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Abstract—Wi-Fi sensing has enabled many applications due to
the increasing number of commercial Wi-Fi devices and channel
state information (CSI) extraction tools. In this paper, we study
the application of CSI-based stationary crowd counting using
multiple pairs of transceivers. Specifically, we provide an exact
count of the number of passengers on the upper deck of a double-
decker bus. Most of the previous solutions count the number
of immobile people with a pair of transceivers, which leads
to limited sensing scales with the maximum countable number
achieved by the state-of-the-art solutions being 15. Indeed, few
of these solutions consider the impact of the placement of
transceivers on the sensing performance. The major innovation of
our work is to identify the optimal topology for multiple receivers
based on the Fresnel Zone model to improve the quality of data
collection and reduce the overall training effort. We consider
the impact of the First Fresnel Zone (FFZ) and the distance
between transmitters and receivers when deploying multiple pairs
of transceivers. This technique can also be applied to other
applications, such as localization, tracking of multiple people,
multi-person respiration rate monitoring, etc. The proposed
topology was compared with a baseline of a pair of transceivers.
Our results show that by properly placing transceivers, the
accuracy of counting the exact number of passengers can be
improved by more than 11.49%, and the sensing scalability can
be extended from 11 to 20 passengers, with an average accuracy
of 90.83% with conventional machine learning methods only.

Index Terms—Crowd counting, Passenger counting, Wi-Fi
sensing, CSI, Multi-sensors, Fresnel Zone, Deployment.

I. INTRODUCTION

Wi-Fi has become one of the most prominent wireless
technologies, which is widely available in public areas and
on common devices such as laptops, smartphones, etc. As
a result, the growing importance and popularity of Wi-Fi
sensing technology have triggered widespread interest among
researchers in the wireless communication domain. Channel
State Information (CSI) is one of the major types of data used
in wireless sensing that can be extracted from Wi-Fi signals.
CSI represents the communication channel between the trans-
mitter (Tx) and the receiver (Rx) and contains information at
the level of individual data subcarriers. Due to the release of
CSI extraction tools [1], [2], CSI data is available and flexible
for further processing, facilitating the development of CSI-
based Wi-Fi sensing applications.

This work was supported in part by the Smart Traffic Fund (Project No.
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One of the most important but challenging applications
of Wi-Fi sensing is crowd-counting. CSI-based crowd count-
ing outperforms traditional approaches such as video-based
recognition and other non-image-based solutions like wearable
sensors and radars in several aspects [3]–[6]. Most crowd-
counting applications are achieved by computer vision tech-
niques with images from cameras. Compared to camera-based
approaches, CSI-based methods do not rely on the bright-
ness of the surroundings and have non-line-of-sight (NLOS)
capability. The second benefit of CSI-based methods over
other solutions is their privacy-preserving nature. CSI-based
methods use off-the-shelf Wi-Fi routers and are minimally
intrusive to users. In addition, this method requires a relatively
low cost because it does not need to install additional sensing
infrastructure [7]. CSI-based methods also outperform other
device-free crowd-counting approaches like received signal
strength indicator (RSSI)-based methods as it is more sensitive
to changes in the environment. CSI reveals information on
the joint effect of scattering, fading, and power decay with
distance, hence it is more suitable for indoor environments
compared to the RSSI [7].

Previous research related to CSI-based crowd counting
mostly focused on estimating the number of moving people in
a meeting room, office, or laboratory [8]–[13], and participants
in their studies were required to be in motion. Some of these
studies have pointed out that they achieved low accuracy when
a person was stationary. However, there are a great number of
scenarios in which individuals are not moving around, such
as readers in a library or passengers on public transportation.
For public transportation, knowing the number of passengers
or occupancy result is helpful for real-time adjustment of
bus or subway schedules. Passengers can also determine their
selections of compartments based on the number of available
seats in the bus or subway. Nevertheless, it is a great challenge
to count immobile people since there are fewer variations when
people remain stationary. Wang et al. [14] proposed a system
to count static users based on respiration tracking in a lab
and a car with one Tx and one Rx. However, this system
could only count up to four people and the accuracy of the
crowd counting could be low when participants have the same
respiration rates. Cheng et al. [15] proposed a counting system
based on a deep neural network (DNN) model, which could
count the exact number of the crowd up to nine with fixed
positions. However, the accuracy of such deep-learning-based
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approaches is only maintained in the same environment and
the same configuration. Jiang et al. [16] used a mathematical
method to count up to 15 passengers based on the distribution
of the weak fidgeting motion of passengers in a moving car
or subway. The limitation of this method is that they cannot
count a large number of passengers when at least one of the
passengers is fidgeting all the time. The above studies show
that it is difficult to count a large number of stationary people
in an area. A possible solution addressed by [17] is to utilize
more wireless links over large areas to count more people.

In this paper, we consider counting the number of passen-
gers in a bus compartment with multiple links to increase the
maximum countable number. In a wireless sensing system, the
placement of sensors and the design of the sensing network can
significantly affect the quality of the collected data. However,
there is limited literature related to exploring the impact of the
deployment of multiple sensors on wireless sensing. This paper
attempts to pave the way in this important direction. We care-
fully consider the placement of sensors and network topology
designs for optimal data collection and reducing the overall
training effort. The line-of-sight (LOS) distance between the
transmitter and the receiver has been proven to affect the
sensing coverage significantly [18]. As the distance between
the Tx and Rx increases, the sensing coverage area increases
first, then decreases. If the placement is not carefully planned,
the sensing coverage will be quite limited. In addition, the first
fresnel zone (FFZ) of a wireless link will significantly affect
the sensing ability of CSI-based applications [19], [20]. In this
paper, we aim to jointly consider these factors and design a
suitable topology for passenger counting on a double-decker
bus.

The major contributions of this work are threefold:
• We have developed a prototype using commercial off-

the-shelf Wi-Fi devices for passive passenger counting.
Specifically, the Raspberry Pi installed with the Nexmon
CSI Extraction Tool is used as the receiver. Previous
works commonly use the laptop with the Intel 5300
network card, which only supports 30 subcarriers in 2.4
GHz. The Nexmon Tool is able to extract 242 subcarriers
with 80 MHz bandwidth in 5 GHz, which provides more
information. In fact, the Respiratory Pi is more suitable
in real scenarios when compared to traditional laptops as
it has a lower cost and smaller volume.

• We have proposed a topology with multiple sensors to
increase the sensing coverage range. To the best of our
knowledge, this is the first time that multiple sensors are
applied for people-counting in the wireless sensing area.
In addition, the deployment of Rx and Tx is considered
with reference to the Fresnel Zone model to eliminate
the negative effects due to diffracted signals. With the
designed topology, we raise the measurement limit to 20
passengers.

• We have devised effective preprocessing methods that can
remove noise and reduce the complexity of calculation for
model training. We have applied an RSSI-based calcula-
tion to rescale the CSI amplitude and avoid the negative

effect caused by the automatic gain control (AGC) in
receivers. Principal component analysis (PCA) is applied
to extract the characteristics of the data to the greatest
scale and reduce the input size by at least 50.83%.

The rest of this paper is organized as follows. Section II
introduces the fundamental technique and model of Wi-Fi-
based sensing. The system designing procedure is described
in Section III. Section IV presents the implementation and
evaluation results of the passenger counting system. Section
V discusses the conclusion and future works based on the
findings in this paper.

II. RELATED TECHNICAL THEORY INTRODUCTION

In this section, we introduce the basic knowledge and
models of Wi-Fi sensing. Based on these theories, we design
the topology that is applied to the crowd-counting system.

A. Channel State Information

In an indoor environment, radial signals can be reflected
by many objects such as walls and human bodies, and thus
arrive at a receiver through multiple paths. These paths can
be classified into two types: static path and dynamic path.
Static paths include the LOS path and the paths reflected
from static objects. Dynamic paths are induced by changes in
target objects, e.g., human motions. CSI is used to characterize
the channel between a Tx and an Rx in Wi-Fi systems. The
signal in the receiver can be expressed by (1), where X(f, t)
and H(f, t) are the frequency domain representations of the
transmitted signal and the complex-valued channel frequency
response (CFR) at carrier frequency f and time t.

Y (f, t) = H(f, t)×X(f, t) (1)

Each CSI in the matrix can be represented as a linear
superposition of all the paths as shown in (2), where Hs, Hd,
and Hn represent the static path, dynamic path, and noise
respectively. |H| is the amplitude and θ is the phase of each
CSI component.

H(f, t) = Hs(f, t) +Hd(f, t) +Hn(f, t)

= |Hs(f, t)| e−jθs + |Hd(f, t)| e−jθd

+ |Hn(f, t)| e−jθn

(2)

In an orthogonal frequency-division multiplexing (OFDM)
system, the frequency space is separated into multiple sub-
carriers that are transmitted in parallel, i.e., the CSI will be
different but correlated in subcarriers. Assuming N packets
and S subcarriers are captured, the extracted CSI matrix can
be written as (3), where hi,j represents the CSI values of the
jth subcarrier at the ith packet.

H =


h1,1 h1,2 ... h1,S

h2,1 h2,2 ... h2,S

: : : :
hN,1 hN,2 ... hN,S

 (3)



Fig. 1: The Fresnel zone reflection model

B. Fresnel Zone

Previous works verify the existence of the Fresnel zone
model for human sensing in an indoor environment [20]. As
shown in Fig. 1, Fresnel zones are concentric ellipses that
take a pair of transceivers as foci. For simplicity, we also use
Tx and Rx to represent the positions of transceivers and use
|TxRx| to represent the distance between them. With a given
radio wavelength λ, the Fresnel zone can be constructed by
(4), where n is the number of concentric ellipses and Qn is a
point in the nth ellipse. When a person appears in the Fresnel
zone at position Qx, an additional signal path is generated due
to the reflection of signals caused by the human body. When
there are human motions, the path of reflected signals changes,
leading to fluctuations in the signal amplitude. If there are
more targets within the Fresnel zone, there will be more paths
and more fluctuations in the amplitude of the signals.

|TxQn|+ |RxQn| − |TxRx| =
nλ

2
(4)

In the Fresnel Zone model, another issue that needs to be
considered is the innermost ellipse, which is defined as the first
Fresnel zone (FFZ). As more than 70% of the signal energy
is transferred via the FFZ, diffracted signals are stronger than
reflected signals, and dominate when the target moves inside
the FFZ [21]. As a result, the Fresnel reflection model is
unsuitable for targets within the FFZ, leading to an ineffective
area (IA) for wireless sensing [19]. For targets inside and
outside the FFZ, different models should be applied for CSI-
based sensing. For passenger counting, we design a topology
to make sure all passengers are located beyond the FFZ so
that the Fresnel reflection model can be applied to the system.

F1 =
√
(cD/f) denotes the maximum diameter of the FFZ

[22], where c is the light speed, D is the distance between the
transceivers, and f is the radio frequency. Fig. 2 illustrates
the deployment of our system in a bus compartment. When
we put the access point (AP) and Rx at the front and rear of
the upper deck of the bus (topology 1), the distance between
the transceivers is around 10 m, i.e., with 5 GHz frequency, the
maximum diameter of the FFZ is approximately 0.77 m. When
we put the AP at the center and the two Rxs at the front and
rear of the upper deck of the bus (topology 2), the distance
between the transceivers is around 5 m, and the maximum
diameter of the FFZ reduces to about 0.55 m, which is closer to

(a) Topology 1 (tp1)

(b) Topology 2 (tp2)

Fig. 2: Layout of the Bus Compartment

the width of the aisle (around 0.5 m). In that way, no passenger
is located in the FFZ as they sit on both sides of the aisle.

III. SYSTEM DESIGN

A. CSI-enabled Wi-Fi Router Platform

The system designed for the bus compartment uses a passive
collection method, i.e., A Tx communicates with an AP, while
an Rx monitors the packets and collects CSI from them.
The layouts for the two topologies, tp1 and tp2, are shown
in Fig. 2, and the reason for having these deployments is
explained in Section II-B. For this experiment, we used two
extra Raspberry Pis as transmitters. In real scenarios, there is
no need for an additional Tx since passengers will connect
their phones or other Wi-Fi devices to the AP and generate
enough communication packages in the ambient environment.
This method reduces the requirement of hardware and power
costs. It is also more cost-effective compared to an active
collection method, like the Linux 802.11n CSI Tool [1], which
needs the Tx to send signals to the Rx.

B. Data Preprocessing

CSI data collected using the Nexmon CSI Tool are quite
noisy [23] and need further preprocessing. Since the phase
is full of noise caused by the carrier frequency offset (CFO)
and sampling frequency offset (SFO), we only employed the
amplitude component of the received CSI in this system. To
improve the performance, we removed 14 null subcarriers,
resulting in 242 subcarriers for 80 MHz. The following two
preprocessing steps are applied to the CSI data: 1) CSI
calibration and 2) CSI feature extraction.

1) CSI Calibration: The original CSI extracted from the
receiver is multiplied by a factor due to AGC. The AGC
negatively affects CSI amplitude-based applications as it will
distort the valuable features in the wireless signal. The scale of



the CSI amplitude thus does not only depend on the distance
between the Tx and Rx but also on changes in the environment
and human movements. The amplitude of the CSI extracted
after AGC is not able to provide accurate distance information
according to the path-loss principle, and hence the sensing
coverage of CSI amplitude-based solutions is limited to 2-4
m [24]. Since our system uses CSI amplitude data, reversing
the AGC process and calibrating the original CSI amplitude is
necessary. A calibration method based on the received signal
strength (RSS) proposed by Gao et al. [25] is applied to
improve the robustness of our system.

Fig. 3: Ratios of information remaining with PCA

2) CSI Feature Extraction: PCA is used to discover the
correlations between CSI streams. The changes caused by
body movements are correlated in all CSI subcarriers. More
passengers will introduce more motions, i.e., more correlations
between CSI streams. Based on this phenomenon, we use PCA
to extract features for passenger counting. Wang et al. [26]
pointed out that the 1st component of PCA is mainly noise and
they extract characteristics from the 2nd and 3rd components.
We figured out that removing the 1st component has a negative
effect on the result. Authors in [27] also mentioned that there
is more useful information than noise in the 1st component. To
determine the suitable number of remaining components for
further process, we calculate the ratio of information before
and after PCA with a range from 0 to 242 dimensions and
plot it in Fig. 3. When the dimension is 119, 99.9% of
information is retained, which means the information loss is
minimized. With this technique, the input size for one receiver
can be reduced by about 50.83%. When we combine multiple
receivers, it helps to reduce more dimensions. The calculation
complexity and training time are reduced significantly with the
same level of accuracy since useful information is maintained.

C. Machine Learning for Crowd Counting

Since this paper focuses on the improvement contributed
by multiple sensors and the corresponding topologies, we use
conventional machine learning techniques, including support
vector machines (SVM), random forest (RF), and K-nearest
neighbors (KNN), to train the passenger counting classifiers

and compare the performance of different topologies. For
topology 2, we concatenate the CSI data collected from the
two receivers and use the PCA method to make sure that the
input has the same size as the single receiver case. Although
using deep learning methods and applying fusion methods like
weighted sum or probability fusion will further improve the
accuracy [28], this will be explored in our future work due to
the space limit here.

The five-fold cross-validation method is utilized in this
system. The CSI data is split into 5 subsets, and one of them
is selected as the test data, while the remaining four datasets
are used to train the model. After repeating this step for five
times, the system performance is obtained by averaging all
five results.

IV. IMPLEMENTATION AND EVALUATION

We used the Nexmon CSI Extraction Tool, which supports
the low-cost Raspberry Pi platform [2]. This tool supports up
to 80 MHz bandwidth with 802.11a/g/n/ac transmissions in
both the 2.4 and 5 GHz bands. To maximize the available
information, we used 80 MHz with 5 GHz bands, capturing
242 subcarriers (nulls removed). All CSI datagrams were saved
in a pcap file that can be processed by Python or Matlab.
We used Raspberry Pi 4B as receivers, and on each Rx, we
configured channel 36 and filtered the transmitter with the
nexutil command [2]. We used a Huawei WS7002 router as
an AP since it is cheap and small enough to be installed in a
bus compartment. Since the Raspberry Pi has one antenna and
its Wi-Fi chip only has one core, each Pi will collect a single
CSI matrix. We used 1000 Hz as the sampling frequency and
collected CSI data from 0 to 20 passengers under scenarios
with topology 1 and topology 2 on the same day.

Fig. 4: Comparison of the accuracy between tp1 and tp2 for
different number of classes with the SVM model

We used 30,000 samples for each class to train a model. We
tried various kernel functions with SVM and figured out that
the radial basis function (RBF) kernel is the most suitable one.
The performance of using SVM with RBF kernel is shown in
Fig. 4. For topology 1, the maximum number of passengers
that can be classified with an accuracy above 90% is 11. For
topology 2, when using the CSI extracted from one of the
two receivers to train the model, it achieves up to 12 and 6
passengers with an accuracy higher than 90% for the Rx at the
front and rear respectively. When combining the data collected
from both receivers in topology 2, all 20 passengers can be
classified with an average accuracy of 90.83%. One possible



(a) Topology 1

(b) Topology 2

Fig. 5: The confusion matrices for the SVM model with up to
20 passengers for (a) Topology 1 and (b) Topology 2.

reason for the different performance of the front and rear Rx is
the hardware discrepancy. Although the type and specifications
are the same (Raspberry Pi 4B, 8G), the manufacturing process
is not ideal and exactly the same for all devices, leading to
different quality of the collected data [29]. Since the layout
of the bus compartment is asymmetric, it may also impact
the path and noise of the signals. Denoising methods can be
applied to reduce the difference caused by this issue.

TABLE I: Accuracy Results of Topologies with Various ML
Methods

Models tp1 tp2 front tp2 rear tp2 fusion Improvement
SVM 81.46% 86.04% 78.22% 90.83% 11.49%
RF 79.34% 84.17% 75.37% 86.31% 8.79%
KNN 74.40% 81.20% 74.44% 87.97% 18.24%

Fig. 5 shows the confusion matrices for SVM with up to
20 passengers in the two topologies, which illustrates the
classification distributions. As can be observed, there are
generally more instances of misclassification for topology 1
than for topology 2, resulting in a lower average accuracy
for topology 1, as shown in Table I. For tp2, the estimated
number of passengers is only 0 or 1 off from the true number,
while for tp1, it misclassifies the number of passengers with
a larger error, like the two and 20 passengers cases shown
in Fig. 5a. The mean absolute error (MAE) for the exact
number of passengers with tp1 is 0.77, while it reduces to 0.20
with tp2. Since all other settings like the collection date and
passengers’ locations are the same for these two topologies,
the classification distributions and the MAE metric illustrate
that the designed topology improves the robustness of the
passenger counting system. For up to 20 passengers, with
all other settings the same as tp1, tp2 improves the counting
accuracy by about 11.49%. To verify that this improvement
is valid in general, RF and KNN methods are used to train
the classifiers with the same dataset, and the comparison
results are shown in Table I. We empirically set the number
of estimators to 90 for the RF method and the number of
neighbors to 10 for the KNN method. For these two methods,
tp2 improves the accuracy by 8.79% and 18.24% respectively.

From this experiment, we figured out that with the same
preprocessing and crowd-counting methods, increasing the
number of receivers does improve the accuracy or the max-
imum number of people with acceptable accuracy. Most
researchers focus on applying more complex techniques for
signal processing and crowd counting to improve the accuracy
or the sensing scalability. From another perspective, using
multiple devices with a suitable topology can also improve
the estimation accuracy with the same level of complexity or
maximum number of people. The results in this paper will
serve as a benchmark for future model training methods, such
as deep learning. More advanced data processing and passen-
ger counting techniques will further improve the accuracy of
the given hardware and topology.

V. CONCLUSION

In this paper, we proposed a deployment scheme to improve
the robustness and extend the scalability of the CSI-based
crowd-counting system. To the best of our knowledge, this
is the first work that considers the deployment of more than
one receiver for Wi-Fi-based device-free stationary crowd
counting. It considers the impact of the transmitter and receiver
locations on the system performance and combines the Fresnel
zone concept to design a suitable topology for passenger
counting on a double-decker bus. We preprocessed the original
signal by removing the effect of the automatic gain control and
utilized the principal component analysis method to extract
features from multiple receivers. A support vector machine
model was trained to estimate the number of passengers on the
upper deck of a bus. To verify the effectiveness of the proposed
methodology in the crowd-counting system, we conducted
experiments with two topologies and up to 20 passengers.



Our results show that the average accuracy of the proposed
topology with two receivers is 90.83%, which outperforms
the benchmark with a single receiver by 11.49%.

The work of this paper will lay the ground for our future
work. We plan to further increase the maximum number of
people supported by the counting system by designing optimal
topologies or applying data fusion methods. In addition, we
will evaluate the proposed deployment in various environments
over a long period of time to validate the temporal robustness
and adaptability of proposed CSI learning models.
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