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Pedestrian positioning system (PPS) using wearable inertial sensors has wide applications towards
various emerging fields such as smart healthcare, emergency rescue, soldier positioning, etc. The per-
formance of traditional PPS is limited by the cumulative error of inertial sensors, complex motion modes
of pedestrians, and the low robustness of the multi-sensor collaboration structure. This paper presents a
hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic
ranging (H-PPS). A robust two nodes integration structure is developed to adaptively combine the mo-
tion data acquired from the single waist-mounted and foot-mounted node, and enhanced by a novel
ellipsoid constraint model. In addition, a deep-learning-based walking speed estimator is proposed by
considering all the motion features provided by different nodes, which effectively reduces the cumu-
lative error originating from inertial sensors. Finally, a comprehensive data and model dual-driven model
is presented to effectively combine the motion data provided by different sensor nodes and walking
speed estimator, and multi-level constraints are extracted to further improve the performance of the
overall system. Experimental results indicate that the proposed H-PPS significantly improves the per-
formance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor
scenarios.
© 2023 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Accurate indoor pedestrian positioning system (I-PPS) has a
huge application potential towards various merging fields under
Global Navigation Satellite System (GNSS) denied urban areas, for
example, smart healthcare [1], emergency rescue [2], and motion
tracking [3].

At this stage, there are two main approaches for realizing I-PPS:
The utilization of additional equipment assisted localization sys-
tems and autonomous localization systems is widespread. Among
additional equipment assisted localization systems, Wireless Fi-
delity (Wi-Fi) [4], Bluetooth Low Energy (BLE) [5], ultra-wideband
(UWB) [6], acoustic source [7], 5th generation mobile networks
(5G) [8], and built-in sensors [9] are the most prominent technol-
ogies utilized. These technologies offer public users centimeter-
Yu).
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level to room-level localization precision. These types of posi-
tioning systems have a few limitations. They require local facilities
to generate navigation databases or acquire wireless signals, which
are substantially affected by the dynamic and intricate indoor
scenes as well as the artificial magnetic field. Specifically, in
extremely challenging subterranean or indoor scenarios, with no
adequate installed wireless stations and supporting facilities, these
systems fail to realize effective and accurate indoor localization
performance. Thus, they are required to be combined with addi-
tional autonomous positioning sources for better localization
performance.

Autonomous positioning systems typically comprise sequence
matching using collected magnetic vector [10], simultaneous
localization and mapping (SLAM) [11], and multi-source fusion
using multiple sensors [12]. In which, sequence matching is real-
ized by comparing magnetic features between collect vector and
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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reference vector, that does not need additional facilities. However,
at present, magnetic field matching algorithm structures need a
period of magnetic data, and changes in building structures and
electronic device interference can significantly affect the local
magnetic field [13]. For indoor areas with limited features, for
instance, long corridors and tunnels, feature extraction and
matching difficulties may arise, leading to reduced positioning ac-
curacy. Additionally, visual positioning methods are impacted by
light intensity and motion posture, making them unsuitable when
applied in case of complex and unpredictable human localization
[14]. For distributed inertial positioning systems, IMU equipment in
different accuracy indexes is deployed on various locations of the
human body, for instance, foot, waist, arms, and thigh, to enable
motion and position tracking. Inertial sensors-based dead reck-
oning (IS-DR) frameworks can achieve precise localization perfor-
mance without requiring additional facilities, which is expected to
maintain localization accuracy under signal-denied areas.

At this stage, IS-DR typically comprises two position update
algorithms: pedestrian dead reckoning (PDR) [15] and inertial
navigation system (INS) [16]. The PDR framework involves four
stages: gait detection, gait-length calculation, heading estimation,
and position cumulation. However, the PDR structure's drawback is
that the precision of the estimated location is affected by the
variability in handheld modes and individuals' motion features. In
contrast to the PDR structure, the INS mechanization is not influ-
enced by users' changeable motion and handheld modes, but its
error quickly diverges when no effective constraints are applied.

For motion tracking applications, the wearable inertial sensors-
based localization system could be divided into the single node
based positioning system and multi-nodes based positioning sys-
tem. Normally, single node based positioning system usually con-
tains the foot-mounted positioning system (FPS) and waist-
mounted positioning system (WPS), which are two main existing
real-world applications. The challenge of the single node based
positioning system is that the node installation of the single loca-
tion cannot fully describe the motion features of the pedestrian,
and its performance is also limited by the cumulative error such as
systematic heading deviation and walking speed drift [17]. To
enhance the accuracy of the single node-based positioning frame-
work, multi-nodes are applied for positioning error constraints. The
most typical application is the dual foot-mounted positioning
system (D-FPS), that can significantly reduce the systematic head-
ing deviation and the application of inner foot-ranging can further
increase the precision of walking speed calculation. Niu et al. [18]
proposed a robust data integration approach based on dual foot-
mounted modules in order to decrease the systematic heading er-
ror originating from the single FPS. The multi-level equality control
algorithm is adopted to integrate the motion features of different
system without additional ranging device. Zhu et al. [19] used ul-
trasonic ranging to get the real-time distance between two feet,
and further integrate the inner feet ranging results with dual in-
ertial foot-mounted data under Earth frame to conquer the chal-
lenges of systematic heading error and inaccurate performance of
walking speed calculation.

In addition, the integration of foot-mounted nodes and the
waist-mounted node can provide a more comprehensive motion
description of the pedestrian, and the corporation of different
nodes can acquire much more motion constraints and improve the
heading and walking speed calculation accuracy. Yu et al. [20]
compared the localization performance of foot-mounted, waist-
mounted, and handheld inertial sensors, and several state-of-art
filters are adopted for data fusion respectively. According to the
comprehensive experiments, the waist-mounted approach realizes
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the higher accuracy than other two approaches, and different route
path make an important influence for final trajectory. Qiu et al. [21]
proposed a wireless inertial motion capture module which uses a
number of 15 inertial modules to reconstruct the motion and
location of users using unconstrained traversal of the root, and
gradient descent algorithm is applied for sensors data fusion, which
effectively achieves the error divergence. The problems of existing
multi-nodes based positioning systems are that the cumulative
heading and walking speed of the users cannot be well constrained
due to the low performance of the sensors fusion model. Besides,
the indoor artificial magnetic field and complex motion modes
would also decrease the precision of heading and pedestrian speed
calculation.

To enhance the performance of distributed inertial nodes based
positioning system, this paper develops a hybrid pedestrian posi-
tioning system using the combination of wearable inertial sensors
and ultrasonic ranging (H-PPS), which can maintain positioning
precision under the effects of complex user motion modes and
artificial interference. The main contributions of this work are
summarized as:

(1) This paper applied multi-level observation constrains to
eliminate the cumulative error originating from the INS al-
gorithm, which autonomously estimates and compensates
for the bias error of inertial sensors and can maintain the
precision of the single node-based positioning system.

(2) This paper develops a robust two nodes integration structure
to adaptively combine the motion data acquired from the
single waist-mounted and foot-mounted nodes, which con-
tains the dual feet and ultrasonic fusion structure and foot-
waist fusion structure, and are further enhanced by a novel
ellipsoid constraint model.

(3) This paper proposes a deep-learning-based walking speed
estimator using the combination of 1D-CNN, Bi-LSTM, and
MLP models, which considers all the motion features pro-
vided by different inertial nodes and effectively reduces the
cumulative error originating from inertial sensors.

(4) This paper presents a comprehensive data and model dual-
driven model to adaptively combine the motion data pro-
vided by different sensor nodes andwalking speed estimator,
and multi-level constraints are extracted to further enhance
the precision of the overall system.

The structure of this article is arranged as follows. Section 2
presents the single and dual nodes-based positioning systems
and models. Section 3 proposes a robust walking speed estimator
and final multi-node integration structure. Section 4 designs
comprehensive experiments to verify the proposed H-PPS. Section
4 summarizes the whole work and point out the future work.

2. Single and dual nodes positioning system

In this section, the single and dual nodes-based positioning
systems are presented progressively for pedestrian navigation. In
which the single node positioning system (S-NPS) contains the
foot-mounted and waist-mounted positioning systems respec-
tively, and the dual nodes positioning system (D-NPS) is the com-
bination of different S-NPS. The overall structure of proposed H-PPS
system is described in Fig. 1.

2.1. Single node based positioning model

In the S-NPS, the foot-mounted and waist-mounted positioning



Fig. 1. Overall Structure of proposed H-PPS.
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systems have the common part of INS mechanization aimed atti-
tude and position updating algorithm, and also have the specific
observations of each. The common part of INS mechanization-
based attitude and location update method is summarized as [17]
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where pn ¼ ½ pN pE pD �T and vn ¼ ½ vN vE vD �T indicate the
cumulated 3D position and speed information of S-NPS in n-frame;
Cn
b indicates the current rotation matrix; gn is the acquired gravity

vector; un
ie and un

en indicate the measured rotation angular rates
among Earth-centered Earth-fixed frame and i-frame, between n-
frame and the ECEF frame.

The Earth rotation related parameters ub
ib and ub

in can be
simplified because of the low accuracy level of MEMS sensors in-
tegrated in S-NPS, as shown below [18]:
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where dpn, dvn and j represent the state error of S-NPS contains 3D
position, velocity, and attitude vectors; εg and εa is the sensors
biases; f n is the collected acceleration information in n-frame; wbg
and wba are the noises of gyroscope and accelerometer.

Thus, the state vector of S-NPS is described as follows:

dX¼ � ðdpnÞ1�3 ðdvnÞ1�3 j1�3
�
εg
�
1�3 ðεaÞ1�3

�T (3)

The proposed S-NPS also contains ZUPT and ZARU observations
when the quasi-static (QS) period is detected, in which the ZUPT
observation is defined as:
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dZn
v ¼ vnINS � vnzero ¼ dvn þ nv (4)

where vnINS jun is S-NPS originated speed vector, vnzero ¼ ½0 0 0 �T
is ideal observation vector. While the ZUPT cannot eliminate the
heading drift under QS period, thus the ZARU algorithm is also
applied for heading calibration [4]

dZq ¼ qnINS þ qnrefer ¼ dqþ nq (5)

where qnINS is the S-NPS provided heading value, qnrefer is extracted
reference heading observation among QS period, and nq represents
the measurement noise.

To decrease the divergence error under non-QS periods, the PDR
originated gait-length and velocity measurements are also adopted
as the observation equation in our developed S-NPS [17]:

VPDR ¼ ½as=ðm1 � m0Þ 0 0 � (6)

where VPDR indicates the PDR calculated gait-length value. m1 and
m0 are the collected time indexes of detected gait, and the PDR is
also applied for location update for the error constraint of proposed
S-NPS:
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where rtx and rty indicate the 2D position, qk is the S-NPS originated
heading observation.

Therefore, the PDR-assisted constraint model is described as�
dZv ¼ vpdr � vs�NPS
dZP ¼ Ppdr � Ps�NPS

(8)

where vpdr and Ppdr indicates the PDR originated position and
speed vectors; vs�NPS and Ps�NPS are the S-NPS provided speed and
position vector.

To enhance the positioning performance, the straight-line (SL)
constraint is extracted to limit the divergence error under the
regular walking route. This technique has been demonstrated to
significantly enhance the localization accuracy of S-NPS [22].
Moreover, in this research, heading information calculated from
adjacent gait periods is recorded for straight-line recognition.

L1 ¼
�
1 maxfjqs�meanðqsÞjg<T1;q
0 others

(9)

8<:
qs ¼ 	qsm�4; q

s
m�3;/;qsm



qsm ¼ a tan 2

�
rny;m � rny�1;m; r

n
x;m � rnx;m�1

� (10)

where ðrnx;m; rny;mÞ represents the mth step position calculated by S-
NPS, if L1 ¼ 1, the user is recognized as walking alongside a straight
network. Therefore, the observation equation is defined as

qsm � qsm�4
Dt

¼ ½01�13 sec q sin 4 sec q cos 4 �xt þ εj (11)

where q and 4 represent the roll and pitch angles provided by S-
NPS, εj is the heading deviation.

For the waist-mounted positioning system, more sensors are
integrated for instance magnetometer and barometer, due to the
more stable characteristics of collected motion data compared with
the foot-mounted positioning system. Thus, the magnetic feature
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constraint, stair reference, and pressure-originated altitude obser-
vation are applied in the waist-mounted positioning system, in
which the magnetic feature constraint is described the following
Eq. (34) in final H-PPS.

In a three-dimensional (3D) scenarios with a varies of floors,
altitude estimation becomes particularly essential, particularly
when pedestrians ascend or descend stairs. In this study, stair-
extracted altitude observation is selected and modeled to limit
the divergence of the S-NPS provided altitude.

dZh ¼hstair � hS�NPS (12)

where hstair represents the updated altitude using reference height
of stairs, hS�NPS represents the S-NPS provided altitude.

While the performance of attitude calculation using S-NPS will
cumulate quickly, therefore, for the waist-mounted positioning
system, the barometer provided altitude constraint is also extracted
for divergence error control [12].

dznh ¼ hnB � hnINS (13)

where hnB indicates the barometer-originated altitude calculation
value presented in Eq. (13), hnINS indicates the z-axis location change
estimated by S-NPS.
2.2. Dual nodes based positioning model

As defined in the above section, the S-NPS commonly comprises
an INS algorithm, QS recognitionmodel, andmulti-level constraints
for ZUPT/ZARU and straight-line constraint. However, due to the
difficulty of eliminating the systematic heading drift originating
from the S-NPS, a dual nodes positioning system (D-NPS) is
developed to constrain the systematic heading drift to the greatest
extent possible when using S-NPS. The proposed D-NPS contains
three different integrationmodels of S-NPS: the dual foot-mounted
modules without ultrasonic ranging (DFM-NU), the dual foot-
mounted modules with ultrasonic ranging (DFM-U), the hybrid
foot-mounted and waist-mounted modules (H-FWM). For the
overall algorithmmodel of D-NPS, the basic state vector is modeled
using the two subsystems of both the left and right foot nodes or a
combination of foot and waist nodes

XAll ¼ �Xð01Þ Xð02Þ � (14)

where Xð01Þ and Xð02Þ represent the foot-mounted or the waist-
mounted S-NPS. Therefore, the final state vector of D-NPS is the
combination of two different S-NPS

dXAll
i ¼ F i�1dX

All
i þ Gi�1w

All
i�1 (15)

where wAll
i�1 is measurement noises under the Gaussian distribu-

tion; F i�1 represents the augmented state matrix, and Gi�1 is the
augmented noise gain matrix, which are described as follows

F ¼
"
Fð01Þ 015;15
015;15 Fð02Þ

#
;G¼

"
Gð01Þ 015;15
015;15 Gð02Þ

#
(16)

For the dual foot-mounted positioning system (D-FPS), among
the detected QS period of one foot, the other foot is just detected as
the moving status, which is shown as.

Fig. 2 indicates that the left and the right foot prove the tem-
poral complementarity of detected QS periods.

For the D-NPS, the relationship between foot-mounted nodes
and waist-mounted node is described in Fig. 2. Where the ellipse



Fig. 2. Recognized QS Periods using D-FPS.
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constraint is applied in ideal case, the central of the ellipse is
modeled as the 2D position of the waist-mounted module, and the
semi-major axis of the ellipse is the distance between 2D location
of the waist-mounted module and two foot-mounted modules. In
the ideal case, the distances between 2D location of the waist-
mounted module and two foot-mounted modules R1, R2 are the
same, and the distance between two foot-mounted modules is also
measured by the ultrasonic ranging Dultra.

In Fig. 3, the ultrasonic rangingmeasurements can be adopted as
the multi-level observed constraints combined with the locations
of waist-mounted and foot-mounted modules in order to decrease
the speed divergence and positioning deviation. Firstly, for the dual
foot-mounted combination, the observation model can be con-
structed as [17].

dZ01 ¼kDFPS � Dultrak (17)

in the equation, Z represents the deviation among the ranging
Fig. 3. Model of dual nodes based positioning.

331
result distance between the left and right foot by the ultrasonic
signal and S-NPS. Based on step analysis of the D-FPS, the distance
among two feet is not constant and is defined as

DFPS ¼kHXik þ ui (18)

where

H¼ � I3 03;12 �I3 03;12
�

(19)

in the final integration phase, an ultrasonic outlier detector is used
to identify and remove detected outliers from the observations.
This process helps remain the localization precision of the final D-
FPS.

Secondly, for the hybrid waist-mounted and foot-mounted
positioning system, the observation model can be constructed as:

dZ02 ¼kR1 � R2k (20)

where

R1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x0 � x1=2

�2 þ �y0 � y1=2
�2r

(21)

In Eq. (22), (x0, y0) indicates the 2D location of waist-mounted
module, (x1, y1) and (x2, y2) represent the locations of two foot-
mounted modules.

Thirdly, the distance between waist-mounted module and two
foot-mounted modules also has the following constraints:

dZ03 ¼kR1 þR2 � Dultrak (22)

The difference of calculated distances provided by ultrasonic
ranging and waist-mounted and foot-mounted nodes will be equal
under the ideal walking mode.
3. Hybrid nodes based positioning system

In this section, the subsystems of waist-mounted and foot-
mounted modules are integrated together for a robust estimation
of human motions and locations. A novel walking speed estimator
is designed to provide accurate pedestrian speed information using
hybrid nodes. In addition, a data and model dual-driven model is
developed for collaborative localization using different modules.
3.1. Hybrid walking speed estimator

The performance of single node based positioning system is
limited by the complex humanmotion and cumulative error. In this
section, a robust deep-learning-based speed estimator (DLSE)
combining features extracted from different nodes is developed to
provide precise walking speed reference regarding the above
challenges. In this work, a hybrid deep-learning based walking
speed estimation structure is developed by considering motion
features extracted from a period of sensor data and ultrasonic
ranging results from different inertial nodes instead of instanta-
neous model in formal researches. The network structure of the
developed DLSE framework contains the integration of one-
dimensional convolutional neural network model (1D-CNN), Bi-
directional Long Short-Term Memory (Bi-LSTM), and multilayer
perceptron (MLP) which is shown as follows:

Fig. 4 describes the basic model of proposed DLSE framework, in
which the 1D-CNN is adapted to fully learn and extract the motion
features of the users, and the Bi-LSTM network further takes the
time-related characteristics into consideration, and MLP is finally
applied to integrate all the learned features and predict overall



Fig. 4. Hybrid deep-learning framework.
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walking speed for users.
In the 1D-CNN module, the relationship among the input fea-

tures and the outputted learned features is defined as [23]:

Oj ¼6

 XN
i¼1

xikij þ bj

!
(23)

where xi is themodeled input features, kij is the kernel weights, bj is
the calculated biases, 6ð ,Þ is the activation function, and Oj is the
learned output features of 1D-CNN.

Among the Bi-LSTM module, the updated parameters of Bi-
LSTM network are defined as [17]:

8>>>><>>>>:
ft ¼ s

�
Wf ½ht�1;Xt � þ bf

�
it ¼ sðWi,½ht�1;Xt � þ biÞ
~Ct ¼ tanhðWC,½ht�1;Xt � þ bCÞ
ot ¼ sðWo½ht�1;Xt � þ boÞ
ht ¼ ot tanhðCtÞ

(24)

where it , ft , ot indicate the input, forget and output units, Xt in-
dicates the input vector of Bi-LSTM model at the timestamp t, and
the ht represents the hidden state vector, which is regarded as the
output of the Bi-LSTM model at that moment. s indicates the sig-
moid function, and Ct is the candidate vector which is combined
with output vector as the memorized state at timestamp t.

Then the output vector of the proposed Bi-LSTM network is
adopted as the input vector of MLP module, and the final predicted
walking speed information is defined as:

vt ¼MLPðhtÞ (25)

In which vt indicates the final predicted walking speed provided by
the proposed DLSE.

To get better performance of speed estimation, following fea-
tures are extracted to adaptively describe the motion characteris-
tics of the pedestrian wearing hybrid inertial nodes:

(1) Foot-mounted modules estimated walking speed values v1
and v2, respectively;

(2) Ranging distance results u1 provided by ultrasonic module;
(3) Ranging difference u2 calculated by ultrasonic module;
(4) Walking speed vector calculated by the waist-mounted node

by the linear model:
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L1 ¼
a½0:7þ bðH�1:75Þ þ 2ðFt�1:79ÞH=1:75�

t1 � t0
(26)

In which the a, b, 2 indicate the human feature-related parameters,
Ft represents the step frequency, and H indicates the user's height
value.

(5) Walking speed vector calculated by the waist-mounted node
by the non-linear model:

L¼K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amax � Amin

4
p

(27)

where Amax and Amin represent the recognized peak and valley
vectors acquired from acceleration under the detected step period,
K indicates the scale parameters for different users.

(6) Norm of collected accelerometer data provided by the waist-
mounted module:

Normacc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z

q
(28)
(7) Norm of collected angular rate data provided by the waist-
mounted module

Normgyro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y þ g2z

q
(29)
(8) Update frequency Ft of step-length calculated by the waist-
mounted node.

The output dimension of proposed DLSE only contains 1D
walking speed prediction result described in Eq. (25), which is
further applied as one of the observations in the further data and
model dual-driven based fusion model.
3.2. Data and model dual-driven positioning model

In this part, a unified data and model dual-driven (DMDD)
model is developed based on the consideration of motion infor-
mation provided by hybrid inertial nodes, magnetic reference, and
DLSE result, which achieves a comprehensive integration for MEMS
sensors-based user localization. The state vector of each subsystem
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is modeled as [19]

dXi
sub ¼

h
ðdpnÞ1�3 ðdvnÞ1�3 41�3

�
ε
b
g

�
1�3

�
Vb
a

�
1�3

iT
(30)

where dpn, dvn and 4 indicate the state error of position, velocity,
and attitude under n-frame. εg and Va are the biases of the gyro-
scope and accelerometer. For the final H-PPS, the basic system state
vector is modeled using the information acquired from three sub-
systems including feet nodes and waist node

XHybrid¼
h
Xð01Þ
F Xð02Þ

F XW

i
(31)

where Xð01Þ
F and Xð02Þ

F indicate the foot-mounted subsystems, XW is
the waist-mounted subsystem. Each component comprises a rank
of 15 state vector defined in Eq. (31), and the state vector of whole
H-PPS is defined as

dXHybrid
i ¼ F idX

Hybrid
i�1 þ Giw

Hybrid
i�1 (32)

where F i is the state transition matrix, Gi represents the noise gain
matrix.

The original INS mechanization is subjected to the cumulative
and divergence errors originated from low-cost sensors, thus
cannot be applied individually. In the proposed DMDD structure,
the DLSE predicted walking speed and updated information is
applied as the observations.

(
dZn

v ¼ vnDLSE � vnINS
dZn

p ¼ pnDLSE � pnINS
(33)

where vnDLSE and pnDLSE represent DLSE predicted walking velocity
and position measurements, vnINS and pnINS represent the walking
speed and location calculated by INS mechanization. The DLSE
based position reference pnDLSE is calculated based on the walking
speed prediction result vnDLSE and the last moment position infor-
mation provided by the final DMDD structure. To decrease the ef-
fect of the distorted local magnetic field, in this work, the magnetic
measurement of waist-mounted module among the recognized
quasi-static magnetic field (QSMF) is extracted for modeling the
difference vector between the first epoch data [5]:

dZn
m ¼Cb

n;km
b
k � Cb

n;1m
b
k;1 (34)

where Cb
n;1 andmb

k;1 indicate the attitude matrix and magnetic data

collected from the first QSMF epoch, Cb
n;k and mb

k indicate the atti-

tude matrix and magnetic data collected from the following QSMF
epochs.

In this work, UKF is applied for data fusion of modeled H-PPS
structure, and the main steps of UKF are defined as:

(1) Initialization process for state vector:

� bX0 ¼ E½X0�
P0 ¼ E

h
½X0 � bX0�½X0 � bX0�T

i (35)
(2) Update the sigma point set:
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Xk�1 ¼
hbXk�1;

bXk�1 þg
ffiffiffiffiffiffiffiffiffiffiffi
Pk�1

p
; bXk�1 � g

ffiffiffiffiffiffiffiffiffiffiffi
Pk�1

p i
(36)

where Pk-1 is the covariance matrix calculated at last moment, g is
the set proportional parameter.

(3) State vector prediction and observation integration:

Xi
kjk�1 ¼4Xi

k�1 (37)

X�
k ¼

X2nþ1

i¼0

uiX
i
kjk�1 (38)

P�
k ¼

X2nþ1

i¼0

ui

�
Xi
kjk�1 � bX�

k

��
Xi
kjk�1 � bX�

k

�
þ GQ kG

T (39)

Zi
kjk�1 ¼h

�
Xi
kjk�1

�
(40)

z�k ¼
X2nþ1

i¼0

uiZ
i
kjk�1 (41)
(4) Observation parameter update:

P~zk;~zk ¼
X2nþ1

i¼0

ui

�
Zi
kjk�1 � bz�k ��Zi

kjk�1 � bz�k �þ Rk (42)

Pxk;zk ¼
X2nþ1

i¼0

ui

�
Xi
kjk�1 � bx�k ��Zi

kjk�1 � bz�k �T (43)

Kk ¼Pxk;zkP
�1
~zk;~zk (44)

bxk ¼ bx�k þ Kk
�
zk � bz�k � (45)

Pk¼P�
k � KkP~zk;~zkK

T
k (46)
(5) For the trajectory estimated between two known landmarks
or in case of loop point detected [22], the
RaucheTungeStriebel smoother (RTS) based trajectory
optimization algorithm is applied to acquire the high-
accuracy smoothed trajectory information:

bxk�1jk ¼ bxk�1 þ Pk�14
T
k

�
P�
k�1
��1�bxk � bx�k � (47)

Pk�1jk ¼Pk�1 �
�
Pk�14

T
k

�
P�
k
��1
��

Pk � P�
k
��

Pk�14
T
k

�
P�
k
��1
�T
(48)

in summary, in the final DMDD enhanced H-PPS, to integrate all the
motion features provided by different nodes and consider the
constraining relationship between different IMU nodes. First of all,
the INS mechanization is applied as the basic position-attitude
update method, the error values of INS mechanization from all
three IMU nodes are modeled together as state vector of H-IPS.
Secondly, to further eliminate the cumulative error of INS mecha-
nization, the observations and constraints extracted from multi-
sensors and human motion information are applied to decrease



Table 1
Accuracy parameters of IMU module.

Parameters Gyroscope Accelerometer
Sampling rate 100 Hz 100 Hz
Dynamic range 2000�/s 16 g
Bias instability 10�/h 0.03 mg
White noise 0:16+=

ffiffiffi
h

p
0:02m=s=

ffiffiffi
h

p
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cumulative error at the single node level, including ZUPT/ZARU,
PDR, SL, stair and pressure reference. Then the ultrasonic ranging
and error ellipse-based location differences constraints are
extracted for dual IMU nodes, including foot-mounted and waist-
mounted systems. Finally, for the overall H-PPS, DLSE is proposed
to predict the walking speed as the observation and DMDD struc-
ture is applied to integrate all the state vector, observations and
constraints for the optimization of each IMU node and get the
optimal positioning results of overall system.

4. Experimental results of FPS-DU

In this section, comprehensive experiments are conducted to
verify the precision of the proposed single-node positioning system
(S-NPS), dual nodes positioning system (D-NPS), and final H-PPS.
Three different indoor and outdoor scenes are chosen as the
experimental scenes, and comparison experiments are designed
with existing algorithms and systems. Three wearable inertial
nodes are deployed at the two feet and the waist of the testers,
described in Fig. 5. The accuracy parameters of inertial sensors
integrated in the IMU module are described in Table 1.

4.1. Precision estimation of single node-based positioning model

In this work, multi-level observations are extracted to constrain
the divergence error of INS mechanization applied in S-NPS. To
evaluate the performance, a cross-floor scene is chosen as the
Fig. 5. Hardware modules of H-PPS.
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experimental scene. Testers started from point A, went through the
point B, C, upstairs to the point D, passed the point E-D, downstairs,
and return to the point A. The walking duration and walking dis-
tance are 335m and 220 s, respectively. The overall walking route is
described in Fig. 6. In this work, all the ground-truth trajectories are
acquired by high-precision SLAM system, which can provide centi-
meter level reference trajectories that can be applied as ground-
truth [11].

Fig. 7 indicates that the performance of single waist-mounted
module is better that the foot-mounted positioning system, and
the proposed multi-level observations applied on the S-NPS further
enhance the positioning precision by decreasing the cumulative
error and drift. The errors comparison between different posi-
tioning models are described as Fig. 8.

Fig. 8 describes that the multi-level constraints effectively
enhance the performance of raw trajectory provided by S-NPS, and
the waist-mounted positioning system realizes the higher accuracy
compared with the foot-mounted positioning system. The evalu-
ated positioning error of waist-mounted positioning system rea-
ches 2.1 m in 75% under tested walking route, compared with the
foot-mounted positioning system within 3.78 m in 75%. Normally,
the foot-mounted IMU can use ZUPT/ZARU to improve the perfor-
mance of speed estimation and heading divergence, while the
ZUPT/ZARU algorithm makes very small contributions for
improving the heading accuracy due to the lack of absolute ob-
servations. Compared with the foot-mounted IMU, the waist-
mounted IMU has more stable acquired sensors data and effective
reference of local magnetic observations under complex environ-
ments and human motion modes, and the PDR step-length based
observations are also more accurate than foot-mounted algorithm.
Thus, the accuracy of heading estimation and fused positioning
using waist-mounted IMU is higher than foot-mounted IMU.

In addition, we conduct the comparison with other state-of-art
algorithms including foot-mounted indoor localization system (FIL)
proposed in Ref. [22], and walking step-length assumption method
Fig. 6. Walking route of S-NPS evaluation.



Fig. 7. Walking route of S-NPS evaluation.

Fig. 8. Errors comparison of different Structure.

Fig. 9. Errors comparison with existing algorithms.

Fig. 10. Walking route in 9th floor.
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(WSA) proposed in Ref. [24]. The performance of waist-mounted
positioning system and foot-mounted positioning system are
compared respectively under the same walking route. The com-
parison results is described as Fig. 9.

Fig. 9 presents that the proposed S-NPS structure realizes better
positioning performance compared with existing algorithms. The
estimated MSA and waist-mounted positioning structure reaches
3.08 m and 2.1 m in 75%, and the FIL and foot-mounted positioning
structure reaches 4.94 m and 3.78 m.

4.2. Performance evaluation of dual nodes-based positioning model

Furthermore, we designed experiments to verify the precision of
D-NPS, a corridor contained indoor environment is selected as the
experimental site. The walking route of testers is described in
Fig. 10. The tester started from the point H, passed the point I, J, K, L,
F, G and returned to the point H. The walking duration and walking
distance are 150 m and 102 s, respectively.

To evaluate the performance of D-NPS using different integra-
tion model of single node, the dual foot-mounted modules without
ultrasonic ranging (DFM-NU), the dual foot-mountedmodules with
ultrasonic ranging (DFM-U), the hybrid foot-mounted and waist-
335
mounted modules (H-FWM) are evaluated respectively. Firstly,
the S-NPS is compared with the DFM-NU and H-FWM, the esti-
mated trajectories and related positioning errors provided by
different integration models are described in Fig. 11.

In addition, the DFM-NU is further compared with DFM-U to
evaluate the improvement after using ultrasonic ranging. The
estimated trajectories and related positioning errors provided by
DFM-NU and DFM-U are compared in Fig. 12.

The estimated average positioning errors of S-NPS, DFM-NU and
H-FWM are compared in Table 2.

It can be found from Table 2 that the DFM-NU structure can
significantly improve the precision of single foot-mounted module,
while the H-FWM structure can simultaneously improve the pre-
cision of foot-mounted and waist-mounted positioning modules.
Besides, the application of ultrasonic ranging significantly enhances
the distance measurement ability for DFM-U structure, and further
improve the positioning accuracy from the aspect of movement
distance measurement. While the heading estimation error cannot
be effectively eliminated using ultrasonic ranging approach, thus
the magnetic observation applied in waist mounted module is also
applied to provide heading calibration.
4.3. Evaluated results of H-PPS framework

Finally, the proposed H-PPS is evaluated under a comprehensive
3D indoor environment, and compared with state-of-art D-NPS
algorithms to evaluate the accuracy improvement. In this case, the
test route includes cross-floor indoor scene in Figs. 9 and 13, users



Fig. 11. Estimated trajectories by S-NPS, DFM-NU and H-FWM.

Fig. 12. Estimated trajectories by S-NPS, DFM-NU and H-FWM.

Table 2
Positioning errors comparison.

Structures Average Error/m

S-NPS (F) 1.63
S-NPS (W) 1.32
DFM-NU (L) 1.26
DFM-NU (R) 1.19
H-FWM (F) 1.15
H-FWM (W) 1.04
DFM-U (L) 0.66
DFM-U (R) 0.59

Fig. 13. Walking route in 10th floor.

Table 3
Walking Speed Estimation Errors Comparison using Different Models.

Indexes/Models DLSE 1D-CNN Bi-LSTM MLP

Mean/(m�s�1) 0.039 0.061 0.051 0.056
Std/(m�s�1) 0.025 0.049 0.029 0.031
Max/(m�s�1) 0.088 0.168 0.117 0.133
Min/(m�s�1) 0.005 0.012 0.016 0.031
75th/(m�s�1) 0.052 0.089 0.067 0.076
Median/(m�s�1) 0.029 0.046 0.036 0.041

Table 4
Positioning errors comparison of H-PPS.

Structures Average Error Improved Rate

S-NPS (W) 1.32 m (75%) e

DFM-U (L) 0.66 m (75%) e

DFM-U (R) 0.59 m (75%) e

H-PPS (W) 0.71 m (75%) 46.2%
H-PPS (L) 0.45 m (75%) 31.8%
H-PPS (R) 0.42 m (75%) 28.8%
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started with the point A, walked through the point B-L, F, E, D, and
back to the point A. The walking duration and walking distance are
294 m and 195 s, respectively.

This work proposed the DLSE to estimate the walking speed of
the pedestrian using the integration of wearable inertial sensors
and ultrasonic modules. To evaluate the performance of presented
DLSE, the 1D-CNN [25], Bi-LSTM [17], and MLP [4] models are
applied for comparison purposes under the samewalking route and
336
training and testing datasets, the estimated speed estimation errors
using different deep-learning models are compared as follows:

Table 3 indicates that the proposed DLSE model realizes the
better speed estimation accuracy compared with three existing
models including 1D-CNN, Bi-LSTM, and MLP, the estimated speed
estimation error is lower than 0.052 in 75% cumulated percentage.

The positioning accuracy of overall proposed H-PPS is firstly
compared with each subpart including DFM-U and S-NPS (W) un-
der the same 2D route described in Fig. 10, the improved perfor-
mance is described as follows:

It can be found from Table 4 that the presented H-PPS signifi-
cantly enhances the performance of S-NPS and D-NPS by inte-
grating features extracted from both modules, the combination of
different sub-systems significantly improves the positioning accu-
racy of overall system.

In addition, a 3D environment is selected to comprehensively
estimate the precision of developed H-PPS under a cross-floor in-
door scene in Figs. 10 and 13. The estimated trajectories and related
positioning errors provide by different subsystems originated from
overall H-PPS structure are compared in Figs. 14 and 15.

Figs. 14 and 15 present that the meter-level positioning accuracy
can be realized using the proposed H-PPS structure, the achieved
accuracies of each sub-system reach 1.09 m (Right Foot), 1.06 m
(Left Foot), and 1.29 m (Waist) in 75%, respectively.

Finally, the overall H-PPS framework is comparedwith the state-
of-art D-NPS structures f2IMU-R [19] and FPS-DU [17] under the
samewalking route, and the overall poisoning error is compared by
considering each subsystem. The estimated positioning errors
provide by three different structures under the same walking route
are described as:



Fig. 14. Estimated trajectories for H-PPS.

Fig. 15. Estimated positioning errors for H-PPS.

Fig. 16. Comparison results of different models.

L. Qi, Y. Liu, C. Gao et al. Defence Technology 33 (2024) 327e338

337
Fig. 16 represents that the developed H-PPS proves better
tracking performance compared with state-of-art algorithms, the
estimated positioning errors under complex 3D environments
reach 1.06 m in 75% (H-PPS), 1.42 m in 75% (f2IMU-R), and 1.74 m in
75% (FPS-DU), respectively.

In summary, for S-NPS, the extracted multi-level constraints
effectively enhance the performance of raw trajectory, and the
waist-mounted positioning system realizes the higher accuracy
(2.1m in 75%) comparedwith the foot-mounted positioning system
(3.78 m in 75%) under the same walking route and motion modes;
For D-NPS, the experiments indicate that the combination foot-
mounted and waist-mounted positioning modules can realize
more accurate positioning accuracy (average 1.05 m) than the dual
foot-mounted positioning system (average error 1.26 m), while the
assistance of ultrasonic ranging can significantly enhance the per-
formance of dual foot-mounted positioning system, achieves the
meter-level positioning accuracy under test routes (average error
0.66 m); Finally, for the overall H-PPS, both S-NPS and D-NPS are
integrated together, which effectively improve the positioning ac-
curacies of S-NPS and D-NPS, respectively, and the best experi-
mental results can reach the sub-meter level (0.42 m in 75%).
5. Conclusions

To increase the tracking performance of distributed IMU posi-
tioning system, this paper presents H-PPS, which can adaptively
combine different single-mounted nodes including foot-mounted
and waist-mounted nodes, and achieves much better combined
positioning results comparedwith single node and state-of-art dual
nodes structures. The experimental results indicate that the meter-
level pedestrian tracking precision can be achieved using the
integration of multiple IMU nodes and ultrasonic ranging results
under complex 3D scenes.

Our future works will focus on more intelligent deep-learning
network for pedestrian walking speed estimation and prediction,
by extracting more comprehensive pedestrian motion features
from different IMU nodes. In addition, more IMU nodes will be
deployed in different parts of human body, for instance, thighs,
arms, head et al., which can provide richer motion information of
overall human body, more observations and constraints can be
modeled to eliminate the cumulative error of single IMU node.
Finally, the human motion is always complex and dynamic, which
contains various motion modes for instance walking, jumping,
running, backward walking, lateral walking, creep et al., and all of
this motion modes need to be detected in real-time and considered
as the comprehensive constraint factors in the H-PPS system.
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