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Abstract
Pavement segments are functionally interdependent under traffic equilibrium,
leading to interdependent maintenance and rehabilitation (M&R) decisions for
different segments, but it has not received significant attention in the pavement
management community yet. This study developed a maintenance optimization
model for interdependent pavement networks based on the simultaneous net-
work optimization (SNO) framework and a multi-agent reinforcement learning
algorithm. The established model was demonstrated on a highway pavement
network in the real-world, compared to a previously built two-stage bottom-up
(TSBU) model. The results showed that, compared to TSBU, SNO produced a
3.0% reduction in total costs and an average pavement performance improve-
ment of up to 17.5%. It prefers concentrated M&R schedules and tends to
take more frequent preventive maintenance to reduce costly rehabilitation. The
results of this research are anticipated to provide practitioners with quantitative
estimates of the possible impact of ignoring segment interdependencies in M&R
planning.

1 INTRODUCTION

Road networks play a vital role in providing mobility for
people and goods and ensuring accessibility to a variety of
locations and services. However, road pavements are con-
tinuously subjected to repeated traffic loads and various
climatic conditions, resulting in an inevitable deterioration
in pavement performance (Guo et al., 2021;Madanat, 1993).
To restore pavement functionality, periodic maintenance
and rehabilitation (M&R) are required (Z. Liu et al., 2022;
Yao et al., 2019), which consume large amounts of natural
and financial resources. The limited resource availability
necessitates the effective planning and scheduling of M&R
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actions (Adeli & Karim, 1997). Maintenance planning is
one of the key components of a pavement management
system (PMS), which can generally be divided into two
levels: the network (or system) level and the project (or
segment) level (Hudson et al., 1979). Network-level main-
tenance decision-making is often more complex due to the
large scale of road network and the heterogeneous and
interdependent nature of pavement segments that com-
prise the network (Durango-Cohen & Sarutipand, 2007;
Medury & Madanat, 2014). Segment heterogeneity has
been increasingly recognized in the pavement manage-
ment community in recent years, with a growing number
of studies and models being developed on this topic
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(Durango-Cohen&Sarutipand, 2007;Hong&Prozzi, 2010;
Yeo et al., 2010, 2013; Z. Zhang et al., 2017).
In contrast, interdependencies among pavement seg-

ments, especially those related to road function, are rarely
considered. In general, interdependencies in pavement
networks can be either economic, stochastic, or func-
tional (Durango-Cohen & Sarutipand, 2007, 2009). Eco-
nomic dependence arises when components are linked
by resource constraints or the cost of executing multiple
actions together are different from the sum of individ-
ual execution costs (Durango-Cohen & Sarutipand, 2007,
2009). Budget constraints are the most common example
of economic interdependencies in the field of pavement
management and are one of the important considera-
tions in network-level M&R decision-making. Stochastic
dependence occurs in cases where the failure probabil-
ities or timings of components are correlated due to
some common causes (e.g., environment or traffic loading;
Durango-Cohen & Sarutipand, 2007, 2009). Functional
dependence refers to situations where the functionality of
one component depends on the functionality of another
(Durango-Cohen & Sarutipand, 2007, 2009; Medury &
Madanat, 2013). In the context of pavement management,
functional dependence arises from the connectivity of the
road network and the desire of drivers to choose routes
with lowest travel costs. Previous research has shown that
lane closures during work zone operations and poor pave-
ment conditions due to inadequatemaintenancewill cause
increased traffic delays and vehicle operation costs (VOCs;
Adeli & Ghosh-Dastidar, 2004; Adeli & Jiang, 2008; San-
tos et al., 2017). As a result, travel costs on routes passing
through these segments may increase, and drivers may
reroute to avoid high travel cost segments, leading to a
redistribution of traffic flow across the roadnetwork (Guan
et al., 2022; Uchida & Kagaya, 2006). Therefore, the condi-
tion of one segment may affect the traffic level on another
segment, which will further affect the pavement perfor-
mance and corresponding M&R strategies of this segment
(Durango-Cohen & Sarutipand, 2009). Conversely, the
M&R decision of a segment is also related to the condition
of other segments in the network. This indicates the func-
tional dependence of pavement segments. M&R strategies
derived without considering functional dependence may
hinder effective decision support, as significant benefits
and costs in the management process can be attributed
to the interdependencies that connect the segments of a
system (Durango-Cohen & Sarutipand, 2009). However,
existing pavement management studies rarely consider
such functional dependence among road segments and
lacks quantitative justification for the rationality of the
assumption of segment independence.Many studies adopt
a two-stage bottom-up (TSBU) framework, which first
identifies alternative M&R schedules for each segment,

and then performs budget allocation at the network-level
to solve the maintenance optimization problem for real-
world-scale pavement networks (Guo et al., 2020; Lee &
Madanat, 2015a; Swei et al., 2019). Although the TSBU
approach is generally computationally tractable, it cannot
take into account the functional dependence among road
segments arising from dynamic traffic distribution. While
the simultaneous network optimization (SNO; Medury &
Madanat, 2014) framework may address this challenge,
most of the existing literature only considers the economic
dependence caused by budget constraints (Cao et al., 2020;
Medury & Madanat, 2014; Wang et al., 2003).
To the best of the authors’ knowledge, only 12 studies

so far have considered the functional dependence of
road segments due to the impact of road conditions on
traffic distribution across the entire road network when
developing long-term pavement maintenance optimiza-
tion models, as summarized in Table 1. These studies
differ in network topology, influence mechanism of road
conditions on traffic distribution, and traffic assignment
methods, in addition to those common differences among
pavement maintenance optimization models such as opti-
mization objectives and algorithms. Seven of the 12 studies
applied models to simple hypothetical networks and three
were based on a popular small-to-medium-scale real-word
network, that is, the Sioux Falls network (Gao et al., 2011;
C. Liu et al., 2020; Yin et al., 2008). One study utilized a
network consisting of long-distance road segments (23–72
miles), that is, the Illinois network, to simplify the network
topology and thereby reduce the complexity of the opti-
mization problem (Hajibabai et al., 2014). Chu and Chen
(2012) tested their model on a relatively large road network
(consisting of hundreds of road segments), but the possible
solution space considered in the model is limited due to
the use of threshold-based decision variables. In addition,
previous studies have identified three ways in which
road conditions influence traffic distribution as indicated
in Table 1. It was found that travel costs along various
routes and drivers’ route choice can be affected either
because pavement M&R reduces road capacity (Durango-
Cohen & Sarutipand, 2007, 2009; C. Liu et al., 2020; Mao
et al., 2019; Ng et al., 2009; Uchida & Kagaya, 2006) or
because poor pavement surface conditions increase VOCs
(Durango-Cohen& Sarutipand, 2009; Guan et al., 2022;
Hajibabai et al., 2014; C. Liu et al., 2020; Mao et al., 2019;
Ouyang, 2007; Uchida & Kagaya, 2006; Yin et al., 2008)
or travel time (Chu & Chen, 2012; Gao, Xie et al., 2011;
Guan et al., 2022). To account for these effects on network
traffic distribution, different traffic assignment methods
have been employed, with the user equilibrium (UE)
method being the most widely used (Chu & Chen, 2012;
Gao et al., 2011; Guan et al., 2022; Hajibabai et al., 2014;
C. Liu et al., 2020; Yin et al., 2008). UE is a user-driven
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traffic assignmentmethod in which all drivers are selfishly
choosing routes that minimize their delay (Wardrop, 1952).
It falls under the category of static traffic assignment,
which contrasts to dynamic traffic assignment (DTA). In
Table 1, only one study has simultaneously accounted for
traffic dynamics and long-term pavement maintenance
planning by combining DTA and genetic algorithm (Ng
et al., 2009). It utilized mesoscopic traffic simulation to
estimate the impact of M&R work of the current segment
on the travel time of the upstream segment. While this
study is an important advance, the model it proposed
is too computationally expensive. Even with a 3-year
planning period, a hypothetical grid network of 24 road
segments, and a 3-h traffic simulation period, it took about
2 days to get the solution (Ng et al., 2009). Meanwhile,
it is usually considered unnecessary to capture detailed
time-varying traffic flows across the network in long-term
pavement maintenance optimization (Chu & Chen, 2012;
Guan et al., 2022). In summary, existing network-level
long-term pavement maintenance optimization models
that take into account the dynamic distribution of traffic
flows in a road network due to different conditions of road
segments in the network have been demonstrated only
for topologically simple road networks or optimization
problems with limited solution spaces, leaving their appli-
cability to more complex tasks unknown. In addition,
they did not quantitatively assess the potential impact of
ignoring segment functional dependence in maintenance
planning.
To deal with the aforementioned research gaps, this

study aims to develop a long-term pavement maintenance
optimization model, which is applicable to real-world-
scale highway networks and can take into account the
functional dependence among pavement segments under
traffic equilibrium and budget constraints. The effects of
traffic loads on pavement degradation were modeled by
previously built pavement performance models (Yao et al.,
2022a). The deteriorated pavement conditions, in turn,
influence drivers’ route choices by including VOCs as a
component of the travel cost function. The optimization
objectives considered in this study include maintenance
investment, that is, agency cost (AC); VOC and travel
time, that is, user cost (UC); and environmental impact.
In order to trade off these conflicting objectives, common
approaches include using multi-objective optimization
(MOO) algorithms to find Pareto-optimal solutions (Cao
et al., 2020; Guan et al., 2022; Santos et al., 2017; Yu
et al., 2015), transforming some of the objectives into con-
straints (de la Garza et al., 2011; Lee & Madanat, 2017),
and converting MOO problems into single-objective opti-
mization (SOO) problems (Gao et al., 2012; Lee&Madanat,
2014; H. Zhang et al., 2010). This study falls under the
third method, which transforms the MOO problem into

a SOO problem by monetizing intangibles, but the pro-
posed modeling framework can also be easily extended
to assign unequal weights to different costs. Further-
more, sequential decision making in long-term pavement
maintenance optimization makes reinforcement learn-
ing (RL) a perfect fit for this problem (Sutton & Barto,
2018). The maintenance optimization problem of a road
network with interdependent segments is essentially a
multi-agent system (MAS) task, that is, a set of agents
interacting with each other and with the environment
to achieve system-wide goals. In light of these character-
istics, a multi-agent RL(MARL) algorithm called QMIX
(Rashid et al., 2018) was adopted to develop an optimiza-
tion model that is capable of coordinating M&R actions on
different segments to achieve long-term goals of the entire
road network. Based on these considerations, three main
contributions are expected to be made by this research,
including: (1) the functional dependence of road seg-
ments arising from dynamic traffic distribution as a result
of pavement deterioration is incorporated into long-term
pavement maintenance optimization; (2) MARL is applied
to the pavement management community for the first
time, confirming its ability to capture segment interdepen-
dencies in multi-year M&R planning; and (3) the potential
impact of ignoring segment functional dependence in
maintenance planning is estimated to provide justifica-
tion for the rationality of the assumption of segment
independence.

2 MODEL FORMULATION

2.1 Problem description

This research aims to solve the network-level long-term
pavement M&R optimization problem to minimize the
total cost for different stakeholders while taking into
account the functional dependence of road segments
under traffic equilibrium. There are interactions among
pavement conditions, network traffic flows, and M&R
decisions. While it is known to all that traffic flow affects
the deterioration of pavement performance, little attention
has been paid to the impact of pavement conditions on the
distribution of network traffic flows. The M&R decisions
also exert an influence on network traffic distribution
due to the reduction in roadway capacity resulting from
lane closures during M&R. Nevertheless, as the decision
interval in long-term pavement maintenance optimization
(typically 1 year) is often much longer than the duration
of M&R activities (several hours or days), this effect is
usually regarded as insignificant (Guan et al., 2022; Ng
et al., 2009) and is therefore not considered in this study.
In other words, it is assumed that pavement maintenance
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operations will not cause vehicles to reroute but will only
cause vehicles to slow down or queue up. Pavement M&R
will be carried out lane by lane in order to not excessively
disrupt traffic. The additional travel time cost (TTC)
caused by traffic delays in the maintenance work zones
when vehicles pass through the maintenance section is
considered part of the total cost.
The problem in this study is essentially a bi-level prob-

lem, where the upper-level is a pavement maintenance
optimization problem that identifies the optimal main-
tenance decisions for each segment, and the lower-level
is a traffic assignment problem that assigns traffic flows
to different road sections. It is supposed that there is
an access-controlled highway network G (V, E), where V
and E are the set of intersections (toll stations and hubs)
and traffic sections (the one-way road section between
two toll stations/hubs), respectively. Due to the different
pavement structures and the general length of M&R sec-
tions, traffic sections in E can be further divided into
multiple subsections with two or more lanes. Since traf-
fic assignment and pavement maintenance planning are
performed for each road section and single-lane pavement
segment respectively, the remainder of this paper will use
the terms “section” and “segment” to distinguish road sec-
tions that contain multiple lanes and a single lane. The
assigned traffic was distributed to each lane through the
pre-determined lane distribution factors.

2.2 Notation list

To enhance the readability of the model formulation, the
notations and meanings of indices, parameters, sets, and
variables utilized in the model are first defined in Table 2.

2.3 Mathematical formulation

The overall optimization goal of the problem is to min-
imize the total discounted cost, that is, the sum of dis-
counted ACs and extra UCs (equal to the sum of VOCs
andTTCs) and environmental damage costs (EDCs) for the
entire pavement network over a given planning horizon 𝑇

under traffic equilibrium and annual budget constraints.
The upper-level problem can be formulated as follows:
Minimize:

𝑇∑
𝑡=1

𝛾𝑡−1

{
𝐴𝐶𝑡 +

𝑁∑
𝑛=1

[
Δ𝑉𝑂𝐶𝑡,𝑛 + Δ𝐸𝐷𝐶𝑡,𝑛

]

+

𝑀∑
𝑚=1

Δ𝑇𝑇𝐶𝑡,𝑚

}
(1a)

subject to:

𝐴𝐶𝑡 =

𝑁∑
𝑛=1

𝑐
(
𝑥𝑡,𝑛

)
𝑙𝑛w

+𝑝 ⋅ max

[(
𝑁∑

𝑛 = 1

𝑐
(
𝑥𝑡,𝑛

)
𝑙𝑛𝑤 − 𝐵𝑡

)
, 0

]
∀𝑡 = 1,… , 𝑇 (1b)

𝑉𝑂𝐶𝑡,𝑛 = 𝑉𝑂𝐶𝑡,𝑛 (𝑣𝑡,𝑛, 𝐼𝑅𝐼𝑡+,𝑛) − 𝑉𝑂𝐶0,𝑛(𝑣0,𝑛, 𝐼𝑅𝐼𝑏𝑙)

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1c)

𝑉𝑂𝐶𝑡,𝑛 (𝑣𝑡,𝑛, 𝐼𝑅𝐼𝑡+,𝑛) = 𝐹𝐶𝑡,𝑛 + 𝑇𝑊𝑡,𝑛 + 𝑉𝑀𝑅𝑡,𝑛

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1d)

𝐹𝐶𝑡,𝑛 = 𝑙𝑛 𝑣𝑡,𝑛

∑
𝑣𝑒𝜖𝑉𝐸

(
𝛽𝑣𝑒
0 + 𝛽𝑣𝑒

1 𝐼𝑅𝐼𝑡+,𝑛

)
𝑓𝑐 (𝑓𝑣𝑒) 𝑝𝑛,𝑣𝑒

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1e)

𝑇𝑊𝑡,𝑛 = 𝑙𝑛𝑣𝑡,𝑛

∑
𝑣𝑒𝜖𝑉𝐸

(
𝛽𝑣𝑒
2 𝐼𝑅𝐼2𝑡+,𝑛 + 𝛽𝑣𝑒

3 𝐼𝑅𝐼𝑡+,𝑛 + 𝛽𝑣𝑒
4

)
𝑡𝑖

⋅𝑝𝑛,𝑣𝑒 ∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1f)

𝑉𝑀𝑅𝑡,𝑛 = 𝑙𝑛 𝑣𝑡,𝑛

∑
𝑣𝑒𝜖𝑉𝐸

𝑣𝑚𝑟𝑣𝑒,𝐼𝑅𝐼𝑡+,𝑛
𝑝𝑛,𝑣𝑒

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1g)

Δ𝑇𝑇𝐶𝑡,𝑚 = 𝑇𝑇𝐶𝑡,𝑚(𝑥𝑡,𝑚, 𝑣𝑡,𝑚)

−𝑇𝑇𝐶0,𝑚(“do-nothing”, 𝑣0,𝑚)

∀𝑡 = 1,… , 𝑇,𝑚 = 1,…𝑀 (1h)

𝑇𝑇𝐶𝑡,𝑚

(
𝑥𝑡,𝑚, 𝑣𝑡,𝑚

)
= 𝜑𝑡

𝑓
𝑚

[
1 + 𝛼

(
𝑣𝑡,𝑚

𝐶𝑡,𝑚

)𝛽
]

𝑑𝑑𝑛
𝑡,𝑚

+𝜑𝑡
𝑓
𝑚

[
1 + 𝛼

(
𝑣𝑡,𝑚

𝐶𝑡,𝑚 (𝑛𝑙𝑚 − 1) ∕𝑛𝑙𝑚

)𝛽
]

𝑑𝑚𝑟
𝑡,𝑚

∀𝑡 = 1,… , 𝑇, 𝑚 = 1,…𝑀 (1i)

Δ𝐸𝐷𝐶𝑡,𝑛 = 𝐸𝐷𝐶𝑎
𝑡,𝑛

(
𝑥𝑡,𝑛

)
+
[
𝐸𝐷𝐶𝑢

𝑡,𝑛

(
𝑣𝑡,𝑛, 𝐼𝑅𝐼𝑡+,𝑛

)
− 𝐸𝐷𝐶𝑢

0,𝑛

(
𝑣0,𝑛, 𝐼𝑅𝐼𝑏𝑙

)]
∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1j)

𝐸𝐷𝐶𝑎
𝑡,𝑛(𝑥𝑡,𝑛) = 𝐸𝐹(𝑥𝑡,𝑛)𝑙𝑛𝑤 ⋅ 𝑐𝑝 ∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁

(1k)
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YAO et al. 7

TABLE 2 Notation list.

Type Variables Meanings
Index 𝑡 Year of decision

𝑛,𝑚 Segment and section ID
𝑣𝑒 Vehicle type
𝑖 Index of pavement performance indicators (PPI)
𝑟, 𝑠 Origin and destination node in the road network
𝑘 Path between origin–destination (OD) pairs

Parameter 𝑇 Planning horizon
𝑁,𝑀 Total number of pavement segments and sections
𝐼𝑅𝐼𝑏𝑙 The baseline value of international roughness index (IRI), which is equal to

1 m/km in this study
𝜖𝑖 The maximum difference allowed between the ith PPI and its initial state

when do-nothing is forcibly selected
𝐵𝑡 Annual maintenance budget in year 𝑡
𝑂𝐷 𝑡𝑟𝑖𝑝 𝑚𝑎𝑡𝑟𝑖𝑥𝑡 OD trip matrix describing people movement in a certain area in year 𝑡
𝑞𝑟,𝑠(𝑡) Travel demand for OD pair 𝑟 − 𝑠 in year 𝑡
𝑇ℎ𝑀&𝑅

𝑖 Threshold of the ith PPI when forcing the selection of an action other than
do-nothing

𝑇ℎ𝑅
𝑖 Threshold of the ith PPI when forcing the selection of a rehabilitation action

𝑇ℎ𝑛𝑒𝑤
𝑖 The initial state of the ith PPI

𝜑 Time value coefficient
𝛼, 𝛽 Model constants, generally 𝛼 = 0.15, 𝛽 = 4 for bureau of public roads

function
𝑡
𝑓
𝑚, 𝐶𝑡,𝑚 Free-flow travel time on section𝑚, traffic capacity of section𝑚 in year 𝑡
𝑛𝑙𝑚 Number of lanes of section𝑚 in year 𝑡
𝑑𝑚𝑟
𝑡,𝑚 Cumulative time for M&R in year 𝑡 on a lane-by-lane basis on section𝑚

𝑑𝑑𝑛
𝑡,𝑚 Cumulative time in year 𝑡 without M&R on all lanes on section𝑚

𝛿𝑟,𝑠
𝑚,𝑘

A binary variable equal to one if path 𝑘 ∈ 𝐾𝑟,𝑠 between OD pair 𝑟 − 𝑠 uses
section𝑚 and zero otherwise

𝜎𝑚,𝑛 A binary variable equal to one if segment 𝑛 belongs to section𝑚 and zero
otherwise

𝑝 Penalty factor for budget overruns
𝐿𝐷𝐹𝑛, 𝑙𝑛, 𝑤 Lane distribution factor of segment 𝑛, length of segment 𝑛, lane width
𝑓𝑣𝑒, 𝑓𝑐(𝑓𝑣𝑒), 𝐸𝐹(𝑓𝑣𝑒) Fuel type for vehicle type 𝑣𝑒, unit cost of fuel 𝑓𝑣𝑒 , emission factor of fuel 𝑓𝑣𝑒

𝑡𝑖, 𝑝𝑛,𝑣𝑒 Tire cost, percentage of vehicle type 𝑣𝑒 in the vehicle fleet of segment 𝑛
𝛽𝑣𝑒
0 , … 𝛽𝑣𝑒

4 Coefficient to calculate fuel and tire consumption for vehicle type 𝑣𝑒

𝑣𝑚𝑟𝑣𝑒,𝐼𝑅𝐼𝑡+,𝑛
Unit repair and maintenance costs per vehicle kilometer traveled
corresponding to vehicle type 𝑣𝑒 and 𝐼𝑅𝐼𝑡+,𝑛

𝑐𝑝 Carbon price
Set 𝑉𝐸 Set of vehicle types

𝐼 Set of PPI
𝐴 Set of M&R and do-nothing
𝐴𝑀&𝑅 Set of M&R
𝐴𝑅 Set of rehabilitations
𝑅, 𝑆 Set of origin and destination nodes in the road network
𝐾𝑟,𝑠 Set of paths between OD pair 𝑟 − 𝑠

(Continues)
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8 YAO et al.

TABLE 2 (Continued)

Type Variables Meanings
Variable 𝐴𝐶𝑡 AC of the entire pavement network in year 𝑡

c(𝑥𝑡,𝑛), 𝐸𝐹(𝑥𝑡,𝑛) Unit cost and greenhouse gas emission per square meter of M&R 𝑥𝑡,𝑛

𝑉𝑂𝐶𝑡,𝑛 VOC of segment 𝑛 in year 𝑡
𝐸𝐷𝐶𝑡,𝑛 Environmental damage cost (EDC) of segment 𝑛 in year 𝑡
𝑇𝑇𝐶𝑡,𝑚 Travel time cost (TTC) of section𝑚 in year 𝑡
𝐹𝐶𝑡,𝑛, 𝑇𝑊𝑡,𝑛, 𝑉𝑀𝑅𝑡,𝑛 Fuel consumption, tire wear, and vehicle repair and maintenance costs of

segment 𝑛 in year 𝑡
𝐸𝐷𝐶𝑎

𝑡,𝑛, 𝐸𝐷𝐶𝑢
𝑡,𝑛 Agency- and user-induced EDC of segment 𝑛 in year 𝑡

VOC
𝑝𝑣
𝑡,𝑚 VOC per vehicle on section𝑚 in year 𝑡

𝑃𝑃𝐼𝑖,𝑡,𝑛 The ith PPI of segment 𝑛 in year 𝑡
𝐼𝑅𝐼𝑡,𝑚, 𝐼𝑅𝐼𝑡,𝑛, 𝐼𝑅𝐼𝑡 IRI of section𝑚, segment 𝑛, and the entire pavement network in year 𝑡
𝐼𝑅𝐼𝑡+,𝑛 Mean of immediate post-treatment IRI and pre-treatment IRI in the following

year for segment 𝑛 in year 𝑡
𝑥𝑡,𝑛 Decision variable, that is, the selected M&R action, of segment 𝑛 in year 𝑡,

𝑥𝑡,𝑛 ∈ 𝐴

𝑣𝑡,𝑚, 𝑣𝑡,𝑛 Traffic flow of section𝑚 and segment 𝑛 in year 𝑡
𝑤 Integral variable
𝑓𝑟,𝑠

𝑘
(𝑡) Traffic flow on path 𝑘 ∈ 𝐾𝑟,𝑠 between OD pair 𝑟 − 𝑠 in year 𝑡

𝐸𝐷𝐶𝑢
𝑡,𝑛

(
𝑣𝑡,𝑛, 𝐼𝑅𝐼𝑡+,𝑛

)
= 𝑙𝑛𝑣𝑡,𝑛

∑
𝑣𝑒𝜖𝑉𝐸

(
𝛽𝑣𝑒
0 + 𝛽𝑣𝑒

1 𝐼𝑅𝐼𝑡+,𝑛

)
𝐸𝐹 (𝑓𝑣𝑒) 𝑐𝑝 ⋅ 𝑝𝑛,𝑣𝑒

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1l)

𝑣𝑡,𝑛 = 𝑓𝑈𝐸
(
𝐼𝑅𝐼𝑡, 𝑂𝐷 trip matrix𝑡

)
∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1m)

𝑃𝑃𝐼𝑖,𝑡+1,𝑛 = 𝑓𝐵𝑁𝑁
𝑖 (𝑃𝑃𝐼𝑖,𝑡,𝑛, 𝑣𝑡,𝑛, structure, climate,

M&R history, others)

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁, 𝑖 ∈ 𝐼 (1n)

𝑥𝑡,𝑛 ∈ 𝐴𝑅, 𝐼𝐹 ∃𝑖 ∈ 𝐼,

{
𝑃𝑃𝐼𝑖,𝑡,𝑛 > 𝑇ℎ𝑅

𝑖 for RD and IRI

𝑃𝑃𝐼𝑖,𝑡,𝑛 < 𝑇ℎ𝑅
𝑖 for SFC and TCEI

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1o)

𝑥𝑡,𝑛 ∈ 𝐴𝑀&𝑅, 𝐼𝐹 ∃𝑖 ∈ 𝐼,{
𝑃𝑃𝐼𝑖,𝑡,𝑛 > 𝑇ℎ𝑀&𝑅

𝑖 for RD and IRI

𝑃𝑃𝐼𝑖,𝑡,𝑛 < 𝑇ℎ𝑀&𝑅
𝑖 for SFC and TCEI

, and ∄𝑖 ∈ 𝐼, satisfying Equation (1o) ∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1p)

𝑥𝑡,𝑛 = “do-nothing,”IF ∀𝑖 ∈ 𝐼, |𝑃𝑃𝐼𝑖,𝑡,𝑛 − 𝑇ℎ𝑛𝑒𝑤
𝑖 |

≤ 𝜖𝑖, or 𝑥𝑡−1,𝑛 ≠ “do-nothing”

∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁 (1q)

𝑁∑
𝑛 = 1

𝐴𝐶𝑡,𝑛

(
𝑥𝑡,𝑛

)
≤ 𝐵𝑡 ∀𝑡 = 1,… , 𝑇 (1r)

The objective function is given by Equation (1a) where
the AC and extra VOC, TTC, and EDC are discounted
and summed to measure the pavement-induced impacts
on road agencies, users, and the natural environment.
Equation (1b) indicates that the AC of the entire pave-
ment network consists of the M&R cost and the penalty
term resulting from budget overruns. Equations (1c), (1h),
and (1j) specify the expressions for extra VOC, TTC, and
EDC, that is, the difference between the actual costs and
the baseline costs calculated from the initial year traf-
fic flow and baseline international roughness index (IRI).

Equation (1d) shows that VOC is composed of fuel cost,
tire wear cost, and vehicle repair and maintenance cost,
which are calculated as shown in Equations (1e)–(1g),
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YAO et al. 9

respectively (Chatti & Zaabar, 2012). Equation (1i) cal-
culates the total TTC for section 𝑚 in year 𝑡 for both
maintenance and normal periods based on the bureau of
public roads (BPRs) function (Bureau of Public Roads,
1964). It is assumed that pavement maintenance will be
done lane by lane to avoid excessive disruption to traffic,
so during the maintenance period, the road capacity will
be reduced to 𝐶𝑡,𝑚(𝑛𝑙𝑚 − 1)∕𝑛𝑙𝑚. Equation (1k) denotes
the calculation of agency-induced EDC, where the carbon
price was set to 100 CNY/tonne (Slater et al., 2020). Equa-
tion (1l) represents the user-induced EDC calculated by
multiplying fuel consumption by a greenhouse gas emis-
sion factor and a carbon price. Equation (1m) indicates that
the traffic flow on an individual road segment is related
to the pavement performance of the entire network and
the traffic demand represented by the origin–destination
(OD) trip matrix and can be derived by the UE method.
Equation (1n) signifies the pavement performance model
previously established based on the Bayesian neural net-
work (BNN; Yao et al., 2022a). Maintenance effectiveness
was not directly measured but rather simulated using
the pavement performancemodel of maintained segments
(Yao et al., 2022a). This was done by first assuming that
the pavement performance returns to the initial value after
maintenance and then predicting the performance evolu-
tions after specific treatments based on the performance
model of maintained segments. Equations (1o)–(1q) are
the three constraints on action selection for enhancing
algorithm efficiency and providing realistic solutions (Yao
et al., 2022b). Equations (1o) and (1p) restrict the choice
of M&R or rehabilitation when any of the nondecreasing
pavement performance indicators (PPIs) exceeds or non-
increasing PPIs falls below the corresponding thresholds
𝑇ℎ𝑀&𝑅

𝑖 and 𝑇ℎ𝑅
𝑖 , respectively. Equation (1q) ensures that

no M&R action is carried out if all PPIs are close to their
initial states or the segment has just been maintained in
the previous year, that is, a segment is not allowed to be
maintained for two consecutive years. Equation (1r) is the
annual budget constraint.
Once M&R decisions are obtained for the entire pave-

ment network for a given year, the traffic flow on each road
section can be determined accordingly based on the UE
model:
Minimize:

𝑀∑
𝑚 = 1

𝑣𝑡,𝑚
∫
0

𝑡𝑐
(
𝑤, 𝐼𝑅𝐼𝑡,𝑚

)
𝑑𝑤 ∀𝑡 = 1,… , 𝑇 (2a)

subject to:

𝑡𝑐(𝑤, 𝐼𝑅𝐼𝑡,𝑚) = VOC
𝑝𝑣
𝑡,𝑚

(
𝐼𝑅𝐼𝑡,𝑚

)

+𝜑𝑡
𝑓
𝑚

[
1 + 𝛼

(
𝑤

𝐶𝑡,𝑚

)𝛽
]

∀𝑡 = 1,… , 𝑇, 𝑚 = 1,…𝑀 (2b)

VOC
𝑝𝑣
𝑡,𝑚 (𝐼𝑅𝐼𝑡,𝑚) =

𝑁∑
𝑛=1

𝑉𝑂𝐶𝑡,𝑛

(
𝑣𝑡,𝑛, 𝐼𝑅𝐼𝑡,𝑛

)
𝑣𝑡,𝑛

𝜎𝑚,𝑛𝐿𝐷𝐹𝑛

∀𝑡 = 1,… , 𝑇, 𝑚 = 1,…𝑀 (2c)

𝑞𝑟,𝑠 (𝑡) =
∑

𝑘∈𝐾𝑟,𝑠

𝑓𝑟,𝑠
𝑘 (𝑡) ∀𝑡 = 1,… , 𝑇, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 (2d)

𝑣𝑡,𝑚 =
∑
𝑟∈𝑅

∑
𝑠∈𝑆

∑
𝑘∈𝐾𝑟,𝑠

𝑓𝑟,𝑠
𝑘 (𝑡) 𝛿

𝑟,𝑠
𝑚,𝑘

∀𝑡 = 1,… , 𝑇, 𝑚 = 1,…𝑀

(2e)

𝑣𝑡,𝑚 ≥ 0 ∀𝑡 = 1,… , 𝑇, 𝑚 = 1,…𝑀 (2f)

𝑓𝑟,𝑠
𝑘 (𝑡) ≥ 0 ∀𝑡 = 1,… , 𝑇, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾𝑟,𝑠 (2g)

𝑣𝑡,𝑛 =

𝑀∑
𝑚=1

𝑣𝑡,𝑚𝜎𝑚,𝑛𝐿𝐷𝐹𝑛 ∀𝑡 = 1,… , 𝑇, 𝑛 = 1,…𝑁

(2h)

Equation (2a) is the objective function of the UE model.
Equation (2b) is the travel cost function, where the first
part denotes the VOC related to pavement surface condi-
tions, and the second part is the TTC estimated based on
the BPR function (Bureau of Public Roads, 1964). Equa-
tion (2c) denotes the relationship between the VOC of
segment𝑛 and the averageVOCper vehicle on section𝑚 in
year 𝑡. Equation (2d) guarantees flow conservation on each
ODpair, that is, the sumof the flow on all paths connecting
an OD pair should equal the flow of that OD pair. Equa-
tion (2e) means that the total flow of a section is the sum of
the flows of the paths that pass through the section. Equa-
tions (2f) and (2g) ensure that all flows on sections or paths
are non-negative. Equation (2h) distributes the traffic flow
on a section to each segment within the section.

3 METHODOLOGY

3.1 Overview

The problem presented in the previous section can be
formulated as a Markov decision process (MDP) with aug-
mented states, incorporating maintenance history, includ-
ing recent M&R actions, treatment age, pre-treatment
pavement performance, and road age as part of the state
variables. State augmentation ensures Markov property
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10 YAO et al.

F IGURE 1 An overview of the methodology.

while accounting for the influence of previous man-
agement activities on pavement maintenance decision-
making (Lee &Madanat, 2015b; Madanat, 1993). The MDP
problem can be solved by dynamic programming, but the
large state space and network size of the problem in this
study make it susceptible to the curse of dimensional-
ity. To address this challenge, this study resorts to the
MARL algorithm called QMIX to develop an innovative
maintenance optimizationmodel for interdependent pave-
ment networks following the SNO framework. Figure 1
shows an overview of the methodological framework.
After the model was trained, the learned M&R strategy
represented by the agent network that maps the local
action-observation history to Q-values and that further
selects the action with an 𝜀-greedy policy was saved to
local storage. This strategy was denoted by SNO in the
rest of this paper. In addition, another strategy, derived
from the TD3-Wolpertinger model previously built on the
TSBU framework (Yao et al., 2022b), referred to in this
paper as TSBU, was also considered. The main drawback
of TSBU lies in the lack of consideration of the interdepen-
dencies among pavement segments. Therefore, applying
both strategies to an interdependent pavement network

under traffic equilibrium allows estimating the potential
impact of ignoring segment interdependencies in M&R
planning. The resulting costs, pavement performance, and
optimal M&R schedules were then compared across time,
regions, and models. The specific algorithms and methods
are described in detail in the following sections.

3.2 MARL and QMIX

MARL holds considerable promise for solving various
MAS problems such as strategy games (Samvelyan et al.,
2019), robot control (Perrusquía et al., 2021), autonomous
vehicles (Schmidt et al., 2022), traffic signal control (Chen
et al., 2021), and infrastructure assetmanagement (Asghari
et al., 2023). However, in the field of pavement manage-
ment, none of the existing studies have so far employed
MARL for network-level long-term M&R scheduling.
Only a few research have recently applied single-agent
RL to segment-level pavement maintenance optimization
(Renard et al., 2021; Shani et al., 2021; Yao et al., 2020).
Nevertheless, in an MAS setting where agents interact
with each other, the environment is no longer stationary
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YAO et al. 11

from agents’ local perspectives, which renders the Markov
property in single-agent RL invalid (Hernandez-Leal et al.,
2019). Therefore, this study resorts to MARL to solve
themaintenance optimization problem for interdependent
pavement networks.

3.2.1 Decentralized partially observable
MDP (Dec-POMDP)

In real-world situation, a network of highway infrastruc-
tures is typicallymanaged by a central agency andmultiple
regional units under the jurisdiction of the central agency
(Amin et al., 2022). Thismakes the decisionmakers behind
individual pavement segments (i.e., individual agents)
only have partial observability of the road network. In
other words, agents do not have complete information
about the state of the environment when interacting with
the environment. Meanwhile, in an interdependent pave-
ment network, each pavement segment works together
to achieve system-wide goals. Although M&R decisions
on different segments are constrained by the total avail-
able budget, it is still not considered a competitive task
because segments acquire budgets to maximize system
benefits rather than to defeat each other. The partially
observable environment and the cooperative multi-agent
task allow the problem in this study to bemodeled as aDec-
POMDP (Rashid et al., 2018), which is defined by a tuple
𝐺 = ⟨𝐴, 𝑆,𝑈, 𝑃, 𝑟, 𝑂, 𝛾⟩. At every time step, each agent
𝑎 ∈ 𝐴 perceives its own observation 𝑜𝑎

𝑡 ∈ 𝑂 and chooses
an action 𝑢𝑎

𝑡 accordingly, forming a joint action 𝑢𝑡 =

×𝑎∈𝐴 𝑢𝑎
𝑡 ∈ 𝑈. This leads to the state transition from 𝑠𝑡 to

𝑠𝑡+1 according to the state transition function 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑢𝑡).
A global reward 𝑟(𝑠𝑡, 𝑢𝑡) is then received and the cooper-
ative agents learn decentralized policies to maximize the
return of the global reward 𝑅 =

∑
𝑡
𝑟(𝑠𝑡, 𝑢𝑡). 𝛾 ∈ [0, 1] is the

discount factor.

3.2.2 Centralized training and decentralized
execution (CTDE)

Decentralized policy is necessary when agents cannot
access the full state during the execution stage. It relies
solely on each agent’s local action-observation history and
can mitigate the issue of joint action spaces expanding
exponentially with the number of agents (Rashid et al.,
2018). Decentralized policies are usually learned in a cen-
tralizedmanner in a simulation environment or laboratory
setting. This grants agents access to global state informa-
tion during the training stage that would otherwise be
hidden from agents (Rashid et al., 2018). Such a paradigm

is calledCTDE,whichhas recently attractedwide attention
in the RL community.

3.2.3 QMIX

The CTDE-based MARL algorithms can be generally
divided into two groups: value-based methods such as
value decomposition networks (Sunehag et al., 2017) and
QMIX (Rashid et al., 2018) and actor–critic methods such
as counterfactual multi-agent policy gradients (Foerster
et al., 2018). The QMIX algorithm was employed in this
study due to its outstanding performance in dealing with
multi-agent tasks in the literature (Chen et al., 2021; Hu
et al., 2021). QMIX mainly has three types of networks:
an agent network for each agent to select an action inde-
pendently according to its local action-observation history,
a hypernetwork using global state as input to generate
weights and biases for the mixing network, and a mixing
network to mix the value function of different agents 𝑄𝑎

to a joint action-value function 𝑄𝑡𝑜𝑡 in a nonlinear way.
To ensure optimal individual action consistent with opti-
mal joint action, the monotonicity constraint needs to be
satisfied in the mixing network:

𝑄𝑡𝑜𝑡 (𝜏, 𝑢) = 𝑔
[(

𝑄1

(
𝜏1, 𝑢1

)
, …𝑄𝑎 (𝜏𝑎, 𝑢𝑎)⋯

) |𝑊,𝐵
]
(3)

𝜕𝑄𝑡𝑜𝑡

𝜕𝑄𝑎
≥ 0, ∀𝑎 ∈ 𝐴 (4)

where 𝑔(⋅) denotes the mixing network parameterized by
𝑊,𝐵 generated by the hypernetwork. 𝜏𝑎 is the action-
observation history of agent 𝑎. To enforce this monotonic-
ity constraint, the weights of the mixing network 𝑊 are
restricted to be nonnegative. This is achieved by adding
an absolute activation function to the output layer of the
hypernetwork that generates the weights. QMIX learns
by sampling a batch of transitions from the replay buffer
and minimizing the sum of squares of temporal-difference
error loss:

𝐿 (𝜃) =

𝑏∑
𝑖=1

[(
𝑦𝑡𝑜𝑡
𝑖 − 𝑄𝑡𝑜𝑡 (𝜏𝑖, 𝑢𝑖, 𝑠𝑖; 𝜃)

)2]
(5)

𝑦𝑡𝑜𝑡
𝑖 = 𝑟𝑖 + 𝛾max𝑢𝑖

′𝑄𝑡𝑜𝑡

(
𝜏
′

𝑖 , 𝑢
′

𝑖 , 𝑠
′

𝑖 ; 𝜃
−
)

(6)

where 𝑏 is the batch size sampled from the replay buffer,
𝜃 is a set of parameters of the agent and hyperparameter
networks, 𝜃− is a set of parameters of the correspond-
ing target networks as in Deep Q-Network (DQN) (Rashid
et al., 2018), and variables with single quotes in the upper
right corner indicate the variables for the next time point.
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12 YAO et al.

3.3 QMIXmodel in pavement
maintenance optimization

In this section, a QMIX model dedicated to maintenance
optimization for interdependent pavement networks is
developed by defining the elements in QMIX in the
pavement maintenance optimization setting, constructing
the simulation environment, and designing the reward
function.

3.3.1 Definition of model elements

Assuming that there is a decisionmaker behind each pave-
ment segment who is responsible for developing the M&R
plan, then this decision maker is the agent, and all seg-
ments of a pavement network constitute an MAS. The
environment in which agents get local observations, inter-
act with each other, execute actions, and receive rewards
was simulated using the pavement performance models
(Yao et al., 2022a), traffic assignment model and reward
function. Observations are information available to indi-
vidual agents for making M&R decisions, which in this
study refer to the input variables of the pavement per-
formance models (Yao et al., 2022a), including variables
related to pavement materials and structures, pavement
performance, traffic and climate conditions, maintenance
history, and so forth. States are the joint observations of
all segments in the road network. Hence, the transition
of observations and states is mainly achieved by using the
probabilistic pavement performance models built on BNN
to predict the future pavement performance after taking
specific M&R actions, combined with some logical judg-
ments and reasonable assumptions, such as increasing the
road age by one for each subsequent year, assuming a
constant climate, and so forth. Actions refer to the avail-
able M&R treatments plus the “do-nothing” as shown in
Table 3. The reward is equivalent to the negative total cost
(i.e., the sumofACs and extraUCs andECDs) between two
consecutive time points. The calculation of each cost item
refers to Equation (1), and the data source used is the same
as the study by Yao et al. (2022b).

3.3.2 Model structure

The overall structure of the QMIX model as well as the
meaning of the model elements as defined in the previ-
ous section are exhibited in Figure 2. At each time step of
the decentralized execution, each agent observes its local
action-observation history, which is then fed into the agent
network to select an M&R action. The state of the pave-
ment network is transferred to an intermediate state right

after M&R, and the network traffic flow is redistributed
accordingly. Based on this, the next state can be forecasted
using the pavement performance models and a global
reward is received. The transition (𝑜𝑡, 𝑠𝑡, 𝑢𝑡, 𝑟𝑡, 𝑜𝑡+1, 𝑠𝑡+1) is
recorded in a replay buffer. In centralized training, a batch
of transitions was extracted from the buffer to calculate the
temporal-difference error according to Equations (5)–(6)
and update the model parameters.

3.4 TSBUmodel

To understand the potential impact of ignoring segment
interdependencies in pavement M&R planning, the pre-
viously established TSBU model was also introduced.
In this TSBU model, the segment-level maintenance
optimization problem that seeks to minimize long-term
cumulative costs was addressed by the TD3-Wolpertinger
algorithm (Yao et al., 2022b), which falls within the
scope of single-agent RL. It identified two M&R treat-
ment candidates for each segment. Then, at the network-
level, the integer programming method was employed to
determine the final M&R decision that minimizes the
total long-term cumulative cost of the entire pavement
network while satisfying the annual budget constraint.
This process was repeated in each year of the planning
horizon.

4 NUMERICAL EXAMPLES

4.1 Basic settings

The developedmodels andmethods were demonstrated by
applying them to a real-world-scale expressway pavement
network south of the Yangtze River in Jiangsu Province,
China. The required data, including the pavement struc-
tures andmaterials, pavement conditions, traffic loads and
OD data, M&R histories, climate conditions, and so forth,
were extracted from the PMS of Jiangsu. All expressways
are divided into sections based on their different character-
istics and further divided at 1-km intervals. A total of 6364
segments are obtained, each of which is a one-way, one-
lane pavement segment of about 1 km. An annual budget
of 2.5 billion and a 20-year planning horizon were consid-
ered. The penalty coefficient was set to five in this study.
Four PPIs were incorporated into the model, including the
rutting depth (RD), IRI, side-way force coefficient (SFC),
and transverse cracks evaluation index (TCEI), where IRI
is a component of the reward function, and the other three
are inserted into the constraints. The baseline IRI was set
to 1.0m/km. The three types of thresholds related to action
selection are the same as in Yao et al. (2022b).
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YAO et al. 13

TABLE 3 Actions in the QMIX model.

ID M&R treatment Unit cost (CNY/m2) Category
1 Seal coating 15 Preventive maintenance
2 Micro-surfacing 22
3 Hot-in-place rehabilitation 96
4 Fine mill and fill 110
5 Thin overlay 71
6 Fine mill and fill and thin overlay 110
7 Mill and fill the upper asphalt layer 134 Rehabilitation
8 Overlay with porous asphalt concrete−13 140
9 Overlay with asphalt-rubber asphalt concrete (ARAC)−13 137
10 Overlay with styrene-butadiene-styrene-modified AC-13 116
11 Mill and fill the upper and middle asphalt layer 294
12 Mill and fill the entire asphalt layer 573

Note: AC is a dense-graded mixture, and the number “13” denotes the nominal maximum aggregate size in millimeters.

F IGURE 2 Overall structure of the QMIX model.

A new method for imposing the vertical constraint on
action selections was proposed in order to ensure that the
pavement elevation in the same section after M&R is the
same. Thiswas done through the following steps: (1) check-
ing whether performing the actions selected by the agents
(denoted as joint action A, such as those joint actions
at the section level consisting of “do-nothing” and “over-
lay with Styrene-Butadiene-Styrene [SBS] modified AC-13”)
would violate the vertical constraint; (2) in sections where
the constraint is violated, calculating the additional over-

lay cost for segments with lower elevations rising to the
highest elevation in this section (denoted as joint action B,
where the action for all lanes of the above section becomes
“overlay with SBS modified AC-13”); (3) adding this addi-
tional overlay cost to the ACwhile assuming the additional
overlay thickness cannot bring any improvement to the
pavement performance. The rationality of this approach
lies in the fact that overlay thickness is generally con-
sidered to be a measure of rehabilitation intensity (Lee
& Madanat, 2015a; Ouyang& Madanat, 2004) Segments
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14 YAO et al.

TABLE 4 The values of the hyperparameters in the QMIX
model.

Hyperparameters Values
Optimizer Adam
Learning rate 0.0005
Replay buffer size (episodes) 60
Batch size (episodes) 16
Initial 𝜖 1
Minimum 𝜖 0.05
𝜖 anneal steps 12000
Number of episodes in an epoch 1
Total epochs 800
Update frequency of the target
network parameters (epochs)

5

Number of hidden neurons in the
agent network, hypernetwork, and
mixing network

128, 128, and 256

rehabilitated with thicker overlays often lead to better per-
formance. Therefore, agents selecting joint action A will
produce the same cost but worse performance than joint
action B, which is less cost-effective than agents directly
selecting joint action B. This will motivate agents not to
choose actions that violate the vertical constraint.
In addition, an approach for splitting the OD trip whose

origin or destination is outside the studied pavement net-
workwas also proposed. Thiswas achievedwith the help of
the Baidu Map Application Programming Interface (API)
v2.0. First, the longitude and latitude of each toll station
or hub were extracted. Then, for each of the cross-regional
OD trips, the route with the shortest travel time was iden-
tified. Last, the node (origin or destination) outside the
studied networkwas changed to the node on this route that
is inside the network and closest to the network boundary.
For the present study, this process ismuch easier as theOD
trip across the Yangtze River must pass through a limited
number of bridges.
The QMIX model was coded in Python 3.8.3. Table 4

shows the values of the hyperparameters in the developed
QMIX model, which were determined by referring to the
literature (Hu et al., 2021; Rashid et al., 2018) and undergo-
ing a series of fine-tuning. In this study, a step represents
a state transition with an interval of 1 year. An episode
denotes a sequence of states, observations, actions, and
rewards, which ends with a terminal state and has the
same time span as the planning horizon.Hence, an episode
consists of 20 steps in this study. Replay buffer is to store
trajectories of experience that will be used for training.
Batch size is the number of episodes sampled from the
buffer for each training. Epsilon 𝜖 refers to the probability
of exploration, that is, the probability of choosing a random

F IGURE 3 Learning curves of the QMIX model.

action, relative to exploiting the agents’ current action-
value estimates. The 𝜖 anneal steps mean the number of
steps required to reduce from the initial 𝜖 to the minimum
𝜖. An epoch is an update of the network parameters, and
there can be one or more episodes in an epoch, which was
set to 1 after tunning in this study. The parameters of the
target network were copied from the evaluation network
every five epochs, and 800 epochs were sufficient for the
convergence of the model in this study.

4.2 Results and discussion

4.2.1 Convergence performance

The evolution of the total reward that is equivalent to
the negative total cost over the planning horizon and the
average budget overrun calculated by Equation (7) are pre-
sented in Figure 3. It can be found that the total reward
steadily increases over time and eventually converges
to a stable value. The budget overrun is also gradually
alleviated and finally becomes almost zero.

Average budget overrun

=
1
𝑇

𝑇∑
𝑡 = 1

max

[(
𝑁∑

𝑛 = 1

𝑀𝑅𝐶𝑡,𝑛

(
𝑥𝑡,𝑛

)
− 𝐵𝑡

)
, 0

]
(7)

4.2.2 Total cost and cost breakdown

To investigate the potential impact of ignoring segment
interdependencies in M&R planning, the total cost as well
as the cost breakdown were compared across the two
models as shown in Table 5. It is noteworthy that for an
interdependent pavement network, the total cost incurred
by SNO is slightly lower than that of TSBU, about 3.0%
lower in this case. Among the many cost items, the TTC
and agency-induced EDC of the two models are nearly
identical. The most significant cost savings of SNO lies
in the VOC and user-induced EDC, with SNO producing
about 6.7% less VOC and 4.9% less user-induced EDC than
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YAO et al. 15

TABLE 5 Breakdown of the total costs.

Cost items (billion CNY) TSBU SNO
Percentage
difference (%)

AC 16.12 17.17 6.5
Vehicle operating cost 54.9 51.23 −6.7
TTC 16.63 16.66 0.2
Agency-induced EDC 0.09 0.09 0.0
User-induced EDC 1.82 1.73 −4.9
Total cost 89.57 86.89 −3.0

Abbreviations: SNO, simultaneous network optimization; TSBU, two-stage
bottom-up.

F IGURE 4 Costs of the two models in different years.

TSBU. These savings come at the cost of a 6.5% increase in
AC, but this does not offset the VOC savings.
Figure 4 further shows the various costs of the two

models in different years. It can be observed that the distri-
bution of AC in different years varies significantly between
the two models. The ACs of TSBU are relatively evenly
distributed across years, except for the first few years. In
contrast, an obvious periodic variation is observed from
the ACs of SNO, implying that SNO tends to concentrate
maintenance resources. This may be because concentrated
M&R schedules allow for simultaneous improvements in
the performance of the entire pavement network, thus
enabling drivers to greatly optimize their routes. In addi-
tion, the VOC of SNO is clearly lower than that of TSBU
and shows a slight yearly increasing trend.
Possible reasons for the insignificant difference in the

total cost of the two models were also analyzed, which
are twofold. First, although TSBU was obtained by assum-
ing that the pavement segments are independent of each
other, its flexibility allows the decision results to be
quickly adjusted to changes in network traffic flows dur-
ing the application phase. Second, the length difference
between alternative routes is generally large for an access-
controlled highway network. Therefore, drivers will only
change routes if the alternate route has a clear advantage

F IGURE 5 Traffic-length weighed network performance.

in pavement conditions such that VOC savings are suffi-
cient to offset the increased TTC. In order to quantify the
pavement conditions of alternative routes that may lead
to vehicle rerouting, the maximum IRI value that makes
the total travel cost of the alternative route lower than the
shortest route is calculated for all possible IRI values on
the shortest route. Route information was extracted from
the Baidu Map API. VOC and TTC were calculated by
the method in (Chatti & Zaabar, 2012) and based on the
BPR function (Bureau of Public Roads, 1964), respectively.
Table 6 shows the results, including the 25th percentile,
mean, and 75th percentile of the maximum IRI values for
all OD pairs that make alternative routes less costly to
travel. However, not all OD pairs have such an IRI value to
make the alternate route preferable since the IRI also needs
to be no less than zero. Hence, the percentage of OD pairs
for which no valid IRI value exists was also calculated.
The common IRI values of the highway asphalt pavements
in Jiangsu are generally less than 3 m/km. Therefore, it
can be concluded that at general IRI values (0–3 m/km),
there will be over 70% of OD pairs unlikely to be rerouted
from the shortest route to the alternate route. This also
partly explains why the TSBU model, which ignores seg-
ment interdependencies, does not result in a significant
economic loss in this case.

4.2.3 Pavement performance

Figure 5 presents the evolution of the pavement net-
work performance measured by the traffic-length weighed
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16 YAO et al.

TABLE 6 Presence of IRI values that give alternate routes priority over shortest routes.

IRI on the shortest route (m/km)

Vehicle types

Maximum IRI on
alternate routes
(m/km) 1 2 3 4 5 6

Medium car 25th percentile (m/km) 0.3 0.5 0.9 1.5 3.1 4.0
Mean (m/km) 0.5 1.0 1.6 2.5 3.6 4.5
75th percentile (m/km) 0.8 1.5 2.4 3.5 4.6 5.5
N/A percentage (%) 88.7 78.9 70.3 55.8 35.1 20.7

Medium truck 25th percentile (m/km) 0.3 0.6 0.8 1.9 3.5 4.2
Mean (m/km) 0.5 1.0 1.5 2.7 3.9 4.7
75th percentile (m/km) 0.7 1.5 2.3 3.6 4.7 5.6
N/A percentage (%) 91.5 84.7 77.5 58.9 33.7 17.8

Articulated truck 25th percentile (m/km) 0.3 0.5 0.9 1.6 3.4 4.1
Mean (m/km) 0.5 1.0 1.6 2.5 3.8 4.5
75th percentile (m/km) 0.8 1.5 2.4 3.5 4.7 5.5
N/A percentage (%) 88.7 78.8 70.3 55.4 29.8 16.9

indicator (TWI) due to the application of the two models.
TWI was calculated for each of the four PPIs considered in
this study, with the following equation:

𝑇𝑊𝐼 =

∑𝑁

𝑛=1 𝐴𝐴𝐷𝑇𝑛 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑛 ⋅ 𝑃𝑃𝐼𝑛∑𝑁

𝑛=1 𝐴𝐴𝐷𝑇𝑛 ⋅ 𝑙𝑒𝑛𝑔𝑡ℎ𝑛

(8)

where 𝐴𝐴𝐷𝑇𝑛 and 𝑙𝑒𝑛𝑔𝑡ℎ𝑛 are the annual average daily
traffic and the length of segment 𝑛, respectively. As can
be seen from Figure 5, SNO produces significantly better
pavement conditions than TSBU, reducing the pavement
network RD by an average of 17.5% and IRI by an aver-
age of 12.4%, and improving the pavement network SFC
by an average of 9.0% and TCEI by an average of 2.7%.
This is natural because SNO has been developed tak-
ing into account the impact of decisions made on other
segments of the network, whereas TSBU can only pas-
sively adjust M&R decisions as network traffic flows
change.
Although agents are forced to select rehabilitation

actions when pavement conditions are worse than the
corresponding thresholds, there are still some segments
where the conditions are already below the thresholds
before the actions are executed. This is often due to
the agents’ inability to forecast the rapid deterioration
in pavement conditions that may follow when the cur-
rent pavement conditions are not very poor. Figure 6
shows the percentage of segments with performance
worse than the rehabilitation thresholds. It clearly demon-
strates that TSBU is more likely to fail to maintain
pavements on time before they decline below the thresh-
olds. This also implies that SNO is more far-sighted than
TSBU.

F IGURE 6 Percentage of pavement segments with
performance worse than the rehabilitation thresholds.

The spatial distribution of segments with different pave-
ment conditions is also illustrated in Figure 7. This was
done by first extracting the geographic data from Open-
StreetMap using the OSMnx library in Python and then
mapping the pavement conditions to the corresponding
locations using different colors. As some road sections
fall outside the jurisdiction of the central agency and
some have incomplete data, they are not considered in the
pavement maintenance optimization model, but they are
still involved in the traffic assignment model as shown
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F IGURE 7 Spatial distribution of pavement conditions
produced by the two models.

in the lightest color in Figure 7 to ensure the integrity
of the displayed road network. It can be seen that SNO
has significant advantages over TSBU in terms of vari-
ous pavement performance. Moreover, the distributions
of pavement segments with relatively poor conditions
measured by different PPIs are significantly different.
For example, segments with lower IRI values do not
necessarily have better rutting, skid, and cracking resis-
tance, which justifies the need for multi-indicator decision
-making.

F IGURE 8 Percentage of different maintenance and
rehabilitation types in each year produced by the two models.

4.2.4 Optimal maintenance strategies

To understand the difference in optimal maintenance
strategies generated by the two models, the percentage
of different M&R types in each year was compared as
exhibited in Figure 8. The SNOmodel seems to prefer con-
centrated M&R schedules, compared to the TSBU model.
Although both models constrain that a segment cannot be
maintained for 2 consecutive years, the M&R schedule of
the TSBU model is much more stable. Hence, there are
other reasons for the concentrated M&R schedules of the
SNOmodel. In the study byUchida and Kagaya (2006), the
repair of links was also concentrated in certain years, so
they conclude that if repair work is made on a link, it is
better to repair the whole link in terms of life cycle costs
minimization. Hence, the reason may be that the concen-
trated M&R schedules could improve the performance of
the entire network, thereby facilitating travel route opti-
mization because travel costs depend on the condition of
all segments along the route, not just one. In addition, the
maintenance ratio of SNO is considerably higher than that
of TSBU, while the rehabilitation rate is obviously lower.
In other words, the SNOmodel tends to reduce costly reha-
bilitations through more frequent maintenance, a pattern
also found in the study of Guan et al. (2022).

5 CONCLUSION

This study follows the SNO framework and introduces the
MARL algorithm QMIX for the first time to develop an
innovative maintenance optimization model for interde-
pendent highway pavement networks. The performance of
the proposed model was demonstrated by applying it to a
real-world-scale highway network in Jiangsu, China. The
resulting M&R strategy was then compared with the one
derived from the previously established TSBU model in
terms of costs, performance, and optimal M&R schedules
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to estimate the potential impacts of ignoring segment
interdependencies in pavement maintenance planning.
When implemented on an interdependent pavement

network of more than 6000 lane km, the SNO model gen-
erates a 3.0% lower total cost than TSBU, with a major
cost reduction in VOC but a slightly higher AC. The
SNO model produced significantly better pavement con-
ditions, with average performance improvements of up
to 17.5%. Hence, for access-controlled highway networks,
ignoring the functional dependence among road segments
in maintenance planning will not cause significant eco-
nomic losses but may jeopardize pavement performance.
Twopossible reasons for the small cost differences between
the twomodelswere identified. First, the flexibility embed-
ded in TSBU allows decision makers to flexibly adjust
M&R decisions in response to changes in traffic flow and
pavement conditions. Second, for access-controlled high-
way networks, the pavement performance advantages are
often not sufficient for most OD pairs to reroute vehicles
from the shortest route to the alternative route. Therefore,
for road networks with many alternative routes of similar
length, the developed model will be more applicable and
has the potential to bring greater benefits. Otherwise, the
TSBU model may be sufficient and computationally more
efficient.
The SNO model is less likely to have a situation where

M&R actions are not conducted on time causing pavement
conditions to decline below the threshold. This indicates
that the SNO model is more far-sighted than TSBU, as it
was formulated taking into account the impact of M&R
decisions on other segments. Moreover, the SNO model
prefers concentratedM&Rschedules, possibly because this
could improve the performance of the entire network,
thereby facilitating travel route optimization. It also tends
to reduce costly rehabilitation through more frequent pre-
ventative maintenance. The value mixing method and
monotonicity constraint in the QMIX algorithm also make
its complexity linearly related to the number of agents (Fu
et al., 2020), that is, the number of pavement segments.
Thus, the developed model is expected to be applicable to
large-scale road networks.
Despite the contributions of this study, there is still room

to further improve the research. First, time-varying traffic
demand can be considered tomore realistically capture the
functional dependence among road segments. Second, the
impact of M&R schedule coordination on network traffic
distribution and M&R costs, which are another func-
tional and economic dependence, respectively, can also be
explored in future studies. Third, the performance of the
developed model can be compared with others, such as
evolutionary algorithm-based models, to verify the superi-
ority of the model. Alternatively, the model can be applied
to problems that are reduced in size and for which the opti-

mal solution is easy to obtain to assess the optimality of the
solution.
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