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Abstract

Excessive settlement may induce structural damage and water leakage in immersed tunnels, seriously threatening the tunnels’ safety.
However, making accurate assessment of the settlement in immersed tunnels is difficult due to the incomplete knowledge of the geotech-
nical parameters and the inadequacy of the model itself. This paper proposes an effective method to accurately assess the settlement in
immersed tunnels. An enhanced beam on elastic foundation model (E-BEFM) is developed for the settlement assessment, with the Baye-
sian adaptive direct search algorithm adopted to estimate unknown model parameters based on previous observations. The proposed
method is applied to a field case of the Hong Kong—Zhuhai-Macao immersed tunnel. The original BEFM is used for comparison to
highlight the better assessment performance of E-BEFM, particularly for joints’ differential settlement. Results show that the proposed
method can provide accurate predictions of the total settlement, angular distortion (a representation of tubes’ relatively differential set-
tlement), and joints’ differential settlement, which consequently supports the associated maintenance decision-making and potential risk

prevention for immersed tunnels in service.

Keywords: Immersed tunnel; Settlement; Beam on elastic foundation model; Bayesian adaptive direct search; Hong Kong-Zhuhai-Macao tunnel

1 Introduction

With the continuous development of construction tech-
nologies that overcome challenging conditions and mini-
mize risks, immersed tunnels are received increasing
applications worldwide (Hu et al., 2015; Olsen et al.,
2022). Currently, more than 150 immersed tunnels have
been built in the world (Zhang & Broere, 2023). Immersed
tunnels comprise a series of tubes connected by immersion
joints, which are sensitive to the longitudinal settlement.
Several problems, such as concrete cracking, damage to
joints, and leakage, are likely to arise as excessive settle-
ment develops, which may significantly interfere with the
normal operation of an immersed tunnel (Xie et al., 2014;

* Corresponding author.
E-mail address: hannahzhou@um.edu.mo (W.-H. Zhou).

https://doi.org/10.1016/j.undsp.2023.02.005

Zhang & Broere, 2019). Therefore, accurate predictions
of the settlement are vital for ensuring the safety of
immersed tunnels.

Several methods have been developed to assess the set-
tlement of immersed tunnels, including one-dimensional
consolidation or compression analysis (Shao, 2003; Wei
et al., 2014), finite element modeling (FEM) using commer-
cial software (Ding et al., 2013; Xie et al., 2014; Zhao et al.,
2018), and beam on elastic foundation model (BEFM)
(Wei & Lu, 2018; Tang et al., 2022). However, although
a careful geotechnical analysis can be conducted, making
accurate assessment of the settlement in immersed tunnels
is difficult due to the incomplete knowledge of the geotech-
nical parameters and the inadequacy of the model itself
(Grantz, 2001; Zhao et al., 2015; Jin et al., 2019; Tao
et al., 2022). Advantageously, the detailed field observa-
tions of geotechnical structures provide not only a better
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understanding of their mechanical responses but also useful
information for improving the assessment accuracy in
geotechnical analyses (Zhao et al., 2015; Jin et al., 2018,
2019; Zhang Yin, Jin, 2022, Zhang Yin, Jin, Yang, et al.,
2022; Tao et al., 2022). The use of back analysis methods
makes it realistic to obtain appropriate values for geotech-
nical parameters by properly extracting information from
observations, particularly for parameters that are difficult
to determine through laboratory and field tests (Jin, Yin,
Wu, & Zhou, 2018; Jin, Yin, Zhou, & Huang, 2019;
Tang, He, & Zhou, 2023; Yin & Jin, 2019; Zhou, Yin, &
Yuen, 2021b). To promote the settlement assessment accu-
racy in immersed tunnels, a novel BEFM (O-BEFM) was
developed recently and combined with a Bayesian inverse
framework to estimate the settlement (Tang et al., 2022).
This method was effective for predicting the total settle-
ment and angular distortion (a representation of tubes’ rel-
atively differential settlement). However, the proposed
BEFM was not adequate in providing a satisfactory assess-
ment of the joints’ differential settlement, although the
model parameters were effectively identified. In practice,
the stiffness of joints is designed to be much smaller than
that of the tube body to attract large deformation at these
locations to mitigate the stress concentrations of tubes
induced by the differential settlement (Song et al., 2018;
Lin et al., 2019; Zhang & Broere, 2023). Accordingly, the
joints become the “weakness” of immersed tunnels to some
extent, and the joints’ differential settlement needs to be
effectively assessed to prevent settlement-induced joint
damage in immersed tunnels (Zhao et al., 2018). Along this
way, an enhanced BEFM (E-BEFM) would be desirable to
realize more accurate settlement assessments.

In addition to the assessment model, the assessment
accuracy also heavily depends on the back analysis meth-
ods adopted (Zhao et al., 2015; Jin et al., 2018, 2019).
Recently, a random search optimization algorithm called
Bayesian adaptive direct search (BADS) has been devel-
oped, and its performance in parameter identification has
been demonstrated by both benchmark tests and practical
engineering problems (Acerbi & Ma, 2017; Zhang et al.,
2021; Feng et al., 2022). In detail, this algorithm is a hybrid
optimization algorithm that combines Bayesian optimiza-
tion (BO) and mesh adaptive direct search (MADS)
(Acerbi & Ma, 2017), which features a strong fitting ability
and high computational efficiency. Thus, it will be attrac-
tive if this powerful algorithm can be applied to identify
parameters of the E-BEFM based on observations.

This study aims to develop a feasible method to accu-
rately predict the settlement in immersed tunnels, not only
for the total settlement and angular distortion but also for
the joints’ differential settlement. An E-BEFM is estab-
lished as the settlement assessment model based on the
O-BEFM. Additionally, the BADS algorithm is used to
estimate unknown model parameters in the E-BEFM using
observations. The remainder of this paper is organized as
follows. Section 2 presents the methodology by briefly
introducing the proposed E-BEFM and the BADS

algorithm. In Section 3, the performances of the O-
BEFM and E-BEFM are demonstrated and systematically
compared in the field case study of the Hong Kong-
Zhuhai-Macao (HZM) immersed tunnel. Finally, Section 4
presents the conclusions.

2 Methodology
2.1 E-BEFM

As stated earlier, the E-BEFM is developed to assess the
settlement of immersed tunnels. As this model is estab-
lished by increasing the model complexity of the O-
BEFM, the basics of the O-BEFM will be briefly intro-
duced first. In the O-BEFM, an immersed tunnel is
regarded as a series of beams joined together (Fig. 1(a)).
The soil-structure interactions are simulated via a series
of closely spaced independent springs, and the stiffness of
these springs is the foundation modulus (k; — ky;). This
model employs the linearly varying foundation moduli to
consider the continuous variations of soil stiffness. The
foundation moduli on both sides of the joints are assumed
to be the same as the longitudinal length of the joints is
much smaller compared to that of the tubes. Additionally,
vertical springs are adopted to simulate the shear joints
between adjacent tubes, and the stiffness of these vertical
springs is the shear stiffness (k).

The model assumptions of the E-BEFM basically follow
those of the O-BEFM, whereas the difference lies in the fact
that independent foundation modulus parameters are
assigned to the two sides of joints in the E-BEFM (Fig. 1
(b)). Thus, the E-BEFM allows different foundation mod-
uli on both sides of joints to better accommodate the differ-
ential settlement at joints. Additionally, this assumption
enables the E-BEFM to better account for the complex
variations of foundation modulus in immersed tunnels,
especially for those tunnels located in highly variable soft
soil layers or adopting various foundation treatment mea-
sures (Hu et al., 2018; Tang et al., 2022).

The governing equation of the E-BEFM is expressed as
follows (Reddy, 2006; Tang et al., 2022, 2023):

El— = (q — kw)b, (1)

where EI denotes the bending stiffness of the tubes; x is the
coordinate along the tunnel alignment; w is the correspond-
ing settlement at x; ¢ is the load above the tunnel; £ is the
foundation modulus; and b4 is the tunnel width.

Since there is currently no reliable way to obtain the val-
ues of the foundation modulus &k, — k,y and joints’ shear
stiffness kg, these parameters are taken as unknowns and
identified by the inverse analysis using observations. For
an immersed tunnel with N tubes, the number of the
unknown foundation modulus parameters is 2N, and one
additional unknown parameter should be assigned for the
shear stiffness of joints. Thus, the total number of uncertain
model parameters is 2N + 1.
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Fig. 1. Schematic of the BEFM for the settlement estimations of immersed tunnels: (a) O-BEFM proposed by Tang et al. (2022), and (b) E-BEFM

proposed in this study.

A finite element solving algorithm is developed for the
E-BEFM to compute the total settlement w. An immersed
tunnel containing N tubes can be partitioned into 2N + 1
beam elements. N beam elements are generated for tubes,
while N + 1 beam elements are generated for shear joints.
Details about this solving algorithm can be found in
Tang et al. (2022).

Notably, the angular distortion ¢ and joints’ differential
settlement w; are important references for judging the
potential damage risks of immersed tunnels (Shao, 2003;
Zhao et al., 2018; Tang et al., 2022; Zhang & Broere,
2023). Here, the angular distortion J is a representation
of the tubes’ relatively differential settlement, which is
defined as the ratio of the differential settlement wr
between two reference points on the tubes to their distance
L (6 = wr/L) (Shao, 2003; Tang et al., 2022), as illustrated
by Fig. 2.

2.2 BADS

Compared with the O-BEFM, more model parameters
need to be determined from back analysis for the E-
BEFM. Thus, the calculations can involve extremely
high-dimensional optimization problems when considering
a large-scale immersed tunnel with numerous tubes, and a
powerful inverse algorithm is required for the calculations.
The BADS algorithm is such an optimization algorithm
and is employed herein to determine unknown model
parameters. As noted previously, the BADS algorithm is
a hybridization of BO and MADS (Acerbi & Ma, 2017).
Thus, this section briefly reviews the basics of BO and
MADS before introducing the BADS algorithm.

The BO is an iterative process for determining the
extrema (minimum or maximum) of objective functions,
especially when the functions are computationally expen-
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Fig. 2. Schematic of the angular distortion ¢ and joints’ differential settlement wj.
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sive to evaluate (Frazier, 2018). BO is very good at obtain-
ing the global extreme with a minimum number of trials
and has been successfully applied in geotechnical problems
(Kim, Kwon, Pham, Oh, & Choi, 2022; Li, Liu, Xiao,
Zhou, & Armaghani, 2022; Zhang, Hu, Liu, & Tan,
2020; Zhou, Yin, & Yuen, 2021a). It typically comprises
two steps. First, a surrogate function is established to
approximate the objective function by combining the pri-
ors with the observations by applying the Bayes’ theorem
(Snoek et al., 2012). The surrogate function is usually
obtained via the Gaussian Process (GP), wherein Gaussian
priors are used due to their flexibility and tractability. Sec-
ond, an acquisition function is applied to construct a utility
function from the model posterior, which serves as guid-
ance for the next sampling location (Snock et al., 2012;
Zhang et al., 2020). The next sampled point is where the
acquisition function is maximized. The objective function
observation at the next sampling point is then evaluated,
and the new observation is augmented into GP to update
the posterior of the surrogate function. This iterative
search process is repeated until an optimal value is
obtained (Zhang et al., 2020).

The MADS is a directional direct search method pro-
posed by Audet and Dennis (2006). It includes two stages:
the search stage and the poll stage. The search stage can be
regarded as a process of global search in the entire param-
eter space for identifying the feasible region containing the
local optimum, whereas the poll stage is a process of local
search in the neighborhood of the best current solution to
precisely find the optimal point (Audet & Dennis, 2006;
Liu, 2018). In the search stage, the parameter space of vari-
ables is meshed with an initial mesh size. Moreover, the tar-
get values of a finite number of points at the current mesh
are evaluated by a provided search strategy to determine a
feasible solution for improving the objective function
(Audet & Dennis, 2006; Zhang et al., 2020; Feng et al.,
2022). If a point with an improved objective value is found,
the grid center will be moved to this location and the search
stage will be repeated. The poll stage is performed if the
search stage fails to improve the objective function value.
The search in each direction is performed with an
iteration-dependent mesh until an improvement is achieved
or all directions have been tried. Notably, this search is lim-
ited to a local region that is controlled by the poll size
(Audet & Dennis, 2006; Liu, 2018). If the poll stage suc-
ceeds in improving the objective function, then the mesh
center will be moved to the improvement point and a larger
mesh size and poll size will be adopted in the next poll
stage. Otherwise, a reduced mesh size and poll size will
be used. The algorithm proceeds until a prescribed stop-
ping criterion is met.

The idea behind the BADS algorithm is to utilize the
surrogate models constructed in the BO process to assist
in generating candidate solutions in the search and poll
stages of the MADS (Zhang et al., 2020). Briefly, the
BADS algorithm alternates between a series of fast and
local BO steps (search stage) and a systematic and slow

exploration of the mesh grid (poll stage) (Audet &
Dennis, 2006). The parameter space can be effectively
explored in the search stage, and an adequate surrogate
model of the objective function can be constructed using
GP. In the poll stage, the information provided by GP
approximation is beneficial for choosing a suitable set of
polling directions and polling order to improve the success
rate of sample point selection and reduce the number of
iterations. In contrast, the information about the local
shape of the objective function can be collected in the poll
stage to build an improved surrogate for the next search
stage. Briefly, the two stages complement each other in
such an alternation, enabling the BADS algorithm to deal
with various optimization problems efficiently and
robustly. Considering a D dimension minimization prob-
lem 0" = argminf'(0)(0 € R”), the workflow of the BADS
algorithm can be described as follows (Audet & Dennis,
2006; Zhang et al., 2020):

(1) The algorithm starts from a starting point z,, and the

initial mesh size (S™*") and poll size (S°") are set to

2719 and 1.0, respectively.

(2) In the £ th iteration, a fast approximate optimization
of the chosen acquisition function in the neighbor-
hood of the incumbent 6, is performed to generate
the candidate solution Oy, (Hansen et al., 2003).

(3) f(Oscarcn) 18 evaluated, and if the improvement is suf-
ficient, then the algorithm terminates. If the search
stage is not successful, the iteration skips to the poll
stage.

(4) In the poll stage, a set of polling directions D, is gen-
erated and proportionally rescaled to the current GP
length scale (Audet & Dennis, 2006). Additionally,
the order of points evaluated in the poll set is based
on the ranking given by the acquisition function.

(5) If the poll stage succeeds in sufficiently improving the
objective function, the incumbent is updated and the
BADS algorithm switches to a new iteration with
mesh and poll sizes multiplied by 7. 7 is the adjust-
ment coefficient of the mesh and poll sizes, which
has a default value of 2 and can be adjusted in subse-
quent calculations. Otherwise, the incumbent remains
unchanged and the BADS algorithm switches to a
new iteration with the mesh and poll sizes divided
by 7. These steps are repeated until a preset maximum
number of iterations is reached, the poll size becomes
extremely small, or no sufficient improvement in the
objective function is observed after a prescribed num-
ber of continuous iterations.

2.3 Flowchart

By combining the E-BEFM and BADS algorithm, the
flowchart of the proposed method for the settlement assess-
ment of immersed tunnels is as follows (Fig. 3):
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Fig. 3. Flowchart of the proposed method.

(1) Collect the necessary engineering data, such as tunnel
geometry and structural parameters. Establish the
assessment model for the immersed tunnels based
on the proposed E-BEFM.

(2) Acquire the reasonable prior variation bounds of
unknown model parameters, i.e., foundation modu-
lus and joints’ shear stiffness.

(3) Define the objective function to be minimized as
follows:

f(o) = (Wpre - Wobs)z/Nobsa (2)

where 0 is the vector of unknown parameters; wyps 1s the
observed settlement; wy,. is the corresponding predicted
settlement at observed points; and N, denotes the total
number of observed points.

(4) Execute the BADS algorithm to minimize the objec-
tive function to obtain the optimal values of
unknown model parameters.

(5) Perform forward calculation to obtain the total settle-
ment, angular distortion, and joints’ differential

settlement of immersed tunnels using the E-BEFM
with optimal model parameters.

3 Field case study of HZM tunnel

The HZM linkage is one of China’s largest infrastruc-
ture projects, which connects Hong Kong and Zhuhai/
Macao and crosses the Pearl River Estuary in southern
China (Hu et al., 2018; Song et al., 2018; Yu et al.,
2018). The HZM immersed tunnel is a part of the HZM
linkage, which comprises 33 underwater tubes and 2 buried
sections, including 35 tubes in total (China
Communications Construction Co., Ltd., 2012). Table 1
lists the length of each tube. The total length of the
HZM tunnel reaches 6087.3 m. Figure 4 shows the geolog-
ical and foundation profile of the immersed tunnel (China
Communications Construction Co., Ltd., 2012). Most
tubes rest on soft layers. Additionally, several treatment
measures such as prestressed high-strength concrete
(PHC) pipe piles, high-pressure jet grouting piles, and sand
compaction piles (SCP) with varied replacement rates were
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Table 1

Lengths of tubes for the HZM tunnel.

Tube BW El, E2 E3-E26, E31 E27, E28 E29, E30 E32, E33 BE
Length (m) 193 112.5 180 157.5 177 135 230.7

Note: E1-E33 denote the tubes from the west artificial island to the east artificial island. BW and BE denote the buried sections at the west and east ends,

respectively.

Zhuhai, Macau
<

Open section (327 m{ Buried section (193 m)

33 tubes (5664 m)

Hong Kong
>

Buried section (230.7 m)\ OQen section (289.3 m)

West artificial island

Water
Mucky soil
Silty clay

Medium sand/Coarse sand

JoEn

East artficial island <y ("

Fig. 4. Geological and foundation profile of the HZM tunnel.

used for the tubes that were close to the artificial islands to
prevent the significant settlement in the HZM tunnel (Hu
et al., 2018; Tang et al., 2022). This further complicated
the variations in foundation stiffness along the tunnel align-
ment. The risk of structural damage due to the differential
settlement is high for the HZM tunnel due to high and
uneven loads caused by back siltation accumulations and
future channel dredging, uneven foundation stiffness, and
the combination of the two (Lin et al., 2019). Additional
construction details of the HZM tunnel can be found in
Hu et al. (2015, 2018), Song et al. (2018), Wang et al.
(2018), and Yu et al. (2018).

3.1 Parameter settings

The settlement assessment model for the HZM tunnel is
established based on the E-BEFM, as illustrated in Sec-
tion 2. The bending stiffness is 1.05 x 10" kN-m* and
the tunnel width is 37.95 m. Totally, 71 beam elements
are generated, with 35 beam elements for tubes and 36
beam elements for joints. The total number of unknown
parameters is 71, including the foundation modulus
ki — k7o and shear stiffness k,. Table 2 summarizes the
bounds of these unknown parameters, where the corre-
sponding variation ranges are determined based on site
investigations, lab tests, and engineering experience (Li,
2013; Steenfelt et al., 2013; Lu, 2018; Song et al., 2018).
To demonstrate the performance of the proposed E-
BEFM, the O-BEFM is also established for comparisons.

Sea level g
-20
—40
—60
-80
-100
-120
-140
Rock -160
PHC pipe pile
High-pressure jet grouting pile
Sand compaction pile (SCP)
Table 2
Bounds of unknown parameters.
Bounds k1 — k70(kPa/m) kes(KN/m)
Lower bound 1.00 x 107 1.00 x 10°
Upper bound 5.00 x 10 1.20 x 107

The total number of unknown parameters in the O-
BEFM is 37 (Fig. 1(a)), and the corresponding bounds of
these unknown parameters are the same as those of the
E-BEFM (Tang et al., 2022).

In this study, the six most recent sets of data available,
namely settlements and corresponding loads observed from
July 2019 to November 2020, are used for analysis. The
observation points are located at both ends of each tube,
so there are a total of 70 observation points for 35 tubes.
The latest two sets of measurement data (data from
September 2020 and November 2020) are employed as test
sets to verify the effectiveness of the developed assessment
model, and the remaining four sets of data (data from July
2019 to April 2020) are employed as training sets. For con-
venience, the data from September 2020 and November
2020 are denoted as test set-1 and test set-2 herein.

The total load used in this study comprises the self-
weight of the tunnel body, backfill load, back siltation
load, and building weight above the buried sections. The
back siltation load is considered as a variable load, which
varies with the back siltation thickness above the tunnel
(Tang et al., 2022).
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3.2 Assessment performance and comparisons

Using the BADS algorithm, the optimal values of
unknown model parameters can be obtained for the estab-
lished E-BEFM of the HZM tunnel. Figure 5 presents the
variations of the calculated foundation moduli along the
cumulative length of the tunnel alignment. The foundation
modulus ranges from 1.00 x 10 to 4.56 x 10° kPa/m.
Additionally, the shear stiffness of joints is computed as
4.49 x 10° kN/m.

Using these back-analyzed model parameters, settle-
ment predictions can be made under different load condi-
tions. Figure 6 presents the ratios of the predicted total
settlement to the observed total settlement (Wyre /Wobs), With
the test set-1 as an example. Notably, the performance of
the O-BEFM is also presented herein for systematic com-
parison. Although the calculated ratios of the two models
are all centralized around 1.0, the ratios of the E-BEFM

5000

are obviously closer to 1.0. To quantify the assessment per-
formance, the coefficient of determination (R?) for the total
settlement is calculated and listed in Table 3. The R* values
of the E-BEFM exceed 97% for both test sets, while those
of the O-BEFM are around 90%. Overall, this comparison
indicates that the proposed E-BEFM yields better predic-
tion results of the total settlement compared with the O-
BEFM.

Figure 7 presents the comparison of the angular distor-
tion, where both the predicted and observed angular distor-
tions are normalized using the maximum observed angular
distortion. Unsurprisingly, the E-BEFM still performs bet-
ter than the O-BEFM. The R for test set-1 increases from
86.16% to 99.09%, while that for test set-2 increases from
85.49% to 98.98%.

In terms of the joints’ differential settlement, which is the
focus of this study, the comparison between predictions
and observations is presented in Fig. §. Notably, both pre-
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Fig. 5. Calculated foundation moduli along the cumulative length of tunnel alignment.
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Table 3
Coefficient of determination (R?) for two test sets.
Settlement indicator R? (%)
Test set-1 (September 2020) Test set-2 (November 2020)
O-BEFM E-BEFM O-BEFM E-BEFM
w 89.43 97.92 90.47 99.05
é 86.16 99.09 85.49 98.98
wy 10.21 97.95 13.66 98.06
1.0 Predictions by O-BEFM
- 08k Predictions by E-BEFM
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Fig. 8. Comparisons of joints’ differential settlement w; (Test set-1).

dictions and observations are normalized using the maxi-
mum observed joints’ differential settlement, and J1 to
J36 denote the immersion joints from tubes BW to BE. Pre-
dictions made by the E-BEFM are consistent with observa-
tions, whereas the predictions made by the O-BEFM
deviate from observations. Quantitatively, the R® values
corresponding to the O-BEFM for the two test sets are
below 14% (Table 3), indicating that satisfactory assess-
ment accuracy cannot be achieved by this model. In con-
trast, the R’ values of the E-BEFM are all larger than

97%. Thus, the proposed E-BEFM is more effective than
the O-BEFM in the joints’ differential settlement
assessments.

4 Conclusion

In this paper, an E-BEFM extended from the O-BEFM
was established for settlement assessments of immersed
tunnels, which allowed different foundation moduli at both
sides of joints to better accommodate the differential settle-
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ment at joints. To ensure effective parameter identifications
in the E-BEFM, the BADS algorithm was employed as the
back analysis framework. The performances of the
M-BEFM and O-BEFM were systematically compared
in the field case study of the HZM immersed tunnel.
Results showed that the BADS algorithm was sufficient
to make good inverse estimations of model parameters.
The proposed E-BEFM was able to: (1) realize the accurate
assessment of joint differential settlement (R* ~ 0.98) and
(2) significantly promote the assessment accuracy for the
total settlement (from R” ~ 0.90 to R ~ 0.98) and angular
distortion (from R* ~ 0.86 to R> ~ 0.99) compared with the
O-BEFM. Overall, this study provides a practical tool for
assessing the settlement of immersed tunnels, which conse-
quently supports the associated maintenance decision-
making and potential risk prevention.
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