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We consider three classes of inventory systems under long-run average cost: (i) periodic-review system

with lost sales, positive lead times and a non-stationary demand process, (ii) periodic-review system for a

perishable product with partial backorders and a non-stationary demand process, and (iii) continuous-review

system with fixed lead times, Poisson demand process and lost sales. The state spaces for these systems are

multi-dimensional and computations of their optimal control policies/costs are intractable. Since the unit

shortage penalty cost is typically much higher than the unit holding cost, we analyze these systems in the

regime of large unit penalty cost. When the lead-time demand is unbounded, we establish the asymptotic

optimality of the best (modified) base-stock policy and obtain an explicit form solution for the optimal cost

rate in each of these systems. This explicit form solution is given in terms of a simple fractile solution of

lead-time demand distribution. We also characterize the asymptotic scaling of the optimal cost in the first

two systems when the lead-time demand is bounded.
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1. Introduction

In this paper, we study three inventory systems:

(i) Periodic-review lost-sales inventory system with fixed lead times and a non-stationary

demand process.

(ii) Periodic-review system for a perishable product with fixed lifetime, partial backorders, and

a non-stationary demand process.

(iii) Continuous-review system for a non-perishable product with fixed lead times and lost sales.

For systems (i) and (ii), the firm first reviews the system state in each period t≥ 1 and then makes

a replenishment decision. The system state for system (i) includes the on-hand and pipeline inven-

tories, and for system (ii) it includes the on-hand inventories with different ages and backlogged
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demand (if any). The order arrives after fixed lead time in system (i) and immediately in system

(ii). Next, random demand in period t is realized and satisfied as much as possible by the on-hand

inventories (and following a first-in-first-out issuance policy in system (ii)). For system (ii), a ran-

dom fraction of unmet demand is backlogged and the remaining fraction is lost. The demand in

each period is a non-negative period-dependent deterministic part plus an i.i.d. non-negative r.v..

At the end of period t, the leftover inventories are carried to the next period (or outdated when

reaching the end of their lifetime in system (ii)). For system (iii), demands arrive according to

a Poisson process. At any time t≥ 0, the firm first reviews the system state, which includes the

on-hand and pipeline inventories. If demand arrives at time t, then it is satisfied by the on-hand

inventory and unmet demand is lost. After that, the firm makes a replenishment decision, and the

order (if any) will arrive after fixed lead times. The objective for all three systems is to minimize

the long-run average holding, backlogging/lost-sales penalty, and outdating (for system (ii)) cost.

The studies of the three systems described when demands are i.i.d. and unmet demand is fully

lost/backlogged have a long history which dates back to 1950’s (see, e.g., Veinott 1960, Karlin and

Scarf 1958, Karush 1957). Since these systems have multi-dimensional state space, their optimal

policies and costs are in general intractable due to the curse of dimensionality. Thus, the dominant

approach in the literature is to develop and analyze simple heuristic policies for these systems,

such as base-stock policy (Reiman 2004, Huh et al. 2009, Bijvank et al. 2014, Zhang et al. 2020,

Bu et al. 2023), constant-order policy (Reiman 2004, Xin and Goldberg 2016), and approximation

algorithm (Levi et al. 2008, Chao et al. 2015, Chao et al. 2018, Zhang et al. 2023). In practice, it is

well known that the unit penalty cost is usually much larger than the unit holding cost. Thus many

of these studies perform asymptotic analysis for the heuristic policies in the regime of large unit

penalty cost (see, e.g., Reiman 2004, Huh et al. 2009, van Jaarsveld and Arts 2024, Bu et al. 2023).

We refer to Goldberg et al. (2021) for a detailed review. However, almost no study characterizes the

asymptotic behavior of the optimal cost in these systems as the unit penalty cost grows large. To

our knowledge, Arts et al. (2015), combined with the results in Huh et al. (2009), provide the only

such result for system (i) under a class of integer-valued demand distributions and i.i.d. demands.

They do not consider system (i) under continuous demands or non-stationary demand process, and

there is no such study for system (ii), or system (iii). In addition, the literature has shown that

the base-stock policy is asymptotically optimal with large unit penalty cost for systems (i) and (ii)

under i.i.d. demands, and pure backorder or lost-sales models ( Huh et al. 2009, Bijvank et al. 2014,

Bu et al. 2023). However, for systems (i) and (ii) under the more general setting of this paper, and

for the classical continuous-review system (iii), no existing paper studies asymptotically optimal

policies with large unit penalty cost.



3

In this paper, we study the three inventory systems in the regime of large unit penalty cost.

As a foundation of our analysis, we prove that the optimal cost of each system is bounded from

below by some newsvendor cost. For systems (i) and (ii), we propose a class of modified base-stock

policies that raises the inventory level/position to some time-dependent levels and prove that the

long-run average cost of the best modified base-stock policy is bounded from above by another

newsvendor cost. Thus, to understand the optimal cost of these systems, we first characterize the

asymptotic scaling of the newsvendor cost with large unit penalty cost. We summarize our approach

as follows. First, when demand is unbounded and its mean-residual life (MRL) is sub-linear, we

show that the ratio between the newsvendor cost and a simple fractile solution converges to a

constant as the unit penalty cost goes to infinity. Under a weaker condition that the MRL of the

demand distribution is upper bounded by a linear function, we derive the asymptotic bounds on the

newsvendor cost. Second, we characterize the exact rate of the newsvendor cost under six classes of

demand distributions, and establish asymptotic bounds on the newsvendor cost under finite k-th

order moment, sub-exponential, and sub-Gaussian demand distributions. Finally, we consider the

case of bounded demand and characterize the rate at which the newsvendor cost converges to its

finite limit under two classes of bounded demand distributions.

We then apply the above results to the three inventory systems described earlier. For systems (i)

and (ii), when the lead-time demand is unbounded and its MRL is sub-linear (respectively, upper

bounded by a linear function), we characterize the asymptotic scaling (respectively, asymptotic

bounds) of the optimal cost in both systems as the unit penalty cost grows using a simple fractile

solution. Importantly, this enables us to establish the asymptotic optimality of the best modified

base-stock policy with large unit penalty cost in both systems (for system (ii), the sub-linear

condition of MRL can be removed for the asymptotic optimality result to hold.) When demand is

bounded in system (i) with non-stationary demand process and in system (ii) with i.i.d. demand

process and lost sales, we also characterize the rate at which the optimal cost converges to its

finite limit under different demand distributions. For system (iii), we obtain the exact rate of the

optimal cost as the unit penalty cost grows and establish the asymptotic optimality of the best

base-stock policy in this regime. To our knowledge, this is the first asymptotic optimality result in

the continuous-review lost-sales inventory system. This paper contributes to the literature with the

understanding of the optimal cost for three classical but notoriously complex inventory systems in

the regime of large unit penalty costs. It also extends the asymptotic optimality result of simple

base-stock policies (for both perishable and non-perishable inventory systems) to systems with a

non-stationary demand process, and establishes asymptotic optimality result of simple base-stock

policies for continuous-review lost-sales inventory system with Poisson demand. We expect our

analysis and results to be useful in studying other complex inventory systems.
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The rest of this paper is organized as follows. We characterize the asymptotic scaling of the

newsvendor cost in §2 and that of the optimal cost of the three inventory systems in §3 to §5,

respectively. We conclude the paper in §6 with a few remarks. Throughout this paper, for positive

functions f(x) and g(x), we apply the notation f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0, f(x) =

O(g(x)) if limsupx→∞ f(x)/g(x)<∞, f(x) = Θ(g(x)) if f(x) =O(g(x)) and g(x) =O(f(x)), and

f(x)∼ g(x) if limx→∞ f(x)/g(x) = 1. For random variable (r.v.) X, let FX(x) denote its cumulative

distribution function (c.d.f.) and fX(x) denote its probability mass/density function (p.m.f. or

p.d.f.). Let F̄X(x), 1−FX(x), and for any 0<α< 1, F−1
X (α), inf{x≥ 0 : FX(x)≥ α}, where “,”

stands for “defined as”. Let Φ(·) denote the c.d.f. of a standard normal r.v..

2. Asymptotic Scaling of Newsvendor Cost

In this section, we study the asymptotic scaling of the newsvendor cost with large unit penalty

cost. The results established in this section lay the foundation for characterizing the asymptotic

scaling of the optimal cost of the infinite time horizon systems (i) to (iii) in the subsequent sections.

The proofs of all the technical results in this section are provided in Appendix A.

In the newsvendor problem, the seller decides an order quantity q ≥ 0 to satisfy non-negative

random demand D with known c.d.f. FD(·) and p.d.f. or p.m.f. fD(·). We assume that E[D]<∞

and denote D̄ , sup{x : FD(x) < 1} ≤ ∞. Leftover inventory incurs a unit holding cost h and

unsatisfied demand incurs a unit penalty cost p. Let CNV(h,p,FD) denote the newsvendor cost

with unit holding cost h, unit penalty cost p, and demand distribution FD, i.e.,

CNV(h,p,FD) = min
q≥0

{
hE[(q−D)+] + pE[(D− q)+]

}
.

It is well-known that the optimal order quantity q∗, referred to as the newsvendor solution, is the

fractile solution F−1
D ( p

p+h
), i.e., q∗ = inf{q≥ 0 : FD(q)≥ p

p+h
}.

Theorem 1. Suppose D is unbounded. Then the following results hold:

(a) If E[D−x|D>x] = o(x), then

lim
p→∞

CNV(h,p,FD)

F−1
D ( p

p+1
)

= h. (1)

(b) If E[D−x|D>x] =O(x), then CNV(h,p,FD) = Θ(F−1
D ( p

p+1
)).

Equation (1) shows that the newsvendor cost asymptotically scales up as h times the fractile

solution F−1
D (p/(p + 1)) as p→∞ under condition E[D − x|D > x] = o(x). A similar condition

appears in Huh et al. (2009), Bijvank et al. (2014) and van Jaarsveld and Arts (2024). As shown in

Theorem 1 of Huh et al. (2009), many commonly used demand distributions satisfy this condition,

including any distribution with an increasing failure rate (IFR). For any ν > 0, Equation (1) implies
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that limp→∞C
NV(h,p/ν,FD)/CNV(h,p,FD) = 1, which has two implications. First, it implies (1)

also holds when replacing F−1
D (p/(p+ 1)) with F−1

D (p/(p+ ν)) for any ν > 0. Second, it reveals

that the newsvendor cost is a slowly varying function of p. A measurable function f(·) : R+→ R

is called slowly varying if limx→∞ f(αx)/f(x) = 1 for any α > 0. It is well-known that any slowly

varying function f(x) satisfies limx→∞ f(x)/xα = 0 for any α> 0 (see, e.g., Korevaar et al. 1949).

Thus, when D is unbounded and E[D− x|D > x] = o(x), the newsvendor cost grows slower than

pα for any α > 0, i.e., limp→∞C
NV(h,p,FD)/pα = 0. Part (b) shows a weaker result under the

(weaker) condition E[D − x|D > x] =O(x), that the newsvendor cost is asymptotically bounded

from above and from below by F−1
D (p/(p+ 1)) multiplied by certain constants as p→∞. Examples

of distributions satisfying E[D−x|D>x] =O(x) but not E[D−x|D>x] = o(x) include fat-tailed

distributions such as Pareto distribution (see, e.g., Proposition 1 in Huh et al. 2009).

With Theorem 1, we can characterize the exact rate of the newsvendor cost as a function of p

by studying the growth rate of F−1
D (p/(p+ 1)). The following proposition shows the results for six

classes of commonly used demand distributions.

Proposition 1. Suppose D is unbounded. Then the following results hold:

(a) If D is a continuous r.v. and there exists k ∈ (−1,∞) such that limx→∞ rD(x)/xk = γ ∈

(0,∞), where rD(x) = fD(x)/F̄D(x), then CNV(h,p,FD)∼ h(k+1
γ

)
1
k+1 (lnp)

1
k+1 .

(b) If D is a Gumbel min r.v., i.e., FD(x) = 1− e1−ex for x≥ 0, then CNV(h,p,FD)∼ hln lnp.

(c) If D is a log-normal r.v., i.e., FD(x) = Φ( lnx−µ
σ

) for x> 0 with parameters µ∈R and σ > 0,

then CNV(h,p,FD)∼ heµ+σ
√

2 lnp.

(d) If D is a continuous fat-tailed r.v., i.e., F̄D(x) ∼ γx−α for γ > 0 and α > 1, then

CNV(h,p,FD)∼ α(α− 1)−1γ1/αh(α−1)/αp1/α.

(e) If D is an integer-valued r.v. with limn→∞ rD(n) = γ ∈ (0,1), where rD(n) = P(D= n|D≥ n)

for n∈N, then CNV(h,p,FD)∼ h(ln 1
1−γ )−1lnp.

(f) If D is a Poisson r.v., then CNV(h,p,FD)∼ hg−1(p), where g−1(·) is the inverse function of

g(x) = xx for x> 0.

Table 1 summarizes many commonly used distributions that belong to the six classes in parts

(a)-(f) of Proposition 1, where the support, p.d.f. or p.m.f. and c.d.f. of D, and the exact rate of the

newsvendor cost (scaled by 1/h) are listed. For many distributions, the newsvendor cost scales up

at the rate of a polynomial of lnp. In particular, the failure rate of a geometric Poisson distribution

converges to a constant in (0, 1) (see the proof in Appendix A.3), and the newsvendor cost under

this distribution scales up at the rate of lnp from part (e) in Proposition 1. Pareto distribution

with parameters xmin > 0 and α> 1 and Burr distribution with parameters c > 0 and k > 1/c are
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Table 1 Exact Rate of Newsvendor Cost (Scaled by 1/h) under Different Demand Distributions

Distribution Support fD(x) FD(x)
Exact rate of

CNV(h,p,FD)/h

Exponential (0,∞) λe−λx 1− e−λx λ−1 lnp

Laplace (−∞,∞) 1
2b
e−
|x−µ|
b 1− 1

2
e−

x−µ
b ,∀x≥ µ b lnp

χ2 (0,∞) x
α
2
−1
e
− x

2

2
α
2 Γ(α

2
)

* 2 lnp

Gamma (0,∞) βα

Γ(α)
xα−1e−βx * β−1 lnp

Logistic (−∞,∞) e
− x−µ

s

s(1+e
− x−µ

s )2

1

1+e
− x−µ

s

s lnp

Gumbel max (0,∞) e−xe−e
−x

1−e−1
e−e
−x
−e−1

1−e−1 lnp

Inverse Gaussian (0,∞)
√

λ
2πx3

e
−λ(x−µ)

2

2µ2x * 2µ2λ−1 lnp

Gaussian (−∞,∞) 1√
2πσ

e−
(x−µ)2

2σ2 Φ(x−µ
σ

)
√

2σ
√

lnp

Weibull (0,∞) β

α
( x
α

)β−1e−( x
α

)β 1− e−( x
α

)β α(lnp)
1
β

Gumbel min (0,∞) e1+x−ex 1− e1−ex ln lnp

Log-normal (0,∞) 1√
2πσx

e−
(lnx−µ)2

2σ2 Φ( lnx−µ
σ

) eµ+σ
√

2 lnp

Pareto (xmin,∞) αxαminx
−α−1 1−xαminx

−α αxmin

α−1
(p/h)

1
α

Burr (0,∞) ckxc−1

(1+xc)k+1 1− (1 +xc)−k ck
ck−1

(p/h)
1
ck

Geometric {0,1,2, . . .} (1− q)xq 1− (1− q)x+1 (ln 1
1−q )−1 lnp

Negative binomial {r, r+ 1, r+ 2, . . .} Cr−1
x−1(1− q)x−rqr * (ln 1

1−q )−1 lnp

Geometric Poisson {0,1,2, . . .}
∑n

k=1 e
−λ λk

k!
(1− γ)n−kγkCk−1

n−1 * (ln 1
1−γ )−1 lnp

Poisson {0,1,2, . . .} e−λλx/x! * g−1(p)†

† g−1(·) is the inverse function of g(x) = xx, ∀x> 0.

both fat-tailed distributions, whose resulting newsvendor cost grows polynomially in p according

to part (d) of Proposition 1.

The following proposition presents weaker asymptotic bounds on the newsvendor cost.

Proposition 2. Suppose D is unbounded and E[D−x|D>x] =O(x). The following results hold:

(a) If E[Dk]<∞ but E[Dk+1] =∞ for some k > 1, then CNV(h,p,FD) = o(p1/k).

(b) If D is sub-exponential, i.e., F̄D(x) =O(e−cx) for some c > 0, then CNV(h,p,FD) =O(lnp).

(c) If D is sub-Gaussian, i.e., F̄D(x) =O(e−cx
2
) for some c > 0, then CNV(h,p,FD) =O(

√
lnp).

Parts (a)-(c) reveal that the asymptotic bound of the newsvendor cost depends on the rate at

which the tail function F̄D(x) converges to zero. For any distribution with up to k-th order moment

being finite, the newsvendor cost grows slower than p1/k does because in this case, it can be shown

that F̄D(x) decays to zero in o(x−k). For sub-exponential and sub-Gaussian distributions, F̄D(x)

decays no faster than the tail functions of exponential and Gaussian distributions respectively.

Thus, the newsvendor cost asymptotically scales up no faster than lnp and
√

lnp as the exact rate

of the newsvendor cost under these two distributions respectively.
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For completeness, we end this section by presenting two results for the case with bounded D

(i.e., D̄ <∞). In this case, limp→∞C
NV(h,p,FD) = h(D̄ − E[D]), and the following proposition

characterizes the rate at which the newsvendor cost converges to its finite limit.

Proposition 3. (a) If D is a continuous bounded r.v. and limx↑D̄ F̄D(x)/(D̄−x)k = γ for some

k > 0 and γ > 0, then h(D̄−E[D])−CNV(h,p,FD)∼ k
k+1

h1+ 1
k γ−

1
k · p− 1

k .

(b) If D is an integer-valued bounded r.v., then CNV(h,p,FD) = h(D̄ − E[D]) for any p ≥
h
(
(P(D= D̄))−1− 1

)
.

We note that many bounded continuous distributions satisfy the condition in part (a), such as

uniform distribution (with k= 1), triangular distribution (with k= 2), and Beta distribution with

parameters α> 0 and β > 0 (with k= β).

3. Lost-Sales System with Positive Lead Times and Non-Stationary Demand

In this section, we consider a periodic-review lost-sales inventory system with positive replenish-

ment lead times of L∈N+ periods and a non-stationary demand process. When demand distribu-

tions are stationary and unmet demand is backlogged, it is well-known that the optimal policy is a

base-stock policy that keeps a constant inventory position. When unmet demand is lost, even under

i.i.d. demands, the optimal policy is very complex and intractable in computation. Many heuristic

policies have been proposed in the literature (see, e.g., Zipkin 2008, Huh et al. 2009, Bijvank et al.

2014, Arts et al. 2015, Xin and Goldberg 2016, Xin 2021, van Jaarsveld and Arts 2024). We refer

to Bijvank et al. (2023) for a recent review on this stream of literature. In this section, we consider

a slightly more general system where the demands follow a particular non-stationary process.

We first introduce the non-stationary demand process considered in this section. For each t≥ 1,

we assume that the random demand Dt in period t takes the following form:

Dt = dt +Wt, (2)

where {dt : t≥ 1} is a sequence of non-negative deterministic numbers and {Wt : t≥ 1} is a sequence

of i.i.d. non-negative r.v.’s with the same distribution as r.v. W , and 0 < E[W ] <∞. The non-

negativity of Wt is without loss of generality. To see this, we first note that since Dt is a non-negative

r.v., Wt has to be bounded from below by some constant wmin ∈R satisfying dt+wmin ≥ 0. Then we

can express Dt as (dt+wmin) + (Wt−wmin), with both dt+wmin and Wt−wmin being non-negative

and satisfying our assumption. The special form of non-stationary demand (2) arises when the

first part is the non-stationary average demand whereas the second part is i.i.d. random noise. For

example, {dt : t≥ 1} captures the known seasonal effect of demand, and {Wt : t≥ 1} captures the

i.i.d. random noise in the demand. We leave the study for a more general non-stationary demand

process with non i.i.d. noise as an important future research direction.
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The sequence of events in each period t≥ 1 is as follows. First, the firm receives the order placed

L periods ago. Then, it reviews the system state xt , (It, xt,1, . . . , xt,L−1), where It is the on-hand

inventory level, and xt,i is the order quantity placed in period t+ i−L. Second, the firm decides

the order quantity qt ≥ 0, which will arrive at the beginning of period t+L. We denote xt,L , qt.

Third, Dt is realized and satisfied by the on-hand inventory as much as possible. At the end of

period t, unmet demand is lost, incurring a unit lost-sales penalty cost p. Leftover inventory is

carried to the next period, incurring unit holding cost h. For simplicity, we assume that the system

is initially empty, i.e., x1 = 0.

An admissible replenishment policy is described by a sequence of measurable functions {ϕt(·) :

t ≥ 1}, where each ϕt(·) maps the system state xt to a non-negative order quantity. Given an

admissible policy π, the total cost in period t is Cπ
t , h(Iπt −Dt)

+ + p(Dt − Iπt )+. The long-run

average cost of policy π, denoted by Cπ, is defined as Cπ , limsupT→∞
1
T

∑T

t=1 E[Cπ
t ]. and the

optimal cost, denoted by OPT, is defined as OPT, infπC
π.

We then introduce a class of heuristic replenishment policies for the system described above.

When demands are stationary, the class of base-stock policies, which orders to raise the inventory

position (i.e., the sum of on-hand and pipeline inventories) to a constant level as much as possible,

has been studied extensively (e.g., Zipkin 2008, Huh et al. 2009). When demands are non-stationary,

we introduce a new class of policies, called modified base-stock policies, that carefully takes the

demand non-stationarity into account. The modified base-stock policy with level S ≥ 0, denoted

by πS, places the following order quantity in each period t≥ 1:

qπSt = dt+L +

(
S+

t+L−1∑
i=t

di−
(
IπSt +

L−1∑
i=1

xπSt,i

))+

· I{t≥L+ 1}. (3)

That is, in the first L periods, πS orders d1+L, d2+L, . . . , d2L units sequentially, and subsequently, it

raises the inventory position in each period t≥L+ 1 to max{S+
∑t+L

i=t di, I
πS
t +

∑L−1

i=1 x
πS
t,i +dt+L}.

Therefore, πS seeks to maintain a time-dependent order-up-to level S +
∑t+L

i=t di in each period t

by ordering at least dt+L units to make sure that the deterministic part of the demand in period

t+ L is always fulfilled. Then a crucial question is whether the post-ordering inventory position

always attains the desired level S+
∑t+L

i=t di in each period t under the modified base-stock policy

πS. To be seen from the proof of Lemma 1 later, we prove that this is true for each t ≥ L+ 1

using a sample-path inductive argument. This attainability result will be crucial for establishing

a newsvendor-type upper bound on the long-run average cost of modified base-stock policies. The

long-run average cost of the modified base-stock policy πS is denoted by C(S) and the best base-

stock level is denoted by S∗, i.e., S∗ = arg minS≥0C(S). For OPT, C(S) and S∗, we add superscript

“(I)”, meaning system (I), to differentiate them from those for other systems to be introduced in

the subsequent sections.
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The following lemma establishes a lower bound on the optimal cost and an upper bound on the

long-run average cost of the modified base-stock policy. These bounds extend those in Theorem 5

of Janakiraman et al. (2007) and Lemma 5 of Huh et al. (2009), respectively, to the setting with

a non-stationary demand process. In particular, to construct the upper bound, we first prove the

aforementioned attainability result for the order-up-to level S +
∑t+L

i=t di in each period t≥ L+ 1.

The proof for both the upper and lower bounds is based on a sample-path argument and is provided

in Appendix B.1. We denote WL+1 =d
∑L+1

i=1 Wi.

Lemma 1. The following inequalities hold:

OPT(I) ≥CNV
(
h,

p

1 +L
,FWL+1

)
, (4)

C(I)(S)≤ hE[(S−WL+1)+] + (p+Lh)E[(WL+1−S)+], ∀S ≥ 0. (5)

Lemma 1 enables us to characterize the asymptotic scaling of the optimal cost and establish the

asymptotic optimality of the best modified base-stock policy. The following theorem follows from

Lemma 1, Theorem 1 and part (d) of Proposition 1 (see Appendix B.2 for a proof). To highlight

the dependency on the unit penalty cost, we add a subscript “p” to relevant quantities.

Theorem 2. Suppose W is unbounded. Then the following results hold:

(a) If E[WL+1−x|WL+1 >x] = o(x), then

lim
p→∞

OPT(I)
p

F−1
WL+1

( p
p+1

)
= lim

p→∞

C(I)
p (S(I),∗

p )

F−1
WL+1

( p
p+1

)
= h. (6)

(b) If E[WL+1 − x|WL+1 > x] = O(x), then OPT(I)
p = Θ(F−1

WL+1
( p
p+1

)) and C(I)
p (S(I),∗

p ) =

Θ(F−1
WL+1

( p
p+1

)). Moreover, if WL+1 follows a continuous fat-tailed distribution, i.e., F̄WL+1
(x) ∼

γx−α for α> 1 and γ > 0, then

αγ1/αh(α−1)/α

(α− 1)(1 +L)1/α
≤ lim inf

p→∞

OPT(I)
p

p1/α
≤ limsup

p→∞

C(I)
p (S(I),∗

p )

p1/α
≤ αγ1/αh(α−1)/α

α− 1
. (7)

Equation (6) implies the asymptotic optimality of the best modified base-stock policy with

large unit penalty costs under condition E[WL+1−x|WL+1 >x] = o(x), which extends the result in

Huh et al. (2009) to the setting with a non-stationary demand process. Similar to Bijvank et al.

(2014), we can show that these asymptotic results also hold for a class of easy-to-compute heuristic

base-stock policies, and we refer the reader to Appendix E for details. We remark that under the

weaker condition E[WL+1 − x|WL+1 > x] = O(x), it remains unknown whether the best modified

base-stock policy is asymptotically optimal in the system studied in this section (including the

classical lost-sales inventory system with i.i.d. demands). Our current approach for proving the

asymptotic optimality is based on the newsvendor-type upper and lower bounds on the optimal
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cost in inequalities (4) and (5). These bounds are asymptotically identical when E[WL+1−x|WL+1 >

x] = o(x), but they are generally not asymptotically identical when this condition is violated. For

example, under fat-tailed distributions, part (b) in Theorem 2 shows that their ratio asymptotically

equals (1 +L)1/α, and due to this, we are only able to establish lim supp→∞C
(I)
p (S(I),∗

p )/OPT(I)
p ≤

(1 +L)1/α. We leave the asymptotic optimality of the best modified base-stock policy under the

weaker condition E[WL+1−x|WL+1 >x] =O(x) as future research.

As discussed earlier, the condition E[WL+1 − x|WL+1 > x] = o(x) is satisfied by many demand

distributions. When WL+1 belongs to one of the six classes in Proposition 1, the optimal cost rate

for this lost-sales inventory system with lead times and non-stationary demand process can be

characterized accordingly. Below we provide some examples:

(i) If W is a continuous IFR r.v. with limx→∞ rW (x) = γ ∈ (0,∞), then limx→∞ rWL+1
(x) = γ

(see Appendix B.3 for a proof) and OPT(I)
p ∼ h(lnp)/γ by Proposition 1-(a).

(ii) If W is an integer-valued r.v. with limn→∞ rW (n) = γ ∈ (0,1), then limn→∞ rWL+1
(n) = γ by

Proposition 1 in Arts et al. (2017) and OPT(I)
p ∼ h(lnp)/(− ln(1− γ)) by Proposition 1-(e).

(iii) If W is a Poisson r.v., then so does WL+1 and OPT(I)
p ∼ hg−1(p) by Proposition 1-(f).

When WL+1 follows any distribution in Proposition 2, the asymptotic bounds of the optimal

cost can be further characterized. In particular, if W follows a distribution in parts (a)-(c) of

Proposition 2, it is easy to verify that WL+1 also follows a distribution in parts (a)-(c), respectively.

Thus, the asymptotic bounds on the optimal cost can be characterized accordingly under these

distributions of W .

When W is bounded, one can easily verify from Lemma 1 that limp→∞OPT(I)
p = h(L+ 1)(W̄ −

E[W ]), where W̄ , sup{x : FW (x)< 1}. The following proposition characterizes the rate at which

the optimal cost converges to its finite limit. We omit its proof for brevity.

Proposition 4. (a) If W is a continuous bounded r.v. and limx↑(L+1)W̄ F̄WL+1
(x)/((L+ 1)W̄ −

x)k = γ ∈ (0,∞) for k > 0, then h(L+ 1)(W̄ −E[W ])−OPT(I)
p = Θ(p−1/k).

(b) If W is an integer-valued bounded r.v., then OPT(I)
p = h(L+ 1)(W̄ −E[W ]) when p is suffi-

ciently large, in particular when p≥ h(1 +L)
(
(P(W = W̄ ))−1− 1

)
.

4. Perishable Inventory System with Fixed Lifetime and Partial Backorders

In this section, we study a periodic-review inventory system for a perishable product with fixed

lifetime of m ∈ N+ periods, partial backorders, zero replenishment lead time and the same non-

stationary demand process in §3. When demands are stationary and unmet demand is fully back-

logged or lost, the system has been studied extensively in the literature (e.g., Nahmias 1976, Chazan

and Gal 1977, Cooper 2001, Li et al. 2016, Chao et al. 2015, Zhang et al. 2023, Bu et al. 2023). We

refer to Karaesmen et al. (2011) and Nahmias (2011) for detailed reviews and Li and Yu (2023) for
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a more recent review. In this section, we consider a more general system where a random fraction

of unmet demand in each period is backlogged whereas the rest is lost, and the demand also follows

a non-stationary process. Clearly, when the random fraction is always equal to one, it reduces to

the lost-sales model, and when the random fraction is always equal to 0, it reduces to the backlog-

ging model. Thus, the model includes perishable inventory system with lost sales and perishable

inventory system with backlogs as special cases.

The demand process {Dt : t≥ 1} is assumed to follow (2), with an extra mild assumption that

lim infT→∞
∑T

t=1 dt/T <∞. The sequence of events in each period t ≥ 1 is described as follows.

First, the firm reviews the system state xt , (xt,1, xt,2, . . . , xt,m−1, bt−1), where each xt,i denotes the

amount of on-hand inventory whose remaining lifetime is no more than i periods and bt−1 is the

amount of backorders at the beginning of period t. Second, the firm places an order of qt units

and receives it immediately. If bt−1 > 0, then the backorders are satisfied by the new order to the

maximum extent. Let xt,m , xt,m−1− bt−1 + qt. Third, demand Dt is realized and satisfied by the

on-hand inventory as much as possible following the first-in-first-out (FIFO) issuance policy. At

the end of period t, a random fraction ζt ∈ [0,1] of unsatisfied demands is backlogged, incurring a

unit backlogging cost b, whereas the remaining (1− ζt)-fraction is lost, incurring a unit lost-sales

penalty cost p. Assume that {ζt : t ≥ 1} is a sequence of i.i.d. r.v.’s with the same distribution

as r.v. ζ, and it is independent of the amounts of unsatisfied demands. Let ϑ, E[ζ]. Any leftover

inventory incurs a unit holding cost h. Finally, leftover inventories reaching the end of the lifetime

are outdated, incurring a unit outdating cost θ≥ 0. The amount of outdated inventory in period t

is denoted by ot , (xt,1−Dt)
+. The remaining inventories are carried to the next period, with their

remaining lifetimes deducted by one period. Same as §3, we assume that the system is initially

empty. Given an admissible policy π, the total cost in period t is

Cπ
t , h(xπt,m−Dt)

+ +
(
bζt + p(1− ζt)

)
(Dt−xπt,m)+ + θoπt .

The long-run average cost of policy π and the optimal cost are defined in the same way as those

in §3.

We now introduce a class of modified base-stock policies. The modified base-stock policy with

level S ≥ 0, denoted by πS, places the order quantity qπSt = dt +
(
S − (xπSt,m−1 − b

πS
t−1)

)+
in each

period t≥ 1. That is, πS orders in each period t≥ 1 to maintain a time-dependent order-up-to level

S + dt by ordering at least dt units to make sure the deterministic part of the demand in period

t is always fulfilled. One can easily verify that in each period t ≥ 1, the order up-to level S + dt

can always be attained after ordering (see the proof of Lemma 2 for details). Similar to §3, for any

S ≥ 0, let C(S) denote the long-run average cost under modified base-stock policy πS. Also denote
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S∗ , minS≥0C(S). Similar to §3, we add superscript “(II)” to OPT, C(S) and S∗ in this section,

indicating that these measures are for system (II).

The following lemma establishes a lower bound on the optimal cost and an upper bound on the

long-run average cost of the modified base-stock policy, which extend Proposition 2 and Lemma 3

in Bu et al. (2023) respectively to the setting with partial backorder and a non-stationary demand

process. Its proof is also based on a sample-path argument and deferred to Appendix C.1.

Lemma 2. The following inequalities hold:

OPT(II) ≥CNV
(
h+

θ

m
,ϑb+ (1−ϑ)p,FW

)
− m− 1

m
θ
(
E[W ] + lim inf

T→∞

1

T

T∑
t=1

dt

)
, (8)

C(II)(S)≤
(
h+

θ

m

)
E[(S−W )+] +

(
ϑb+ (1−ϑ)p

)
E[(W −S)+], ∀S ≥ 0. (9)

Lemma 2 implies that when demand is unbounded, the best modified base-stock policy is asymp-

totically optimal when p→∞ (suppose ϑ< 1) and/or b→∞ (suppose ϑ> 0), i.e., (C(II)(S(II),∗)−

OPT(II))/OPT(II) goes to zero in the asymptotic regime mentioned. Lemma 2, together with The-

orem 1, also enables us to characterize the asymptotic scaling of the optimal cost. The asymptotic

regime we consider is large unit backlogging and lost-sales penalty costs while keeping their ratio

constant. That is, we consider p→∞ while keeping b = κ0p for some constant κ0 > 0. Denote

ν , ϑ(κ0− 1) + 1. The following theorem summarizes our main results in this section, whose proof

is similar to that of Theorem 2 and thus omitted.

Theorem 3. Suppose W is unbounded. Then the following results hold:

(a) If E[W −x|W >x] = o(x), then

lim
p→∞

OPT(II)
p

F−1
W ( p

p+1
)

= lim
p→∞

C(II)
p (S(II),∗

p )

F−1
W ( p

p+1
)

= h+
θ

m
. (10)

(b) If E[W − x|W > x] = O(x), then OPT(II)
p = Θ(F−1

W ( p
p+1

)) and C(II)
p (S(II),∗

p ) = Θ(F−1
W ( p

p+1
)).

Moreover, if W follows a continuous fat-tailed distribution, i.e., F̄W (x)∼ γx−α for α> 1 and γ > 0,

then

lim
p→∞

OPT(II)
p

p1/α
= lim

p→∞

C(II)
p (S(II),∗

p )

p1/α
= α(α− 1)−1(γν)1/α(h+ θ/m)(α−1)/α. (11)

Part (a) states that under the condition E[W −x|W >x] = o(x), when the unit backlogging and

lost-sales penalty costs are scaled up proportionally, the optimal cost and the long-run average cost

of the best modified base-stock policy asymptotically scale up as F−1
W (p/(p+ 1)). Under the weaker

condition E[W − x|W >x] =O(x), part (b) shows that the long-run average costs of the optimal

policy and the best modified base-stock policy are asymptotically bounded by F−1
W (p/(p+ 1)). For
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a fat-tailed distribution, it also gives an exact characterization on the cost rates of the optimal

policy and the best modified base-stock policy.

We can also apply Propositions 1 and 2 to characterize the asymptotic rates or bounds of the two

costs under different demand distributions. In particular, all the results in Table 1 of §2 for various

probability distributions hold true as the optimal cost rate of the perishable inventory system of

this section. Same as the non-perishable inventory system studied in §3, we can show that these

asymptotic results in Theorem 3 also hold for a class of heuristic base-stock policies. See Appendix

E for details.

When demand D is bounded, the bounds in Lemma 2 are not tight enough to characterize the

asymptotic scaling of the optimal cost as p→∞. When unmet demand is fully lost and demands

are stationary (i.e., dt is a constant for all t≥ 1), by applying two tighter bounds on the optimal cost

developed in Bu et al. (2023), we have the following result (whose proof can be found in Appendix

C.2). Denote OPT(II)
∞ , h(D̄−E[D]) + θE[O∞(D̄)], where E[O∞(D̄)] denotes the long-run average

outdates under base-stock policy πD̄. For the existence of random variable O∞(D̄), we refer to

Lemma 1 in Bu et al. (2023) for details.

Proposition 5. Suppose {Dt : t≥ 1} is a sequence of i.i.d. r.v.’s, and unmet demand is lost (i.e.,

ζ ≡ 0). Then, limp→∞OPT(II)
p = OPT(II)

∞ and the following results hold:

(a) If D is a continuous r.v. and limx↑D̄ F̄D(x)/(D̄−x)k = γ ∈ (0,∞) for k > 0, then OPT(II)
∞ −

OPT(II)
p =O(p−1/k).

(b) If D is an integer-valued r.v., then OPT(II)
p = OPT(II)

∞ when p is sufficiently large, in partic-

ular when p≥ (h+ θ)/P(D= D̄)−h.

5. Continuous-review Inventory System with Lead Times and Lost Sales

In this section, we consider a classical continuous-review inventory system with fixed lead times and

lost sales, which has been studied extensively in inventory literature (e.g., Karush 1957, Reiman

2004, Xin 2022). In particular, Reiman (2004) characterizes the asymptotic scaling of the long-

run average cost of the best base-stock policy when the lead time and the unit penalty cost grow

proportionally. In the same asymptotic regime, Xin (2022) proves that the long-run average cost

of the best capped base-stock policy is asymptotically at most 1.79 times of the optimal cost. In

this section, we characterize the asymptotic scaling of the optimal cost in the regime of large unit

lost-sales penalty cost (with fixed lead times). Our result also implies that the best base-stock

policy is asymptotically optimal in this asymptotic regime.

We briefly describe the system as follows. Demand arrivals follow a Poisson process with rate

λ > 0. The replenishment lead times are fixed and equal to L > 0. Let D(t) be the cumulative

demand during [0, t]. The demand occurred at time t is given by d(t) = D(t) − D(t−), where
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D(t−), lims↑tD(s). The firm’s control policy is given by a family of functions {Q(t) : t≥ 0}, where

Q(t) denotes the cumulative orders placed during [0, t]. Thus, the order placed at time t, denoted

as q(t), equals Q(t)−Q(t−), where Q(t−), lims↑tQ(s).

The sequence of events is as follows. At time t, the firm first reviews the on-hand inventory level

I(t−) and receives the order placed L units of time ago, i.e., q(t−L). If a demand arrives at time t,

then the firm uses the on-hand inventory to satisfy it. Unmet demand is lost. The on-hand inventory

level I(t) and the lost-sales quantity l(t) at time t are given by I(t) = (I(t−) + q(t− L)− d(t))+

and l(t) = (d(t)− I(t−)− q(t−L))+, respectively. Next, the firm places an order of size q(t), which

will arrive at time t+L. Let h be the cost rate of holding one unit of inventory and p be the cost

of losing one unit of demand. The long-run average cost of an admissible policy π is defined as

Cπ = lim supT→∞
1
T
{h
∫ T

0
E[Iπ(t)]dt+ pE[Aπ(T )]}, where Aπ(T ) denotes the cumulative lost-sales

quantity during [0, T ] under policy π. The firm’s objective is to minimize the long-run average cost.

Let OPT(III) be the optimal long-run average cost.

We next introduce the class of base-stock policies. At any time t≥ 0, base-stock policy πS with

level S ≥ 0 keeps the inventory position IP(t) (i.e., the on-hand inventory plus all the orders in

transit) at the constant level S. Under base-stock policy πS, an order is triggered whenever the

inventory position drops below S, or equivalently, a new demand arrives. As shown in Karush

(1957), the system under a base-stock policy πS is equivalent to an Erlang B system with S servers,

Poisson customer arrival rate λ and service time L. Moreover, the long-run average cost of base-

stock policy πS, denoted by C(III)(S), is given by

C(III)(S) = h(S−λL) +λ(p+hL)B(S,λL), ∀S ≥ 0, (12)

where the function B(S,a) , aS/S!∑S
n=0 a

n/n!
for any S ∈ N and a > 0 is known as the Erlang loss

function. Karush (1957) shows that B(S,a) is decreasing and convex in S on N. Thus, C(III)(S) is

convex in S on N and the best base-stock level, denoted by S(III),∗ , arg minS∈NC
(III)(S), satisfies

the following inequalities (see, e.g., Smith 1977):

B(S(III),∗, λL)−B(S(III),∗+ 1, λL)≤ h

p+hL
≤B(S(III),∗− 1, λL)−B(S(III),∗, λL). (13)

The following lemma provides a lower bound on the optimal cost. This result has been estab-

lished in Lemma 5 of Xin (2022) based on a comparison to a counterpart backlogging system. In

Appendix D.1, we provide a different proof based on a sample-path argument.

Lemma 3. OPT(III) ≥CNV(h,p/L,FD(L)).

The following theorem characterizes the asymptotic scaling of the optimal cost and the long-run

average cost of the best base-stock policy. It implies that the best base-stock policy is asymptotically
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optimal with large unit penalty cost. To our knowledge, this is the first asymptotic optimality

result established for continuous-review lost-sales inventory systems. The proof of Theorem 4 is

built upon equation (12), inequality (13) and Lemma 3, which is deferred to Appendix D.2.

Theorem 4. limp→∞OPT(III)
p /g−1(p) = limp→∞C

(III)
p (S(III),∗

p )/g−1(p) = h, where g−1(·) is the

inverse function of g(x) = xx for x> 0.

6. Final Remarks

In this paper, we study the asymptotic scaling of the newsvendor cost and apply it to analyze the

asymptotic scaling of the optimal cost and establish asymptotic optimality of the best (modified)

base-stock policy for three multi-dimensional inventory systems. We expect our analysis to be useful

in studying other complex inventory systems (e.g., perishable inventory systems with positive lead

times, serial inventory systems with lost sales, etc.). To this end, one needs to construct tight

newsvendor-type upper and lower bounds on the optimal cost, and then apply similar analysis

to Theorem 2 to obtain the desired results. In this paper, the upper bounds we construct on the

optimal costs come from those on the long-run average costs of the (modified) base-stock policy.

One may also establish newsvendor-type upper bounds on the long-run average costs of other classes

of heuristic policies, e.g., the projected inventory level (PIL) policy proposed in van Jaarsveld

and Arts (2024). Finally, since the demand process in the real world is usually non-stationary,

the results in §3 and §4 for inventory systems with non-stationary demand are of great practical

interest. However, we are able to prove the results only for the case when the uncertainty (or noise)

for various periods are i.i.d. It will be particularly interesting to explore the direction of general

non-stationary demand process for practically important complex inventory systems.
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Online Appendix for
“Asymptotic scaling of optimal cost and asymptotic optimality of
base-stock policy in several multi-dimensional inventory systems”

By Jinzhi Bu, Xiting Gong, and Xiuli Chao

Appendix A: Proofs of Statements in Section 2

A.1. Proof of Theorem 1

Proof of Part (a). We first note the following equation:

CNV(h,p,FD)

F−1
D ( p

p+1
)

=
CNV(h,p,FD)

F−1
D ( p

p+h
)
×
F−1
D ( p

p+h
)

F−1
D ( p

p+1
)
.

Therefore, it suffices to prove the following two equations:

lim
p→∞

F−1
D ( p

p+h
)

F−1
D ( p

p+1
)

= 1, (EC.1)

lim
p→∞

CNV(h,p,FD)

F−1
D ( p

p+h
)

= h. (EC.2)

We first prove Equation (EC.1) for 0<h≤ 1. If h> 1, we notice that

lim
p→∞

F−1
D ( p

p+h
)

F−1
D ( p

p+1
)

= lim
p→∞

F−1
D ( p/h

p/h+1
)

F−1
D ( p/h

p/h+1/h
)

= lim
p→∞

F−1
D ( p

p+1
)

F−1
D ( p

p+1/h
)
.

When h> 1, we have 1/h< 1 and if Equation (EC.1) can be shown for any 0<h≤ 1, it also holds

for any h> 1 from the above equation. When 0<h≤ 1, we have F−1
D (p/(p+h))≥ F−1

D (p/(p+ 1)).

In addition, we also have the following inequalities:

F−1
D ( p

p+h
)

F−1
D ( p

p+1
)
≤

F−1
D ( p

p+h
)

CNV(1, p
h
,FD)

×
E[(F−1

D ( p
p+1

)−D)+] + p
h
E[(D−F−1

D ( p
p+1

))+]

F−1
D ( p

p+1
)

≤
F−1
D ( p

p+h
)

E[(F−1
D ( p

p+h
)−D)+]

×

(
1 +

pE[(D−F−1
D ( p

p+1
))+]

hF−1
D ( p

p+1
)

)
, (EC.3)

where the first inequality holds since F−1
D (p/(p+h)) = arg minS≥0{E[(S−D)+]+p/hE[(D−S)+]}.

For the first term in the RHS of (EC.3), it is easy to see from E[D]<∞ and D̄=∞ that

lim
p→∞

F−1
D ( p

p+h
)

E[(F−1
D ( p

p+h
)−D)+]

= 1. (EC.4)

For the second term, we note that

lim
p→∞

pE[(D−F−1
D ( p

p+1
))+]

F−1
D ( p

p+1
)

= lim
p→∞

pE
[
D−F−1

D ( p
p+1

)
∣∣D>F−1

D ( p
p+1

)
]
P(D>F−1

D ( p
p+1

))

F−1
D ( p

p+1
)

≤ lim
p→∞

p

p+ 1

E
[
D−F−1

D ( p
p+1

)
∣∣D>F−1

D ( p
p+1

)
]

F−1
D ( p

p+1
)

= 0, (EC.5)
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where the inequality follows from the definition of F−1
D (p/(p+1)) and the last equality follows from

E[D − x|D > x] = o(x) and limp→∞F
−1
D (p/(p+ 1)) =∞ (due to D̄ =∞). Combining (EC.4) and

(EC.5), the right-hand-side of (EC.3) converges to 1 as p→∞ and Equation (EC.1) holds.

To see Equation (EC.2), similar to (EC.4) and (EC.5), we have the following two equations

respectively:

lim
p→∞

E[(F−1( p
p+h

)−D)+]

F−1( p
p+h

)
= 1, lim

p→∞

pE[(D−F−1( p
p+h

))+]

F−1( p
p+h

)
= 0,

which, together with the definition of CNV(h,p,FD), imply Equation (EC.2).

Proof of Part (b). From the definition of CNV
p (h,p,FD), we have the following inequalities:

hE[(F−1
D ( p

p+h
)−D)+]

F−1
D ( p

p+h
)

≤
CNV
p (h,p,FD)

F−1
D ( p

p+h
)
≤ h+

pE[(D−F−1
D ( p

p+h
))+]

F−1
D ( p

p+h
)

. (EC.6)

Since E[D−x|D>x] =O(x), we have

pE[(D−F−1
D ( p

p+h
))+]

F−1
D ( p

p+h
)

=
pE[D−F−1

D ( p
p+h

)|D>F−1
D ( p

p+h
)] ·P(D>F−1

D ( p
p+h

))

F−1
D ( p

p+h
)

≤ ph

p+h
·
E[D−F−1

D ( p
p+h

)|D>F−1
D ( p

p+h
)]

F−1
D ( p

p+h
)

=O(1). (EC.7)

When p is sufficiently large, it follows from limp→∞F
−1
D ( p

p+h
) =∞ that

hE[(F−1
D (

p

p+h
)−D)+]/F−1

D (
p

p+h
)≥ h(1−E[D]/F−1

D (
p

p+h
))≥ h/2.

Combining this with inequalities (EC.6) and (EC.7), we obtain

CNV
(
h,p,F−1

D

( p

p+h

))
= Θ

(
F−1
D

( p

p+h

))
.

We next prove that F−1
D ( p

p+h
) = Θ(F−1

D ( p
p+1

)). If h < 1, F−1
D ( p

p+h
) ≥ F−1

D ( p
p+1

) and it suffices

to prove F−1
D ( p

p+h
) =O(F−1

D ( p
p+1

)). Note that inequality (EC.3) and Equation (EC.4) continue to

hold. It then suffices to show

pE[(D−F−1
D ( p

p+1
))+]

F−1
D ( p

p+1
)

=O(1),

which follows from similar arguments to inequality (EC.7) and the assumption E[D− x|D> x] =

O(x). If h ≥ 1, the proof is similar and omitted for brevity. Therefore, we have CNV (h,p,FD) =

Θ(F−1
D ( p

p+1
)). Q.E.D.
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A.2. Proof of Proposition 1

We first show the results in parts (a)-(c) and (e)-(f). We first verify that all the demand distributions

in parts (a)-(c) and (e)-(f) in Proposition 1 satisfy E[D−x|D>x] = o(x). From the result in part

(c) of Theorem 1 in Huh et al. (2009), it suffices to show the following two properties for these

distributions: E[D2]<∞ and limx→∞ x · rD(x) =∞.

(a) For demand distributions in part (a), since limx→∞ rD(x)/xk = γ for some k >−1, we directly

have limx→∞ x · rD(x) =∞. Moreover, when t is sufficiently large, we have rD(t) ≥ 1
2
γtk. Noting

that F̄D(x) = exp
(
−
∫ x

0
rD(t)dt

)
, we then have for sufficiently large x,

F̄D(x)≤ exp

(
−1

2
γ

∫ x

1
2x

tkdt

)
= exp

(
− γ

2(k+ 1)

(
1− 1

2k+1

)
xk+1

)
.

This implies that

E[D2] =

∫ ∞
0

P(D2 >x)dx=

∫ ∞
0

F̄D(
√
x)dx= 2

∫ ∞
0

tF̄D(t)dt <∞,

where the last equality follows from the change of variable letting t=
√
x.

(b) For Gumbel min distribution in part (b), the two properties E[D2] <∞ and limx→∞ x ·
rD(x) =∞ can be easily verified from F̄D(x) = e1−ex and rD(x) = ex.

(c) For log-normal distribution in part (c), it is easy to verify that E[D2] = e2(µ+σ2). Moreover,

lim
x→∞

x · rD(x) = lim
x→∞

x · 1
σx
φ( lnx−µ

σ
)

Φ̄( lnx−µ
σ

)
=

1

σ
· lim
t→∞

φ(t)

Φ̄(t)
=

1

σ
· lim
t→∞

−t 1√
2π
e−

t2

2

− 1√
2π
e−

t2
2

=∞,

where the third equation follows from L’Hospital’s rule.

(e) & (f) For any integer-valued r.v. satisfying limn→∞ rD(n) = γ ∈ (0,1], by applying similar

arguments to inequality (62) in Arts et al. (2015), we can easily verify that for any ε ∈ (0, γ),

E[D − x|D > x] ≤ 1
γ−ε when x is sufficiently large. Thus, E[D − x|D > x] = o(x). For Poisson

distribution in part (f), Proposition 5.3 in Arts et al. (2015) shows that limn→∞ rD(n) = 1. Thus,

all the distributions in parts (e) and (f) satisfy E[D−x|D>x] = o(x).

Based on Equation (1), it only remains to establish the following five equations for parts (a)-(c)

and (e)-(f) respectively:

For part (a): lim
p→∞

F−1
D

( p

p+ 1

)
/
(
(k+ 1)γ−1 lnp

) 1
k+1 = 1; (EC.8)

For part (b): lim
p→∞

F−1
D

( p

p+ 1

)
/ ln lnp= 1; (EC.9)

For part (c): lim
p→∞

F−1
D

( p

p+ 1

)
/eµ+σ

√
2 lnp = 1; (EC.10)

For part (e): lim
p→∞

F−1
D

( p

p+ 1

)
/
(
(ln

1

1− γ
)−1 lnp

)
= 1; (EC.11)

For part (f): lim
p→∞

F−1
D

( p

p+ 1

)
/g−1(p) = 1. (EC.12)
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A similar result to Equation (EC.11) has been shown in Lemma A.2 of Arts et al. (2015). Thus,

we omit its proof and refer to Arts et al. (2015). We next prove Equations (EC.8), (EC.9), (EC.10)

and (EC.12) respectively. For convenience, we denote S†p , F−1
D ( p

p+1
).

Proof of Equation (EC.8). We first note that

lim
p→∞

(S†p)
k+1

lnp
= lim

p→∞

(k+ 1) · (S†p)′ · (S†p)k

p−1
= (k+ 1) lim

p→∞
p · (S†p)′ · (S†p)k,

where the first identity follows from L’Hospital’s rule. Then, it remains to prove that

lim
p→∞

p · (S†p)′ · (S†p)k =
1

γ
.

Since F̄D(S†p) = 1
p+1

, by taking the derivative with respect to p on both sides, we obtain

(S†p)
′fD(S†p) =

1

(p+ 1)2
=

1

p+ 1
F̄D(S†p),

which implies that

(S†p)
′ = (p+ 1)−1F̄D(S†p)(fD(S†p))

−1 = ((p+ 1)rD(S†p))
−1.

Thus,

lim
p→∞

p · (S†p)′ · (S†p)k = lim
p→∞

p · (S†p)k

(p+ 1) · rD(S†p)
= lim

p→∞

(S†p)
k

rD(S†p)
=

1

γ
,

where the last identity holds since limx→∞ rD(x)/xk = γ and limp→∞S
†
p =∞.

Proof of Equation (EC.9). For Gumbel min distribution, since F̄D(x) = exp (1− ex), we can

solve from

F̄D(S†p) = exp(1− eS
†
p) =

1

p+ 1

that S†p = ln(1 + ln(1 + p)). By applying L’Hospital’s rule, we obtain

lim
p→∞

S†p
ln lnp

= lim
p→∞

ln(1 + ln(1 + p))

ln lnp
= lim

p→∞

1
1+p
· 1

1+ln(1+p)

1
p
· 1

lnp

= lim
p→∞

lnp

1 + ln(1 + p)
= 1.

Proof of Equation (EC.10). We first prove Equation (EC.10) for µ = 0 and σ = 1. We start

with the following bounds on the tail function of standard Gaussian distribution (see, e.g., Gordon

1941):

1√
2π

x

x2 + 1
e−

x2

2 ≤ 1−Φ(x)≤ 1√
2π

1

x
e−

x2

2 . (EC.13)

From (EC.13), when p is sufficiently large, the following inequality holds:

1

2
√

2π lnS†p
e−

(lnS
†
p)2

2 ≤ 1

p+ 1
≤ 1√

2π lnS†p
e−

(lnS
†
p)2

2 . (EC.14)
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Taking logarithm on each side of inequality (EC.14) and after simple algebra, we get

−2 ln(2
√

2π)− 2 ln(lnS†p)≤ (lnS†p)
2− 2 ln(p+ 1)≤−2 ln(

√
2π)− 2 ln(lnS†p). (EC.15)

By dividing lnS†p +
√

2 ln(p+ 1) on each side of inequality (EC.15), we further have

−2 ln(2
√

2π)− 2 ln(lnS†p)

lnS†p +
√

2 ln(p+ 1)
≤ lnS†p−

√
2 ln(p+ 1)≤

−2 ln(
√

2π)− 2 ln(lnS†p)

lnS†p +
√

2 ln(p+ 1)
.

Since limp→∞S
†
p =∞, the left-most side and the right-most side of the above inequality both

converge to zero as p→∞. Thus, we have limp→∞(lnS†p−
√

2 ln(p+ 1)) = 0. Since

lim
p→∞

(√
2 ln(p+ 1)−

√
2 lnp

)
= lim

p→∞

2 ln(p+ 1)− 2 lnp√
2 ln(p+ 1) +

√
2 lnp

= 0,

we obtain limp→∞(lnS†p−
√

2 lnp) = 0. Thus,

lim
p→∞

S†p
e
√

2 lnp
= lim

p→∞
elnS

†
p−
√

2 lnp = 1,

which completes the proof of the equation in part (c) for µ= 0 and σ= 1.

We next prove Equation (EC.10) for general µ∈R and σ > 0. To facilitate discussion, we highlight

the dependency of S†p on µ and σ by writing it as S†p(µ,σ). We can easily verify the following

equations:

lnS†p(µ,σ) = µ+σ ·Φ−1
( p

p+ 1

)
= µ+σ · lnS†p(0,1).

Then, S†p(µ,σ) = eµ(S†p(0,1))σ. Since

lim
p→∞

S†p(0,1)/e
√

2 lnp = 1,

we conclude

lim
p→∞

S†p(µ,σ)/eµ+σ
√

2 lnp = 1.

Proof of Equation (EC.12). We first show that Equation (EC.12) is implied from the following

equation:

lim
p→∞

S†p lnS†p
g−1(p) ln(g−1(p))

= 1. (EC.16)

Suppose to the contrary, Equation (EC.12) does not hold and limsupp→∞S
†
p/g
−1(p) > 1. Then

there exists some ε0 > 0 and a sequence pn→∞ as n→∞ such that S†pn ≥ (1 + ε0)g−1(pn) and

lnS†pn ≥ ln(1 + ε0) + ln(g−1(pn)), which imply

S†pn lnS†pn
g−1(pn) ln(g−1(pn))

≥ (1 + ε0)

(
ln(1 + ε0)

lng−1(pn)
+ 1

)
,
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leading to contradiction with (EC.16). Similarly, lim infp→∞S
†
p/g
−1(p)< 1 will also lead to contra-

diction.

Now we prove Equation (EC.16). From the definition of S†p, we have

FD(S†p− 1)<
p

p+ 1
≤ FD(S†p). (EC.17)

As shown in Theorem 2 of Short (2013), when D is a Poisson r.v., the following bounds hold for

its cumulative distribution function: for any n∈N+,

Φ
(

1{n−µ>0} ·
√

2H(µ,n)
)
< P(D≤ n)<Φ

(
1{n+1−µ>0} ·

√
2H(µ,n+ 1)

)
, (EC.18)

where H(x, y) = x− y(1 + lnx) + y lny and µ, E[D]. Applying (EC.18) to (EC.17), we have for

sufficiently large p,

Φ
(√

2H(µ,S†p− 1)
)
<

p

p+ 1
<Φ

(√
2H(µ,S†p + 1)

)
. (EC.19)

After substituting the expressions of H(µ,S†p−1) and H(µ,S†p +1) into the above inequalities, and

dividing lnp on each side of the above inequalities, we have

(S†p− 1)
(

ln(S†p− 1)− 1− lnµ
)

lnp
≤ 1

2 lnp

(
Φ−1

( p

p+ 1

))2

− µ

lnp
, (EC.20)

and

(S†p + 1)
(

ln(S†p + 1)− 1− lnµ
)

lnp
≥ 1

2 lnp

(
Φ−1

( p

p+ 1

))2

− µ

lnp
. (EC.21)

For standard Gaussian distribution, we have

lim
x→∞

rD(x)

x
= lim

x→∞

1
x
e−

x2

2∫∞
x
e−

t2
2 dt

= lim
x→∞

− 1
x2 e
−x

2

2 − e−x
2

2

−e−x
2
2

= 1.

By applying the result in part (a) to normal distribution, we have

lim
p→∞

Φ−1
(

p
p+1

)
√

2 lnp
= 1. (EC.22)

Combining Equation (EC.22) with inequality (EC.20), we have

limsup
p→∞

(S†p− 1)(ln(S†p− 1)− 1− lnµ)

lnp
≤ 1.

Since limp→∞S
†
p =∞, it then follows from the property of lim sup that

limsup
p→∞

S†p lnS†p
lnp

= lim sup
p→∞

(S†p− 1)(ln(S†p− 1)− 1− lnµ)

lnp
· lim
p→∞

S†p lnS†p

(S†p− 1)(ln(S†p− 1)− 1− lnµ)
≤ 1.
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Similarly, combining Equation (EC.22) and inequality (EC.20) with limp→∞S
†
p = ∞ leads to

lim infp→∞
S
†
p lnS

†
p

lnp
≥ 1. Therefore, limp→∞

S
†
p lnS

†
p

lnp
= 1. By the definition of g(·), we have lnp =

g−1(p) ln(g−1(p)). Thus, Equation (EC.16) holds.

Finally, we prove the result in part (d). Note that

CNV(h,p,FD)

p
1
α

=
hE
[(
F−1
D

(
p

p+h

)
−D

)+]
+ pE

[(
D−F−1

D

(
p

p+h

))+]
F−1
D

(
p

p+h

) ·
F−1
D

(
p

p+h

)
p

1
α

,

Since limp→∞ hE[(F−1
D ( p

p+h
)−D)+]/F−1

D ( p
p+h

) = h due to D̄ =∞, it then suffices to establish the

following two equations:

lim
p→∞

pE
[(
D−F−1

D

(
p

p+h

))+]
F−1
D ( p

p+h
)

=
h

α− 1
, (EC.23)

lim
p→∞

F−1
D ( p

p+h
)

p
1
α

= γ
1
α ·h− 1

α . (EC.24)

We first show Equation (EC.23). Note that

pE
[(
D−F−1

D

(
p

p+h

))+]
F−1
D ( p

p+h
)

=
pE
[
D−F−1

D

(
p

p+h

)∣∣∣D>F−1
D

(
p

p+h

)]
·P
(
D>F−1

D

(
p

p+h

))
F−1
D

(
p

p+h

)
=

ph

p+h
·
E
[
D−F−1

D

(
p

p+h

)∣∣∣D>F−1
D

(
p

p+h

)]
F−1
D

(
p

p+h

) .

Therefore, to prove Equation (EC.23), it suffices to prove the following equation:

lim
x→∞

E[D−x|D>x]

x
=

1

α− 1
. (EC.25)

To see Equation (EC.25), we first note from F̄D(x)∼ γx−α that, for any ε > 0, when x is sufficiently

large, we have (γ − ε)x−α ≤ F̄D(x)≤ (γ + ε)x−α. Since E[D−x|D>x]/x=
∫∞
x
F̄D(t)dt/

(
F̄D(x)x

)
,

by applying the previous inequality, we have the following inequality for sufficiently large x:

(γ− ε)
∫∞
x
t−αdt

(γ+ ε) ·x−α ·x
≤ E[D−x|D>x]

x
≤

(γ+ ε)
∫∞
x
t−αdt

(γ− ε) ·x−α ·x
.

After simple algebra and by letting x→∞, we have

γ− ε
γ+ ε

· 1

α− 1
≤ lim inf

x→∞

E[D−x|D>x]

x
≤ limsup

x→∞

E[D−x|D>x]

x
≤ γ+ ε

γ− ε
· 1

α− 1
.

Letting ε ↓ 0 in each side of the above inequality, we obtain Equation (EC.25).

Equation (EC.24) is easily shown using the following argument. Let x= F−1
D (p/(p+ h)). Then

we have p= hFD(x)/F̄D(x) and

lim
p→∞

F−1
D ( p

p+h
)

p
1
α

= lim
x→∞

x ·
(
F̄D(x)

) 1
α

h1/α ·
(
FD(x)

) 1
α

= h−1/α · lim
x→∞

(
F̄D(x)

x−
1
α

) 1
α

= γ
1
α ·h− 1

α ,

which shows Equation (EC.24). Q.E.D.
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A.3. Limiting Failure Rate for Geometric Poisson Distribution

Let D be a geometric Poisson r.v., with the rate of Poisson being λ and the success probability

of the compounding geometric distribution being γ ∈ (0,1). Then, the p.m.f. of D is given by

fD(0) = e−λ and fD(n) =
∑n

k=1 e
−λ λk

k!
(1−γ)n−kγkCk−1

n−1 for any n≥ 1. From Theorem 1 in Özel and

Inal (2010), the following equation holds for any n≥ 2:

fD(n) =
2n− 2 + z

n
(1− γ)fD(n− 1)− n− 2

n
(1− γ)2fD(n− 2), (EC.26)

where z , λγ/(1− γ). Dividing P(D≥ n− 1) on both sides of Equation (EC.26), we have

rD(n)
P(D≥ n)

P(D≥ n− 1)
=

2n− 2 + z

n
(1− γ)rD(n− 1)− n− 2

n
(1− γ)2rD(n− 2)

P(D≥ n− 2)

P(D≥ n− 1)
. (EC.27)

By the definition of rD(L)(k), for any k≥ 2, we have

P(D≥ k)

P(D≥ k− 1)
=

P(D≥ k− 1)−P(D= k− 1)

P(D≥ k− 1)
= 1− rD(k− 1).

Plugging the above equation to (EC.27), we obtain

rD(n)
(
1− rD(n− 1)

)
=

2n− 2 + z

n
(1− γ)rD(n− 1)− n− 2

n
(1− γ)2 rD(n− 2)

1− rD(n− 2)
. (EC.28)

From Theorem 2.2 in Ninh and Prékopa (2013), D has a log-concave p.m.f.. Therefore, the

failure rate rD(n) increases in n (see Barlow and Proschan 1965). Since rD(n)≤ 1, the limit r∞ ,

limn→∞ rD(n) exists. Letting n→∞ on both sides of (EC.28), we obtain the following equation:

r∞(1− r∞) = 2(1− γ)r∞− (1− γ)2 r∞
1− r∞

.

Since r∞ > 0 from the increasing property of rD(n), dividing r∞ on both sides of the above equation

and re-arranging the terms, we obtain limn→∞ rD(n) = r∞ = γ. Q.E.D.

A.4. Proof of Proposition 2

Proof of Part (a). We note that

E[Dk] =

∫ ∞
0

P(Dk >x)dx=

∫ ∞
0

F̄D(x
1
k )dx= k

∫ ∞
0

tk−1F̄D(t)dt.

Since E[Dk]<∞, we then have

lim
x→∞

∫ ∞
x

tk−1F̄D(t)dt=

∫ ∞
0

tk−1F̄D(t)dt− lim
x→∞

∫ x

0

tk−1F̄D(t)dt= 0. (EC.29)

Note that for any x> 0, we have the following inequality:∫ ∞
x

tk−1F̄D(t)dt≥
∫ 2x

x

tk−1F̄D(t)dt≥
∫ 2x

x

xk−1F̄D(2x)dt= xkF̄D(2x) =
1

2k
(2x)kF̄D(2x), (EC.30)
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where the second inequality holds since tk−1 increases in t by the assumption that k > 1 and F̄D(t)

decreases in t. Combining (EC.29) with (EC.30), we obtain limx→∞ x
kF̄D(x) = 0. Thus, we have

lim
p→∞

(
F−1
D

( p

p+ 1

))k 1

p+ 1
≤ lim

p→∞

(
F−1
D

( p

p+ 1

))k
F̄D

(1

2
F−1
D

( p

p+ 1

))
= 2k lim

x→∞
xkF̄D(x) = 0, (EC.31)

where the inequality holds since 1
2
F−1
D (p/(p+ 1))<F−1

D (p/(p+ 1)) implies F̄D( 1
2
F−1
D (p/(p+ 1)))>

1/(p+ 1) from the definition of F−1
D (p/(p+ 1)). Inequality (EC.31) shows that F−1

D (p/(p+ 1)) =

o(p1/k). It then follows from part (b) in Theorem 1 that CNV(h,p,FD) = o(p1/k).

Proof of Part (b). When D follows a sub-exponential distribution, there exists positive con-

stants c′ and c such that F̄D(x) ≤ c′ exp (−cx) when x is sufficiently large. Therefore, when p is

sufficiently large,

1

p+ 1
< F̄D

(1

2
F−1
D

( p

p+ 1

))
≤ c′ exp

(
− c

2
F−1
D

( p

p+ 1

))
, (EC.32)

where the first inequality holds due to the same reason to the inequality in (EC.31). Re-arranging

the terms of the above inequality, we obtain

F−1
D (p/(p+ 1))<

2

c
ln(c′(p+ 1)) =O(lnp).

It then follows from part (b) in Theorem 1 that CNV(h,p,FD) =O(lnp).

Proof of Part (c). When D follows a sub-Gaussian distribution, similar to inequality (EC.32),

there exist positive constants c and c′ such that F̄D(x)≤ c′ exp(−cx2) when x is sufficiently large.

Therefore, when p is sufficiently large,

1

p+ 1
< F̄D

(1

2
F−1
D

( p

p+ 1

))
≤ c′ exp

(
− c

4

(
F−1
D

( p

p+ 1

))2
)
,

which then implies

F−1
D (p/(p+ 1))<

√
4

c
ln(c′(p+ 1)) =O(

√
lnp).

It then follows from part (b) in Theorem 1 that CNV(h,p,FD) =O(
√

lnp). Q.E.D.

A.5. Proof of Proposition 3

Proof of Part (a). To show the equation in part (a), we first note the following identities:

h(D̄−E[D])−CNV(h,p,FD) = h
(
D̄−F−1

D

( p

p+h

))
− (h+ p)E

[(
D−F−1

D

( p

p+h

))+]
= h
(
D̄−F−1

D

( p

p+h

))
− (h+ p)

∫ D̄

F−1
D

(
p

p+h

) F̄D(t)dt.
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Let x= F−1
D ( p

p+h
). Then it is easy to verify that p= hFD(x)/F̄D(x) and p+h= h/F̄D(x). Therefore,

we have the following equations:

h
(
D̄−F−1

D

(
p

p+h

))
− (h+ p)

∫ D̄
F−1
D

(
p

p+h

) F̄D(t)dt

p−
1
k

=
h(D̄−x)− h

F̄D(x)

∫ D̄
x
F̄D(t)dt(

h·FD(x)

F̄D(x)

)− 1
k

=h1+ 1
k ·
(
FD(x)

) 1
k ·
(

F̄D(x)

(D̄−x)k

)− 1
k

·

(
1−

∫ D̄
x
F̄ (t)dt

(D̄−x)F̄D(x)

)
.

Since limx↑D̄ FD(x) = 1 and limx↑D̄ F̄D(x)/(D̄−x)k = γ, it suffices to prove the following equation:

lim
x→D̄

∫ D̄
x
F̄D(t)dt

(D̄−x)F̄D(x)
=

1

k+ 1
. (EC.33)

Since limx↑D̄ F̄D(x)/(D̄−x)k = γ, for any ε∈ (0, γ), when t is sufficiently close to D̄, we have

(γ− ε)(D̄− t)k ≤ F̄D(t)≤ (γ+ ε)(D̄− t)k.

Then, we have ∫ D̄
x

(γ− ε)(D̄− t)kdt
(γ+ ε)(D̄−x)k+1

≤
∫ D̄
x
F̄D(t)dt

(D̄−x)F̄D(x)
≤
∫ D̄
x

(γ+ ε)(D̄− t)kdt
(γ− ε)(D̄−x)k+1

,

which implies

γ− ε
γ+ ε

· 1

k+ 1
≤ lim inf

x↑D̄

∫ D̄
x
F̄D(t)dt

(D̄−x)F̄D(x)
≤ limsup

x↑D̄

∫ D̄
x
F̄D(t)dt

(D̄−x)F̄D(x)
≤ γ+ ε

γ− ε
· 1

k+ 1
.

Since the above inequalities hold for any 0< ε< γ, letting ε ↓ 0, we obtain Equation (EC.33).

Proof of Part (b). It is easy to see that when D is an integer-valued r.v. and

p > h
(
(P(D= D̄))−1− 1

)
, F−1

D (
p

p+h
) = D̄,

and thus, CNV(h,p,FD) = h(D̄−E[D]). Q.E.D.

Appendix B: Proof of Statements in Section 3

B.1. Proof of Lemma 1

Proof of Inequality (4). Let lt be the amount of lost-sales quantity in each period t ≥ 1, i.e.,

lt , (Dt − It)+. For any admissible policy π, it is easy to verify the following equation from the

system dynamics: for any t≥ 1,

Iπt+1 = Iπt − (Dt− lπt ) +xπt,1,



e-companion to Author: Asymptotic scaling of optimal cost and asymptotic optimality of base-stock policy ec11

which then implies the following equation for any t≥ 1:

Iπt+L = Iπt −
t+L−1∑
i=t

(Di− lπi ) +
L∑
i=1

xπt,i. (EC.34)

Therefore, we have

(
Iπt+L−Dt+L

)+
=
(
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

Di +
t+L−1∑
i=t

lπi

)+

≥
(
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

Di

)+

. (EC.35)

In addition, we also have

(
Dt+L− Iπt+L

)+
=
( t+L∑
i=t

Di−
t+L−1∑
i=t

lπi − Iπt −
L∑
i=1

xπt,i

)+

≥
( t+L∑
i=t

Di− Iπt −
L∑
i=1

xπt,i

)+

−
t+L−1∑
i=t

lπi .

which then implies

t+L∑
i=t

(Di− Iπi )+ ≥
( t+L∑
i=t

Di− Iπt −
L∑
i=1

xπt,i

)+

.

Taking the expectation on each side of the above inequality and summing over t= 1,2, . . . , T , we

obtain the following inequality:

T+L∑
t=1

E
[(
Dt− Iπt

)+]≥ 1

L+ 1

T∑
t=1

E
[( t+L∑

i=t

Dπ
i − Iπt −

L∑
i=1

xπt,i

)+]
. (EC.36)

Therefore, we have the following inequality for any T ≥ 1:

T+L∑
t=1

E[Cπ
t ]

≥ h
T∑
t=1

E[(Iπt+L−Dt+L)+] + p
T+L∑
t=1

E
[(
Dt− Iπt

)+]
≥

T∑
t=1

(
hE
[(
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

Di

)+]
+

p

L+ 1
E
[( t+L∑

i=t

Dπ
i − Iπt −

L∑
i=1

xπt,i

)+])

=
T∑
t=1

(
hE
[(
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

di−
t+L∑
i=t

Wi

)+]
+

p

L+ 1
E
[( t+L∑

i=t

Wi− Iπt −
L∑
i=1

xπt,i +
t+L∑
i=t

di

)+])

≥
T∑
t=1

(
hE
[(

E
[
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

di

]
−

t+L∑
i=t

Wi

)+]
+

p

L+ 1
E
[( t+L∑

i=t

Wi−E
[
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

di

])+])

≥
T∑
t=1

min
S∈R

{
hE
[(
S−

t+L∑
i=t

Wi

)+]
+

p

L+ 1
E
[( t+L∑

i=t

Wi−S
)+]}

= T ·min
S≥0

{
hE
[(
S−WL+1

)+]
+

p

L+ 1
E
[(

WL+1−S
)+]}

= T ·CNV
(
h,

p

L+ 1
,FWL+1

)
,
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where the second inequality follows from (EC.35) and (EC.36), the third inequality follows from

the conditional Jensen’s inequality and the fact that Iπt +
∑L

i=1 x
π
t,i −

∑t+L

i=t di is independent of∑t+L

i=t Wi, and the second identity holds since {Wt : t≥ 1} is a sequence of non-negative i.i.d. r.v.’s

and the minimum value is achieved at S ∈ [0,∞).

By dividing T +L and letting limsupT→∞ on each side of the above inequality, we have Cπ ≥
CNV(h, p

L+1
,FWL+1

). Since this inequality holds for any admissible policy π, taking infπ on both

sides, we obtain inequality (4) from the definition of the optimal cost.

Proof of Inequality (5). We first show that under the modified base-stock policy πS with

S ≥ 0, the following inequality holds under any demand sample path and for each t≥L+ 1:

IπSt +
L−1∑
i=1

xπSt,i ≤ S+
t+L−1∑
i=t

di. (EC.37)

When t = L+ 1, from the assumption of empty initial state, the system dynamics and equation

(3), we know that

IπSL+1 +
L−1∑
i=1

xπSL+1,i = dL+1 +
L−1∑
i=1

xπSL+1,i = dL+1 +
2L∑

i=L+2

di ≤ S+
2L∑

i=L+1

di.

Thus, inequality (EC.37) holds for period t = L+ 1. Suppose inequality (EC.37) holds for some

period t≥L+1, and we next prove it for period t+1. To this end, we notice the following inequality:

IπSt+1 +
L−1∑
i=1

xπSt+1,i = IπSt −Dt + lπSt +xπSt,1 +
L∑
i=2

xπSt,i

= IπSt +
L∑
i=1

xπSt,i − dt−Wt +
(
Wt−

(
IπSt − dt

))+

= S+
t+L∑
i=t+1

di−Wt +
(
Wt−

(
IπSt − dt

))+

≤ S+
t+L∑
i=t+1

di,

where the first identity follows from the system dynamics, the second identity follows from Dt =

dt+Wt and lt = (Dt− It)+, the third identity holds since when t≥L+1, the inductive assumption

and equation (3) imply that IπSt +
∑L

i=1 x
πS
t,i = S+

∑t+L

i=t di, and the inequality holds because IπSt =

(IπSt−1−Dt−1)+ + qπSt−L ≥ q
πS
t−L ≥ dt for each t≥L+ 1. Thus, inequality (EC.37) also holds for period

t+ 1, completing the inductive argument.

Now we are ready to prove inequality (5). We notice from the identity in (EC.35) and inequality

(x+ y)+ ≤ x+ + y+ that for any admissible policy π and t≥ 1,

(
Iπt+L−Dt+L

)+ ≤
(
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

Di

)+

+
t+L−1∑
i=t

lπi



e-companion to Author: Asymptotic scaling of optimal cost and asymptotic optimality of base-stock policy ec13

=
(
Iπt +

L∑
i=1

xπt,i−
t+L∑
i=t

Di

)+

+
t+L−1∑
i=t

(Di− Iπi )+, (EC.38)

and

(
Dt+L− Iπt+L

)+
=
( t+L∑
i=t

Di−
t+L−1∑
i=t

lπi − Iπt −
L∑
i=1

xπt,i

)+

≤
( t+L∑
i=t

Di− Iπt −
L∑
i=1

xπt,i

)+

. (EC.39)

Thus, we have the following inequality for the modified base-stock policy πS:

T∑
t=L+1

E[CπS
t+L]≤ h

T∑
t=L+1

E
[(
IπSt +

L∑
i=1

xπSt,i −
t+L∑
i=t

Di

)+]
+h

T∑
t=L+1

t+L−1∑
i=t

E
[( i∑

j=i−L

Dj − IπSi−L−
L∑
j=1

xπSi−L,j

)+]
+ p

T∑
t=L+1

E
[( t+L∑

i=t

Di− IπSt −
L∑
i=1

xπSt,i

)+]
. (EC.40)

From our definition of the order quantity under the modified base-stock policy in Equation (3) and

inequality (EC.37), for each period t≥L+ 1, we have

IπSt +
L∑
i=1

xπSt,i −
t+L∑
i=t

Di = S+
t+L∑
i=t

di−
( t+L∑
i=t

di +
t+L∑
i=t

Wi

)
= S−

t+L∑
i=t

Wi.

By plugging the above equation into the RHS of inequality (EC.40), we obtain the following

inequality:

T∑
t=L+1

E[CπS
t+L]≤ h

T∑
t=L+1

E
[(
S−

t+L∑
i=t

Wi

)+]
+h

T∑
t=L+1

t+L−1∑
i=t

E
[( i∑

j=i−L

Wj −S
)+]

+ p
T∑

t=L+1

E
[( t+L∑

i=t

Wi−S
)+]

= (T −L)
(
hE
[(
S−WL+1

)+]
+ (p+Lh)E

[(
WL+1−S

)+])
.

By dividing T on each side of the above inequality and taking limsupT→∞, we obtain inequality (5).

Q.E.D.

B.2. Proof of Theorem 2

From Lemma 1, we have the following inequality:

1

L+ 1
·
CNV

(
h(L+ 1), p,FWL+1

)
F−1

WL+1
( p
p+1

)
≤

OPT(I)
p

F−1
WL+1

( p
p+1

)
≤
C(I)
p (S(I),∗

p )

F−1
WL+1

( p
p+1

)
≤
CNV(h,p,FWL+1

) +LhE[WL+1]

F−1
WL+1

( p
p+1

)
.

Since W is unbounded, we have limp→∞LhE[WL+1]/F−1
WL+1

(p/(p+ 1)) = 0. By applying Theorem 1

to the left-hand side and right-hand side of the above inequality, we obtain part (a) and the asymp-

totic bound Θ(F−1
WL+1

(p/(p+ 1)) in part (b). Inequality (7) is also easily obtained by combining

Lemma 1 and part (d) in Proposition 1, whose details are omitted for brevity. Q.E.D.



ec14 e-companion to Author: Asymptotic scaling of optimal cost and asymptotic optimality of base-stock policy

B.3. Limiting Failure Rate for Convolution under IFR Distributions

In this appendix, we prove the following statement claimed in Section 3: if W is a continuous r.v.

with an increasing failure rate and limx→∞ rW (x) = γ ∈ (0,∞), then limx→∞ rWL+1
(x) = γ.

We first show that for any unbounded non-negative continuous r.v. X with p.d.f. fX(·), c.d.f.

FX(·) and an increasing failure rate rX(·), limx→∞ rX(x) = λ for some 0 < λ <∞ if and only

if limx→∞
F̄X (x+y)

F̄X (x)
= e−λy for any y > 0. To see this, we note the following equation from the

relationship F̄X(x) = e−
∫ x
0 rX (t)dt: for any x> 0 and y > 0,

F̄X(x+ y)

F̄X(x)
= e−

∫ x+y
x rX (t)dt = e−

∫ y
0 rX (x+t)dt. (EC.41)

If limx→∞ rX(x) = λ for some 0<λ<∞, it then follows from (EC.41) that

lim
x→∞

F̄X(x+ y)

F̄X(x)
= e− limx→∞

∫ y
0 rX (x+t)dt = e−λy.

On the other hand, if limx→∞ F̄X(x+ y)/F̄X(x) = e−λy, we have from (EC.41) that

lim
x→∞

∫ y

0

rX(x+ t)dt= λy.

This implies that rX(x) is bounded. Since rX(x) is also increasing by assumption, its limit

limx→∞ rX(x) exists, and thus,

lim
x→∞

∫ y

0

rX(x+ t)dt= y lim
x→∞

rX(x),

which then implies limx→∞ rX(x) = λ.

We now turn to proving limx→∞ rWL+1
(x) = γ. When rW (x) increases in x and limx→∞ rW (x) = γ,

by applying the above property, we have limx→∞ F̄W (x+ y)/F̄W (x) = e−λy for any y > 0. From

Theorem 3-(b) in Embrechts and Goldie (1980), if two distributions with tail functions F̄1 and F̄2

satisfy limx→∞ F̄i(x+ y)/F̄i(x) = e−λy, i= 1,2 for some λ≥ 0 and any y > 0, then the convolution

of F1 and F2, with the tail function denoted by G, also satisfies limx→∞G(x+ y)/G(x) = e−λy for

any y > 0. Thus, by repeatedly applying this result, we obtain

lim
x→∞

FWL+1
(x+ y)/FWL+1

(x) = e−γy. (EC.42)

When W has an IFR distribution, from the closure property of IFR distributions (see, e.g., Theorem

3.2 of Barlow et al. 1963), WL+1 also has an IFR distribution. This, combined with (EC.42) and

the above property, implies limx→∞ rWL+1
(x) = γ. Q.E.D.
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Appendix C: Proofs of Statements in Section 4

C.1. Proof of Lemma 2

Proof of Inequality (8). For any admissible policy π, we first note the following identities:

T+m−1∑
t=1

E[Cπ
t ] =

T+m−1∑
t=1

(
hE[(xπt,m−Dt)

+] + bE[ζt(Dt−xπt,m)+] + pE[(1− ζt)(Dt−xπt,m)+] + θE[oπt ]
)

=
T+m−1∑
t=1

(
hE[(xπt,m−Dt)

+] + bϑE[(Dt−xπt,m)+] + p(1−ϑ)E[(Dt−xπt,m)+] + θE[oπt ]
)

=
T+m−1∑
t=1

(
hE[(xπt,m−Dt)

+] +
(
ϑb+ (1−ϑ)p

)
E[(Dt−xπt,m)+] + θE[oπt ]

)
, (EC.43)

where the second identity follows from the assumption that ζt is independent of Dt − xπt,m and

E[ζt] = ϑ for each period t ≥ 1. Due to a similar explanation to inequality (16) in the proof of

Proposition 2 in Bu et al. (2023), the following inequality holds for any T ≥ 1 and any given demand

sample path:

T+m−1∑
t=1

oπt ≥
1

m

T∑
t=1

(
xπt,m−

t+m−1∑
i=t

Di

)+

. (EC.44)

For each t≥ 1, denote δπt , xπt,m− dt. Applying (EC.44) to the RHS of (EC.43), we have

T+m−1∑
t=1

E[Cπ
t ]

≥
T∑
t=1

(
hE[(xπt,m−Dt)

+] +
(
ϑb+ (1−ϑ)p

)
E[(Dt−xπt,m)+] +

θ

m
E
[(
xπt,m−

t+m−1∑
i=t

Di

)+])

=
T∑
t=1

(
hE
[(

(dt + δπt )− (dt +Wt)
)+
]

+
(
ϑb+ (1−ϑ)p

)
E
[(

(dt +Wt)− (dt + δπt )
)+
]

+
θ

m
E
[(

(dt + δπt )−
t+m−1∑
i=t

(di +Wi)
)+])

≥
T∑
t=1

(
hE
[
(δπt −Wt)

+
]

+ (ϑb+ (1−ϑ)p)E
[
(Wt− δπt )+

]
+
θ

m
E[(δπt −Wt)

+]− θ

m

t+m−1∑
i=t+1

(di +E[Wi])

)

≥
T∑
t=1

((
h+

θ

m

)
E
[
(E[δπt ]−Wt)

+
]

+
(
ϑb+ (1−ϑ)p

)
E
[
(Wt−E[δπt ])+

]
− θ

m

t+m−1∑
i=t+1

(di +E[Wi])

)

≥
T∑
t=1

min
S∈R

{(
h+

θ

m

)
E[(S−W )+] +

(
ϑb+ (1−ϑ)p

)
E[(W −S)+]

}
− θ(m− 1)

m

T+m−1∑
t=1

(dt +E[W ])

=
T∑
t=1

min
S≥0

{(
h+

θ

m

)
E[(S−W )+] +

(
ϑb+ (1−ϑ)p

)
E[(W −S)+]

}
− θ(m− 1)

m

T+m−1∑
t=1

(dt +E[W ])

= T ·CNV(h+
θ

m
,ϑb+ (1−ϑ)p,FW )− m− 1

m
θ
T+m−1∑
t=1

(dt +E[W ]),
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where the first identity follows from the definition of δπt and Dt = dt +Wt, the second inequality

follows from (x− y)+ ≥ x+− y+ and non-negativity of di and Wi, the third inequality follows from

the conditional Jensen’s inequality and the fact that δπt is independent of Wt, the fourth inequality

follows from the assumption that {Wt : t≥ 1} is a sequence of i.i.d. r.v.’s, and the second identity

holds since the assumption that W is non-negative implies that the minimum value is achieved at

S ∈ [0,∞).

Dividing T +m− 1 on each side of the above inequalities and taking lim supT→∞, we obtain

Cπ ≥CNV
(
h+

θ

m
,ϑb+ (1−ϑ)p,FW

)
− m− 1

m
θ
(
E[W ] + lim inf

T→∞

1

T

T∑
t=1

dt

)
.

Since the above inequality holds for any admissible policy π, taking infπ on both sides, we obtain

inequality (8) from the definition of the optimal cost.

Proof of Inequality (9). We first show that, under the modified base-stock policy πS with S ≥
0, xπSt,m = S+dt holds for each period t≥ 1. To this end, we prove by induction that xπSt,m−1−b

πS
t−1 ≤ S

for each t≥ 1, which then implies from the definition of xπSt,m that xπSt,m = S + dt. When t= 1, we

have xπSt,m−1− b
πS
t−1 = 0≤ S. Suppose xπSt,m−1− b

πS
t−1 ≤ S. Then we have

xπSt+1,m−1− b
πS
t = xπSt,m−Dt + (1− ζt)(Dt−xπSt,m)+− oπSt = S−

(
Wt− (1− ζt)

(
Wt−S

)+)− oπSt ≤ S,
where the first identity follows from the system dynamics, the second identity holds since the

inductive assumption implies xπSt,m = S+ dt, and the inequality holds since (1− ζt)
(
Wt−S

)+ ≤Wt

and oπSt ≥ 0. This completes the inductive argument.

Now we are ready to prove inequality (9). Note that for any t≥ 1,

t+m−1∑
i=t

oπSi ≤ (xπSt,m−Dt)
+ = (S−Wt)

+, (EC.45)

where the inequality holds since as explained in the proof of Lemma 3 in Bu et al. (2023), all the

outdates in periods t, t+1, . . . , t+m−1 come from the leftover inventory in period t after satisfying

demand, i.e., (xπSt,m−Dt)
+, and the identity follows from xπSt,m = S+ dt and Dt = dt +Wt. Thus, we

have
T∑
t=1

E[CπS
t ] =

T∑
t=1

(
hE[(xπSt,m−Dt)

+] +
(
ϑb+ (1−ϑ)p

)
E[(Dt−xπSt,m)+] + θE[oπSt ]

)

=
T∑
t=1

(
hE[(S−Wt)

+] +
(
ϑb+ (1−ϑ)p

)
E[(Wt−S)+] + θE[oπSt ]

)

≤ T

(
hE[(S−W )+] +

(
ϑb+ (1−ϑ)p

)
E[(W −S)+]

)
+
⌈ T
m

⌉
· θE[(S−W )+],

where the second identity follows from xπSt,m = S + dt and Dt = dt +Wt, and the inequality follows

from (EC.45) and the assumption that {Wt : t≥ 1} a sequence of i.i.d. r.v.’s. Dividing T on each

side of the above inequalities and taking lim supT→∞, we obtain inequality (9). Q.E.D.
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C.2. Proof of Proposition 5

We first prove

OPT(II)
∞ −OPT(II)

p =O
(
D̄−F−1

D

(p− θ
p+h

))
. (EC.46)

Then, since limp→∞F
−1
D

(
p−θ
p+h

)
= D̄, it immediately leads to limp→∞OPT(II)

p = OPT(II)
∞ . From Propo-

sition 3 and Lemma 1 in Bu et al. (2023), when D is bounded, we have the following inequalities

for the lost-sales model:

hE
[(
F−1
D

(p− θ
p+h

)
−D

)+]
+ θE

[
O∞

(
F−1
D

(p− θ
p+h

))]
≤OPT(II)

p ≤C(II)
p (D̄) = OPT(II)

∞ , (EC.47)

where E[O∞(S)] denotes the long-run average outdates under base-stock policy πS. Combining

inequality (EC.47) with the definition of OPT(II)
∞ , we obtain

0≤OPT(II)
∞ −OPT(II)

p ≤ h(D̄−µ) + θE[O∞(D̄)]−hE
[(
F−1
D

(p− θ
p+h

)
−D

)+]
− θE

[
O∞

(
F−1
D

(p− θ
p+h

))]
≤ (h+ θ)

(
D̄−F−1

D

(p− θ
p+h

))
, (EC.48)

where the third inequality holds due to x+ − y+ ≤ (x − y)+ for any x, y ∈ R and E[O∞(S2)] −

E[O∞(S1)]≤ S2 − S1 for any 0≤ S1 ≤ S2 from the proof of Theorem 3 in Bu et al. (2023). Thus,

we have (EC.46).

(a) To prove part (a), from the above analysis, it suffices to prove limp→∞(D̄−F−1
D ( p−θ

p+h
))/p−

1
k ∈

(0,∞). Let x= F−1
D ( p−θ

p+h
). It is easy to verify that p= hFD(x)+θ

F̄D(x)
. Then we have

lim
p→∞

D̄−F−1
D ( p−θ

p+h
)

p−
1
k

= lim
x↑D̄

D̄−x(
hFD(x)+θ

F̄D(x)

)− 1
k

= (h+ θ)
1
k · lim

x↑D̄

D̄−x
(F̄D(x))

1
k

=
(h+ θ

γ

) 1
k
,

where the last identity follows from the assumption that limx↑D̄
F̄D(x)

(D̄−x)k
= γ. This completes the

proof of part (a).

(b) It is straightforward to verify that when p > (h+ θ)/P(D = D̄)− h, F−1
D

(
p−θ
p+h

)
= D̄ holds.

Thus, when p > (h+ θ)/P(D= D̄)− h, from inequality (EC.48), we have OPT(II)
p = OPT(II)

∞ , com-

pleting the proof of part (b). Q.E.D.

Appendix D: Proof of Statements in Section 5

D.1. Proof of Lemma 3

For any admissible policy π and any t≥L, we note that the total demand during time t−L to t is

D(t)−D(t−L), and the maximum amount of sales from these demands is min{IPπ(t−L),D(t)−



ec18 e-companion to Author: Asymptotic scaling of optimal cost and asymptotic optimality of base-stock policy

D(t− L)}. Since all pipeline inventories from the inventory position IPπ(t− L) will arrive at or

before time t, then the on-hand inventory level Iπ(t) at time t has the following lower bound:

Iπ(t)≥
(

IPπ(t−L)−
(
D(t)−D(t−L)

))+

, (EC.49)

and the cumulative amount of lost-sales during time t−L to t has the following lower bound:

Aπ(t)−Aπ(t−L)≥
(
D(t)−D(t−L)− IPπ(t−L)

)+

. (EC.50)

Since Aπ(t) is an increasing function in t, we then have

Aπ(T )≥ 1

L

∫ T

T−L
Aπ(t)dt

≥ 1

L

(∫ T

L

Aπ(t)dt−
∫ T−L

0

Aπ(t)dt
)

=
1

L

∫ T

L

(
Aπ(t)−Aπ(t−L)

)
dt

≥ 1

L

∫ T

L

(
D(t)−D(t−L)− IPπ(t−L)

)+

dt, (EC.51)

where the last inequality follows from (EC.50). Thus, we have the following inequalities:

Cπ = lim sup
T→∞

1

T

(
h

∫ T

L

E[Iπ(t)]dt+ pE[Aπ(T )]

)
≥ limsup

T→∞

1

T

∫ T

L

(
hE[(IPπ(t−L)− (D(t)−D(t−L)))+] +

p

L
E[(D(t)−D(t−L)− IPπ(t−L))+]

)
dt

≥ limsup
T→∞

1

T

∫ T

L

min
S≥0

{
hE[(S−D(L))+] +

p

L
E[(D(L)−S)+]

}
dt

=CNV
(
h,
p

L
,FD(L)

)
,

where the first inequality follows from inequalities (EC.49) and (EC.51), and the second inequality

follows from IPπ(t−L)≥ 0 and D(t)−D(t−L) =d D(L) for any t≥ L due to the assumption of

Poisson arrival. Since the above inequality holds for any admissible policy π, taking infπ on each

side, we prove Lemma 3. Q.E.D.

D.2. Proof of Theorem 4

Since D(L) is a Poisson r.v., part (f) of Proposition 1 shows limp→∞C
NV(h,p/L,FD(L))/g

−1(p) = h.

From Lemma 3, it suffices to prove limp→∞C
(III)
p (S(III),∗

p )/g−1(p) = h or the following equations:

lim
p→∞

C(III)
p (S(III),∗

p )/S(III),∗
p = h, (EC.52)

lim
p→∞

S(III),∗
p /g−1(p) = 1. (EC.53)
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We first show Equation (EC.52). By the definition of C(III)(S) in Equation (12) and noting that

limp→∞S
(III),∗
p =∞, it suffices to prove that (p+hL)B(S(III),∗

p , λL) is bounded for all p≥ 0. To this

end, we note the following inequality from the second inequality in (13):

h

λ(p+Lh)
≥B

(
S(III),∗
p , λL

)
−B

(
S(III),∗
p + 1, λL

)
=B

(
S(III),∗
p , λL

)1− λL

S
(III),∗
p + 1

·
∑S

(III),∗
p
n=0

(λL)n

n!∑S
(III),∗
p +1

n=0
(λL)n

n!

 .

Since limp→∞S
(III),∗
p = ∞ and limS→∞

∑S

n=0
(λL)n

n!
= eλL, the second term on the RHS of the

above equality converges to 1 as p→∞. Thus, by multiplying p+Lh on each side of the above

inequality and letting p→∞, we obtain limsupp→∞(p+ Lh)B
(
S(III),∗
p , λL

)
≤ h/λ, showing that

(p+hL)B(S(III),∗
p , λL) is bounded with respect to p≥ 0.

We next prove Equation (EC.53). From the proof of Equation (EC.12) in Appendix A.1, it

suffices to prove limp→∞S
(III),∗
p ln(S(III),∗

p )/ ln(p) = 1, or equivalently,

lim inf
p→∞

S(III),∗
p ln(S(III),∗

p )/ ln(p)≥ 1; (EC.54)

limsup
p→∞

S(III),∗
p ln(S(III),∗

p )/ ln(p)≤ 1. (EC.55)

We prove inequality (EC.54) as follows. Note that
∑S

(III),∗
p
n=0

(λL)n

n!
< eλL, and when p is sufficiently

large,
∑S

(III),∗
p +1

n=0
(λL)n

n!
≥ 1

2
eλL. It then follows from the first inequality in (13) that when p is

sufficiently large,

h

λ(p+hL)
≥B

(
S(III),∗
p , λL

)
−B

(
S(III),∗
p + 1, λL

)
≥ e−λL (λL)S

(III),∗
p(

S
(III),∗
p

)
!
− 2e−λL

(λL)S
(III),∗
p +1(

S
(III),∗
p + 1

)
!

= e−λL
(λL)S

(III),∗
p(

S
(III),∗
p

)
!

(
1− 2λL

S
(III),∗
p + 1

)
.

By taking the logarithm on each side of the above inequality and after simple algebra, we obtain

ln
((
S(III),∗
p

)
!
)
≥ S(III),∗

p ln(λL) + ln

(
λ

eλLh

(
1− 2λL

S
(III),∗
p + 1

))
+ ln(p+hL).

By applying the upper bound of Stirling’s approximation n!≤ nn+ 1
2 e1−n for any n≥ 1, we have

1 +
(
S(III),∗
p + 1

2

)
ln
(
S(III),∗
p

)
≥ S(III),∗

p

(
1 + ln(λL)

)
+ ln

(
λ

eλLh

(
1− 2λL

S
(III),∗
p + 1

))
+ ln(p+hL).

After dividing S(III),∗
p lnS(III),∗

p and taking lim supp→∞ on both sides of the above inequality, we

have limsupp→∞ lnp/
(
S(III),∗
p lnS(III),∗

p

)
≤ 1, which leads to inequality (EC.54).
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We prove inequality (EC.55) as follows. Similar to the proof of inequality (EC.54), when p is

sufficiently large,

h

λ(p+hL)
<B

(
S(III),∗
p − 1, λL

)
−B

(
S(III),∗
p , λL

)
≤ 2e−λL

(λL)S
(III),∗
p −1(

S
(III),∗
p − 1

)
!
− e−λL (λL)S

(III),∗
p(

S
(III),∗
p

)
!

= e−λL
(λL)S

(III),∗
p −1(

S
(III),∗
p − 1

)
!

(
2− λL

S
(III),∗
p

)
.

By taking the logarithm on each side of the above inequality and after simple algebra, we obtain

ln
((
S(III),∗
p − 1

)
!
)
<
(
S(III),∗
p − 1

)
ln(λL) + ln

(
λ

eλLh

(
2− λL

S
(III),∗
p

))
+ ln(p+hL).

By applying the lower bound of Stirling’s approximation n!≥
√

2πnn+ 1
2 e−n for any n≥ 1, we have

ln
(√

2π
)

+
(
S(III),∗
p − 1

2

)
ln
(
S(III),∗
p − 1

)
<
(
S(III),∗
p − 1

) (
1 + ln(λL)

)
+ ln

(
λ

eλLh

(
2− λL

S
(III),∗
p

))
+ ln(p+hL).

After dividing S(III),∗
p lnS(III),∗

p and taking lim infp→∞ on both sides of the above inequality, we have

lim infp→∞ lnp/
(
S(III),∗
p lnS(III),∗

p

)
≥ 1, which leads to inequality (EC.55). Q.E.D.

Appendix E: Asymptotic Scaling and Optimality for a Class of Heuristic Base-Stock Policies

In this appendix, we extend the results in Theorems 2 and 3 to a class of heuristic modified base-

stock policies. For any modified base-stock policy πŜ, we introduce the following condition on its

base-stock level Ŝ, where X denotes the lead-time demand and will be specified in the formal result

later. Again, we add subscript “p” to highlight the dependency on the unit penalty cost.

Condition 1 There exists a triple (p0, λ1, λ2) where 0< p0 <∞ and 0<λ2 <λ1 <∞, such that

F−1
X

( p

p+λ1

)
≤ Ŝp ≤ F−1

X

( p

p+λ2

)
, ∀p≥ p0.

Proposition EC.1. Consider the modified base-stock policy πŜp, where Ŝp satisfies Condition 1

for X =d WL+1 and W in Sections 3 and 4, respectively, and suppose X is unbounded. Then the

following results hold:

(a) If E[X − x|X > x] = o(x), then CI
p(Ŝp) ∼ hF−1

WL+1
(p/(p + 1)) and CII

p (Ŝp) ∼ (h +

θ/m)F−1
W (p/(p+ 1)).

(b) If E[X − x|X >x] =O(x), then CI
p(Ŝp) = Θ(F−1

WL+1
(p/(p+ 1))) and CII

p (Ŝp) = Θ(F−1
W (p/(p+

1))).
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Part (a) in Proposition EC.1 directly implies the asymptotic optimality of a class of modified

base-stock policies satisfying Condition 1 for the two systems studied in Sections 3 and 4 under

the assumption E[X −x|X >x] = o(x). We next prove Proposition EC.1.

Proof of Proposition EC.1. The proofs for the two systems are similar and we next provide

a complete proof for the first system while omitting the details for the second one.

(a) Note that we have the following inequalities from Ŝp ≤ F−1
WL+1

( p
p+λ2

):

OPT(I)
p

F−1
WL+1

( p
p+1

)
≤

C(I)
p (Ŝp)

F−1
WL+1

( p
p+1

)
≤
C(I)
p (Ŝp)

Ŝp
·
F−1

WL+1
( p
p+λ2

)

F−1
WL+1

( p
p+1

)
. (EC.56)

From inequality (5), we have

C(I)
p (Ŝp)

Ŝp
≤ hE[(Ŝp−WL+1)+]

Ŝp
+ pPr(WL+1 > Ŝp)×

E[WL+1− Ŝp|WL+1 > Ŝp]

Ŝp
+
LhE[WL+1]

Ŝp

≤ hE[(Ŝp−WL+1)+]

Ŝp
+

pλ1

p+λ1

× E[WL+1− Ŝp|WL+1 > Ŝp]

Ŝp
+
LhE[WL+1]

Ŝp
. (EC.57)

Therefore, lim supp→∞C
(I)
p (Ŝp)/Ŝp ≤ h from the assumption E[WL+1 − x|WL+1 > x] = o(x) and

limp→∞ Ŝp =∞ due to unboundedness of W . On the other hand, from Equation (EC.1), we have

limp→∞F
−1
WL+1

( p
p+λ2

)/F−1
WL+1

( p
p+1

) = 1. Therefore, the limsupp→∞ of the most RHS in inequality

(EC.56) is no more than h. From part (a) of Theorem 2, the most LHS of inequality (EC.56)

converges to h as p→∞. Thus, we have C(I)
p (Ŝp)∼ hF−1

WL+1
(p/(p+ 1)).

(b) From inequality (EC.57) and E[WL+1−x|WL+1 >x] =O(x), we know that C(I)
p (Ŝp) =O(Ŝp).

On the other hand, it is also easy to see the following inequality from inequality (4):

C(I)
p (Ŝp)

Ŝp
≥ hE[(Ŝp−WL+1)+]

Ŝp
,

which then implies C(I)
p (Ŝp) = Θ(Ŝp). Moreover, from the proof of part (b) in Theorem 1, we know

that F−1
WL+1

( p
p+λ

) = Θ(F−1
WL+1

( p
p+1

)) for any λ> 0. Therefore, C(I)
p (Ŝp) = Θ(F−1

WL+1
( p
p+1

)). Q.E.D.
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