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Abstract

Accurately and continuously monitoring ultra-precision machining (UPM) process is the foundation for subsequent diagnosis and
optimization, then facilitating energy-saving, efficient production, and high-quality machining. However, comprehensive
monitoring of UPM process has hardly been investigated systematically in previous studies. To cover the gap, this study examined
the linkages among these parameters monitored in UPM process using a five-layers network for the first time. Subsequently, we
proposed an advanced monitoring platform that integrates G-code command, installation sensors, and controller interface. This
proposed platform incorporated with anomalies detection algorithm was finally employed and validated on a three-axis ultra-
precision milling machine tool. Results showed that this proposed platform could successfully achieve anomaly identification using
power consumption and X/Y/Z components force signals.
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various efforts to promote the machining efficiency and

Nomenclature energy efficiency of UPM industry, most studies conducted

were patchy with limited improvement due to the inadequate
UPM Ultra-precision machining monitoring signals of UPM [3]. It is well-known that accurate
IoT Internet of Things estimation of UPM process not only directly reflects the

machine’s working state but is also crucial for determining the
specific parameters in these optimization strategies,
consequently influencing the optimization effect. It is,
therefore, imperative to accurately and simultaneously capture
these parameters in the UPM process.

To monitor the machining process, a high-resolution power
analyzer was adopted to collect the power, the current, and the
voltage of the three-phases power supply, which was then
used to identify the axis moving feedrate using the 1-
dimensional convolutional network model [4]. Additionally,
an energy-efficient monitoring system for machining
workshops comprising serval devices with the newly
emerging Internet of Things (IoT) technology was proposed
to calculate electricity consumption [5]. The vibration signal
of the spindle installed on the conventional CNC machine tool
was sensed by the accelerometers to identify the tool failure
[6], but both were designed for the conventional machining

1. Introduction

Ultra-precision machining (UPM) is capable of fabricating
micro-components with less than 0.2 um forming accuracy
and 10 »nm surface accuracy, therefore widely applied in
various high-tech fields such as optics, electrics, and
semiconductors. In accordance with the market analysis report,
the global UPM market size was valued at USD 11.8 billion in
2020 and is expected to expand at a compound annual growth
rate of 9.6 from 2021 to 2028 [1].

However, the production capacity of current UPM sector
cannot constantly fulfill the rapidly expanding market demand
due to its low machining efficiency. Additionally, the large
volume of UPM has emitted as much CO, as that of the
conventional machining sector, raising environmental
concerns from both academia and industries [2]. Despite
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process, and the measurement accuracy was insufficient for
UPM process. The acoustic sensor was installed on the tool
holder to detect the contact between the workpiece and the
diamond tool in UPM [7]. The detection accuracy of this
method, however, was unacceptable due to large errors.
Additionally, in efforts to determine the range of surface
roughness of the UPM workpiece, the accelerometers, 3-axis
dynamometers, and acoustic sensors were integrated together,
resulting in the prediction of surface roughness with a mean
R’ value of 0.83 using signals-fusion methods [8]. Similarly,
on the ultra-precision diamond turning machine, three
miniature accelerometers, 3-axis piezoelectric dynamometers,
and acoustic sensors were used for the real-time identification
of incipient surface morphology variations. The experimental
findings showed that the prediction error was about 5~25 nm
using a recurrent predictor neural network [9].

Recently, the quantitative measurement of tool wear has
become a hot topic due to its significance in affecting surface
quality [10]. The indirect way to determine the cutting tool
wear is from the cutting force. Previous study findings
indicated that the cutting force increases dramatically as the
cutting tool severely wears or fractures [11-13].

The straightforward approach is to adopt the high-
resolution CCD camera capable of capturing the image of the
cutting tool geometry, morphology, and crack. Compared to
the initial state of the cutting tool, the tool wear degree can be
detected in quantity through the image-processing algorithms
[14, 15]. Also, this CCD camera can facilitate checking the
surface quality of the UPM workpiece. However, this
approach is limited in on-machined measurement as the
movement or rotation of the tool or workpiece makes
capturing photographs more difficult. Plus, mounting the big-
sized CCD camera is a significant issue.

According to the aforementioned analysis, there are
numerous UPM process parameters to be monitored, and
comprehensive solutions for monitoring numerous parameters
were barely investigated. To narrow the gap, this work
proposed a practical monitoring platform for UPM process by
mining the linkage among these monitored parameters in
depth. This proposed platform was verified on the 3-axis
ultra-precision machine tool for anomaly detection with
promising results.

2. Correlations of UPM monitoring parameters

Numerous factors in the UPM process will impact
machining quality and power consumption, both directly and
indirectly. Herein, as shown in Figure 1, we summarized these
factors called monitored physical parameters. According to
the component’s type, these parameters can be classified into
five categories: external environment, machine status, cutting
tool status, workpiece status, and machining process status.
As shown in Figure 1, the numbers of physical parameters
reach 30, and it is challenging to install extra sensors for the
acquisition of all of these signals due to high cost, installation
complexity, and manpower consumption. Some ultra-
precision machine tools provide the controller interface that
can produce some signals to debug the machines. However,
the amount of available signals is limited and difficult to

retrieve unless the manufacturer’s unique communication
protocol is accessible. On the other hand, ultra-precision
machine tools are under the control of the command G-code.
The G-code will determine the ideal working status of
equipment, like axis feedrates, axis position, spindle rotation
speed, etc. However, the error between the ideal and the
actual status will generate due to various uncertainties of the
dynamic system of the machine. In reference [11], the running
G-code was interpreted into the working status matrix,
involving axis feedrates, axis position, and components
ON/OFF status through experimental time error setoff.
Notably, if the command G-code can be interpreted with
accurate error compensation considering the dynamic
characteristic of machines, more contributions, such as real-
time toolpath generation and digital twin model development
of machine tools, can be made.
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Fig. 1. Physical parameters to be monitored in UPM process.

To summarize, the primary methods for collecting real-
time UPM signals are through installation sensors, controller
interface  connection, and G-code interpretation. A
comparison of three approaches from different perspectives is
presented in Table 1.

Table 1. Comparison of three approaches: installation sensors, controller
interface connection, and command G-code interpretation

Available

Methods . Difficulty Accuracy Cost
signals
Installation . . .
sensors Many High High High
Controller Depending on Low High Low
interface manufacturer
G-code Few Middle  Middle Xl

Table 1 shows that the controller interface has the highest
priority for collecting real-time signals of these monitored
parameters due to its obvious advantages in low difficulty and
high accuracy. Because of its incredibly low monitoring cost,
the G-code interpretation is a viable alternative for collecting
these less significant signals. As the available signals from the
controller interface and G-code are rather restricted, external
sensors should be installed to get these important parameters,
such as machining forces, machining temperature,
instantaneous power consumption, and so on.

Additionally, multiple-signals data fusion methods were
adopted to identify tool failures by employing acoustic
sensors, and tests suggested that this method might produce
more accurate prediction results than the simple combination
[16, 17]. From this, data fusion approach is helpful to
contribute to the comprehensive monitoring of UPM process
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by offering more valuable insight into these difficult-to-
monitored parameters, like tool wear and life, machining
roughness and accuracy, etc. Many studies have been
undertaken to determine the tool remaining life, machining
roughness and accuracy, and power consumption of the UPM
process. The majority of them sought to map the relationship
between various processing parameters, such as axis feedrates,
cutting depth, tool parameters, etc. However, the selection of
these processing parameters for predicting the target items is
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frequently influenced by their prior experience. Serious
redundancy or insufficiency for constructing the mapping
model frequently happens, increasing the monitoring cost and
lowering prediction accuracy, respectively. In order to avoid
this and provide systematic instruction, the correlations
between these monitored parameters and the evaluation index
in UPM are analyzed and mapped in Figure 2 using a five-
layers network.
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Fig. 2. Correlations between these monitored parameters and evaluation indexes.

Current UPM is developing toward a more sustainable and
smart tendency, called sustainable UPM and smart UPM. As
shown in the first and second layers, sustainable UPM focuses
on lowering energy and source consumption, whereas smart
UPM enhances machining quality and efficiency. The energy
consumption and machining efficiency can be measured by
the power meter and the machining time. Whereas the source
consumption and machining quality are difficult to be
measured in real-time, the commonly used method is to use
these relevant items in the third layer to predict. These items
are linked with those influenced items in the fourth layer with
arrow lines. In the third layer, cutting power consumption,
tool wear and life, machining roughness, and machining
accuracy are linked by the high-density arrow lines from the
fourth layer. This suggests that these four items are influenced
by more physical factors. In other words, the modeling
complexity of predicting these four items using relevant
physical parameters will skyrocket. In the fifth layer,
accessible ways are provided to obtain these physical
parameters based on Table 1. This can help the operators
determine the best way to obtain monitored parameters in
practice.

To summarize, this section thoroughly explored the
accessible ways to real-time acquire large quantities of UPM
process signals, then compared Pros and Cons of these three
ways, and finally analyzed the correlations between
monitored parameters and these evaluation indexes in UPM
process. This work will significantly contribute to the
development of the optimal monitoring system for UPM
process.

3. Engineering application

In the case study, a 3-axis ultra-precision milling machine
tool was taken as the research objective, as shown in Figure 3.
Three-axis X/Y/Z is driven by the linear servo motors,
ranging from [-50 mm, 50 mm], [-50 mm, 50 mm], and [0, 100
mm)] at a resolution of 1 nm. On the Z axis, the electrical
spindle with a rotation speed of 100,000 »/min is stalled. On
the electrical spindle, the air bearing is driven with 9 bar
compressed air. The coolant chiller is equipped with 20 L/min
of pure water to cool the copper coil of the electrical spindle.
This machine adopts single-phase at 220V, 16A, and three-
phase at 380V and 30A as power sources. The former one
serves the PC controller, the display screen, the servo drivers,
the chiller, and three linear axes. The latter one powers the
electrical spindle to rotate. Correspondingly, single-phase and
three-phase power analyzers are used to measure the
instantaneous consumption power of the machine.
Additionally, the milling forces during the milling process are
measured by the three-dimensional dynamometer. Based on
section 2, the important monitored parameters - consumption
power, X/Y/Z components forces, axis feedrates, axis
positions, and servo motor states are selected as the monitored
parameters. The monitoring system is presented in Figure 4.

These selected monitored parameters can be measured
using installation sensors, controller interface connection, and
G-code interpretation. Herein, different communication
protocols, I’C, Modbus RTU, special Modbus, and G-code
interpreter, are adopted. Then the Raspberry Pi hardware
transfers these collected data to the data storage server after
synchronizing data sampling frequency and filtering
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anomalous points. The anomaly detection algorithm is also
deployed on the Raspberry Pi hardware.

y =%

3-axis ultra-precision milling machine too

Fig. 3. Three-axis ultra-precision milling machine tool.
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Fig. 4. Monitoring system of three-axis ultra-precision milling machine tool.

In this platform, an anomaly detection algorithm was
developed to achieve failure detection during UPM process
using the force and power signals. The working principle of
the proposed anomaly detection algorithm is presented in
Figure 5. The core of the proposed algorithm is to determine
the specific value of the power and force signals during the
non-milling and milling process model through calibration
experiments. In experiments, X/Y/Z component’s forces
greater than zero indicated that the milling process happened.
This enables us to distinguish between the milling process and
no-milling process. Then, the real-time X/Y/Z components
forces and the power consumption were compared to the
experimental criterion. If both parameters meet the judgment
conditions, this indicates the machine tool is working at
normal status in the milling process. Otherwise, there is an
abnormal incident. During the non-milling process, real-time

power consumption was the only criterion to judge the work
status of the machine tool.
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Fig. 5. Working principle of anomaly detection algorithm in UPM process.
4. Results and discussions

Figure 6 presents the power profile of three-axis ultra-
precision milling machine tool working at normal status. A
complete working cycle of UPM process follows the
sequential operations: power off, air fans ON for cooling the
servo drivers, PC controller ON for running the G-code, servo
drivers ON for the electrical linear and rotated motors, chiller
ON for cooling the electrical spindle, X/Y/Z linear axis
enabled, and spindle enabled for the preparation of milling,
milling process ON for machining the workpiece, after that
turning off these components until power off. During each
transition phase of two operations, the power profile sharply
increases, which can be used as the mark for segmenting these
operations.
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Fig. 6. Power consumption profile at normal status.
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The profiles of X/Y/Z components forces in the milling
process were measured as shown in Figure 7.
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Fig. 7. Profile of X/Y/Z components forces.
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The calibration experiments of power consumption and
X/Y/Z components forces were conducted three times to
eliminate accidental errors. The variation ranges of the above
parameters were calculated in Table 2.

1200

Power consumption 14
o 410

0.6

—FX
—FY
—FZ

1000

T

800

400

Power conusmption/(W)
(=2}
T

<04

Components force/(N)

200
J02

0 1 1 L L I 1 1 0.0
0 200 400 600 800 1000 1200 1400 1600

Time (s)

Fig. 9. Power profile and X/Y/Z component’s forces profiles under serious
tool wear conditions in the milling process.

Figure 8 presents the power profile in case of a chiller
failure of UPM process, and Figure 9 presents the power and
X/Y/Z component’s force profiles under serious tool wear in
the milling process. In Figure 8, as the coolant chiller suffered
from rotational speed abnormality, the power consumption
profile of the coolant chiller fluctuated dramatically, and the
peak power exceeded the normal range. In Figure 9, the
cutting tool was worn, and the power consumption in the
milling process was little affected and just increased slightly
compared with that of the normal status, while X/Y/Z
components forces fluctuated greatly and exceeded their
normal ranges obviously. In the experiments, both types of
failures were successfully detected by the proposed system
with anomaly detection algorithms. This demonstrated the
feasibility and accuracy of this proposed platform.

Table 2. Range of power consumption and X/Y/Z components forces during each operation

Non-milling process Milling process
Operation P(c))\;/;r Xd/g\//zrsgrlzo SI:;ESL? i;lr\;/ o PC cgn;]roller Spindle enabled X/Zlgbrlggtor C}C1)ill\11er Milling
Power (W) 0 117~118 5~10 73~74 8~10 30~32 323~332 393~396
X Z’\;)C“ 0 0 0 0 0 0 0 0.65~0.80
Y E‘I’\;)Ces 0 0 0 0 0 0 0 0.40~0.50
z 1;(]’;)“5 0 0 0 0 0 0 0 0.2-0.26

5. Conclusions

Comprehensive monitoring of UPM process is essential for
high-quality and energy-efficient UPM production. In this
work, the linkages of these monitored parameters in UPM
process were investigated to help develop a practical
monitoring strategy. Under the guidance of this, two
significant monitored parameters, power consumption and
milling force were selected in the proposed monitoring system.

To validate the effectiveness and benefits, the proposed
monitoring system was successfully used to detect the failures
with anomaly detection algorithms. To the authors’
knowledge, no research has been conducted to discuss the
comprehensive monitoring system for UPM process like the
work presented here. With the applications of this proposed
research, the operators can easily optimize UPM processing
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parameters for better milling performance. Notably, this
research can be extended in several directions, such as the
digital twin of UPM process, cooling strategy optimization,
etc. Significantly, this work is also beneficial to these
designers to optimize their blueprint for designing UPM
products.

This study focuses on developing a condition monitoring
system for a three-axis ultra-precision milling machine tool.
This system uses various sensors to monitor the machine’s
condition and detect anomalies or deviations from normal
operating conditions. This research can promote engineering
design by informing the development of new and improved
machine tools with built-in condition monitoring systems,
leading to more robust and reliable machines. By
implementing such a system, engineers and manufacturers can
identify potential problems or malfunctions in the machine
tool ecarly on, allowing for preventive maintenance and
reducing the risk of costly downtime. The developed system
can also provide valuable data on the performance of the
machine, which can be used for further optimization of the
design. By incorporating the anomaly detection system into
the machine design, engineers can ensure that the machines
are operating within their optimal conditions, which can
improve the quality of the final product.

This study uses a statistical model with fixed threshold
values of power and forces for anomaly detection that cannot
be generalized to other types of machines due to the low
robustness. Future research will compare the performance of
different types of signals for anomaly detection and explore
the possibility of using multiple signals for enhanced
detection and diagnosis. Furthermore, some ML/DL models
will be adopted to build data-driven models for predicting
these difficult-monitored items with high accuracy. Finally,
we will evaluate and investigate the possibility of integrating
ML/DL models with the proposed approach for higher
prediction accuracy.
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