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Nomenclature

Smart PSS Smart Product-Service System
ICT Information and Communication Technology
IoT                   Internet-of-things
CPS                  Cyber-Physical Systems 
AI                     Artificial Intelligence
PSS                   Product-Service System
SCP Smart, Connected Product
UXI                  User Experience Indicator
HCI                  Human-Computer Interaction 
HMI                 Human-Machine Interaction
HRC                Human-Robot Collaboration
CSet                 Context Set
LightGBM Light Gradient Boosting Machine
GBDT Gradient Boosting Decision Tree

SVM                Support Vector Machine
RMSE              Root Mean Squared Error
MAE                Mean Absolute Error
Corr.                The correlation coefficient 
IDMG              Interaction Decision-Making Graph
SSSQ               Short Stress State Questionnaire

1. Introduction

Nowadays, to maintain competitive advantages, many 
manufacturing enterprises are paying ever-increasing attention 
to digitalization and servitization with the advent of Industry
4.0 [1]. Rapid advances in ICT, such as IoT, CPS, and AI, have
driven conventional PSS to shift into a new paradigm known as 
Smart PSS, first coined by Valenci et al. [2].

33rd CIRP Design Conference

A Proactive Interaction Design Method for Personalized User Context 
Prediction in Smart-Product Service System

Mengyang Rena,b, Liang Dongc, Ziqing Xiad, Jingchen Congc,d, Pai Zhenga,*
aThe Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China

bLaboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong Special Administrarive Region, China
cTianjin university, Tian jin,300350, China

dNanyang Technological University, 639798, Singapore

* Corresponding author. Tel.: +852 27665633; E-mail address: pai.zheng@polyu.edu.hk

Abstract

Smart product-service system (Smart PSS), as an emerging digital servitization paradigm, has attracted strong interest from both industry and 
academia worldwide. Compared with traditional PSS, Smart PSS has three unique characteristics, namely context awareness, closed-loop design, 
and IT-driven value co-creation, which put forward higher requirements for its solution design. Specifically, it aims for proactive interaction with 
users, which emphasizes context-aware prediction in the targeted service scenarios other than passive responses to the users. Meanwhile, smart 
connected products can be empowered to become agents to recommend personalized services accordingly. Nevertheless, few studies have 
considered a proactive interaction design approach in the Smart PSS context. Aiming to fill the gap, this study presents a systematic method that
mainly includes three parts: context awareness, interaction decision-making graph, and interaction solution recommendation. By utilizing the 
proposed method, Smart PSS can actively interact with users and further provide optimal solutions according to personalized context data. At 
last, an illustrative case study of a smart reading solution is demonstrated to show its feasibility and effectiveness. 
© 2023 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer review under the responsibility of the scientific committee of the 33rd CIRP Design Conference



964 Mengyang Ren  et al. / Procedia CIRP 119 (2023) 963–968

With the gradually increasing interest in research works on
Smart PSS, many descriptions and definitions have been given 
in the literature [3-4]. Among these studies, a widely accepted 
definition is given as “An IT-driven value co-creation business 
strategy consisting of various stakeholders as the players, 
intelligent systems as the infrastructure, SCPs as the media and 
tools, and their generated services as the key values delivered 
that continuously strives to meet individual customer needs in 
a sustainable manner” [4]. Owing to the advanced computation 
and communication capabilities of SCPs, it seems by nature 
that Smart PSS can serve as an assistive system. Meanwhile, 
the road map of AI has experienced several phases, from 
perceptual intelligence to today’s cognitive intelligence and 
foreseeable action intelligence, where proactive interaction 
design of Smart PSS has become more feasible. More 
importantly, to achieve this goal, Smart PSS must be capable 
of initiating interaction proactively and further improving user 
satisfaction degree [5], instead of just reacting passively to 
user’s instruction.

Nevertheless, based on the authors’ best knowledge, most of
the existing research concentrates on user satisfaction degree 
prediction based on product-sensed data and user-generated
data. There are few studies concerning how to provide an 
improved design solution according to context information 
after obtaining the prediction result in a Smart PSS environment, 
let alone a proactive interaction mechanism to assist users in
interacting with SCPs in different contexts. Aiming to fill this 
gap, this study presents a proactive interaction design approach 
based on AI technology, including machine learning, 
knowledge graph, and context recommendation system, to 
provide personalized interaction solutions in the contexts.

The rest of this paper is organized as follows. Section 2 
reviews relevant research works. In Section 3, a proactive 
interaction design method is proposed. Section 4 presents a case 
study of the smart reading service system to validate the 
feasibility of the proposed framework. The conclusions and 
limitations are summarized in Section 5.

2. Related works

To provide a better view of background knowledge, relevant
notions, comprehensive development of Smart PSS, and recent 
advances in proactive interaction design are introduced in this 
section.

2.1. Smart PSS design development

Smart PSS, a bundle of tangible products and intangible 
services to satisfy users’ requirements, has attracted abundant 
attention from manufacturing enterprises and scholars. 
Whereas the wide conception of Smart PSS, numerous studies 
have been done on its definitions [4], characteristics, design 
methodologies, and applications [6]. 

Based on the previous research, three unique features of 
Smart PSS are primarily described, i.e., design with context 
awareness, closed-loop design/re-design iteration, and IT-
driven value co-creation in the context [7]. What’s more, 
diverse design frameworks have been proposed to achieve 
additional value based on the three distinctive characteristics.

The context-awareness could be achieved by functional sensors,
to assist in the adaption of Smart PSS to changing contexts [8]. 
Product-sensed data and user-generated data could be collected 
to determine the current context and understand user behaviors
[9]. More importantly, it is advised that massive data should be 
captured to alter/upgrade products/services predictably in line 
with the perceptual context. The closed-loop design cycle
includes requirement elicitation, innovation design, design 
evaluation, and re-design iteration[8]which highlights that 
relevant information in the context should be collected and 
processed throughout the whole design cycle from the 
development phase to the usage phase. Specifically, Wang et 
al. [10] proposed a graph-based context-aware requirement 
elicitation approach, where implicit demands of different 
stakeholders can be derived from user-generated information
and product-sensed data. Meanwhile, Wu et al. [11] presented 
a function-oriented optimizing approach at the conceptual 
design stage. Also, a novel design entropy theory and a 
machine learning-based iterative design approach were
proposed by Cong et al. [12] to determine the best design/re-
design solution and conduct design iteration respectively.
Moreover, IT-driven value co-creation emphasizes the 
participation and cooperation of relevant stakeholders, such as 
users, manufacturing companies, and service providers, to 
empower Smart PSS innovation and development [5]. Liu et al. 
formulated a framework integrating an interval-valued hesitant 
fuzzy-DEMATEL method to capture co-creative value 
propositions [13].

It can be found that existing studies always focus on
requirement elicitation and re-design iteration with context 
awareness. However, from the users’ perspective, Smart PSS 
solutions must respond to users’ requirements in real-time and 
proactively, to achieve better user satisfaction.

2.2. Proactive interaction design method

Based on the view of technical systems and organizational 
psychology and management, proactivity means that actions 
should be taken to foresee problematic conditions and avoid 
negative experiences [14-15]. For example, when the infrared 
sensors perceive that a user is feeling cold by measuring body 
temperature, the smart system improves the indoor temperature 
proactively, which is considered as proactive behavior. The 
proactive systems, driven by machine learning, 
recommendation system, and other technologies, could 
empower SCPs to accomplish context-specific abilities, such as 
proactive interaction and instant feedback [15], and provide 
more efficient interaction utilizing relevant predictions [16].

Tan et al. [17] explored the relationship between five levels 
of proactive behaviors about social robots and the users’ 
anthropomorphic factors. It was concluded that Level 4 (i.e., 
proactively initiating interactions with users and 
recommending service solutions) was the most thoughtful and 
polite, making users feel concerned. Relevant studies have 
proved the positive influence of proactive behaviors [17-18]
and HCI has been prevailing over the last decade[14, 18]. 
Consequently, transferring the concept of proactivity to HCI is 
adopted to assist users in initiating actions to avoid possible 
problems in advance. Kang et al. [19] built a speech-based 
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experience sampling device to concentrate on understanding 
opportune moments for proactive conversational interactions, 
which also emphasized that temporal and spatial patterns in 
domestic contexts should be considered. Matthias et al. [20]
presented a novel user study for trust prediction during the 
proactive interaction phase in the HCI process. Another stream
of research on proactive interaction is in the field of HMI. Peng
et al. [18] evaluated the effect of three levels (high, medium,
and low) proactivity of service robots on user perceptions and 
interaction behaviors. Li et al. [21] introduced a foreseeable 
manufacturing paradigm known as proactive HRC and 
proposed a multimodal transfer-learning-enabled prediction 
method to conduct proactive HRC assembly [22].

Following the studies above, most of the previous research 
mainly focuses on the effect of proactive behaviors on user 
perceptions, preliminarily proactive HCI, and HMI. However, 
few studied systematically proactive interaction behaviors.
Aiming to fill the gap, this work proposes a proactive method
to provide personalized interaction solutions in the context of
Smart PSS.

3. The proposed proactive interaction design method 

Based on the analysis above, the framework of a novel
proactive interaction design approach is depicted in Fig.1. 
Three key parts can be clarified with 1) context awareness, 2)
IDMG, and 3) interaction solution recommendation.

Fig. 1. Framework of the proposed method for proactive interaction design.

3.1. Context Awareness

Context awareness is a touch point of proactive interaction, 
which means that when the value of UXI is judged as low level, 
proactive interaction should be initiated to improve the present 
situation.

For one thing, the context involved in this study can be 
considered to include the following three types [23]: 1) 
physical context (i.e., information about the surrounding 
environment, such as light intensity and location), 2) user 
context (i.e., information about the psychological and 
physiological status of users), and 3) task context (i.e., 
information about the operational task and its interaction status
with PSS, such as the content of the smart reader).

For another thing, context data can be reflected by both the
collected explicit data (e.g., the environmental temperature) 
and the predicted implicit data (e.g., user attention degree). The 

single explicit context data is derived directly from different 
functional sensors and user historical operation logs. The
implicit context data is the value of UXI, the selection of which
depends on the specific application scenario. Meanwhile, with
the rapid advances of AI, collected explicit context data can be 
transferred to implicit context data (i.e., UXI values) through a
prediction model (e.g., the user attention prediction model 
established via eye tracking movement data and user subjective
attention level). In this paper, explicit user physical data 
(various types of eye movement data) and subjective UXI data
(five levels of stress state) are collected and inputted. Then the 
UXI prediction model is established via LightGBM, which
implements the GBDT algorithm and supports high-efficiency 
parallel training. Afterward, 10-fold cross-validation is utilized
to examine the performance of LightGBM and compare it with 
other machine learning regression models, including Linear 
Regression, SVM, and so on. These performance metrics to
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quantify the quality of prediction results are described as 
follows.

• RMSE is to measure the deviation between the predicted
value and the true value, denoted as follows:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = &∑ (#!$#%!)"#
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• MAE is the mean value of the absolute error to better reflect 
the actual situation of the forecast error, denoted as follows:
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• Corr. is a parameter measuring the degree of correlation 
between the true value and the predicted value, denoted as 
follows:
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where N is the number of instances in the dataset, 𝑦𝑦/ is the 
i-th value of true stress score, 𝑦𝑦-/ is the i-th predicted stress 
score, 𝑦𝑦. is the mean value of all stress scores in samples, 𝑦𝑦-0/ is 
the mean value of all predicted stress scores. More importantly, 
the smaller the value of RMSE and MAE performs, the more 
accurate the prediction model is.

3.2. IDMG

The purpose of building IDMG is to map the context 
information to the relevant service components and their 
interaction solutions. In the IDMG, knowledge can be 
represented as “under what context, system service 
component(s) shall/should/will do process” [24]. Moreover, 
interaction solutions should be provided to users considering 
the complex impact of multi-context factors instead of a single 
context. Therefore, the recognized various context data can be 
defined as the CSet, denoted as follows:

𝐶𝐶𝑅𝑅𝑆𝑆𝑆𝑆1 = (𝐶𝐶21, 𝐶𝐶31, 𝐶𝐶41, … , 𝐶𝐶51) (4)

In this way, CSet information consisting of explicit and 
implicit context data is perceived and then the context-
awareness interaction solution is provided to the user by 
querying the predefined IDMG. The IDMG consists of three 
parts: 1) the CSets defined by designers through the various 
predefined contexts, 2) service components derived from the 
user experience map, which includes stage, behavior, touch 
point, emotional curve, and pain point (e.g., the voice assistant 
reminding the rest time), and 3) interaction solution developed
by the interaction designer. In addition, the relationship among 
the three parts is defined by the prior constraint knowledge 
from in-field experts and out-field professionals (e.g., the 
system should provide a brighter light when the user is in a low-
light environment). Based on the above content, the schema of 
IDMG is established as shown in Fig.2. 

There are three main types of nodes in this graph, which can 
be connected with their interrelationships defined by designers 
and experts. The extracted process of interaction solution takes
the CSets obtained at the context-awareness stage as the input 
and queries them in the IDMG to map the corresponding 
service component and provide the initial interaction solution
to the user. For instance, when a user is perceived under slight 
fatigue while reading a book with the smart reader in his home,
the system will decrease the contrast ratio of the current 
interface proactively (the low contrast ratio of interfaces can 
alleviate users’ vision fatigue). More importantly, designers 
and experts should update the IDMG when the UXI value has
been at a low level.

Fig.2. Schema of IDMG.

3.3. Interaction Solution Recommendation

The reason to establish the interaction solution 
recommendation system is that the interaction alternatives are 
various even if the context information and its corresponding 
service component are determined. To reduce the interaction 
turns and achieve the optimal interaction solution, the 
interaction solution with a better UXI value should be 
recommended to similar users. 

First, the UXI value should be predicted and judged whether 
it is optimal. Then, the UXI value of each user during the usage 
phase should be recorded in a database including three 
dimensions: CSet, service component, and interaction solution.
When the preliminary interaction is situated at a lower UXI 
level, the interaction solution with a high user similarity degree 
should be proactively recommended to the user. And user
similarity degree can be calculated by the Euclidean similarity, 
denoted as follows:

Sim (𝑈𝑈67777⃗ , 𝑈𝑈77777⃗ ) = 2

28-∑ (9!
($9!

))"*
!$%

(a, b∈ [1, 𝑛𝑛])                               (5)

When the UXI value is always at a lower level and not 
able to be improved, the current CSet should be labeled and 
informed to designers and professional experts to update the
IDMG.

4. A design case study

A smart reading service system consisting of smart readers
and value-added services is demonstrated along with the 
proposed proactive interaction method. In this case, when the
user is perceived under stress condition by the smart reader
while reading, the proactive interaction solution in the reader 
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interfaces will be provided through the reader interfaces to 
improve user pressure status.

4.1. Context Awareness

The starting point of proactive interaction is context 
awareness, which is achieved by functional sensors to collect
explicit data. Specifically speaking, the smart reader is 
equipped with an eye tracker to obtain eye movement data, 
which was used to establish a stress prediction model and some 
functional sensors (e.g., position sensor, light sensor, etc.) to 
acquire other context data.

Forty-three students, aged 20-30 years old (M = 24.2, SD = 
2.4), were invited to attend the stress-free and stress-induced 
reading experiments respectively. The stimuli were two short 
passages, each with three corresponding choice questions, 
which were selected from GRE Verbal Reasoning Practice. Eye 
movement data and subjective stress data were collected via the 
Tobii X3-120 eye tracker and SSSQ [25] respectively during
the experiment. The experimental process is as follows, also 
shown in Fig.3.

Fig.3. The experimental process.

• Firstly, participants were asked to finish the SSSQ before 
the experiment.

• Then, participants attended the stress-free reading task, 
where there is no time limit and performance evaluation.
After completing the task, the SSSQ was asked to finish. 

• Next, participants also took part in the stress-induced 
ergonomic experiment with 15-min time limit and 
performance evaluation, regarding both the accuracy of their 
answers and the reaction time they took, compared with peer 
participants. Finally, the SSSQ also were filled by 
participants again after finishing the stress-induced 
experiment.

Table 1. The performance of different regression models.

Regression Model RMSE MAE Corr.

Linear Regression 0.159 0.124 0.733

Linear SVM 0.160 0.123 0.731

Random Forest 0.150 0.119 0.776

XGBoost 0.148 0.115 0.784

Gradient Boosting 0.145 0.112 0.793

LightGBM 0.138 0.107 0.816

The eye movement data, including four fixation features 
(i.e., fixation count, mean fixation duration, mean fixation 
velocity, and mean fixation stability) and seven saccadic-
related characteristics (i.e., saccade count, mean saccade 

duration, mean saccade velocity, saccade peak velocity, mean 
saccade amplitude, mean absolute saccadic direction, and mean 
relative saccadic direction), and subjective stress data (1 
represents none stress and 5 means extremely strong stress) 
were utilized to establish a stress prediction model by Python 
3.6.5 with an environment established in Jupyter Notebook 
6.0.1. The performance of the prediction models has been 
acquired using the selected regression models. As shown in 
Table 1., it is found that LightGBM was the most precise 
regression model with the smallest RMSE and MAE values.

4.2. The IDMG of a smart reader

The IDMG of the smart reading service system should be 
established to support proactive interaction while reading. The 
contexts predefined by designers, the service components 
elicited by the user experience map, and the corresponding 
interaction solution are linked by the interaction designers
considering the ergonomic knowledge. 

When the system predicts the user’s stress level (e.g., 
existing strong stress situated between levels 3 and 4) based on
the user’s eye movement data, the physical context data (e.g., 
the period (evening)and the light-sensitive intensity belongs to
([0,200])), and the task context (e.g., reading the English 
journal) are collected. And the acquired data is taken as the 
input to query in IDMG, to map the service component (e.g., 
the screen lightness) and its preliminary interaction solution 
(e.g., the value of the screen lightness is 25) to interact with the 
user. After that, the value of UXI (stress level) is observed and 
judged whether there is any improvement. Meanwhile, the UXI 
value is recorded in the database which can support the 
interaction solution recommendation system when the 
predicted UXI is not ideal.

Fig.4. The IDMG of the smart reading service system.

4.3. The Optimal Interaction Solution Recommendation

The interaction solution recommendation system 
established is to provide each user with the optimal interaction 
solution based on similar CSet information and UXI value. 
According to the obtained value of UXI, the user similarity 
degree can be calculated. Following the example in Section 4.2, 
if the interaction solution (i.e., the value of the screen lightness 
is 25) cannot change the UXI level, another interaction solution 
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(e.g., pop-up notification of rest) with a higher user similarity 
degree should be recommended to the user.

5. Conclusion

Smart PSS design characteristics emphasize offering real-
time interaction solutions to meet users' personalized and 
dynamic demands. However, few studies proposed a 
systematic approach for the proactive interaction design work 
of Smart PSS. To fill the gap, this paper introduced a proactive 
interaction method by utilizing personalized context 
information in Smart PSS development, which can be used in
the process of perceiving and predicting the possible context 
and providing personalized interaction solutions. The main 
contribution of this paper can be summarized as follow: 

1) An interaction decision-making graph was established to
achieve value co-creation in the Smart PSS environment, which 
emphasized the professional knowledge utilization and the
cooperation between users and designers.

2) A proactive interaction design approach was proposed,
which can provide users with a real-time and personalized 
interaction solution based on explicit and implicit context data
to achieve better UXI. 

Nevertheless, there are still some limitations in this work.
The information overload brought by proactive interaction will 
make users feel unsafe about personal data privacy. Meanwhile, 
abundant context information has to be effectively collected 
and stored during proactive interactions, which may become 
costly and hard to process instantly. More work can be done to 
further address them, but as explorative research, it is expected 
that this study can provide insightful guidance to Smart PSS on 
proactive interaction.
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