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        The authors conducted a comprehensive full-scale accelerated pavement test (APT) on 20 

conventional flexible pavement for the detection of bottom-up fatigue cracking. During the APT 21 

loading process, the changes in pavement materials and structural conditions, such as structural 22 

capacity (layer moduli) and functional performance (international roughness index-IRI), were 23 

monitored using piezo-powered smart sensors to track the harvested variations in strain energy 24 

rather than the traditional stain measurements. The comparison study between the newly 25 

developed sensors and the conventional  approach indicated that the performance of the 26 

piezoelectric sensor was successfully validated by the conventional strain gauge in a full-scale 27 

testing pavement system. In addition, the cumulative loading time of piezo-voltage could serve 28 

as an indicator of the pavement damage progress, and the timing of the activation of sensor 29 

thresholds with different voltage levels could reveal the pavement structural damage severity, 30 

contributing to the pavement structural health monitoring (SHM) and maintenance. The 31 

discussers highly appreciate the work of the authors and would like to provide some comments 32 

regarding the experimental process, analysis, and results. 33 

        Design of the pavement structure (layers and thickness) plays a significant role in 34 

controlling the structural responses of pavement under the repeated loading process, especially 35 

during the full-scale APT testing (Cortes Avellaneda 2010; Jiang et al. 2022b; Li et al. 1999; Terrell et 36 

al. 2003). The discussers recommend the authors explain why the thicknesses of the asphalt 37 

concrete layer (AC), unbound aggregate base layer (UAB), and subgrade are set as 102 mm, 760 38 

mm, and 1,600 mm, respectively. The relative layer thickness of the pavement among all layers 39 

determines its performance (Jiang et al. 2021). Therefore, an explanation for the pavement design 40 

could provide a good reference for future applications. 41 
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        APT  is considered a highly efficient and versatile testing approach to simulate the actual 42 

wheel loading on the full-scale pavement structure, and evaluate pavement structural responses 43 

and performance in a shorter duration (Jiang et al. 2022c; Leng et al. 2009; Ling et al. 44 

2020). Compared with conventional on-site investigations, the full-scale APT test on the 45 

pavement has the advantages of controlled loading and environmental conditions. In this study, 46 

single-axle dual-wheels of 65 kN and an approximate velocity of 76 km/h of moving wheels 47 

were chosen. It is worthwhile that the authors could explain how to set the parameters of the 48 

APT facility. In addition, the authors could provide operation experiences of APT equipment, 49 

serving as a good reference for other APT facility users.  50 

        Falling weight deflectometer (FWD) is a type of nondestructive road testing device for 51 

pavement structural analysis (Horak 2008; Jiang et al. 2022a; c; Talvik and Aavik 2009). In this study, 52 

the authors concluded that most deflection change was limited to the upper layers, and most 53 

damage took place in the asphalt layer. Usually, the deformation of the subgrade accounts for the 54 

largest proportion among all pavement layers (Gong et al. 2018; Maina and Matsui 2004; Vyas et al. 55 

2020; Wang et al. 2022b). Thus, the authors are recommended to clarify this phenomenon. In 56 

addition, the qualitative analysis of the FWD deflection could not reveal the actual layers’ 57 

condition. In this study, the layer moduli back-calculation using Dynatest ELMOD version 6 58 

software was conducted to back-calculate the different layer moduli of the pavement. However, 59 

in the back-calculation program, the solution’s reliability depends on the seed moduli, making 60 

the back-calculation an ill-posed process. Due to inaccurate results, the multi-layer linear elastic 61 

theory and back-calculation procedures have come under scrutiny (Horak 2008). In addition, the 62 

accuracy of any back-calculation method primarily depends on the accurate estimation of 63 

individual layer thickness. Nevertheless, the actual layers’ thicknesses were not validated in this 64 
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study. In previous studies, coring and ground penetration radar (GPR) are popular methods to 65 

assess pavement layer thickness(Leng and Al-Qadi 2014; Wang et al. 2018, 2022a, 2023). 66 

Coring operations are significantly time-consuming and resource-intensive. Traffic management 67 

is required when coring is conducted, bringing burdens to daily traffic operations. GPR has not 68 

been put into regular use by most transportation agencies, which hinders the evaluation progress. 69 

Thus, a more convenient, safe, and cost-efficient method is needed to investigate the pavement 70 

layers’ performance (modulus) after repeated loadings. For the conventional flexible pavement, a 71 

deflection basin parameters (DBPs)-based pavement evaluation was proposed by Horak et al 72 

(Horak, E., Emery, S., and Maina 2015). The evaluation parameters such as Surface Curvature 73 

Index (SCI), Base Damage Index (BDI), and Base Curvature Index (BCI) were used to 74 

characterize the condition of the surface layer, base layer, and subgrade layer, respectively. SCI 75 

represents the difference of deflections measured with load geo- phones located at the center of 76 

the loading plate (D0) and 300 mm (12 in.) from the center. BDI represents the difference of 77 

deflections measured with load geophones located at a distance of 300 mm (12 in.) and 600 mm 78 

(24 in.). BCI represents the difference of deflections measured with load geophones located at 79 

600 mm (24 in.) and 900 mm (36 in.). The threshold values were also presented based on a load 80 

of 40 kN or a contact pressure of 560 kPa by the FWD testing method. Therefore, the authors are 81 

recommended to apply the DBPs-based evaluation system after loading calibration in the future 82 

field investigation.  83 

        Environmental factors such as temperature and moisture are of great importance to the 84 

performance of the pavement structure. In this study, the back-calculated asphalt modulus was 85 

corrected to a reference temperature of 20°C following Highways England CS 229. The authors 86 

are recommended to show how to control the testing temperatures during the APT test. In 87 
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addition, the IFSTTAR circular test track (CTT) is an outdoor APT facility. Moisture in the base 88 

layers and subgrade soil may degrade the performance of the pavement structures. Could you 89 

provide the experience for controlling the moisture or considering the moisture effects of the 90 

base layers and subgrade of the testing pavements? The discussers believe the authors could 91 

provide a reasonable explanation for these questions. 92 

        Visual observation based on the experience could provide a fast and direct evaluation of the 93 

surface layer condition. In this study, the extent of cracking in the longitudinal and transverse 94 

directions was investigated and calculated. However, the criteria (widths) for the cracking 95 

detection were missing. According to the Federal Highway Administration (FHWA) standard 96 

(The Long-Term Pavement Performance Program 2017), there are three severity levels according to 97 

the crack width: low (≤6 mm), medium (6 to 19 mm), and high (≥19 mm). The authors are 98 

recommended to provide the evaluation criteria for visual cracking detection. In this study, the 99 

cracks were considered classical bottom-up fatigue cracking. Asphalt pavement may have both 100 

bottom-up and top-down cracking. Could you provide your analysis for classifying these cracks?  101 

        The major contribution of this study is to develop a novel piezo-powered sensing system 102 

combined with a new response-only-based approach for data reduction and interpretation for the 103 

continuous monitoring of pavement conditions. In this study, the piezoelectric sensors were 104 

placed at the bottom of the asphalt layer. The unbound aggregates were below the AC layer and 105 

the potential slippery between the aggregates and the AC bottom would occur, influencing the 106 

accuracy of the sensors. Thus, the authors are recommended to provide an explanation for the 107 

sensor’s installation and data accuracy acquired by the piezo-powered sensors. In addition, the 108 

construction experience for the AC layer containing sensors is recommended to be provided.  109 
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        Another interesting point we want to discuss with the authors is the further application of 110 

the sensors. The structural responses of the UAB layer have attracted attention from academia 111 

and industry for many years. The stress dependency of the granular materials plays an important 112 

role in pavement performance. In this study, the selected piezo-transducers for this work were 113 

designed to respond only to tension and not to compression. Nevertheless, the unbound 114 

aggregates could not experience tension during the loading process. If this type of sensor is 115 

applied to the UAB layer in the future, what improvements or modifications will you do? 116 

        The long-term monitoring of the pavement’s structural health is critical to the pavement 117 

industry and stakeholders. The authors’ research is of great value to the technical advances and 118 

promotion of pavement maintenance and rehabilitation. The discussers believe the authors would 119 

complete more comprehensive and valuable studies after reviewing and answering the above 120 

discussions and questions.  121 

  122 
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