacancy is a
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type of point defect that arises from the removal of oxygen atoms in the metal oxide
lattice without causing a phase transition. The resultant reduction in oxygen concentration
induces electron deficiency in neighboring metal species, leading to a redistribution of
electron density towards the metal atoms and a subsequent reduction in electron density
around oxygen atoms. This electronic modulation promotes the interaction between
hydroxyl ions and OER reaction intermediates. As shown in Figure 5a–d, Yang et al.
incorporated N doping and oxygen vacancy into the Co3O4 catalyst and demonstrated that
N atoms redistributed electronic configuration of Co atoms to facilitate OER kinetics, while
generating rich oxygen vacancies could activate lattice oxygen oxidation mechanism during
the OER process [96]. The synergistic effect of N doping and oxygen vacancies optimized
the adsorption behavior of oxygen-containing intermediates (Figure 5e,f). Additionally,
electronic states can be regulated by integrating heterogeneous metal atoms with oxygen
vacancies [97]. Li et al. constructed W-doped NiFeW-LDHs with oxygen vacancies on
nickel foam and demonstrated that the weakening of metal-oxygen bonds and the shift of
the O 2p band center towards the Fermi level induced the formation of oxygen vacancies,
thereby enhancing the adsorption capacity of OER intermediates [46]. The positive shift of
the d-band center and generation of oxygen vacancies enhanced the adsorption capacity of
intermediates in the OER process. While anion vacancies (e.g., P, S, and Se) have received
considerable attention [98–100], cationic vacancies have been relatively less explored due
to their higher hopping barriers. Recent studies indicated that cationic vacancies can play a
similar role to their anionic counterparts in improving OER activity [101–103]. For example,
Zhao et al. designed and synthesized highly efficient Fe-doped La0.5Sr0.5−δCoO3 with Sr
vacancies for OER and proposed that the synergistic effect of Fe active sites and Sr vacancies
activated the lattice oxygen mechanism [104]. Theoretical calculations revealed that surface
Fe sites acted as the catalytic centers to trigger lattice OER, while Sr vacancies could promote
oxidation of surface lattice oxygen through uplifting O 2p levels to facilitate OER.
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resonance (EPR), (d) polarization curves, and (e) structural diagram of N-doped Co3O4-Ov. (f) Free
energy diagrams of adsorbate evolution mechanism and lattice-oxygen-mediated mechanism on Ov

active site for 3D Co3O4/NC. Reproduced from [96] with permission from Elsevier.
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3.2.2. Heterogeneous Atoms and Lattice Distortion/Grain Boundaries

Lattice distortion and grain boundary engineering have emerged as effective strategies
for boosting the kinetics of OER by creating additional active sites. Liao et al. explored
the introduction of cerium (Ce) atoms into NiFe-LDH to induce lattice distortion, as
depicted in Figure 6a,b [105]. Experimental and theoretical results demonstrated that the
incorporation of Ce and lattice distortion regulated the electronic structure of Ni atoms
in active sites and lowered the Gibbs free energy of the potential-determining step: *OH
→ *O (Figure 6c,d). Additionally, the creation of a high density of grain boundaries has
been proposed as a promising strategy for augmenting the number of active sites for
OER due to the loose distribution of atoms along these boundaries [106,107]. Qiao et al.
synthesized (FexCo1-x)B OER electrocatalyst with controllable grain boundary density [108].
Physical characterizations and DFT calculations confirmed that the presence of Fe atoms
and manipulation of grain boundaries could effectively modulate the electronic states
and provide more efficient active sites, respectively, thus synergistically enhancing the
OER process.
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Figure 6. (a) Transmission electron microscopic (TEM) and (b) high-resolution TEM images of
NiFeCe-LDH@CP. (c) Proposed four-electron OER mechanism and (d) the Gibbs free energy diagram
for the four steps of OER on NiFeCe-LDH@CP. Reproduced from [105] with permission from Elsevier.

Inducing heteroatoms and creating lattice distortion also can cause lattice strain due
to the change in atom–atom bond length or by the induced lattice mismatch. The elec-
tronic structure of the catalysts’ surface is sensitive to lattice strain, which makes strain a
useful strategy for regulating electrocatalysis [109–111]. Ma et al. induced tunable lattice
strain into NiFeMo alloys through dual doping of Mo and Fe, which in turn changed
d-band center and electronic interaction on catalytic active sites, thus improving OER
performance [112]. In addition, combining lattice strain with other modifications can syner-
gistically modulate the OER property of catalysts. Liu et al. investigated the coupling effect
of lattice strain and oxygen defects on electrocatalytic OER activity of La0.7Sr0.3CoO3−δ
thin films [113]. Experimental results and computational calculations indicated that exces-
sive oxygen defects induced by strain increased the eg state occupancy and expanded the
energy gap between Co 3d and O 2p bands, leading to lower OER activity.
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3.3. Electronic Structure and Morphology

The OER enhancement strategies mentioned above mainly involve regulating the
electronic structure, conductivity, and adsorption-free energy of the active intermediate
species. On the other hand, regulating morphology is another effective strategy to improve
the OER efficiency of transition-metal catalysts by increasing specific surface area, exposing
more active sites, and accelerating the release of bubbles. By integrating morphology
engineering with electronic modulation to enhance intrinsic activity, catalytic performance
can be further boosted.

Cao et al. synthesized sub-2 nm NiFeCr trimetallic hydroxide nanodots that exhibited
a low overpotential of 271 mV at 10 mA cm−2 for OER [114]. This excellent catalytic
performance could be attributed to the synergistic effect of strong electronic interaction
among three metals and zero-dimensional morphology. Moreover, one, two, and multi-
dimensional materials also have the advantages of large specific surface area and sufficient
exposure to edge sites and are regarded as ideal electrocatalyst materials. For example,
Wang et al. decorated W single atoms on the substrate of NiS0.5Se0.5 nanosheet/NiS0.5Se0.5
nanorod heterostructure through a solvothermal method (Figure 7a) [36]. The structure
of nanosheets and nanorods exposed more active sites and promoted electrolyte diffusion
(Figure 7b). Meanwhile, the incorporated W single atoms delocalized the spin state of Ni
(Figure 7c), leading to an increased d-electron density that caused a significant reduction in
the adsorption free energy of the rate-determining step (*O→ *OOH) (Figure 7d–f). These
two main factors contributed to significant OER performance enhancement. Constructing a
hierarchical pore structure with interconnected macropores, mesopores, and small pores
can greatly increase the specific surface area and expose abundant active sites, which have
become the main target for morphology regulation of transition metal oxide catalysts. For
instance, Wan et al. developed meso–macro hierarchical porous Ni3S4 architectures derived
from Ni metal–organic frameworks as an OER electrocatalyst [115]. The outstanding OER
performance can be ascribed to the synergistic effect of enhanced chemisorption of OH
resulting from Ni3+ formation, more active sites, and faster mass transfer.
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Figure 7. (a) Schematic for the synthesis of W-NiS0.5Se0.5. (b) Scanning electron microscopy image,
(c) high-angle annular dark-field scanning TEM (HAADF-STEM) image, and (d) calculated PDOS
of W-NiS0.5Se0.5 and NiS0.5Se0.5. (e) The Gibbs free energy diagrams of various oxygen species for
W-NiS0.5Se0.5 and NiS0.5Se0.5 during the OER process at 0 V. (f) Proposed OER mechanism on the Ni
sites of W-NiS0.5Se0.5. Reproduced from [114] with permission from John Wiley and Sons License.
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3.4. Synergistic Modulation on Elementary Reactions

The adsorbate evolution mechanism (AEM) and the lattice-oxygen-mediated mecha-
nism (LOM) are two well-established mechanisms that play crucial roles in OER. In alkaline
media, the AEM involves a series of four concurrent proton-electron transfer reactions,
where metal atoms act as reaction centers. These reactions can be described by the following
equations [116]:

OH− + *→ *OH + e− (1)

*OH→ *O + e− + H+ (2)

*O + OH− → *OOH + e− (3)

*OOH→ * + O2(g) + e− + H+ (4)

The scaling relation among the reaction intermediates in the AEM pathway imposes
a theoretical lower limit of 0.37 eV on the overpotential [117,118]. Three strategies have
been proposed to break this scaling relation to obtain better activity: (1) stabilizing OER
intermediate *OOH while maintaining the adsorption of *OH; (2) inducing a proton accep-
tor to regulate the reaction pathway; and (3) activating lattice oxygen for direct coupling
of O−O radical, which is also known as LOM. This means that the LOM can bypass the
formation of *OOH, and thus the limitation in scaling relation between *OH and *OOH
can be avoided. For example, amorphous NiFeP nanostructures were fabricated for highly
active and stable OER electrocatalysts [119]. The electronic structure of metal sites could
be modulated by the ligand effect of P, consequently breaking the scaling relationships
among these OER intermediates. Specifically, the adsorption energy gap between *OH and
*OOH can be reduced from 3.08 to 2.62 eV by the incorporation of P atoms in NiFeOOH,
which resulted in the shift of rate-determining step for OER from the formation of *O to
*OH. Similarly, Liu et al. synthesized S-doped NiFe2O4 nanocone arrays which showed a
current density of 100 mA cm−2 with an overpotential of 270 mV, which was superior to
reported spinel-type oxides [120]. The calculation results demonstrated that the PDOS of
Ni-d of Ni atoms adjacent to S atoms was localized near the Fermi level, suggesting that the
coupling of Ni-d orbitals and 2p orbitals of oxygen-containing intermediates was promoted.
In NiFe2O4, *O to *OOH is the rated-determining step (RDS). DFT calculations revealed
that the energy barrier of RDS on the Ni site decreased to 0.25 eV, significantly lower than
that on the Fe site, after the introduction of S. These findings suggest that S doping imparts
appropriate electronic states and enhanced adsorption capabilities to Ni sites, breaking the
scaling relation during the OER process.

Introducing a second component on host materials to form a heterostructure is con-
sidered a simple and effective route to design efficient OER electrocatalysts [121,122]. In
contrast to heteroatom doping, which necessitates limiting the number of dopants to a
low level (typically, <10% of the total elements) to avoid the emergence of new crystal
phases that could impact the original structures and block active sites, heterostructures
offer several advantages. These include synergistic effects, strain effects, and electronic
interactions, all of which contribute to enhanced catalytic performance [123–125]. The
strong interaction in the heterostructure has been proven to effectively modify the local
electronic configuration around active sites and optimize the adsorption/desorption energy
of intermediates on different components [124,126]. For instance, Zhao et al. designed an
Ir/Ni(OH)2 heterostructure which required merely 224 mV to reach 10 mA cm−2 because
of the synergistic effect between the active species of IrOx and NiOOH (Figure 8a–c) [127].
Electrochemical analyses and theoretical calculations provided evidence that the formation
of Ir–O–Ni bridging bonds across the interface, along with the in situ formation of IrOx
and NiOOH (Figure 8d–f), stabilized metastable Ir4+ species, which were highly active for
O–O bond formation. Moreover, OER intermediates, *OH and *O, could be adsorbed on
Ni(OH)2/NiOOH and IrOx, respectively (Figure 8g). As a result, the combined effect of
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these two components promoted the formation of *OOH, which broke the scaling relation
and led to accelerated OER kinetics.
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Figure 8. (a) Geometric area-normalized LSV curves of Ir nanoparticles, Ir/Ni(OH)2, Ni(OH)2, and
Ir black. (b) Turnover frequency (TOF) values at 1.53 V and the required overpotential to achieve
a TOF of 3.0 s−1 for Ir/Ni(OH)2, Ir nanoparticles, and Ir black. (c) Tafel slopes of Ir nanoparticles,
Ir/Ni(OH)2, Ni(OH)2. The inverse fast Fourier transform (FFT) patterns of (d) IrO2, (e) NiOOH, and
(f) both IrO2 and NiOOH. (g) Illustration of the proposed OER mechanism. Reproduced from [127]
with permission from John Wiley and Sons License.

Moreover, loading metal nanoparticles on supporting materials can trigger strong
metal-support interaction (SMSI) which not only disperses and stabilizes metal sites to
avoid aggregation but also creates electron transfer between metal nanoparticles and sup-
port, thus significantly changing electronic states of each component and optimizing the
adsorption of intermediates [128–130]. Gorlin et al. investigated the interaction between
MnOx and Au nanoparticles and found that the Au/MnOx showed an order of magnitude
high turnover frequency than that of pristine MnOx [131]. In situ Mn L-edge X-ray absorp-
tion spectra indicated the enhanced OER performance resulting from local and interfacial
effects. More specifically, reduced MnOx and oxidized metal at the interface caused by
electron transfer between Au and MnOx optimized the adsorption of *OH and thereby
enhanced OER activity. Similarly, Zhang et al. deposited ultrafine Ag nanoparticles on
Co(OH)2 nanosheets by spontaneous redox reaction and found that the as-synthesized
Ag@Co(OH)2 exhibited a low overpotential of 250 mV to reach current density of 10 mA
cm−2, which was better than that of pristine Co(OH)2 and commercial IrO2 [132]. DFT
results indicated that the electronic configuration of metallic Ag was tuned by underlying



Catalysts 2023, 13, 1230 13 of 21

Co(OH)2 support because of SMSI, which provided reduced energetic barriers for the
oxygen-contained intermediates, thus promoting OER catalytic process.

3.5. Synergistic Modulation on External Fields

Field-assisted electrocatalysis has emerged as a promising technique for enhancing
electrochemical reactions, particularly in the context of OER. This technique utilizes external
factors such as magnetic fields, strain, and light to provide additional means of engineering
and optimizing the OER process.

Theoretical explanations for magnetic field-assisted OER primarily involve three key
effects: magnetothermal, spin-polarized, and electron energy state enhancement effects.
The overall OER performance can be improved by increasing the surface temperature of
catalysts, optimizing the adsorption thermodynamic features of reactants and interme-
diates, and accelerating electron transfer. For example, Garcés-Pineda et al. conducted
a comprehensive investigation on the influence of an external static magnetic field on a
series of transition metal oxides during the electrocatalytic OER process in an alkaline
electrolyte [133]. As depicted in Figure 9a,b, they found that the external magnetic field had
negligible influence on non-magnetic catalysts but significantly enhanced the performance
of materials with strong magnetism. The OER current of NiZnFe4Ox was significantly
boosted under the magnetic field. Specifically, the increase in current density reached
nearly 100% at a potential of 1.67 V (Figure 9c). Upon turning off the magnetic field, a
clear transition of the anodic current from a high-current state to a low-current state was
observed, providing further confirmation of the magnetic field effect (Figure 9d). They
proposed that the magnetic field contributed to the parallel alignment of oxygen radicals
during the formation of O–O bond which dominated OER mechanistic pathway under
alkaline conditions.
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magnetization. (c) Polarization data for Ni-foam electrodes magnetically decorated with NiZnFe4Ox

particles (OFF, filled circles), and under an applied magnetic field (ON, open circles). (d) A pulsed
magneto-chronoamperometry experiment was performed at a constant potential of 1.67 V vs. RHE
for the NiZn4Ox electrode. Reproduced from [133] with permission from Springer Nature.

Light-assisted electrocatalytic OER involves two primary mechanisms: photocarrier
and photothermy. When photosensitive materials are subjected to light irradiation, the
carriers become excited, facilitating the overcoming of potential barriers in charge transfer
and redox reactions [134,135]. Thus, coupling photo-excited carriers with electrochemical
reactions can significantly accelerate catalytic rates. Bai et al. successfully hybridized
CoFe-LDH with WO3/SnSe2 n–p heterojunction and demonstrated that the overpotential
for OER could be decreased by 80 mV under simulated sunlight irradiation [136]. During
the OER process, photo-generated holes on the valence band of SnSe2 would be transferred
to CoFe-LDH and oxidize Co/Fe into higher valence states (Figure 10a). Consequently,
OH− could rapidly adsorb on metal sites and undergo deprotonation to form *O species.
In other words, the photoelectric synergy system in the heterojunction led to a reduction in
the energy barrier for OER and a remarkable acceleration of the OER kinetics.

In solar light-assisted electrocatalysis, the photothermal effect represents another
critical aspect that can provide an additional driving force, namely thermal energy, to reduce
activation energy, thus promoting the electrochemical reaction kinetics [137–139]. Photo-
sensitive materials, including plasmonic metals, semiconductors, and carbon materials, can
respond to solar light and generate in situ thermal energy to promote electron transfer. For
example, Liang et al. synthesized a self-supported reduced graphene oxide (rGO) film with
abundant carbon defects and broad light absorption [140]. As illustrated in Figure 10b, rGO
not only accelerated electron and mass transfers but also served as a substrate to provide
active sites and thermal sources. The surface temperature increased to 70.9 ◦C in 1 min
under simulated sunlight irradiation. With the assistance of sunlight, this catalyst exhibited
a low OER overpotential of 215 mV, which was 93 mV lower than that without irradiation.
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License; (b) rGO for broad-spectrum solar enhanced OER. Reproduced from [140] with permission
from Elsevier.
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4. Conclusions and Perspective

The pursuit of cheap renewable energy to replace traditional fossil fuels remains a
primary goal. Electrochemical OER plays a key role in energy conversion and storage in
conjunction with renewable energy, such as solar, and wind. In this review, we presented a
summary of recent progress in the synergistic modulation of heterogeneous atoms, defects,
morphology, elemental reactions, and external fields for advancing transition-metal-based
OER electrocatalysts (Figure 11). Synergistic modulation among these aspects can simul-
taneously optimize the electronic structure of catalysts, adsorption/desorption energy of
oxygen-containing intermediates, charge transfer, mass diffusion, and chemical/structural
stability. This synergy system provides insights into the design of next-generation catalysts.
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Despite significant progress in the development of electrocatalytic OER, there remain
considerable challenges and opportunities. These include: (1) Developing scalable fab-
rication approaches for synergistically engineering the electronic configuration, defects,
morphology, elemental reactions, and external fields to meet the requirements of practical
applications. (2) Gaining a deeper understanding of the real active sites and catalytic mecha-
nisms in synergy systems. The complex structural reconstruction and dynamic electron-loss
processes involved in oxygen gas generation pose challenges for experimental characteri-
zation and detection. Advanced ex situ/in situ techniques are required to probe the real
state of active sites and intermediates during the OER process. (3) Seawater oxidation.
Seawater splitting is a promising approach to large-scale green hydrogen production due
to the abundance of seawater supply. However, special attention is required in the design
of synergy systems to address competition and corrosion problems from chlorine evolution
reaction. (4) Ensuring chemical and structural stability under large-current-density oper-
ating conditions. The OER performance of electrocatalysts is typically evaluated under a
low current density of 10 mA cm−2, which does not reflect practical industrial applications
(>1 A cm−2). More efforts should be directed towards improving chemical and structural
durability. (5) Coupling electrocatalysis with external fields. Integrating external driving
forces such as magnetic field, light, and strain may provide new insights into modify-
ing catalytic performance beyond the electrocatalyst itself. Addressing these challenges
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and opportunities will require a multidisciplinary approach, including materials science,
chemistry, and engineering, to develop next-generation electrocatalysts with optimized
performance for practical applications.
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