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Abstract. The building sector holds a significant impact over global energy us-
age and carbon emissions, making effective building energy management vital 
for ensuring worldwide sustainability and meeting climate goals. In line with this 
objective, this study aims to develop and demonstrate an innovative smart data-
driven framework for building energy management. The framework includes se-
mantic multi-source data integration schema, AI-empowered data-driven optimi-
zation and predictive maintenance strategies, and digital twin for informative and 
interactive human-equipment-information building management platform. A 
case study was conducted in a typical chiller plant on a campus located in Hong 
Kong, China. The results show that the deployment of the proposed smart data-
driven framework achieves chiller sequencing control in a more robust and en-
ergy-efficient manner. Specifically, the proposed control strategy achieves en-
ergy savings of 5.9% to 12.2% compared to the conventional strategy. This re-
search represents an important step forward in the development of smarter and 
more sustainable building management practices, which will become increas-
ingly critical as we strive to reduce our environmental impact and combat climate 
change. 
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1 Introduction 

Improving building energy efficiency is crucial for achieving sustainable development 
on a global scale, given that buildings are significant energy consumers. The building 
sector accounts for about 30% of global energy consumption and 27% of energy-related 
greenhouse gas emissions [1], making it a key area for achieving climate objectives. 
Green buildings are crucial for decarbonization and reducing global greenhouse gas 
emissions. To achieve carbon neutrality, smart energy management technologies are 
vital to enhancing energy efficiency and intelligence in the building sector. 

Today’s buildings are not only energy-intensive but also data and information inten-
sive. Data are continuously generated during the lifetime of the building, and mainly 
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stored in Building Information Models (BIMs) and Building Automation Systems 
(BASs). BIMs store the static and spatial design and construction data, while BASs 
store the dynamic/temporal operation data. They provide a complete spatio-temporal 
description of a building. It is an effective way to understand and improve the building 
operation by analyzing and utilizing these valuable data. Numerous efforts have been 
made to effective data integration between BIMs and BAS, including directly linked 
data and ontology-linked data. Directly linked data method uses standardized naming 
formats such as Construction-Operations Building information exchange protocol (CO-
Bie) [2], Open Messaging Interface (O-MI) and the Open Data Format (O-DF) [3]. 
Ontology-linked data methods effectively store data in the data lake that is accessible 
through a common data management system. This method establishes a link between 
decoupled ontology and time-series databases, making data accessible to applications 
through a query process. With the development of ontology in the building sector, in-
cluding Semantic Sensor Network (SSN) ontology [4], Building Automation and Con-
trol Systems (BACS) ontology [5], Building Topology Ontology (BOT) [6], ifcOWL 
ontology [7] and Brick Schema [8], semantic web technologies have gained popularity 
for integrating multi-source data due to their rich semantic description, interoperability, 
scalability, and query ability. 

Most of the existing building energy management strategies are implemented in 
BAS, which are not informative, with limited visualization capability, and only support 
very limited and simple interactions between equipment and facility management staff. 
Digital Twin (DT) is considered a promising solution to address these challenges as it 
offers a more advanced and holistic approach to building energy management [9]. Chen 
et al. [10] developed a BIM-based digital twin which can improve decision-making in 
facility management by providing automatic scheduling of maintenance work orders. 
Chen et al. [11] developed a digital twin that enabled monitoring of indoor environ-
ments, indoor navigation, and predictive maintenance. By leveraging digital twin tech-
nology along with Mixed Reality (MR), IoT, Artificial Intelligence (AI), and other cut-
ting-edge technologies, it is possible to establish an informative and interactive human-
equipment-information building management platform. This platform can significantly 
enhance the efficiency of building operation and maintenance by creating a digital rep-
lica of the physical building and its equipment, enabling real-time monitoring and anal-
ysis of critical data. 

Heating, ventilation and air conditioning (HVAC) systems often consume the most 
energy in buildings. Compared with conventional physics-based methods, data-driven 
methods require less information and understanding of buildings and their energy sys-
tems [13]. Advanced machine learning algorithms and models have achieved promising 
success in various applications concerning energy demand prediction [14], fault detec-
tion and diagnosis [15], energy benchmarking [16], and occupant behavior prediction 
[17].  

This study aims to develop a smart data-driven building management framework for 
environmental and sustainability applications to improve building energy performance. 
The proposed framework includes several key components, such as developing a se-
mantic model to integrate data from multiple sources, deploying optimization and pre-
dictive maintenance strategies empowered by AI algorithms, and developing a digital 
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twin platform designed to manage building equipment and information comprehen-
sively and interactively. To demonstrate the effectiveness of the proposed framework, 
a case study was conducted on a typical campus chiller plant.  

2 Methodology  

2.1 Overview of the proposed framework 

Fig. 1 shows the proposed framework for smart data-driven building management.  
 

 
Fig. 1. Proposed framework for smart data-driven building management 

Data from multiple sources across different stages of the building lifecycle are ex-
tracted and organized using a semantic model as a standardized data integration 
schema. These data are then stored in a database which provides real-time data to an AI 
engine. The AI engine is comprised of various environmental and sustainability appli-
cation packages that can provide recommendations for energy savings and predictive 
maintenance (e.g., optimal settings, equipment warnings, etc.) to the building. These 
AI recommendations stored in the database will then be sent to both the smart 3D in-
teractive building management platform for monitoring by building managers and op-
erators, as well as the BAS for optimal control. 

The combination of the semantic model, AI engine, and digital twin offers several 
benefits. Semantic model empowers machine-readable capabilities, enabling the AI en-
gine and digital twin to access data in a building-independent way while maintaining 
semantic consistency. This facilitates intelligent analysis and decision support by com-
prehending and inferring data with semantic relationships and enables cost-effective 
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deployment of AI algorithms through its flexibility and scalability. In addition, the col-
laboration between the AI engine and digital twin enhances operational efficiency and 
maintenance processes. By synchronizing the digital twin with the real system in real-
time, it enables efficient and reliable monitoring, operation, and maintenance, leading 
to improved operational efficiency and reduced costs. 

2.2 Multi-source data available in buildings 

Static data. 2D drawings and 3D building information model (BIM) contain the static 
data at the design and construction stage. They contain primarily semantic, geometric 
and parametric data of building elements (e.g, wall, window, room, equipment, etc.), 
for example, the name, type, height, width, orientation and materials of building walls 
and windows, the name and location of air ducts as well as the design thermal temper-
ature of spaces and rooms. In addition, they can also provide relationships between 
different building elements, for example, each VAV box entity has an association rela-
tionship with its supply duct and the room it serves.                                                                                                             

Temporal data. Building automation system (BAS), also known as building manage-
ment system (BMS), contains the temporal data at the building operation stage. Build-
ing operational data in BAS are typically multivariate time series data, including energy 
consumption data, operating variables (e.g., real-time indoor temperature), environ-
mental parameters (e.g., outdoor air temperature), and miscellaneous [18]. With the 
radical evolution of internet of things (IoT) networks, more environmental data from 
IoT sensors [19] and occupant feedback [20] are also available for building operation 
management. 

2.3 Semantic data integration schema 

In this study, the static data are extracted from BIM model using the COBie plug-in in 
Revit software, enabling the inclusion of building elements and their relationship infor-
mation to develop the building semantic model. This semantic model is then stored in 
a graph database, which is a specialized data management system designed for efficient 
storage and querying of graph data. In graph database, nodes represent the building 
elements, while edges represent their relationships. Properties of building elements, 
such as wall materials and orientations, are stored in the static database alongside their 
corresponding unique identifiers within the semantic model. Temporal data from the 
BAS and IoT sensor network are collected by Building Automation and Control Net-
works (BACnet) protocol. This protocol is a commonly used data communication pro-
tocol and enables data communication among various equipment, devices, and sensors. 
The collected temporal data are then stored in the temporal database, with each meas-
urement assigned a unique identifier. Within the sematic model, each identifier is stored 
as a node and linked to the corresponding element using the “hasreferenceId” relation-
ship to achieve spatio-temporal data integration with semantic consistency.  
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2.4 AI engine 

The AI engine is designed to be a collection of diverse application packages focused 
on energy savings or predictive maintenance of buildings. These packages can provide 
a comprehensive view of building operations and offer recommendations for building 
management such as optimal control strategies, health monitoring, predictive mainte-
nance strategies, anomaly detection, etc. This enables building managers to make in-
formed decisions on how to optimize energy usage, reduce maintenance costs, and im-
prove occupant comfort. 

2.5 Smart 3D interactive building management platform 

A digital twin-based building management platform is developed by Unity3D and can 
be published to cross-platform including Windows, IOS, Android and Mixed Reality 
devices, etc. The spatial and static data are mainly extracted from BIM for the devel-
opment of digital twins. For aging buildings, preliminary BIM can be automatically 
recovered from 2D drawings [21] and serve as the foundation for creating a digital twin. 
The platform receives real-time operational data and AI recommendations from the da-
tabase, which are then presented to building managers and operators for further review 
and analysis. 

3 Case study 

This section elaborates the setup and results of the case study. In section 3.1, the target 
chiller plant is introduced. Section 3.2 illustrates the development of the digital twin 
and semantic model. Section 3.3 presents the chiller sequencing results/ 
3.1 Introduction of the target chiller plant 

The target chiller plant is located in the Hong Kong Polytechnic University. The 
schematic diagram of the chiller plant is shown in Fig. 2. The chiller plant consists of 
5 water-cooled chillers (WCC1-5) rated at 650 RT (Refrigeration Tons) each, one wa-
ter-cooled chiller (WCC6) rated at 325 RT, and two air-cooled chillers (ACC1-2) rated 
at 325 RT each. The total cooling capacity is 4,225 RT. Primary chilled water pumps 
(PCHWPs) are connected in parallel. PCHWP4-9 serve WCC1-5 and the others serve 
three 325 RT chillers. Condenser water pumps (CDWPs) 1-6 and cooling towers (CTs) 
1-5 serve WCC1-5, while CDWP7-8 and CT6 serve three 325 RT chillers. PCHWPs 
and CDWPs are equipped with one redundant for safety. All PCHWPs, CDWPs, and 
CTs are operated under fixed speed, and the normal power values are listed in Table 1. 
When a chiller is staged, a set of PCHWP, CDWP, and CT will also be switched. There-
fore, it is important to determine the optimal number of chillers, i.e., optimal chiller 
sequencing control, to reduce unnecessary energy consumption by pumps and CTs. 
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Fig. 2. Schematic diagram of the target chiller plant 

Table 1. Nominal power of the equipment 

Equipment Power (kW) 
PCHWP 1-3,10 30 
PCHWP 4-9 55 
CDWP 1-6 75 
CDWP 7-8 45 
CT 1-4 30 
CT 5 18.5 
CT 6 15 

3.2 Development of digital twin and semantic model 

As shown in Fig. 3, a digital twin is developed for the target chiller plant.  
 

      
          a) Overview of the digital twin                   b) Real-time data visualization    

Fig. 3. Digital twin developed for the target chiller plant 

The necessary static data for this purpose are extracted from BIM, encompassing 
comprehensive details about chillers, pumps, cooling towers, pipes, and other relevant 
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components. The temporal data are collected from the integrated database that contains 
operational data from BAS and IoT devices as well as AI recommendations from the 
AI engine. 

As shown in Fig. 4, a semantic model is developed for the target chiller plant. The 
static and temporal data are integrated based on the “hastimeseriesId” relationship in 
the semantic model. Fig. 4 (a) shows the entire chiller plant semantic model, with points 
representing different entities and lines showing their relationships. Fig. 4 (b) demon-
strates a specific part of the model where the chiller “KC-POLYU-BCF-RF-HVAC-
WCC-01” has a sensor point “POLYU-BCF-RF-WCC-01-CHWAST”. The “has-
timeseriesId” relationship connects this measurement with the identifier point “VSD 
WCC-1. Chilled Water Supply Temperature”, indicating the corresponding temporal 
data is stored in the temporal database with the same identifier. 

 

 
      a) Overview of the semantic model        b) Zoomed-in view of the semantic model 

Fig. 4. Semantic model developed for the target chiller plant 

3.3 Test of AI-enabled chiller sequencing control strategy  

This study proposes and tests an AI-enabled robust chiller sequencing control strategy 
based on probabilistic cooling load prediction [22]. For comparison purposes, a con-
ventional sequencing strategy widely used in building management systems was intro-
duced, which makes sequencing decisions based on measured cooling load and chilled 
water supply temperature. Although effective in providing a stable and reliable cooling 
supply [23], unnecessary chillers may be staged by this reference control strategy be-
cause it does not consider future changes in cooling loads. The proposed strategy con-
siders cooling load uncertainty to make sequencing actions more robust. An online risk-
based actions evaluation scheme is designed to determine the number of operating chill-
ers and assess the risks in the process and the reliability of the strategy simultaneously. 

Two typical working days (Mondays) with similar outdoor air temperature and rel-
ative humidity were selected to compare the performance of two different chiller se-
quencing strategies. The first day, May 22nd, 2023, was used to test the conventional 
sequencing strategy, while the proposed sequencing strategy was tested on June 12th, 
2023. The conventional strategy was built into the building energy management system. 
The outdoor air temperature and relative humidity were recorded, as shown in Fig. 5. 
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The outdoor temperature and relative humidity were very close in both trend and aver-
age levels. Therefore, the comparison of the sequencing strategies on these two days 
allows for a fair assessment of their performance. 

 
Fig. 5. Weather conditions of the two testing days 

The chiller sequencing results of the conventional and proposed strategies are shown 
in Fig. 6 a) and b), respectively. Two major differences can be identified. Firstly, when 
the conventional strategy was adopted from 8:00 am to 9:00 am, the chilled water sup-
ply temperatures were above 14 ℃, leading to thermal discomfort in the occupied 
zones. This dissatisfaction occurred because the conventional strategy failed to provide 
sufficient cooling capacity when the previously unoccupied zones became occupied, 
after heat accumulation during midnight with only one chiller in operation. The pro-
posed strategy, in contrast, staged on the second chiller earlier at 6:00 am and kept the 
chilled water supply temperature water at an acceptable level. The second difference is 
the temperature between the chilled water supply and the return temperature. The aver-
age temperature difference adopting the conventional strategy is only 3.2 ℃, compared 
to the 3.5 ℃ adopting the proposed strategy. The low temperature difference can in-
crease the energy consumption of pumps, resulting in decreased system performance. 

The energy consumption of two testing days adopting the conventional strategy and 
the proposed strategy is shown in Table 2. Compared with the reference day, the pro-
posed strategy achieves a 5.9% reduction in energy consumption for chillers. In terms 
of PCHWPs, CDWPS, and CTs, the proposed strategy leads to 12.2%, 8.9%, and 8.4% 
reduction in energy consumption, respectively. Overall, when comparing the total en-
ergy consumption of the two strategies, the proposed strategy saves 7.1% in energy 
consumption. These energy savings indicate that the proposed chiller sequencing strat-
egy is more efficient and can help reduce energy usage in chilled water systems. 
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a) Conventional strategy 

 
b) Proposed strategy 

Fig. 6. Chiller sequencing results 

Table 2. Comparison of energy consumption (kWh) 

 Chillers PCHWPs CDWPs CTs Total 

Conventional strategy 29334.8 4474.6 5878.8 2035.5 41723.7 

Proposed strategy 27614.3 3927.9 5356.3 1865.5 38764.0 

Energy saving (%) 5.9% 12.2% 8.9% 8.4% 7.4% 

4 Conclusion 

This study proposed a novel smart data-driven building management framework for 
environmental and sustainability applications. The proposed framework includes sev-
eral key components, such as developing a semantic model to integrate data from mul-
tiple sources, deploying optimization and predictive maintenance strategies empowered 
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by AI algorithms, and creating a digital twin platform designed to manage building 
equipment and information comprehensively and interactively.  

The proposed framework was demonstrated in a chiller plant in Hong Kong. 
Through the deployment of this framework, chiller sequencing control was achieved in 
a robust and energy-efficient manner. The results show energy savings ranging from 
5.9% to 12.2% compared to conventional strategies.  

As one of the largest consumers of energy, the building sector has a significant im-
pact on the environment and global carbon emissions. The proposed framework can be 
further improved and fine-tuned to better suit other types of buildings and facilities. By 
leveraging these technologies and strategies, substantial energy savings can be 
achieved, contributing to global sustainability efforts, and helping to achieve climate 
goals in the building sector. 
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